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SUMMARY

In the serviceability lifespan of thermo-active geo-structures such as energy-piles, soils
surrounding these structures are exposed to a combination of mechanical and thermal
loads. These loads are often complex (including cycles) and, depending on the state
of the soils, the response of the surrounding soil to these loads may differ. Since the
performance and safety of the soil-structure system directly depends of the response of
the surrounding soil, it is important to understand and quantify the thermomechani-
cal behaviour of soils. These objectives can be achieved by performing laboratory-scale
element tests to gain knowledge on the fundamental response of the material and by
developing numerical tools which can be used to simulate the complete soil–structure
system under various complex load paths.

To date, many laboratory test have been conducted to study the thermomechanical
behaviour of soils. A large portion of these tests have been triaxial tests and many ther-
momechanical constitutive models for soils are developed based on the phenomeno-
logical findings from these tests. While these models have been seen to be capable of
capturing the general thermomechanical behaviour of soils, none have been formulated
to ensure that they unconditionally satisfy the principles of thermodynamics. Therefore,
under complex loading paths certain phenomena may not be captured/predicted, and
other phenomena may be spuriously predicted. On the other hand, only a very limited
number of tests have been conducted on soil-structure interfaces. Therefore the avail-
able knowledge on the thermomechanical behaviour of soil-structure interfaces until
this time has been limited.

The objective of this thesis is to fill-in the gaps mentioned above by investigating and
exploring the main mechanisms governing the thermomechancial behaviour of soils
and soil-structure interfaces, as well as developing thermomechanical constitutive mod-
els constructed from a sound foundation (i.e. thermodynamics) and numerical algo-
rithms that can be used in boundary-value solvers such as finite-element methods.

First, the phenomenological temperature effects observed in laboratory-scale tests
are combined with principles of thermodynamics to develop a "base" thermomechani-
cal constitutive model, defined in triaxial stress space, that can capture the main thermo-
mechanical behaviour of fine-grained soils. This base model has a single flexibly shaped
yield surface. The base model is then upgraded to a "two surface/bubble" thermome-
chanical model by introducing an additional yield surface. The additional yield surface
translates within the admisible stress space via a temperature-dependent kinematic rule,
which enables the model to capture additional thermomechanical features such as the
shakedown behaviour of soils when subjected to thermal cycles, which the single yield
surface constitutive model was not able to capture or predict.

The main value of constitutive models is achieved when they are efficiently embed
within boundary-value solvers, such as a finite-element method solver. One such effi-
cient method is to use the implicit stress integration scheme. However, many constitu-
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tive models fail to converge within these schemes. One possible reason, as demonstrated
in this thesis, is the existence of undesired elastic nuclei or domains with erratic diver-
gence. A new yield function (which can also be used as a plastic potential function) is
proposed, which is flexible and unique, and overcomes the aforementioned drawbacks.
The single surface thermomechanical model (defined in triaxial space) is then modified
by incorporating the newly proposed yield surface formulation with the addition of Lode
angle dependency and generalisation to three-dimensional stress space, prior to being
implemented in a finite-element context. Since the non-linear thermo-elastic relation-
ships of the model were derived from a Gibbs-type energy potential, a new numerical
algorithm was designed to accommodate this feature when implementing the model in
a finite-element context using an implicit stress integration scheme.

The thermomechanical behaviour of soil-structure interfaces is experimentally in-
vestigated using a temperature-controlled direct shear apparatus. Several thermome-
chanical stress paths, with a wide ranges of stresses, temperatures and boundary condi-
tions, analogous to those an interface element experiences in the serviceability life-time
of an energy-pile, were designed and performed. Unique observations including the
coupling effect of initial shear stress and thermal cycles were recorded, which enhanced
the knowledge of thermoemchanical behaviour of soil-structure interfaces. The main
impact on soil-concrete interfaces was seen to be the mechanical cyclic loads arising
due to the heating and cooling of the concrete pile, rather than direct thermal impacts.
Thermal creep was identified as a novel phenomen which had not been previously iden-
tified.



SAMENVATTING

In de bruikbaarheidslevensduur van thermo-actieve geostructuren, zoals energiepalen,
worden de bodems rond deze structuren blootgesteld aan een combinatie van mechani-
sche en thermische belastingen. Deze belastingen zijn vaak complex (inclusief cycli) en,
afhankelijk van de toestand van de bodems, kan de reactie van de omringende bodem
op deze belastingen verschillen. Aangezien de prestaties en veiligheid van het grond-
structuursysteem direct afhangen van de reactie van de omringende grond, is het be-
langrijk om het thermomechanische gedrag van bodems te begrijpen en kwantificeren.
Deze doelstellingen kunnen worden bereikt door het uitvoeren van laboratoriumschaal
elementtesten om kennis te verwerven over de fundamentele respons van het materiaal
en door het ontwikkelen van numerieke hulpmiddelen die kunnen worden gebruikt om
het volledige grond-structuursysteem te simuleren onder verschillende complexe belas-
tingpaden.

Tot op heden zijn er veel laboratoriumtesten uitgevoerd om het thermomechanische
gedrag van bodems te bestuderen. Een groot deel van deze testen zijn triaxiale testen en
veel thermomechanische constitutieve modellen voor bodems zijn ontwikkeld op ba-
sis van de fenomenologische bevindingen uit deze testen. Hoewel deze modellen over
het algemeen in staat zijn gebleken om het thermomechanische gedrag van bodems
vast te leggen, zijn er geen geformuleerd om ervoor te zorgen dat ze onvoorwaardelijk
voldoen aan de principes van thermodynamica. Daarom kunnen bepaalde fenomenen
onder complexe belastingpaden mogelijk niet worden vastgelegd / voorspeld, en kun-
nen andere fenomenen ten onrechte worden voorspeld. Aan de andere kant zijn er tot
nu toe slechts een zeer beperkt aantal testen uitgevoerd op grond-structuurinterfaces.
Daarom is de beschikbare kennis over het thermomechanische gedrag van de grond-
structuurinterfaces tot nu toe beperkt geweest.

Het doel van dit proefschrift is om de hierboven genoemde hiaten op te vullen door
het onderzoeken en verkennen van de belangrijkste mechanismen die het thermome-
chanische gedrag van bodems en grond-structuurinterfaces beheersen, en door het ont-
wikkelen van thermomechanische constitutieve modellen die zijn opgebouwd uit een
degelijke basis (d.w.z. thermodynamica) en numerieke algoritmen die kunnen worden
gebruikt in grenswaarde-oplossers zoals eindige-elementenmethoden.

Ten eerste worden de fenomenologische temperatuureffecten die in laboratorium-
schaaltesten zijn waargenomen, gecombineerd met principes van thermodynamica om
een "basis"thermomechanisch constitutief model te ontwikkelen, gedefinieerd in triaxi-
ale spanningsruimte, dat het belangrijkste thermomechanische gedrag van fijnkorrelige
bodems kan vastleggen. Dit basismodel heeft een enkel flexibel gevormd vloeigrensop-
pervlak. Het basismodel wordt vervolgens opgewaardeerd naar een "tweeoppervlak-
/bel-thermomechanisch model door het introduceren van een extra vloeigrensopper-
vlak. Het extra vloeigrensoppervlak vertaalt zich binnen de toelaatbare spanningsruimte
via een temperatuurafhankelijke kinematische regel, die het model in staat stelt om extra
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thermomechanische eigenschappen vast te leggen, zoals het uitvlakgedrag (shakedown)
van bodems bij blootstelling aan thermische cycli, wat het enkelvoudige vloeigrensop-
pervlak niet kon vastleggen of voorspellen.

De belangrijkste waarde van constitutieve modellen wordt bereikt wanneer ze effici-
ënt worden ingebed in grenswaarde-oplossers, zoals een eindige-elementenmethode-
oplosser. Een dergelijke efficiënte methode is het gebruik van het impliciete stres-
sintegratieschema. Veel constitutieve modellen slagen er echter in om binnen deze
schema’s samen te vallen. Een mogelijke reden, zoals in dit proefschrift wordt aan-
getoond, is het bestaan van ongewenste elastische kernen of domeinen met een cha-
otische divergentie. Er wordt een nieuwe vloeigrensfunctie voorgesteld (die ook kan
worden gebruikt als plastisch potentieelfunctie), die flexibel en uniek is, en de eerder
genoemde nadelen overwint. Het enkelvoudige oppervlakthermomechanische model
(gedefinieerd in triaxiale ruimte) wordt vervolgens gewijzigd door het nieuw voorge-
stelde vloeigrensoppervlakformulering te incorporeren met de toevoeging van Lode-
hoekafhankelijkheid en generalisatie naar driedimensionale spanningsruimte, voor-
dat het in een eindige-elementencontext wordt geïmplementeerd. Aangezien de niet-
lineaire thermo-elastische relaties van het model zijn afgeleid van een Gibbs-type ener-
giepotentieel, is een nieuw numeriek algoritme ontworpen om deze functie te accom-
moderen bij het implementeren van het model in een eindige-elementencontext met
behulp van een impliciet stressintegratieschema.

Het thermomechanische gedrag van grond-structuurinterfaces wordt experimenteel
onderzocht met behulp van een temperatuurgeregelde direct-schuifapparatuur. Ver-
schillende thermomechanische stresspaden, met een breed scala aan spanningen, tem-
peraturen en randvoorwaarden, analoog aan die een interface-element ervaart in de
bruikbaarheidslevensduur van een energiepaal, zijn ontworpen en uitgevoerd. Unieke
waarnemingen, waaronder het koppelingeffect van initiële schuifspanning en thermi-
sche cycli, zijn vastgelegd, wat de kennis van het thermoemchanische gedrag van grond-
structuurinterfaces heeft verbeterd. De belangrijkste impact op grond-betoninterfaces
bleek te zijn de mechanische cyclische belastingen als gevolg van het verwarmen en koe-
len van de betonnen paal, in plaats van directe thermische impact. Thermische kruip
werd geïdentificeerd als een nieuw fenomeen dat nog niet eerder was vastgesteld.



1
INTRODUCTION

1



1

2 1. INTRODUCTION

1.1. INTRODUCTION
In recent decades, utilising thermal energy from the ground, as an almost unlimited
source of heating and cooling, has gained attention. In deep geothermal energy projects,
thermal energy is extracted from deep geological layers often several kilometres below
the ground surface. However, the high costs of drilling technology and practical diffi-
culties have restricted its implementation to large-scale applications [1]. Thus, due to
their lower cost and reasonable long-term sustainability, shallow geothermal resources,
mostly from soil layers, have become an interesting medium for extracting energy. More-
over, due to the initial lower temperatures, the ability to provide cooling, i.e., inject-
ing energy, allows integration with newer better insulated buildings which require both
heating and cooling. In contrast to deep geothermal systems, the application of shal-
low geothermal systems is feasible in a wide range of buildings, e.g., both residential and
commercial buildings [2; 3], and in both small and large buildings. In addition, interest
has globally been focused toward the so called "nearly zero energy buildings", with less
energy consumption and low-carbon emissions, due to economical and environmental
benefits [2].

At shallow depths below 5-10m (depending on the region) the Earth’s temperature is
reasonably stable, i.e., it does not vary over the course of a year, and can be used as a heat
sink or as a source of energy [2]. Water can be circulated through heat exchanger pipes,
where for shallow geothermal systems these are often closed, which are in turn in contact
with the ground. The temperature in the ground is significantly lower than required for
space or water heating and therefore heat pumps must be used. These systems are often
called ground source heat pump (GSHP) systems. In a heating mode, the ground plays
the role of the energy source from which thermal energy is extracted and transferred to
the building (usually upgraded in temperature using a GSHP), while in a cooling mode
the heat from the building is injected into the ground (which acts as a heat sink) [4]. By
using these systems for both heating and cooling, thermal energy can be stored and the
systems can be more efficient, i.e., they require less electrical input to the heat pump.

Energy-piles (also known as thermal-piles) are one of many kinds of GSHP systems.
They are dual-purpose constructions, designed to bear the structural loads exerted from
the building as their main purpose and to exchange heat with the ground as their sec-
ondary purpose. They are mostly made of concrete, which has a reasonably high heat
capacity and thermal conductivity [5]. The heat exchangers with the ground are mostly
U-tubes (plastic tubes in a U shape) inserted in the piles, in which a fluid circulates and
carries the heat. A major advantage over other GSHP systems is that the installation of
the ground heat exchangers is only fractionally more expensive than installing the foun-
dation piles, although the impact on the structural performance must be quantified.

Though energy pile systems are gaining traction in certain countries, there is a gen-
eral lack of recognised geotechnical design standards in most countries [4; 6]. Instead,
the design processes largely rely on practical assessments and patterns derived from em-
pirical data [7]. Often to compensate for this, a higher safety factor is used (in compar-
ison to the design process of a regular pile) [4] to cover the possible detrimental effects
of temperature variation. Although this approach would probably keep the design and
construction safe, it could impose un-needed additional costs. To avoid this drawback, a
clear understanding of the governing mechanisms occurring during the energy-pile life-
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time is a must. Energy pile systems have a more complex soil-structure interaction in
comparison to a regular pile. These complexities in behaviour are due to thermal effects
on both the mechanical behaviour of the pile and the surrounding soil (which are cyclic
on both a daily and annual basis), as well as their coupled effects.

1.2. CONCEPTUAL MODEL
Energy-piles are employed for the two main reasons of carrying mechanical loads and
exchanging heat with the ground. The heat transfer results in changing temperature,
which due to thermal expansion or contraction can cause changes in stresses and
strains in the soil. Therefore, the stresses in the ground consist of both mechanical and
thermally-induced stresses [8], as indicated in Figure 1.1. These stresses develop and act
in combination with the ground and the pile. The resulting stresses can be studied sep-
arately as mechanical and thermally-induced stresses, and added together by using the
superposition principle. The external load from the structure constructed on the pile, F
(Figure 1.1a), is transferred to the pile and from the pile to the ground. As a result, by
considering a pile element at the interface adjacent to a soil element, an axial stress σa

as well as radial and hoop stresses (σr and σh) are applied to the pile element, due to
Poisson’s ratio and the restraints from the adjacent soil (Figure 1.1b). As the pile under-
goes axial deformation (and possible changes in the radial and hoop stresses), the shear
stress τ mobilises at the interface. As these elements are in stress equilibrium, stresses
are transferred to the soil element at the interface.

When the heat exchange through the U-tubes initiates, the pile expands or contracts
in all directions, depending on whether the pile heats up or cools down. By assuming
the temperature is uniformly distributed radially and along the length of the pile, and
considering if the pile would be completely free to deform (both radially and axially),
no internal stresses would be generated inside the pile. However, depending on the soil
state and boundary conditions, the pile may be (partially) constrained [8]. As a result, the
portion of the volume expansion of the pile that is prevented produces internal stresses
which are referred to as thermally-induced stresses. These stresses are (Figure 1.1c):

• σTap , thermally-induced axial stress developed inside the pile. This stress is due to
the restraint imposed by the surrounding soil in both the axial and radial directions
and the possible restraint provided by the above structure.

• σTr , thermally-induced radial stress developed at the interface. This stress is the
result of prevention of radial displacements as well as to changes in the thermally-
induced hoop stresses. Note that the radial displacements occur as a result of ther-
mal expansion in the radial direction and the influence of Poisson’s effect from
constraining axial thermal expansion.

• σTs , thermally-induced stress developed inside the soil. Depending on the
soil’s type and state, it may undergo both thermo-elastic expansion and perma-
nent contraction during heating. When these volume changes are prevented,
thermally-induced stresses are developed inside the soil element.

• σT h , thermally-induced hoop stress. A combination of radial and axial stress vari-
ations at different radii from the interface, as well as an irregular shape of the pile,
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may produce hoop stresses perpendicular to both the axial and radial stresses.

• τT , thermally-induced shear stress. This stress is mobilised at the interface due
to relative displacement between the pile and soil in contact, due to temperature
variation and the combined effects of radial, hoop and axial stresses mobilised at
the interface.

It should be noted that the above stresses are directly dependent on their interaction
with each other and the level of restraint imposed by the ground. As an example, if the
pile is installed in a stiff clayey-soil and the pile’s radial expansion is confined, then a
higher thermally-induced radial stress would be generated and, simultaneously, due to
Poisson’s ratio, higher thermally-induced axial stresses or strains (dependent on the axial
restraints of the pile) are produced. This would also lead to differential displacement at
the interface and thereby to the generation of shear stresses (τT ).

The direction of the thermally-induced stresses depends on both the direction of
heat transfer (heating or cooling) and the location of the element on the pile. For in-
stance, the directions of the shear and axial stresses (σTap and τT ) at the pile during
heating differ when the pile element is located above or below the null point (the point
at which the axial stresses are zero, i.e., the point at which the direction of elongation
changes). In addition, the direction of these stresses becomes opposite during cooling.

The magnitude of the stresses depends on the soil restraint imposed on the pile
and the thermomechanical behaviour of the surrounding soil. For piles located in fine-
grained (almost) normally-consolidated soils with a high plasticity-index, higher strains
occur due to higher volume contraction during heating. In addition, soils may expe-
rience a reduction in shear strength as the temperature increases. For piles installed
in such soils, larger relative displacements may be required to mobilise sufficient shear
stress at the interface.

For a typical energy-pile, heating will be the primary use in the winter, resulting in
cooling of the soil, whereas, in the summer, cooling will be used or the system will simply
not be in operation; this will result in an annual cycle of temperatures and thermally-
induced stresses. More minor cycles may be induced on a daily or weekly basis, but
these will be of a significantly smaller magnitude.
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Figure 1.1: (a) Stresses developed during the deployment of the energy pile; (b) mechanical stresses; (c)
thermally-induced stresses
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1.3. THERMOMECHANICAL BEHAVIOUR OF SOILS
In general, the thermomechanical behaviour of soils can mostly be categorised as
thermally-induced volumetric and thermally-induced shear behaviour.

1.3.1. THERMALLY-INDUCED VOLUMETRIC BEHAVIOUR OF SOILS

FINE-GRAINED SOILS

The thermomechanical behaviour of fine-grained soils is highly dependent on the previ-
ous loading history. This can best be shown by the effect of the over-consolidation ratio
(OCR) on its mechanical behaviour, which is defined as the ratio of the maximum mean
effective stress experienced by the soil over the current mean effective stress. When a
fine-grained soil is exposed to elevated temperatures, the volume of the soil has a ten-
dancy to expand due to thermal elastic expansion; however, there is also the possibility
of contraction, which is usually plastic and therefore permanent. Which process dom-
inates the overall volume change of the soil directly depends on the OCR value. At low
values of OCR (i.e., normally to slightly over-consolidated soils), permanent contraction
is normally the dominant mechanism [9–14]. This behaviour is attributed to plastic yield
of the soil due to soil particle rotation and rearrangement, similar in behaviour to when
an additional compressive load is applied beyond the maximum mean effective stress
experienced by the soil. At higher OCR values, permanent volume contraction decreases
(or becomes zero) and thermo-elastic expansion becomes the dominant mechanism
[10; 15].

COARSE-GRAINED SOILS

The volume change of sandy-soils has mostly been reported to be temperature-
independent and has thus been neglected [16–18]. However, recent studies show that
the temperature effect on the volumetric behaviour of sands is similar to clayey-soils, al-
though its magnitude is smaller in comparison. The thermomechanical behaviour, sim-
ilar to clays, is also dependent on loading history, although different mechanisms are
involved which can often be described by confining pressure and void ratio (p and e). At
low densities and high confining pressures (representing the wet side of the Critical State
line), an increase in temperature leads to volume contraction, whereas, as the density
increases or the confining pressure decreases, the behaviour would be mostly thermo-
elastic expansion [19; 20]. Further increases in temperature are observed to result in the
dominating mechanism asymptoting toward thermo-elastic expansion, independent of
the soil’s density.

1.3.2. THERMALLY-INDUCED SHEAR BEHAVIOUR OF SOILS

FINE-GRAINED SOILS

The thermally-induced shear behaviour of fine-grained soils depends directly on the
soil’s constituents and mineralogy. Thus, through an increase in temperature, the peak
shear strength [10; 21–25], the stress ratio at the Critical State [22; 24; 26], and the elastic
bulk and shear moduli [27] may increase, decrease or remain unchanged.
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COARSE-GRAINED SOILS

Most experimental results indicate a temperature-independency for the shear behaviour
of coarse-grained soils [28–30]. However, a few studies show a reduction in the peak
shear strength and secant modulus in dense sandy-soils as the temperature increases
[20].

1.3.3. BEHAVIOUR OF SOILS DURING HEATING-COOLING CYCLES
When soils (both fine and coarse grained) are subjected to heating-cooling cycles, per-
manent volumetric strains can be produced which may accumulate [11; 17; 19; 25; 31;
32]. The highest strain produced normally results from the first cycle and additional
strains become smaller as the number of cycles increases; this is known as hardening
behaviour. Eventually, the soil reaches a thermally-stable condition in which further ap-
plication of heating-cooling cycles would not develop permanent volumetric strains and
the resultant volume change would only be due to thermo-elastic expansion.

1.3.4. COUPLING BEHAVIOUR
The volumetric behaviour has a strong impact on the shear behaviour in a system that
has restraints. The shear stress on the pile’s circumference directly depends on the ap-
plied normal stress. If the volume of a soil is reduced, the normal stress and conse-
quently the shear strength are also reduced (in materials with frictional strength). Sev-
eral coupling processes between the pile and the surrounding soil may result in volume
reduction. When the soil is subjected to heating-cooling cycles, due to the hardening be-
haviour of soils the volume of a soil adjacent to the pile may decrease. The consecutive
expansion-contraction of the pile, due to temperature variation, imposes mechanical
cyclic shearing at the interface which also may result in volume reduction of the soil.
Thus, settlement may occur as the shear strength and thereby bearing capacity reduce.
Another key coupling is the ability of the soil to drain. In fully drained conditions, the soil
is able to deform as described above. In fully undrained conditions, pore water pressures
develop, due to both the thermal expansion/contraction of the water and the volumetric
restraint provided by the water to the soil skeleton. In most cases, the soil is between
these two states, and the behaviour therefore depends on the heating/cooling rate, the
hydraulic conductivity and the drainage path.

1.3.5. THERMOMECHANICAL BEHAVIOUR OF SOIL-STRUCTURE INTERFACES
Only a limited amount of research has been conducted on studying the thermomechan-
ical behaviour of soils at the interface level with structures, e.g. concrete or steel. Ex-
perimental results show that the mechanical behaviour (shear and volumetric) of sand-
interfaces is temperature independent [33–36]. However, the shear behaviour of clay-
interfaces, similar to clayey samples in triaxial tests, shows various trends in response
to thermal loads. As a result of an increase in temperature, the shear strength (or fric-
tion angle) of clay-interfaces may show a decrease [33] or remain unchanged [30; 36–38].
The adhesion of clay-interfaces demonstrated a OCR-dependency with respect to an in-
crease in temperature. Thermomechanical tests on normally-consolidated or slightly-
consolidated clay-interfaces showed an increase in adhesion [33; 34; 36], while over-
consolidated clay-interfaces indicated a temperature-independency behaviour [30; 37].
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1.4. MOTIVATION OF THE THESIS
This thesis aims to explain and quantify the governing mechanisms occurring during the
performance of an energy-pile, with a focus on the behaviour of soils, which may impact
the behaviour of an energy-pile (both settlements and bearing capacity). As explained
in Section 1.2, soils experience a wide range of stresses (and strain levels) during the
serviceability life-time of an energy-pile which can significantly affect its performance.
The behaviour and performance of the energy-pile becomes even more complex when
the mechanical behaviour of soils and soil-structure interfaces are also temperature de-
pendent (Section 1.3). Therefore, in order to enable appropriate design decisions, ac-
curate charactersation of the material behaviour and numerical models which incorpo-
rate this behaviour are required. The thesis consists of developing thermomechanical
constitutive models and their implementation in a boundary-value solver (e.g. a finite-
element method solver) as well as laboratory-scale direct shear tests. Since temperature
has been shown to have noticeable effects on the behaviour of fine-grained soils (com-
pared to coarse-grained soils), constitutive models were developed to capture the ther-
momechanical behaviour of fine-grained soils. Direct shear tests were performed on
both fine-grained and coarse-grained soils to study the thermomechanical behaviour at
the interface level due to the much more limited data available in the literature.

1.5. STRUCTURE OF THE THESIS
The remainder of the thesis is arranged into 7 further chapters, as follows:

In Chapter 2 a thermomechanical model using a flexible Modified Cam Clay (MCC)
type single yield surface is presented which incorporates the major thermomechanical
behaviour of fine-grained soils, observed when subjected to temperature variation. The
model was developed based on the framework of Hyperelasticity-Hyperplasticity, to en-
sure its thermodynamical consistency, and thus a new rate of dissipation function was
proposed. The performance of the model was also compared with laboratory test re-
sults which confirmed the capability of the model to capture the thermomechanical be-
haviour of soils. This was followed by proposing a descriptive micro-scale mechanism
to explain how temperature affects the behaviour of fine-grained soils.

When numerically implementing constitutive models with flexible yield surfaces and
plastic potentials (from which the plastic flow rule is obtained) using an implicit stress
integration scheme, the numerical algorithm may fail to return the stress back onto the
yield surface. This observation may be due to the existence of undesired elastic domains
or domains with erratic and divergent gradients. In Chapter 3 a unique flexible MCC
type yield function is proposed which addresses the aforementioned deficiencies by de-
signing and implementing geometrical constraints for the yield function. As a result,
the proposed yield function (or the plastic potential) is robust and efficient for return
mapping algorithms used in implicit stress integration schemes.

Chapter 4 presents a numerical algorithm to implement the thermomechanical
model developed in Chapter 2 when using a Gibbs energy potential (for deriving non-
linear thermo-elastic relationships), the flexible and robust yield function proposed in
Chapter 3, and additional features such as Lode angle dependency, in a boundary-value
solver (here, a finite-element method solver). Many features of the algorithm, includ-
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ing accuracy, robustness, effectiveness and convergence were investigated. The perfor-
mance of the thermomechanical model, implemented with this numerical algorithm in
the DIANA FEA software, was thoroughly studied.

The thermomechanical model presented in Chapter 2 captures the majority of the
thermomechanical behaviours of fine-grained soils. However, the model fails to pre-
dict the shakedown behaviour of soils when they are subjected to heating-cooling cy-
cles. Therefore, a new thermomechanical constitutive model is developed in Chap-
ter 5 to capture this type of behaviour. The model is formulated using two yield sur-
faces and, similar to the single-surface model developed in Chapter 2, it is developed
within the framework of Hyperelasticity-Hyperplasticity. A new rate of dissipation po-
tential is presented to capture the form of the yield function presented in Chapter 3. A
temperature-dependent kinematic rule, developed within the context of thermodynam-
ical constraints, was developed which allowed the inner yield surface to translate within
the stress space. With these features the model was capable of capturing the hysteresis
behaviour of soils during cyclic mechanical loadings and shakedown behaviour when
they are subjected to heating-cooling cycles.

In Chapter 6 the thermomechanical behaviours of fine-grained soils (e.g. clays) and
coarse-grained soils (e.g. sands) at the interface level with a concrete structure are inves-
tigated experimentally. Thermomechanical stress paths analogous to those that a soil
element experiences during the short- and long-term operation of an energy-pile, at the
interface level, were designed. These thermomechanical stress paths include monotonic
and cyclic shearing at ambient temperature (20°C), elevated temperature (38°C) and re-
duced temperature (2°C), for the various boundary conditions of constant normal load
(CNL), constant normal stiffness (CNS) and constant volume (CV).

Chapter 7 investigates experimentally the coupling effect of initial shear stress and
thermal cycles on the thermomechanical behaviour of soils at the interface level with
a concrete structure. The thermomechanical stress paths were designed to mimic soil-
interface elements sheared, due to installation effects or pile elongation when subjected
to daily and seasonal thermal cycles, prior to being subjected to thermal loads.

Finally, the thesis ends by synthesising the main conclusions from Chapters 2-7 and
exploring the potential future research in Chapter 8.

Note that Chapters 2-7 are self-contained, as they have been or are in the process of
being published as individual journal articles. As a result, there will be some repetition
of fundamental concepts and literature reviews. Furthermore, notations were chosen to
be simple and clear for each chapter rather than for the thesis as a whole; consequently,
the notations may not be identical from chapter to chapter.
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2
A THERMO-MECHANICAL

CONSTITUTIVE MODEL FOR

FINE-GRAINED SOILS BASED ON

THERMODYNAMICS

The formulation of a new thermo-mechanical constitutive model consistent with the
principles of thermodynamics is presented. The model is capable of predicting rate-
independent thermo-mechanical behaviour of fine-grained soils. The constitutive equa-
tions are derived by defining only a Gibbs-type free energy and a dissipation potential,
in accordance with the hyperplasticity method. The addition of thermo-elasticity to the
energy potential, and the embedding of the identified thermo-mechanical mechanisms
into a newly proposed dissipation potential, enables the model to describe the thermo-
mechanical behaviour. The proposed dissipation potential eliminates the application of
shift stress which results in a simpler formulation in the context of hyperplasticity. The
step-by-step procedure of deriving the equations, as well as a detailed analysis of the pa-
rameters of the model, is presented. The performance of the model is shown to be in good
agreement with experimental data. A qualitative description of the possible micro-scale
mechanisms for fine-grained soils, when subjected to temperature variation, is presented,
as a step towards including the mechanisms in the formulation.

This chapter is based on the following paper: Golchin, A., Vardon, P. J. and Hicks, M. A. A thermo-mechanical
constitutive model for fine-grained soils based on thermodynamics. International Journal of Engineering Sci-
ence, 174, 103579, 2022.
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LIST OF SYMBOLS

Roman Greek
1 Identity tensor α Parameter related to the shape

of the yield surface
A Shape function for yield sur-

face
α∗ Linear thermal expansion co-

efficient
αk Passive variables, k = 1,2,3, · · · αi Internal variables
B Shape function for yield sur-

face
β Level of inclination of the yield

surface
C Shape function for yield sur-

face
γ Parameter related to the shape

of the yield surface
CSL Critical State Line ε Strain tensor
Ce Elastic compliance matrix εp Plastic strain tensor
De Elastic stiffness matrix ε̇ Strain increment tensor
d Rate of mechanical dissipation

function
εv Total volumetric strain

d t Rate of total dissipation func-
tion

εs Total deviatoric strain

e Void ratio εe
v Elastic volumetric strain

e0 Initial void ratio εe
s Elastic deviatoric strain

ep Plastic deviatoric strain tensor ε̇e
v Elastic volumetric strain incre-

ment
f Helmholtz free energy poten-

tial
ε̇e

s Elastic deviatoric strain incre-
ment

g Gibbs free energy potential ε
p
v Plastic volumetric strain

g1 Isothermal Gibbs free energy
potential

ε
p
s Plastic deviatoric strain

Ḡ Maximum elastic shear modu-
lus

ε̇
p
v Plastic volumetric strain incre-

ment
h Enthalpy ε̇

p
s Plastic deviatoric strain incre-

ment
k1,k2 Functions εT

v Thermo-elastic volumetric
strain

K̄ Maximum elastic bulk modu-
lus

ε̇T
v Thermo-elastic volumetric

strain increment
l1 Active variable η Stress ratio
l2 Conjugate of l1 T Absolute temperature
m Power of p for bulk modulus T0 Initial absolute temperature
M Critical State stress ratio T,k Thermal gradient
M0 Critical State stress ratio at am-

bient temperature
Ṫ Temperature increment

n Power of p for shear modulus κ Slope of unloading/reloading
curve

nh Order of an homogeneous
function

λ Slope of NCL
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NCL Normal Consolidation Line Λ̇ Plastic multiplier
OCR Over Consolidation Ratio µ Thermal softening coefficient
p Mean effective stress π Coefficient of Critical State

stress ratio variation
p0 Initial mean effective stress Πt Total disjoining pressure
pc Pre-consolidation pressure Πe Electrostatic disjoining pres-

sure
pcT Apparent pre-consolidation

pressure
Πm Molecular disjoining pressure

ṗcT Rate of change of the apparent
pre-consolidation pressure

Πs Structural disjoining pressure

pr e f Reference mean effective
stress

σ Total stress

PI Plasticity index σ̇ Stress increment tensor
q Deviatoric stress σ′ Effective stress
q Heat flux vector Υ Scalar multiplier of χ
q0 Initial deviatoric stress Υ′ Scalar multiplier
Q̇ Heat supply χ Generalised dissipative force
r Homogeneous function χp Mean generalised dissipative

stress
rp Plastic flow in p direction χq Deviatoric generalised dissipa-

tive stress
rq Plastic flow in q direction χ̄ Generalised stress
r Plastic flow direction χ̄p Mean generalised stress
RH Rotational hardening χ̄q Deviatoric dissipative stress
s Entropy
ṡ Rate of change of entropy
s Deviatoric stress tensor
t Thickness of hydrate layers
u Internal energy potential
u̇ Rate of change of internal en-

ergy
up Pore water pressure
ν Generalised dissipative veloc-

ities
w Flow potential
Ẇ Work input
x State variables
y Yield function in true stress

space
yd Yield function in dissipative

stress space
ẏ Rate of change of the yield

function
z Force potential
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2.1. INTRODUCTION
A number of constitutive models have been developed to capture the thermo-
mechanical behaviour of soils [1–17]. These models are mostly based on plasticity the-
ory, and some are capable of capturing the general thermo-mechanical behaviour of
soils with reasonable accuracy. However, mostly they do not follow the principles of
thermodynamics; therefore, certain phenomena may not be captured/predicted and
other phenomena may be spuriously predicted. For instance, Lashkari & Golchin [18]
devised a stress path that formed a closed loop in the meridian stress space (p-q). They
analyzed the responses stemming from a non-linear elasticity formula, which was cre-
ated based on thermodynamic principles. This was subsequently compared with the
responses from a variant without any underlying thermodynamic principles. While the-
oretically the elastic strains generated at the end of a closed-loop stress path should
match the ones at its beginning (i.e., elastic responses should be stress-path indepen-
dent), they demonstrated that only the elasticity derived from thermodynamics adhered
to this concept. In contrast, the other formulation resulted in elastic strains that lacked
physical justification or reasoning. However, not utilising thermodynamics principles
allows observed behaviour to be relatively easily included in constitutive equations, and
therefore can be used to reproduce observed behaviour well (e.g. [19]). As stress-paths
become more complex (e.g. multi-physical processes or multi-directional cycles), or ex-
ceed bounds for which the models have been validated, it is certainly attractive to elimi-
nate potential spurious non-thermodynamically consistent behaviour, which can accu-
mulate with repeated loading [19].

The principles of thermodynamics are sufficient to develop a framework which ac-
curately captures the behaviour of geomaterials [20; 21]. To do so, the identification of
the governing mechanisms during the process and the assigning of appropriate vari-
ables that represent the system are required. A discussion on selecting these variables
can be found in [22]. Several approaches exist that use the principles of thermody-
namics to exploit constitutive equations (see [21–23], for example). In this chapter, a
thermo-mechanical constitutive model is developed, based on the thermodynamically-
consistent framework of hyperplasticity. Hyperplasticity theory was firstly developed by
Collins & Houlsby [24], and combines and utilises the laws of thermodynamics through
the application of Ziegler’s hypothesis [25]. Thus, the derived constitutive equations sat-
isfy the principles of thermodynamics and can be implemented with confidence into nu-
merical simulations [20]. This approach has been used to capture the creep and freezing
of soils ([26] and [27], respectively).

Note that the formulations presented here are in accordance with geotechnical con-
ventions, where compressive stresses and contractive strains are considered to be posi-
tive and all stresses are effective stresses. In line with this context, the thermal expansion
coefficient utilised in this chapter are presented with negative values.

2.2. THERMO-MECHANICAL BEHAVIOUR OF FINE-GRAINED

SOILS
In general, the mechanical response of materials can be investigated in two distinct
parts: the volumetric behaviour and the shear behaviour. Similarly, the effect of temper-
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ature on the thermo-mechanical behaviour of soils can be split into thermally-induced
volumetric and thermally-induced shear effects.

Normally and slightly over-consolidated clayey-soils (soils with low over-
consolidation ratios) undergo permanent volumetric contraction when they are
subjected to an increase in temperature [28–32]. As the over-consolidation ratio (OCR)
increases, the severity of the thermally-induced volumetric contraction decreases and,
at high OCRs, the thermo-mechanical behaviour transitions to volumetric expansion.
This volumetric expansion is mostly reversible and is attributed to the thermo-elasticity
of highly over-consolidated soils due to the volumetric expansion of soil particles
without rearrangement [33].

Soils also show a reduction in yielding stress (represented by pre-consolidation pres-
sure) at higher temperatures, when consolidated isotropically [28; 29; 32; 34]. Variation
of the pre-consolidation pressure at different temperatures (pcT ), normalised by the pre-
consolidation pressure at the ambient temperature (pcT 0), with respect to the subjected
temperature difference, is shown in Figure 2.1 for different soils.

On the other hand, the shear behaviour of soils shows a range of behaviours as the
temperature is elevated. Depending on the mineralogy and constituents of the soil, the
peak shear strength and dilatancy may increase, remain unchanged, or decrease during
heating [29; 35–39]. A similar result has also been reported for the stress ratio at Crit-
ical State conditions [29; 32; 34; 35; 40] (see Figure 2.2). A reduction or increase in the
elastic shear modulus observed at elevated temperatures is another demonstration of
mineralogy-dependency of the shear behaviour of soils [41].

Soils exhibit hardening behaviour during heating-cooling cycles [4; 39; 42; 43]. The
oedometer test results for two different clays [28; 31], subjected to a heating-cooling cy-
cle (heating followed by cooling), are presented in Figure 2.3. After the heating-cooling
cycle, the void ratio reduces (permanent volumetric strains produce), leading toward a
denser state. As a result, the pre-consolidation pressure increases and the elastic domain
becomes bigger.

When soils are subjected to several thermal cycles, each cycle adds to the accumu-
lated permanent volumetric strain. However, the amount of permanent strain in a cycle
reduces with consecutive cycles, until a thermally stable condition is reached. In this
condition, the permanent component of volumetric strain tends to zero and the be-
haviour becomes totally elastic, governed by the volumetric thermal expansion of soil
grains.

The structure and chemical-reactivity potential of a soil are proven to significantly
affect the intensity-level of thermally induced deformation during heating [30; 39; 43–
45]. The plasticity index, PI, can be considered as an indication of the level of chemical-
reactivity potential. As the PI increases, the soil is more susceptible to permanent vol-
umetric reduction at elevated temperatures [4; 36]. Also, normally and slightly consol-
idated intact soils, with randomly distributed size and position of void spaces, are sus-
ceptible to higher volumetric contraction in comparison to remoulded soil specimens
with uniformly distributed voids (both in size and position) [39].
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Figure 2.1: Reduction of the normalised pre-consolidation pressure with temperature difference ∆T ◦C
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Figure 2.2: Variation of Critical State stress ratio, M, with temperature T◦C
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Figure 2.3: Hardening behaviour during heating-cooling cycle

2.3. FORMULATION OF THE THERMO-MECHANICAL MODEL
To capture the thermo-mechanical behaviour of soils, it is here proposed that the
thermo-mechanical behaviour be defined using Terzaghi’s effective stress, by embed-
ding thermal mechanisms into the constitutive formulation. Terzaghi’s [46] effective
stress tensor is defined as:

σ′ =σ−up 1 (2.1)

where σ and up are the total stress tensor and pore pressure, respectively and 1 is the
second order identity tensor, and the effective stress is proven to be a thermodynamically
consistent stress state variable that can reflect the mechanical behaviour of saturated
soils [47]. From here on, all the stresses are effective. The employed continuum-scale
thermo-mechanical mechanisms in this model, are outlined as follows:

• The position of the total (or permanent) volume variation due to change in the
mean effective stress (p) line (often referred to as the normal consolidation line
(NCL)) changes with temperature.

• The gradient of elastic and permanent volume variation due to changes in mean
effective stress (p) are insensitive to temperature variation.

• The bounded size of the elastic domain changes as the temperature varies
(Eq. (2.13)).
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• The shear strength (i.e. the stress ratio) at the Critical State condition may change
(increase, decrease or remain constant) as temperature varies (Eq. (2.12)).

• Thermal expansion of soil grains are thermo-elastic (Eq. (2.E.5)).

The components of the model, including elasticity, plasticity, and flow and harden-
ing rules, are determined by specifying two potentials; namely, the Gibbs free energy
potential and the rate of dissipation potential. The yield surface in the Meridian plane
has an ellipsoid-type shape (demonstrated to be appropriate for geomaterials [48] and
is defined by two parameters. It has the capability to rotate (be inclined with respect to
the p-axis) and expand or shrink in the presence of isotropic hardening. The plastic flow
(direction of the plastic strain increments) is non-associated, but without the necessity
of defining a separate plastic potential as is the case in conventional plasticity models.

The major temperature effects on the mechanical behaviour of fine-grained soils, ex-
plained in Section 2.2, are associated with the irreversible response of the material. The
variation of the apparent pre-consolidation pressure, pcT , and the Critical State stress ra-
tio, M, with temperature, respectively, represents the temperature influence on the vari-
ation of the yielding stress (initiation of irreversible response) and friction angle when
the shear strength is fully mobilised (ultimate shear strength). Since the plasticity com-
ponent of the constitutive equations are directly derived from the dissipation potential,
it is logical to incorporate the identified thermo-mechanical mechanisms into the dissi-
pation potential. By this, and with the addition of a volumetric thermal expansion com-
ponent in the Gibbs free energy potential (to capture the thermo-elasticity), the temper-
ature effects on both the volumetric and shear behaviours of soils are captured.

A new dissipation potential is proposed, which not only embeds the thermo-
mechanical mechanisms, but also omits the utilisation of shift stresses during the con-
version from dissipation space to true stress space (see Appendix 2.A); i.e., the addition
of a kinematic hardening to shift the yield surface is excluded. Consequently, a sim-
pler formulation is derived, which simplifies its numerical implementation in boundary
value solvers such as the finite element and material point methods.

In the following, the procedure of deriving the complete constitutive formulation
within the framework of hyperplasticty is presented. The current model is the first
thermo-mechanical model for fine-grained soils developed by this framework. For com-
pletion, a description of the hyperplasticty approach is provided in Appendix 2.A.

2.3.1. ENERGY POTENTIAL INCLUDING TEMPERATURE EFFECTS

A Gibbs-type function is proposed for the free energy potential and is defined by true
stress invariants in triaxial stress space (mean effective stress, p =tr(σ)/3 (kPa) and de-
viatoric stress, q = (3/2 s : s)1/2 (kPa), where s = σ− tr(σ)/3 : 1 is the deviatoric stress
tensor), internal variables (which here are only the plastic strain invariants; the plas-
tic volumetric strain, εp

v =tr(εp ), and the plastic deviatoric strain, εp
s = (2/3 ep : ep )1/2;

ep = εp − tr(εp )/3 : 1, where εp and ep are plastic strain and plastic deviatoric strain ten-
sors, respectively), and the absolute temperature T (K), as the independent variables

g
(
p, q,εp

v ,εp
s ,T

)= g1
(
p, q

)−pεp
v −qεp

s −3α∗p (T −T0) (2.2)
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where α∗ is the linear thermal expansion coefficient of the soil skeleton. The term
3α∗p(T−T0) represents the isotropic thermal volumetric expansion of the elasticity,
due to temperature variation (thermo-elasticity). The linear thermal expansion coeffi-
cient α∗ is considered constant, although its dependency on temperature, stress level
and over-consolidation ratio has been addressed in literature. A constant value of α∗,
with respect to both temperature and stress level, ensures thermodynamical consis-
tency. Anisotropic terms for the thermal expansion coefficient for thermo-elasticity can
be used if desired, although further experimental support is needed to define the appro-
priate terms.

The form of the energy potential in Eq. (2.2) leads to a “decoupled” material be-
haviour [24], through the terms pεp

v and qεp
s , in which the elastic and plastic behaviours

are independent of each other. Energy potentials incorporating elastic-plastic coupling
can be found in the works of [18; 49; 50], which result in a complex elasticity formulation.
For the sake of simplicity, and due to the lack of evidence linking the plasticity to the elas-
ticity of fine-grained soils, decoupled behaviour is considered here. The term g1(p, q) is
the free energy function for isothermal conditions, previously proposed by [51] for geo-
materials, in which the elasticity component of the model (for isothermal conditions) is
derived as

g1
(
p, q

)=− p2−m − (2−m) pp1−m
0

K̄ (2−m) (1−m) p1−m
r e f

− q2

6Ḡp1−n
r e f pn

+ q0
(
2qp0 −nq0p

)
6Ḡp1−n

r e f p1+n
0

(2.3)

where pr e f (kPa) is the reference pressure (here is 1 kPa); p0 and q0 are the initial values
of the mean effective and deviatoric stresses, respectively; K̄ and Ḡ are material con-
stants, respectively related to the elastic bulk modulus and shear modulus; and m and
n are constants representing the power dependence of the bulk and shear moduli, re-
spectively, on the mean effective stress p. For the case when the bulk modulus is linearly
proportional to p (for cases in which m = 1), the free energy is natural-log dependent on
p

g1
(
p, q

)=− p

K̄

(
ln

(
p

p0

)
−1

)
− q2

6Ḡp1−n
r e f pn

+ q0
(
2q −nq0p

)
6Ḡp1−n

r e f pn
0

(2.4)

Following Eq. (2.A.7), the total strains (εv ,εs ), consisting of elastic
(
εe

v ,εe
s

)
, thermo-

elastic
(
εT

v

)
, and thermo-plastic components

(
ε

p
v ,εp

s
)
, are derived by differentiating the

free energy potential (Eq. (2.2)) with respect to the stress components
(
p, q

)
εv =− ∂g

(
p, q,εp

v ,εp
s ,T

)
∂p

=−∂g1
(
p, q

)
∂p

+3α∗ (T −T0)+εp
v = εe

v +εT
v +εp

v (2.5)

εs =− ∂g
(
p, q,εp

v ,εp
s ,T

)
∂q

=−∂g1
(
p, q

)
∂q

+εp
s = εe

s +εp
s (2.6)

Since the thermal expansion (i.e. the term 3α∗ (T−T0) in Eq. (2.2)) is only defined for the
volumetric part of the energy potential (isotropic term), the deviatoric thermo-elastic
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strain is zero. In summary, the total strain can be rewritten in compact format as{
εv

εs

}
=

{
εe

v
εe

s

}
+

{
εT

v
0

}
+

{
ε

p
v

ε
p
s

}

where εe
v =− ∂g1(p,q)

∂p ; εe
s =− ∂g1(p,q)

∂q ; εT
v = 3α∗ (T−T0)

The generalised stresses (see Appendix 2.A), i.e. the derivative of the Gibbs free en-
ergy potential with respect to internal variables, are{

χ̄p

χ̄q

}
=−


∂g

∂ε
p
v

∂g

∂ε
p
s

=
{

p

q

}
(2.7)

2.3.2. RATE OF DISSIPATION POTENTIAL INCLUDING TEMPERATURE EF-
FECTS

In order to determine the plastic strains of a rate-independent material, the definition
of an appropriate rate of dissipation potential function is required. Collins & Hilder [48]
proposed a rate of dissipation potential for fine-grained soils and connected it to the
conjugated energy potential through the shift stress. Here, a new rate of dissipation po-
tential is presented whose novelty is twofold. Firstly, the dissipation function is defined
in such a way so that the use of the shift stress is eliminated, while preserving the prop-
erties of the dissipation potential in [48] (with the advantage of a simpler formulation
in comparison to the equations in [48]) and secondly, it incorporates the continuum-
scale thermal mechanisms which are encapsulated in the apparent pre-consolidation
pressure and Critical State stress ratio. The rate of dissipation function is defined as

d =C
(
ε̇

p
v +βε̇p

s
)+√

A2
(
ε̇

p
v +βε̇p

s
)2 +B 2

(
ε̇

p
s
)2

(2.8)

where ε̇
p
v and ε̇

p
s are plastic volumetric and deviatoric strain increments (as the gen-

eralised dissipative velocities, or the rate of change of internal variables in the case of
rate-independent behaviour (see Appendix 2.A), respectively; and β represents the level
of anisotropy by inclining the yield surface, with respect to the p-axis. A, B and C are
functions defined by stress, history and shape parameter components, which define the
shape and size of the yield function (to be determined later). Readers are referred to [48]
for the procedure of determining the functions A and B. These two functions, with the
newly defined function C, are defined as

A =(
1−γ)

p + γ

2
pcT (2.9)

B =M
(
(1−α) p + αγ

2
pcT

)
(2.10)

C =γ
2

pcT (2.11)
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where α and γ are parameters that affect the shape of the yield surface. These two pa-
rameters provide the benefit of defining a single yield surface, resembling a Hvorslev-
type surface for highly over-consolidated stress states and a cap-type surface for nor-
mally and lightly consolidated states. This can overcome the over-prediction of shear
strength for highly over-consolidated soils that has been observed when using Modified
Cam Clay-type models. M is the stress ratio at the Critical State. It has been seen in Fig-
ure 2.2 that M may change due to temperature variation. In this regard, a linear variation
with temperature (as a first approximation) is considered

M = M0 +π (T −T0) (2.12)

where π is the slope of the variation of M with respect to temperature T , and M0 is the
Critical State stress ratio at ambient temperature. The value of π depends on the min-
eralogy of the soil; M may increase or decrease with temperature, so that π may take
positive or negative values, respectively, and in the case of temperature independency
its value is zero.

pcT is the apparent pre-consolidation pressure, which for the isothermal condition
(no temperature variation) is similar to the formulation presented in [20; 52]. Here, the
effect of temperature (see Figure 2.1) is included in the pre-consolidation pressure as
follows

pcT = pr e

(
1+e0
λ−κ

)
ε

p
v e−µ(T−T0) (2.13)

where λ and κ are the slopes of the normal compression (NCL) and unloading lines in
lne (void ratio), versus lnp space, respectively; e0 and T 0 are the initial void ratio and
ambient absolute temperature, respectively; and µ is the coefficient of thermal soften-
ing/shrinkage, first presented by Cui et al. [3]. The apparent pre-consolidation pressure

hardens isotropically with plastic volumetric strain (through the term e((1+e0)/(λ−κ))ε
p
v ),

while it (thermally) softens/shrinks with an increase in temperature (through the term
e−µ(T−T0)). Thermal softening/shrinkage influences the size of the elastic domain (re-
duces) and represents the thermal mechanism proposed for the volumetric part of the
behaviour of soils.

Since the above rate of dissipation potential is defined for rate-independent materi-
als, it is identical to the force potential z (see Appendix 2.A). Hence, the yield function
(surface) can be derived, as defined by the generalised dissipative forces (or dissipative
stresses in the case of rate-independent materials) which are determined as the deriva-
tion of the rate of dissipation potential function with respect to the rate of internal vari-
ables (Eq. (2.A.15)). The dissipative stresses are

{
χp

χq

}
=


∂d
∂ε̇

p
v

∂d
∂ε̇

p
s

=


C + A2(

ε̇
p
v +βε̇p

s
)√

A2
(
ε̇

p
v +βε̇p

s
)2+B 2

(
ε̇

p
s
)2

βC + B 2ε̇
p
s +βA2(

ε̇
p
v +βε̇p

s
)√

A2
(
ε̇

p
v +βε̇p

s
)2+B 2

(
ε̇

p
s
)2

 (2.14)

The general procedure for deriving the yield surface for rate-independent materials,
where the rate of dissipation potential is a first order homogeneous function of plastic
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strain rates, is by invoking the Legendre-Fenchel transform on the rate of dissipation
function, since the classical Legendre transform becomes degenerate [21]. However, this
procedure can also be done in a simpler way. Any mathematical equation consisting of
the dissipative stresses in Eq. (2.14) that equals to zero, represents the yield function.
Hence, the yield function is

yd = B 2 (
χp −C

)2 + A2 (
χq −βχp

)2 − A2B 2 = 0 (2.15)

This form of yield function indicates an ellipsoid and is defined in dissipative stress space
(χp ,χq ), rather than in conventional stress space (p, q). The yield function may be trans-
ferred to true stress space (see Appendix 2.A) by Ziegler’s orthogonality condition.

2.3.3. TEMPERATURE DEPENDENT FLOW RULE

The flow of plastic strain increments is always normal to the yield surface (yd ) in dissipa-
tive stress space [20; 24], i.e., the flow rule is always associated in dissipative stress space.
This can be mathematically shown as the derivative of the yield surface yd (Eq. (2.15))
with respect to dissipative stresses as

{
ε̇

p
v

ε̇
p
s

}
= Λ̇


∂yd

∂χp

∂yd

∂χq

= 2Λ̇

{
B 2

(
χp −C

)−βA2
(
χq −βχp

)
A2

(
χq −βχp

) }
(2.16)

where Λ̇ is the plastic multiplier defining the plastic strain increment magnitude.
One of the useful assumptions implemented into hyperplasticity theory is Ziegler’s

orthogonality postulation (see Appendix 2.A), which is used to link the generalised stress
(Eq. (2.7)) to the dissipative stress (Eq. (2.14)). By the use of Eq. (2.7) and Eq. (2.A.10), the
generalised dissipative stress becomes{

χp

χq

}
=

{
p
q

}
(2.17)

This outcome results in the definition of both the yield surface (Eq. (2.15)) and plastic
flow (Eq. (2.16)) in conventional stress space (p,q), by substituting the dissipative stresses
with generalised stresses (as in Eq. (2.17)). Consequently, the yield surface and plastic
flow in terms of true stresses respectively become

y =B 2 (
p −C

)2 + A2 (
q −βp

)2 − A2B 2 = 0 (2.18)

{
ε̇

p
v

ε̇
p
s

}
=Λ̇

{
rp

rq

}
= 2Λ̇

{
B 2

(
p −C

)−βA2
(
q −βp

)
A2

(
q −βp

) }
(2.19)

It should be noted that the plastic flow in dissipative stress space (Eq. (2.16)) is associ-
ated to the yield surface yd (Eq. (2.15)) with respect to the dissipative stresses χp and χq .
However, the plastic flow in true stress space (Eq. (2.19)) becomes non-associated with
respect to the yield surface y defined in true stress space (Eq. (2.18)). This is due to the
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true stress-dependency of the dissipation function via functions A and B (see Eqs. (2.9)-
(2.10)). Table 2.1 presents the yield surfaces defined in dissipative stress space and true
stress space, along with their respective derivatives, and the flow rule in true stress space.
The flow rule and normal to the yield surface (Eqs. (T-3) and (T-5), respectively) are dif-
ferent, as in true stress space the stress dependency of functions A and B are included in
Eq. (T-5), whereas they are not in Eq. (T-3). An associated flow rule (in true stress space)
would include this dependency, i.e. would follow Eq. (T-5); hence, Eq. (T-3) indicates
the non-associativity of the plastic flow in true stress space. This is compatible with the
findings of [21; 22], where it was shown that the non-associated flow rule for frictional
materials (i.e. pressure-dependent materials such as geomaterials) is the result of the
dependency of the rate of dissipation function to stresses.

The non-associated plastic flow presented above, unlikely classical plasticity theory,
is derived without the necessity of introducing a separately defined plastic potential.
Srinivasa [21] showed that for a rate of dissipation function defined by separable func-
tions of stress and plastic strain increments, i.e., having the form of d = d1 (σ)d2

(
ε̇p

)
,

it is possible to derive the plastic potential (as well as the yield surface). Note that the
rate of dissipation function adopted here (Eq. (2.8)) is not defined as a separable func-
tion. Thus, it may not be straightforward to determine the plastic potential in true stress
space, although the plastic flow (Eq. (2.9) or Eq. (T-3) is derived.

2.3.4. TEMPERATURE DEPENDENT HARDENING RULES
In strain hardening hyperplasticity models, the hardening rules are specified by the
potential functions. The proposed model consists of an isotropic hardening rule and
may be extended to account for rotational hardening (though not covered here). The
isotropic hardening is embedded through the way that the rate of dissipative function
is defined, by making the rate of dissipative function dependent on internal variables
(which here is the plastic volumetric strain).

ISOTROPIC HARDENING

The apparent pre-consolidation pressure pcT is the isotropic hardening variable of the
model. It hardens by plastic volumetric strain increments (similar to the MCC family of
models), while it softens/shrinks by an increase in temperature (Eq. (2.13)). By deter-
mining the rate of Eq. (2.13) (differentiation with respect to plastic volumetric strain ε

p
v ,

and absolute temperature T ), the isotropic hardening is derived

ṗcT =
(

1+e0

λ−κ ε̇
p
v −µṪ

)
pcT (2.20)
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Table 2.1: Comparison between the yield surface defined in dissipative stress space and that defined in true
stress space, along with their respective normals, and the flow rule in true stress space

Yield surface defined in dissipative stress
space (χp -χq ) (Eq. (2.15))

Yield surface defined in true stress space
(p-q) (Eq. (2.18))

yd = B 2(χp −C )2+A2(χq −βχp )2−A2B 2 = 0
(T-1)

y = B 2(p −C )2 + A2(q −βp)2 − A2B 2 = 0
(T-4)

Derivative of yd with respect to dissipa-
tive stresses (χp -χq ) (associated flow rule
in dissipative stress space (Eq. (2.16)))

Derivative of y with respect to true stresses
(p-q) (normal to the yield surface)


∂yd

∂χp

∂yd

∂χq


= 2

{
B 2(χp −C )−βA2(χq −βχp )

A2(χq −βχp )

}
(T-2)

{
∂y

∂σ

}
=


∂y
∂p
∂y
∂q

=
 rp + ∂y

∂A
∂A
∂p + ∂y

∂B
∂B
∂p

rq + ∂y
∂A

∂A
∂q + ∂y

∂B
∂B
∂q


(T-5)

where rp and rq are defined in (T-3)

Flow rule in true stress space (Eq. (2.19))
(by applying Zieglers postulation,
Eq. (2.17), to the associated flow rule
in dissipative stress space (T-2))

Ziegler’s postulation and

{
χp

χq

}
=

{
p
q

}
(Eq. (2.17)) → {Flow direction} =

{
rp

rq

}

= 2

{
B 2(p −C )−βA2(q −βp)

A2(q −βp)

}
(T-3)
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ROTATIONAL HARDENING

Although various rotational hardening (RH) rules for clay constitutive models exist in
literature [53–57], RH is not considered in this model. Several issues may arise regard-
ing RH, so that its implementation should be considered with caution. For example,
assigning RH may lead to a unique or non-unique anisotropic Critical State, which is a
debatable issue [55]. Also, it may not be possible to determine a thermodynamically-
consistent RH rule that is simultaneously compatible with currently accepted RH rules
and criteria. This implies that further investigation is required to define an appropriate
RH rule that is thermodynamically-consistent while matching with experimental data.
However, here the yield surface is capable of being inclined in p-q stress space through
the parameter β. This may be useful to capture the anisotropic shape of the yield surface
for soils that have previously been anisotropically loaded, e.g. under K0 conditions.

2.3.5. TEMPERATURE DEPENDENT PLASTIC MULTIPLIER
The last component of this model that needs to be determined is the plastic multiplier,
representing the magnitude of the plastic strain increments. Eq. (2.18) can be written in
the general form, y = y

(
p, q,εp

v ,T
)
. The consistency condition can then be written as

ẏ =
{

∂y
∂p

∂y
∂q

}
.

{
ṗ
q̇

}
+

{
∂y

∂ε
p
v

0
}

.

{
ε̇

p
v

ε̇
p
q

}
+ ∂y

∂T
Ṫ = 0 (2.21)

By substitution of Eq. (2.19) into Eq. (2.21), the plastic multiplier can be determined as

Λ̇=−

{
∂y
∂p

∂y
∂q

}
.

{
ṗ
q̇

}
+ ∂y

∂T Ṫ{
∂y

∂ε
p
v

0
}

.

{
rp

rq

} =−
{
∂y
∂σ

}T
{σ̇}+ ∂y

∂T Ṫ{
∂y
∂εp

}T
{r}

(2.22)

The components of this formulation can be found in Appendix 2.D.

2.3.6. INCREMENTAL FORMULATION
For numerical analysis, an incremental relationship between stress and strain is mostly
utilised. The incremental formulations can be derived based on stress or strain con-
trolled conditions (as the input); both scenarios can be found in Appendix 2.E.

2.3.7. PARAMETERS OF THE MODEL
Depending on which energy potential for elasticity is chosen (Eq. (2.3) or Eq. (2.4)), the
model is defined by 12 or 11 parameters, respectively. These parameters can be cat-
egorised in accordance to their role in the behaviour of the material; volumetric be-
haviour (elastic and plastic), shear behaviour (elastic and plastic), temperature impacts,
and parameters related to the shape of the yield surface. The relevant parameters in
each category and the required tests for determining them are summarised in Table 2.2.
Rotation of the yield surface, controlled by β, is not considered (β= 0).

K̄ , Ḡ , m and n are material constants related to elastic properties. K̄ and Ḡ are at-
tributed to the maximum values of the bulk and shear moduli of the soil, respectively.
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They can be determined from the tangential values of the p-εv and q-εs curves, respec-
tively, at low strain levels (representing the elastic region). These parameters can be mea-
sured from drained triaxial tests or more accurately from resonant and bender element
tests. The parameters m and n are the powers related to p for the elastic bulk and shear
moduli. In the case of m = n = 1, where the elastic bulk and shear moduli are linearly
dependent on p, the number of parameters reduces to 10.

λ and κ are related to the volumetric behaviour of soils and are, respectively, the
negative slopes of the normal compression and swelling lines in lne-lnp space, measured
from isotropic triaxial (at q = 0) consolidation or oedometer tests.

M0 is the stress ratio (q/p) at the Critical State condition at ambient temperature.
It can be measured as the slope of a line passing through the final stress ratio of a
soil monotonically loaded to the Critical State condition, e.g. as determined from both
drained and undrained triaxial tests, and the origin (p = q = 0) in p-q stress space.

π can be determined as the ratio of the change in Critical State stress ratio to
the change in temperature (from Eq. (2.12)), π = (

MT2−MT2

)
/(T2−T1). Thus, triaxial

tests at two temperatures would be sufficient. µ can be calculated from Eq. (2.13) as
µ = − ln

(
pcT /pc

)
/(T−T0). Thus, by using 2 triaxial tests with equal pre-consolidation

pressures at two different temperatures, the thermal softening coefficient may be deter-
mined.

As explained in Section 2.2, when fine-grained soils are subjected to heating-cooling
cycles, they may show a hardening behaviour by undergoing permanent volumetric con-
traction until they reach a thermally-stable condition and further volumetric behaviour
becomes thermally elastic. Therefore, any change in volumetric strain with respect to
temperature (in T -εv space) is attributed to the volumetric thermal expansion coeffi-
cient, 3α∗, and can be approximated as 3α∗ =∆εv /∆T , where∆εv is the change in volu-
metric strain. A sample in a triaxial test setup subjected to equal-amplitude temperature
cycles is sufficient; the test must be run until the cycles give converged results.

The yield surface of the model may be adjusted to different yield loci reported for a
wide variety of soils via parameters α and γ. By trial and error, it is possible to match the
desired shape of the yield surface. Typically, at least 3 triaxial tests are needed to deter-
mine the yield surface; one almost normally consolidated, one lightly over-consolidated
and the third, highly over-consolidated.

2.4. FEATURES OF THE MODEL
One of the interesting features of the model is that a non-associated flow rule (Eq. (2.19))
is derived without the necessity to introduce an additional potential, e.g. the plastic po-
tential as in conventional plasticity theory. Yield surfaces with different α values with
γ = 1, as examples, are plotted with their corresponding plastic flow directions in Fig-
ure 2.4. It is obvious that in none of the cases (except for α = γ = 1 in which the rate of
dissipation function becomes stress independent) is the plastic flow direction perpen-
dicular to the yield surface. This can be attributed to the presence of true stresses (p) in
the rate of dissipation function (through the functions A and B in Eq. (2.8)). It should be
noted that plastic flow is associated in dissipative stress space (χp ,χq ) (Eq. (2.16)). How-
ever, this feature is not transferred during the transition from dissipative stress space to
true stress space, because of Ziegler’s orthogonality condition. Note that, at the intersec-
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Table 2.2: Parameters of the model

Categories Parameters Required tests
Elastic K̄ ,m Resonant column test,

bender element test or
triaxial test

Volumetric behaviour Elastic κ Triaxial consolidation or
oedometer tests

Plastic λ Triaxial consolidation or
oedometer tests

Shear behaviour

Elastic Ḡ ,n Resonant column test,
bender element test or
triaxial test

Plastic M0 Triaxial test
Temperature impacts π,µ,α∗ Series of temperature-

controlled triaxial tests
Related to yield surface shape α,γ Series of triaxial tests

tion point of the yield surface with the CSL, the plastic flow is perpendicular to the yield
surface and its components are only in the q-axis direction. This shows that the model is
compatible with Critical State theory, which implies that at the Critical State condition,
no plastic volumetric strains are produced due to the plastic flow direction being only in
the direction of the q-axis.

0 1
0

0.4

0.8

YS with  = 0.5
YS with  = 1
YS with  = 1.5

Figure 2.4: Plastic flow direction for three different yield surfaces

One of the distinguishing features of a constitutive equation derived by thermody-
namics principles, in comparison with other fully phenomenological models (e.g. hy-
poelasticity), is that they ensure the satisfaction of thermodynamics laws. This feature
is illustrated by two examples. Assume that an elastic material follows the closed stress
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path (a)-(b)-(c)-(d)-(a) in triaxial stress space, as shown in Figure 2.5a, under isothermal
conditions (constant temperature). This stress path is designed specifically to illustrate
a reversible process, as the initial and end points of the loop coincide with each other.
The material is firstly subjected to an increase in mean effective stress from point (a) to
point (b), followed by an increase in deviatoric stress at constant p, up to point (c). Un-
der constant deviatoric stress q from that point, the mean effective stress is reduced until
point (d). In the final stage, the deviatoric stress is reduced in order that the stress state
returns to its initial value at point (a). The corresponding mean effective stress versus
volumetric strain and deviatoric stress versus deviatoric strain response for this stress
path are depicted in Figure 2.5b and Figure 2.5c, respectively.

(a) (b) (c)

Figure 2.5: (a) Mechanical loop in elastic stress space; (b) mean effective stress vs. volumetric strain; (c)
deviatoric stress vs. deviatoric strain

(a) (b) (c)

Figure 2.6: (a) Temperature loop in temperature vs. mean effective stress space; (b) mean effective stress vs.
volumetric strain; (c) temperature vs. volumetric strain

The elastic properties of materials are in fact stress path independent, i.e., elastic-
ity only depends on the final state of the material [52]. Hence, since the initial and fi-
nal stress states (point (a) on the stress path) are identical, the initial and final states of
the strains (both elastic volumetric and deviatoric strains in Figure 2.5b and Figure 2.5c)
should be identical. As illustrated in Figure 2.5b and Figure 2.5c, this is indeed the case.
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This behaviour represents the conservation of energy (first law of thermodynamics) dur-
ing a reversible process and the model is capable of capturing this behaviour. On the
other hand, non-linear fully phenomenological models (which are commonly used for
soils) lack this principle, which may lead to strains which have no physical meaning. The
hyperelasticity employed here overcomes this dilemma by using volumetric-deviatoric
coupling terms. This means that volumetric behaviour affects deviatoric behaviour, as
observed in geomaterials [52], and vice versa. However, these coupling terms are mostly
ignored in models proposed for geomaterials, meaning that the volumetric and devia-
toric behaviours are considered independent.

In the second example, an elastic material is subjected to stress and temperature
variations, illustrated by the closed loop of points (a)-(b)-(c)-(d)-(a) in Figure 2.6a. From
the initial state of stress and temperature represented by point (a), the mean effective
stress under constant temperature is increase until the material is at a new stress state
at point (b). The material is then heated under constant p to reach point (c). At this
temperature the mean effective stress is reduced (to point (d)) and finally the material is
cooled down at constant p to its initial state at point (a). The corresponding volumetric
strain variation with mean effective stress p and temperature T are shown in Figure 2.6b
and Figure 2.6c, respectively.

The closed loop T -p path represents a reversible process in which the behaviour is
thermo-elastic. As seen in Figure 2.6b and Figure 2.6c, the material forms a closed loop
for the corresponding p and T versus volumetric strain, in that the initial and final states
are identical. This proves the thermodynamical consistency of the model, which is im-
portant for thermo-mechanical models when simulating change in volume of soils sub-
jected to temperature variation, since the volume variation of over-consolidated soils
during heating is considered a thermo-elastic response [58]. In literature, models exist in
which the volumetric thermal expansion coefficient is related to the over-consolidation
pressure or temperature (or both). Although this might appear satisfactory for predict-
ing the behaviour, the models are not necessarily thermodynamically consistent. As a
result, elastic strains can be produced where energy is lost.

2.5. TEMPERATURE EFFECTS
Figure 2.7 shows the three-dimensional yield surface (Eq. (2.18)) with respect to devi-
atoric stress q, mean effective stress p and temperature change ∆T ◦C, along with the
corresponding parameter values used for the illustration. The yield surface is bounded
at a pre-consolidation pressure (pc ) of 200 kPa at zero temperature change (∆T = 0◦C).
As the temperature increases, the apparent pre-consolidation pressure (pcT ) decreases
exponentially (according to Eq. (2.13)) which leads to a smaller yield surface. As the yield
surface shrinks, the thermo-elastic domain (the area inside the yield surface) decreases.
This means that for a material sheared in an over-consolidated and isotropic state (for
example loading from q = 0 at p = 100 kPa in Figure 2.7), the yielding stress state is
reached, i.e., the yield surface is encountered, at lower stress states when the material
is at higher temperatures.

The parameter that controls the bounded size of the yield surface when the temper-
ature changes, i.e., controls the curvature of the apparent pre-consolidation variation, is
µ in Eq. (2.13), which is called the thermal softening parameter. Eq. (2.13) can also be
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presented as pcT = pc e−µ(T−T0), where pc is the pre-consolidation pressure at ambient
temperature. By normalising the equation by pc , the variation ofµ due to change in tem-
perature can be determined (pcT /pc = e−µ(T−T0)). This variation for four different values
is illustrated in Figure 2.8. As the value of µ increases, the yield surface shrinks faster
in comparison with lower values when subjected to temperature increase. Note that
this parameter is material specific and thus, depending on the soil type, the apparent
pre-consolidation pressure can reduce dramatically (higher values of thermal softening
parameter) or slightly as the temperature increases.

Figure 2.7: The yield surface in three dimensional p-q-T space

Depending on the constituents of the soil, the Critical State stress ratio M may in-
crease or decrease as the temperature changes (Eq. (2.12)). This change is considered
through the parameter π in Eq. (2.12) and its effect on the yield surface is presented in
Figure 2.9. In this figure, the axes of deviatoric stress q and mean effective stress p are
both normalised by the apparent pre-consolidation pressure pcT to eliminate the ther-
mal softening mechanism on the surface. Both positive and negative values can be as-
signed to π. Positive values of π result in a stretch in the minor axis (along the q-axis),
i.e., an increase in size of the yield surface, while negative values cause a reduction in
size.

In summary, the effect of temperature on the shear and volumetric behaviour of soils
is incorporated by the addition of thermo-elasticity into the energy potential (Eq. (2.2)), a
thermal softening mechanism (Eq. (2.13)), and a Critical State stress ratio variation with
temperature (Eq. (2.12)) into the rate of dissipation function (Eq. (2.8)). Because all the
constitutive equations are derived based on these two potentials, thermal effects are em-
bedded into all the governing equations, including those for elasticity (Eq. (2.E.5)), plas-
tic flow (Eq. (2.19)), plastic strain magnitude (plastic multiplier) (Eq. (2.22) or Eq. (2.E.8)),
and the hardening rule (Eq. (2.20)), which implies that thermal effects are coupled with
the mechanical behaviour of soils.
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Figure 2.8: Effect of thermal softening/shrinkage parameter

Figure 2.9: Effect of parameter π on the shape and size of the yield surface
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2.6. MODEL PERFORMANCE
The performance of the model is validated by comparing simulations with a wide range
of experimental data from oedometer and triaxial tests under drained and undrained
conditions on different soil types. The tests cover a wide variety of stress paths and
loading histories. The calibrated parameters used for the simulations are reported in
Table 2.3.

TOWHATA ET AL. [31] TESTS

Towhata et al. [31] performed an oedometer test on a kaolinite clay and the void ratio
variation with vertical stress is shown in Figure 2.10. First, the specimen was subjected
to a vertical stress increase from 20 kPa to 160 kPa at a room temperature of 22◦C. Next,
with the vertical stress held constant at 160 kPa, the specimen was heated to 90◦C and
then cooled back to room temperature (22◦C). This was followed by further compression
with the vertical stress increasing to 1260 kPa at room temperature. During the heating-
cooling cycle (22◦C-90◦C-22◦C), the soil attained a denser state (observed via a void ra-
tio reduction seen in Figure 2.10). As a result of the compression, the pre-consolidation
pressure increased and the stress state of the soil changed from a normally-consolidated
state to a slightly over-consolidated state. This is demonstrated by the bilinear response
of the soil during the re-compression. On re-compressing the soil, starting from the ver-
tical stress of 160 kPa, the initially stiffer response of the soil was due to elasticity and
was therefore reversible. After reaching the new pre-consolidation pressure, irreversible
behaviour was observed, as the response followed the normally consolidated line (for
the ambient temperature).

The numerical simulation in Figure 2.10 captures the void ratio reduction during
the thermal cycle, due to the thermal shrinkage mechanism of the elastic domain by
Eq. (2.13). During heating, the apparent pre-consolidation tends to decrease due to the
thermal softening mechanism. However, plastic volumetric strains are simultaneously
produced which triggers the hardening mechanism. These two mechanisms compen-
sate for each other, resulting in an unchanged apparent pre-consolidation pressure (at
90◦C). During cooling, the apparent pre-consolidation pressure increases (hardening
due to cooling, without any production of plastic volumetric strain) and the yield sur-
face expands, resulting in the current stress state (vertical stress of 160 kPa) to be located
inside the yield surface. Thus, further compression gives an elastic response, followed
by elastoplastic response when the stress state reaches the yield surface. In conclusion,
the model successfully captures the impact of a thermal cycle hardening mechanism ex-
hibited by fine-grained soils.
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Ḡ

(−
)

80
15

17
0

70
0

15
0

20
n

(−
)

1.
00

0.
70

0.
95

0.
35

1.
00

1.
00

m
(−

)
1.

00
1.

00
0.

85
0.

70
1.

00
1.

00
α
∗ (1

/K
)1

-3
.1
×1

0−
6

-3
.1
×1

0−
6

-3
.4
×1

0−
5

-1
.8
×1

0−
4

-3
×1

0−
5

-1
.5
×1

0−
4

µ
(1

/K
)

5.
95

×1
0−

3
7.

7×
10

−3
3.

4×
10

−3
7.

34
×1

0−
4

9.
09

×1
0−

4
7×

10
−2

π
(1

/K
)

0
0

0
1.

05
×1

0−
3

-1
.6
×1

0−
3

0
1

N
o

te
,t

h
e

va
lu

es
o

f
α
∗

h
av

e
a

ra
n

ge
co

ve
ri

n
g

al
m

o
st

tw
o

o
rd

er
s

o
f

m
ag

n
it

u
d

e,
w

h
ic

h
ca

n
b

e
d

u
e

to
m

at
er

ia
ld

if
fe

re
n

ce
s

o
r

ex
p

er
i-

m
en

ta
lc

al
ib

ra
ti

o
n

.



2

36 2. A THERMO-MECHANICAL CONSTITUTIVE MODEL FOR FINE-GRAINED SOILS

10 160 1000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

 Data
 Simulation

22°C-90°C-22°C
Heating-cooling cycle

Figure 2.10: Comparison of void ratio vs. vertical stress predicted by model with experimental data of Towhata
et al. [31]

ABUEL-NAGA ET AL. [1; 44] TESTS

Oedometer and triaxial compression tests on Bangkok clay, performed by Abuel-Naga et
al. [1; 44], are presented in Figure 2.11 and Figure 2.12, respectively.

In Figure 2.11a, the void ratio variation with vertical stress, for Bangkok clay fol-
lowing a testing procedure similar to Towhata et al. [31], is presented. When the soil
was subjected to a thermal cycle at the vertical stress of 100 kPa, the void ratio reduced
(mostly due to permanent volumetric deformation). Again, the model results closely
match the experimental results. As explained previously, this reduction of void ratio
results in a slightly over-consolidated stress state. Abuel-Naga et al. [1], repeated the
testing procedure for different vertical stresses (100, 200 and 300 kPa) and for a wide
range of heating-cooling cycle magnitudes. The reported over-consolidated stress states
attained after thermal cycles with respect to the thermal cycle amplitude are shown in
Figure 2.11b. As expected, the larger the magnitude of the thermal cycle, the greater the
over-consolidated state achieved, which implies a larger decrease in void ratio during
the thermal cycle. The computed results are compared with the experimental data in
Figure 2.11b, showing that the model is capable of capturing the heating-cooling hard-
ening behaviour of soils. An interesting point that can be inferred from the experimental
data is that the OCR values attained after each heating-cooling cycle are independent
of the stress state (the vertical stress that the thermal cycle is applied), and this has also
been well captured by the model.

Figure 2.12 shows the volumetric behaviour of the same soil in an isotropic com-
pression test with triaxial apparatus, at three different temperatures of 25, 70 and 90◦C.
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Figure 2.11: Comparison of model predictions with experimental data of Abuel-Naga et al. [1]: (a) void ratio
vs. vertical stress; (b) attained OCR after thermal cycle vs. amplitude of the thermal cycle

At room temperature (25◦C), samples were first isotropically compressed to a mean ef-
fective stress of 300 kPa and then unloaded to 25 kPa to attain an OCR of 12. Under
drained conditions, the samples were then heated to the target temperature, followed
by an isotropic re-compression to beyond 300 kPa. The model simulations are com-
pared with the experimental data in Figure 2.12. Since the soil is initially highly over-
consolidated, the initial response is elastic compression. For the sample at a tempera-
ture of 25◦C, the response becomes elastoplastic at a stress state of 300 kPa. For samples
compressed at elevated temperatures, the elastoplastic response is triggered at mean ef-
fective stresses lower than 300 kPa, due to the shrinkage of the yield surface due to the
increase in temperature. The predictions of the model for all temperatures are satisfac-
tory and capture well the difference in yield stress due to temperature difference.

UCHAIPICHAT & KHALILI [32] TESTS

In Uchaipichat & Khalili [32], the shear behaviour of a fully saturated silty soil under
drained conditions was investigated at three temperatures (25, 40 and 60◦C) and for
three mean effective stresses (50, 100 and 150 kPa). Prior to shearing, all the samples
were isotropically loaded to 200 kPa and unloaded to 50 kPa under isothermal condi-
tions (constant temperature of 25◦C). Hence, all samples had an initial pre-consolidation
pressure of 200 kPa. The samples were then heated to the desired temperatures (25, 40
and 60◦C) and sheared under drained conditions until failure. The experimental data
and model predictions are presented in Figure 2.13. Figure 2.13a and Figure 2.13b show
the yield surface at different soil temperatures, starting with the initial surface corre-
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Figure 2.12: Comparison of model predictions of volumetric strain vs. mean effective stress, during isotropic
compression at different temperatures, with experimental data of Abuel-Naga et al. [44]

sponding to a pre-consolidation of 200 kPa at 25◦C, in p-q stress space and p-q-T space,
respectively. From the laboratory data, it is obvious that, as the temperature increases,
the yield surface shrinks in size and the pre-consolidation pressure decreases. The pro-
posed model is capable of capturing both the shape of the yield surface and the yield
surface shrinkage.

In Figure 2.13c, the shear stress versus shear strain and volumetric strain versus shear
strain curves are shown. The predictions of the model are in good agreement with the ex-
perimental data for different over-consolidated states sheared at mean effective stresses
of 150, 100 and 50 kPa. Changes in the Critical State stress ratio (M) have not been re-
ported and the shear strengths of all samples sheared at identical mean effective stress
reach the same ultimate value (Critical State), regardless of temperature effects. There-
fore, π= 0 and the simulations are in agreement with the experimental data.

CEKEREVAC & LALOUI [29] TESTS

Cekerevac & Laloui [29] investigated the thermo-mechanical behaviour of a reconsti-
tuted kaolin clay under drained conditions. The samples at ambient temperature (22◦C)
were initially isotropically consolidated to 600 kPa and then unloaded to reach the de-
sired over-consolidation ratio (1, 1.2, 1.5 and 2). Under drained conditions, the sam-
ples were heated to reach the desired temperatures (22 and 90◦C). When the samples
were equilibrated at the target temperatures, they were sheared until failure. The model
predictions for the two temperatures are compared with the experimental data in Fig-
ure 2.14. The model predicts the deviatoric stresses and volumetric strains of the soil
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with reasonable accuracy. It is worth noting that the critical state stress ratio had in-
creased from 0.82 at 22◦C to 0.89 at 90◦C, which resulted in a higher ultimate shear stress
(at the Critical State) at the elevated temperature in comparison with the ultimate shear
stress at the ambient temperature, which is well captured by the model results.

GHAHREMANNEJAD [40] TESTS

Ghahremannejad [40] conducted a series of drained and undrained triaxial tests with
different mechanical loading and heating stages on a normally consolidated illitic clay.
From those tests, two undrained tests were selected for testing the model. In these exper-
iments, in contrast to Uchaipichat & Khalili [32] and Cekerevac & Laloui [29], the soil was
first heated to the desired temperature, and then isotropically compressed (to a mean
effective stress of 400 kPa). With the temperature then kept constant, the specimens
were sheared under undrained conditions. The test results for temperatures of 22◦C and
75◦C, along with the predictions of the model, are shown in Figure 2.15. Figure 2.15a,
Figure 2.15b and Figure 2.15c, respectively, show the undrained stress path in p-q stress
space, and the corresponding deviatoric stress and pore pressure versus deviatoric strain
responses. The soil at a temperature of 75◦C shows a softer behaviour than the soil at a
temperature of 22◦C, and its shear strength is lower at Critical State conditions. In other
words, the Critical State stress ratio is decreased at elevated temperatures.

Comparison of the simulations with the experimental data (Figure 2.15) indicates
that the current model successfully captures the softening behaviour of the soil at ele-
vated temperatures, due to the temperature-dependent Critical State stress ratio con-
trolled through the parameter π (Eq. (2.12)). Since the soil at the elevated temperature
(75◦C) was heated before being isotropically compressed, the thermal softening mech-
anism in Eq. (2.13) becomes deactivated (because T = T 0). Hence, the yield surface for
any temperature (in this case, 22◦C and 75◦C) only expands isotropically due to com-
pression and is bounded at 400 kPa. However, the size of the yield surface at T = 75◦C is
smaller than the size of the yield surface at T = 22◦C due to the reduction of M at higher
temperatures. As a result, the model predicts a softer response at elevated temperatures.

GRAHAM ET AL. [59] AND TANAKA ET AL. [34] TESTS

The undrained thermo-mechanical behaviour of a normally consolidated illitic clay was
addressed in the work of Graham et al. [59] and Tanaka et al. [34]. The experimental
results, including stress paths, shear stress evolution and pore water pressure changes
during undrained shearing at two different temperatures, are shown in Figure 2.16. Prior
to undrained shearing, the samples were isotropically consolidated to 1.5 MPa at room
temperature (28◦C) and subsequently heated to reach the desired temperatures (28 and
65◦C). Due to the drained heating process, the samples attained different void ratios (due
to the hardening mechanism) before the undrained shearing stage. The soil did not show
any increase in the Critical State stress ratio (i.e. π = 0). The predictions of the model
show good agreement with the laboratory data.
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Figure 2.13: Comparison of model predictions with experimental data of Uchaipichat & Khalili [32]: (a) yield
surfaces at different temperatures in p-q stress space; (b) yield surfaces at different temperatures in three

dimensional p-q-T space; (c) deviatoric stress and volumetric strain vs. deviatoric strain at different OCRs
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Figure 2.14: Comparison of model predictions of deviatoric stress and volumetric strain vs. axial strain at
different OCRs with experimental data of Cekerevac & Laloui [29]: (a) at T = 22◦C; (b) at T = 90◦C
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Figure 2.15: Comparison of model predictions with undrained experimental data of Ghahremannejad [40] at
different temperatures; (a) stress path; (b) deviatoric stress vs. axial strain; (c) pore pressure vs. axial strain
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Figure 2.16: Comparison of model predictions with undrained experimental data of Graham et al. [59] and
Tanaka et al. [34] at different temperatures; (a) stress paths; (b) deviatoric stress vs. axial strain; (c) pore

pressure vs. axial strain
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2.7. DISCUSSION: MICRO-MECHANICS, INTERNAL STRESSES,
AND PHYSICOCHEMICAL PROCESSES DURING HEAT-
ING/COOLING

The thermo-chemo-hydro-mechanical behaviour of soils, especially fine-grained soils,
are governed by the size of the particles and pore spaces between them, ranging from
nano-metres to micro-metres. Thus, understanding the characterisation of fine grained
soils, in a continuous manner, scaling from nano- to micro-metres is important to in-
form material models. Experimental techniques, such as neutron diffraction and nano-
XCT, provide information about physicochemical processes occurring in such a scaling
range. To implement such knowledge in a continuum scale constitutive model, an up-
scaling approach is required. However, up-scaling methods are challenging and mostly
not straightforward, in part due to identifying appropriate length scales that satisfacto-
rily represents the physics of deformation of the material. Lack of identifying suitable
length scales leads to lose of information when up-scaling is applied.

The impact of temperature in the energy and dissipation functions presented in this
model is based upon phenomenological considerations in a thermodynamically consis-
tent continuum approach. The step-by-step approach in the derivation is conducive to
an approach also considering micro-structural aspects, as has been undertaken in other
constitutive approaches (e.g. [60]). However, those approaches do not explicitly ensure
the conservation of energy. This section attempts to qualitatively explain the processes
that may occur during thermal loadings, in part to rationalise the choices made and, in
part, as a first step towards a micro-mechanical model that is also consistent with ther-
modynamics principles.

Two main mechanisms have been proposed to understand some thermally-induced
effects [43; 61]):

1. Difference in thermal volumetric expansion coefficients between soil particles and
water: During heating of a saturated soil, because of the differences in thermal ex-
pansion coefficient between soil particles and water (the thermal expansion co-
efficient of water, depending on the mineralogy of the soil, is 8-15 times higher
than that of soil particles), excess pore water pressure is generated. If drainage is
allowed, consolidation occurs which can lead to permanent volume change (if the
sample is confined and not heavily over-consolidated). However, if drainage is not
allowed (undrained condition), there is no consolidation and thus the pore water
pressure is retained.

2. Change in the viscosity of water: The second mechanism is attributed to the
change (decrease) in the viscosity of water during heating and the thermal creep
of soil particles. Reduction of the water viscosity results in easing of water flow
through the void space. As the flow increases, consolidation increases which can
eventually lead to plastic deformation.

Note that neither of the aforementioned mechanisms can explain the changes in shear
or yielding behaviour. Various phenomena are described in the literature, where one of
the major features which governs the mechanical behaviour of fine-grained soils, that
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is the internal forces, have been ignored. Therefore, further investigation is required to
understand the actual mechanisms occurring in the soil.

The surface area of fine-grained soils (like clays), in a specific mass of soil, are higher
than for coarse-grained soils like sands [62]. These surfaces are mostly negatively-
charged, which causes water molecules and cations to be adsorbed on the surface of
the grain [62–64]. As a result, internal forces in the presence of external forces act be-
tween soil particles [63] and are called “physicochemical internal forces”. These forces
develop inside the soil mass and, depending on the source of the forces, may increase
or decrease the internal energy of the soil. The major processes occurring inside the soil
mass, which lead to the production of physicochemical forces, can be summarised as
[63]

• Development of an electric double layer (EDL) and an electrostatic field of parti-
cles

• Occurrence of osmotic process

• Formation of thin water layers on soil particles (hydrate layers)

• Capillary menisci in unsaturated soils

• Concentration of ions in the liquid

and are shown schematically in Figure 2.17. In saturated soils (which are considered
here), the effect of capillary menisci can be ignored. The stability of the soil mass is
directly controlled by the balance between the attractive and repulsive forces generated
during physicochemical processes. Attraction forces are due to Van der Waals forces
between soil particles, whereas the repulsive forces are due to electrostatic interaction,
due to the overlapping EDLs of particles and formation of adsorbed water films on the
mineral surface of particles with specific structure.

The thermodynamic equilibrium between physicochemical forces (attractive and re-
pulsive forces) leads to the development of thin hydrate films on the surface of the par-
ticle (Figure 2.17a), between any pair of particles in contact. Any change in the system,
due to mechanical or thermal loads, disturbs the thermodynamic balance of the system
and changes its energy level. As a result, the thickness of hydrate layers [63] changes and
additional pressures are produced in the interphase liquid layer. This excess pressure is
called the “disjoining pressure”Πt (t ) and arises to counteract the imposed changes (be-
cause of mechanical and thermal loads) by keeping the soil-mass in equilibrium. The
magnitude of the disjoining pressure is directly dependent on the thickness of the films,
t, (i.e., on the level of overlapping of hydrate layers) and may attain positive or nega-
tive values (thickening or thinning of the layer, respectively). It should be noted that the
strength and deformation properties of fine-grained soils are highly dependent on the
disjoining pressure, resulting from physicochemical processes, of these hydrate films.

The total disjoining pressure due to different origins can be divided into three major
independent sources which are additive [65]

Πt (t ) =Πe +Πm +Πs (2.23)
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where Πe , Πm and Πs are the respective electrostatic, molecular and structural compo-
nents that act simultaneously with different governing laws.

Molecular forces (Van der Waals forces) are generated as the result of the molecular
component of disjoining pressureΠm . These forces act as attractive forces at the surface
of the soil particle, which result in thinning of the hydrate layer. The magnitude of this
force depends on the surface area of the soil particles.

The surfaces of clay particles are negatively charged, which in dry conditions (Fig-
ure 2.17b) are neutralised by cations adsorbed to the surface. In the presence of water
(Figure 2.17c), hydration weakens the interaction of the surface and the cations, and
water molecules replace a portion of the cations on the clay surface; consequently, a
portion of cations remain adjacent to the surface and form the so-called “adsorption” or
“Schtern-Helmholtz layer”, while other cations diffuse from the surface and develop the
“external diffusive layer of cations” or the “Gui-Chapman” layer, also known as the os-
motic hydrate layer. Thus, a double electric layer with positive-electric charge is formed,
with the latter layer being thicker than the former layer [63].

The diffusive layer provides a positive-electric field around the clay particles. In the
case that the particles approach each other (due to mechanical loads), the positive-
electric fields around the particles overlap (Figure 2.17d), which increases the cation
concentration and consequently the electrical potential. This increase of cation concen-
tration produces local osmotic pressures that force water to flow between particles and
attempt to separate (disjoin) them. This is how the electric component of the disjoining
pressure,Πe , arises and contributes as repulsive forces [63].

The adsorption hydrate layer is strongly connected to the surface of the clay parti-
cles (the strength of adsorption depends on the mineralogy of the clay) and anisotropic
stress states are formed inside it [63]. This anisotropic stress state and the adaption of
water to the shape of the surface of the particle deforms the hydration bonds, which
leads to a transformation of the structure of the water in the adsorbed film and imposes
different properties compared to normal water. Increases in viscosity and the produc-
tion of disjoining pressure are examples of different structural-mechanical properties
of this hydrate layer [65–67]. Again, when the clay particles approach each other in a
way that the adsorbed hydrate layers of particles overlap (Figure 2.17e), the layers start
to be destroyed and the energy level increases, resulting in a thermodynamical imbal-
ance. Consequently, disjoining pressure is developed to counteract the destruction of
the hydrate layer and tends to separate particles. This repulsive pressure is called the
structural-mechanical disjoining pressure Πs [65; 68–70] and overall, depending on the
mineralogy and shape of the particles, forms anisotropic stress-states with different me-
chanical properties inside the hydrate layer.

According to the disjoining pressure isotherm (the relationship between the force
developed as the result of the total disjoining pressure, Πt , and the thickness of hy-
drate films, t), two stable water layers, namely α- and β-films, may form on clay particle
surfaces [65]. α-films are associated with thin layers with thicknesses around 10 nm,
whereas β-films correspond to thick hydrate layers with thicknesses of nearly 100 nm.

The stability of β-films is dominated by electrostatic components of the disjoining
pressure Πe . Thus, they are highly sensitive to ion concentration surrounding the soil
grains (in EDL and solvent) and show insensitivity to temperature variation [65; 68]. On
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the other hand, α-films are mostly associated with the structural-mechanical compo-
nent of the disjoining pressure Πs . Therefore, the stability of these layers directly de-
pends on the mineralogy and constituent properties of the clay particles and the hydrate
layer. This hydrate layer shows a temperature-dependent behaviour, as it thins when the
temperature increases and disappears at temperatures close to 65◦C [65; 71]. Therefore,
the impact of thermo-mechanisms on the mechanical behaviour of soils can be deter-
mined from the behaviour of this hydrate layer, when temperature varies. It should be
noted that the β-films may break due to external mechanical loads. In this case, the dis-
joining pressure would develop only due to the overlapping of adsorbed layers and the
structural component of the α-films governs its value.

The aforementioned physicochemical mechanisms may explain the thermo-mecha-
nical behaviours observed in fine-grained soils. Soils with higher plasticity index PI have
a higher level of chemical reactivity. Also, it has been observed that when the tempera-
ture is elevated, soils with a higher PI undergo higher thermally-induced volume changes
compared to soils of a lower PI (demonstrated in Section 2.2). This may be attributed to
α-films of different thicknesses, as, when the temperature of the soil mass increases, the
α-film of soil particles with a higher PI becomes thinner. As a result, the water inside
the hydrate layer squeezes out of the layer and elevates the pore pressure. Because of
the volumetric reduction of soil grains due to thinning of the adsorbed hydrate layer (α-
film) and excess pore water pressure generation, the (thermodynamically stable) state
of the soil can be prone to moving to a thermodynamically unstable state. This means
that during the transition from a thermodynamically stable condition to unstable con-
dition, the stress state of the soil becomes closer to the maximum stress state that the
soil has attained during its heating-loading history. This implies that the state of the soil
becomes closer to yielding stress state. This behaviour has been introduced in Eq. (2.13),
as it calculates a smaller elastic domain when temperature increases, i.e., the stress state
becomes closer to the yielding stress state and a micro-structural formulation could be
included here. When a thermodynamically unstable condition is reached, as the result
of the excess pore pressure generation and volume reduction of soil particles (due to
the thinning of hydrate layers), soil particles have a temporary freedom to rotate and
reorient until they are positioned in a new thermodynamic equilibrium, with a higher
contact area and a higher number of contacts with adjacent particles. This leads to an
overall volume reduction, which has been observed when a soil is subjected to heating
(as shown in Figure 2.3).

At the same time, due to change in the thickness of the hydration layer, new
anisotropic stress states are generated inside the film to counteract the instability caused
by temperature variation and to stabilise the soil particles at a new thermodynamic equi-
librium. Consequently, new hydration bonds are formed and new structural-mechanical
properties occur. The modification in structural-mechanical properties lead to different
yield values (observed in Figure 2.1 and captured also by Eq. (2.13)) and shear properties
(variation of Critical State stress ratio with temperature, Figure 2.2). Depending on the
newly formed hydration bonds, the friction angle of soil particles may change (increase
or decrease) or remain unchanged. This behaviour is encapsulated in Eq. (2.12), and
could be updated with a micro-structural formulation, which well simulates the hard-
ening and softening response of soils due to change in friction angle, when temperature
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changes.

2.8. CONCLUSION
A constitutive model based on thermodynamics principles has been developed using
the hyperplasticity framework. The formulation is based on a newly proposed Gibbs-
type free energy and a newly proposed rate of dissipation potential function in which
different thermo-mechanisms have been embedded. The model explicitly incorporates
thermo-elasticity, pre-consolidation pressure and Critical State stress ratio as a function
of temperature, to capture the thermo-mechanical behaviour of fine-grained soils. The
model consists of 12 (or as few as 10 with some typical assumptions) parameters, which
all have physical meaning and can be determined from conventional geotechnical lab-
oratory tests. The model has been used to predict the thermo-mechanical behaviour of
fine-grained soils and is shown to capture the observed temperature effects.
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APPENDIX

2.A. APPENDIX A: THERMODYNAMICS OF CONTINUA
This section explains the thermodynamics of continuum media and how the hyperplas-
ticity framework uses the laws of thermodynamics to provide a platform for extracting
the constitutive equations for different materials, including fine-grained soils. The for-
mulations and notations in this section are in accordance with those in [20; 24; 52; 75–
77]. The platform described in this section is used to derive the constitutive equations in
Section 2.3.

For a system in a state of thermodynamic equilibrium, all laws of thermodynamics
apply. The first and second laws introduce two properties of the system. From the first
law, the law of energy conservation, a property named “internal energy” is defined, in
which the total power input to the system (e.g. work input Ẇ = σ : ε̇, and heat supply
or net heat flux Q̇ = q,k ) is identical to the rate of change of the internal energy of the
system [20]

u̇ =σ : ε̇−q,k (2.A.1)

where σ, ε̇, q and q,k are the stress and strain increment tensors, heat flux vector and
its spatial derivative (a scalar value), respectively. The comma in the subscript indicates
spatial differentiation with respect to the k direction and the symbol “:” is the double
contraction operator.

The second law of thermodynamics states that a property of the system called en-
tropy s exists, in which its rate is non-negative [20]. This is best shown through the
Clausius-Duhem inequality

ṡ ≥−
( q

T

)
,k

(2.A.2)

where q/T is the entropy flux vector and T is the absolute temperature.

The above inequality can be rewritten as ṡ + ( q
T

)
,k = ṡ + q,k

T − q:T ,k

T 2 = d t

T ≥ 0, where dt

is the rate of total dissipation and T ,k is the thermal gradient. Expanding this inequality
and combining with the first law (Eq. (2.A.1)) (and eliminating the divergence of heat
flux) results in

u̇ =σ : ε̇+T ṡ − q:T ,k

T
−d t (2.A.3)

where −q:T ,k
T is the rate of thermal dissipation and the rest of the rate of dissipation(

d = d t −
(
−q:T ,k

T

))
is due to mechanical deformation (mechanical dissipation). It is log-

ical to consider the thermal and mechanical dissipation processes independently. Since
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the heat flux q and thermal gradient T ,k have opposite signs, the rate of thermal dissipa-
tion quantity is always positive and already satisfies the second law of thermodynamics
[20]. Hence, it can be excluded from the second law inequality which then requires the
rate of mechanical dissipation to be non-negative. Thus, the first and second law of ther-
modynamics can be rewritten as

First law : u̇ +d =σ : ε̇+T ṡ (2.A.4)

Second law : T ṡ +q,k = d ≥ 0 (2.A.5)

2.A.1. ENERGY FUNCTIONS OF DISSIPATIVE MATERIALS
Soils and geo-materials in general can be categorised as dissipative materials, in that
they undergo irreversible processes and part of their mechanical deformation trans-
forms to heat. In conventional thermodynamics, the internal energy is defined by a set
of visible and measureable kinematic (strain-like) variables, such as strain tensor, as well
as entropy s and internal variable αi tensors [20; 52]. The essence of internal variables is
essential to study the behaviour of dissipative materials and they encapsulate the history
of the material behaviour due to irreversible processes [20].

The mechanical behaviour and properties of soils, e.g. bulk and shear modulus, are
most conveniently characterised by stress rather than strain [51; 78]. Therefore, it is con-
venient to define a form of energy function defined by independent variables of (effec-
tive) stress σ (from here on, all the stresses are effective), absolute temperature T and
internal variables αi . Such an energy function is the Gibbs free energy, g = g (σ,T,αi ).
Invoking the Legendre transform (explained in Appendix 2.B) twice on the internal en-
ergy u, to interchange the role of strain with its work-conjugate stress σ, and entropy s
with absolute temperature T , the first law of thermodynamics (Eq. (2.A.4)) is revised in
terms of state variables for the Gibbs free energy

ġ +d =−(
Ṫ s + σ̇ : ε

)
(2.A.6)

while the second law (Eq. (2.A.5)) remains unchanged.
Equating the rate (derivative with respect to time) of g = g (σ,T,αi ) with Eq. (2.A.6)

results in
(
−ε− ∂g

∂σ

)
: σ̇+

(
−s − ∂g

∂T

)
Ṫ +

(
−d − ∂g

∂αi
: α̇i

)
= 0. By assuming that the state

variables of the energy function (σ and T ) vary independently, it can be deduced that

ε=− ∂g

∂σ
, s =− ∂g

∂T
,− ∂g

∂αi
: α̇i = d ≥ 0 (2.A.7)

By defining − ∂g
∂αi

as the “generalised stress tensor”, χ̄ [20], the rate of dissipation can be
rewritten as

d = χ̄ : α̇i = 〈χ̄,α̇i 〉 ≥ 0 (2.A.8)

where 〈〉 is the inner product operator.
Three important conclusions can be derived from this equation:
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1. The presence of internal variables (e.g. αi ) in the energy functions is necessary
for dissipative materials; otherwise the term ∂g /∂αi would be zero which results
in zero dissipation and reversible behaviour, similar to the observed behaviour of
elastic materials.

2. The dissipation should be a function of the rate of change of internal variables
(α̇i ); i.e., it is enough and sufficient to define the rate of dissipation function only
by the rate of change of internal variables (d = d (α̇i )) [20].

3. The rate of dissipation function is the multiplication (inner product) of the deriva-
tive of the energy function with respect to the internal variable (∂g /∂αi ) and its
corresponding rate of change (α̇i ). This is similar to the properties of homoge-
neous functions (Appendix 2.C).

In summary, the rate of dissipation function should be homogeneous, non-negative
and a function of the rate of internal variables.

2.A.2. RATE OF DISSIPATION FUNCTIONS
The rate of dissipation function of dissipative materials in general can be defined by
“generalised dissipative velocities, ν”, state variables x, e.g. stress (or strain), and tem-
perature T : d = d (x,ν,T ) ≥ 0 [75]. Note that ν and x can be either scalar or tensorial.
Generalised dissipative velocities is a term that covers both the rate of change of internal
variables (e.g. rate of plastic strains, α̇i ) and fluxes of various quantities (e.g. electrical
charge). It can be proved that any thermodynamic function that is extensive (i.e. de-
pendent on the size of the system) is an homogeneous function [79]. In addition, the
dependence of the rate of dissipation function on the generalised dissipative velocities
is enough to define the non-negative rate of dissipation function (d = d (ν)). By consid-
ering these points and the fact that the rate of dissipation function is an homogeneous
function, by writing Euler’s theorem (Eq. (2.C.2)) for the rate of dissipation function d it
can be concluded that

nhd = ∂d

∂ν
:ν (2.A.9)

where nh is the order of homogeneity of the function (see Appendix 2.C).

2.A.3. HYPERPLASTICITY APPROACH
In hyperplasticity, the constitutive equations can be deduced by defining only the en-
ergy and rate of dissipation functions, without the need to add additional assumptions
[20]. The thermodynamic work-conjugate of generalised velocities ν, is called "gener-
alised dissipative forces ", χ (which, depending on ν, can be a scalar or a tensor). These
work-conjugates are critical because the relationship between them and the generalised
dissipative velocities determines the constitutive equations governing the behaviour of
the material [75]. It is assumed that the rate of dissipation is a linear function of the gen-
eralised dissipative velocities ν, defined as d = χ : ν = 〈ν,χ〉, similar to Eq. (2.A.8). By
comparing with Eq. (2.A.8) (since α̇i =ν), the following result can be achieved

χ̄=χ (2.A.10)
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This is a key element in hyperplasticity and is called Ziegler’s orthogonality condition.
To determine the generalised dissipative forces χ, [25] postulated that the direction

of ∂d/∂ν produces maximal entropy (or maximal dissipation rate). From the geometry
point of view, this direction is normal to the dissipation. From the mathematical point
of view, the generalised dissipative forces can then be determined as

χ=Υ∂d

∂ν
(2.A.11)

where Υ is a scalar that represents the magnitude of the generalised dissipative forces.
Substituting Eq. (2.A.11) into d = 〈ν,χ〉 results in

d =Υ
〈
ν,
∂d

∂ν

〉
(2.A.12)

By comparing the dissipation functions in Eqs. (2.A.9) and (2.A.12), it can be concluded
that Υ = 1/nh . Thus, the assumed rate of dissipation function in the form of d = 〈ν,χ〉
is a homogeneous function of order nh which is non-negative, which satisfies all the
requirements of a rate of dissipation function. The generalised dissipative forces are
then determined as

χ=Υ∂d

∂ν
= 1

nh

∂d

∂ν
(2.A.13)

YIELD FUNCTION

By applying Eq. (2.B.1) on d = 〈ν,χ〉, it is possible to define

z (x,ν,T )+w (x,χ,T ) = 〈ν,χ〉 = d (2.A.14)

where z and w are the force and flow potentials [20; 75], respectively. Thus, the following
properties apply (in accordance with Eq. (2.B.2))

χ= ∂z (x,ν,T )

∂ν
,ν= ∂w (x,χ,T )

∂χ
(2.A.15)

By comparing Eq. (2.A.15) with Eq. (2.A.13), it can be concluded that ∂z
∂ν = 1

nh

∂d
∂ν . For

rate-independent materials, which are the motivation behind the model in this chapter,
the rate of dissipation function is homogeneous of order one (nh = 1), which yields z = d.
Further substitution into Eq. (2.A.14) results in w (x,χ,T ) = 0, which means that the flow
potential is always zero. In this case, it is possible to derive a function of the forces that
is identically zero when yielding occurs

w (x,χ,T ) =Υ′y (x,χ,T ) = 0 (2.A.16)

whereΥ′ is a non-zero value. Thus, y (x,χ,T ) = 0, which is the yield function [20; 75; 76],
defined in generalised force space (not in true stress space).
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2.B. APPENDIX B: LEGENDRE TRANSFORM
The Legendre transform has a wide range of applications, especially in thermodynamics.
As an example, this transform may be invoked to interchange between different types of
energy function; internal energy (u), enthalpy (h), Helmholtz free energy (f ), and Gibbs
free energy (g). Another example is the interchange between the rate of dissipation and
the yield functions for dissipative materials. Precisely, the purpose of this transform is
to interchange the role of any independent variable of a function to its conjugate vari-
able. Suppose that l1 is an independent variable (active variable) of a set of variables
that defines the function k1(l1,a1,a2,a3. . . ). By Legendre transformation, the function k1

is converted to the function k2 which is defined by the same set of passive independent
variables (a1,a2,a3,. . . ); however, the active variable l1 is replaced by its conjugate vari-
able l2, through application of the product-rule between the active variables (〈l1, l2〉).
This can be mathematically shown as

k1 (l1, a1, a2, a3, ...)+k2 (l2, a1, a2, a3, ...) = 〈l1, l2〉 (2.B.1)

where 〈〉 is the inner product operator. This transform can be applied to any set of inde-
pendent variables.

One of the important features of the Legendre transform is that the properties of
one function remain unchanged during the transformation and the properties are trans-
ferred to the other function. This means that, in the case of applying the Legendre trans-
form on an energy function, using other types of energy function would lead to the same
results. With the same reasoning, invoking the Legendre transform for the rate of dissi-
pation function results in the interchangeable use of the yield function with the rate of
dissipation function.

The Legendre transform provides two important properties; one is related to the ac-
tive variable(s) and the other is related to the passive variable(s). It can be proven that
the partial differential of each function with respect to its corresponding active variable
is equal to their corresponding conjugates. This can be shown as

l2 = ∂k1(l1,a1,a2,a3,...)
∂l1

; l1 = ∂k2(l2,a1,a2,a3,...)
∂l2

(2.B.2)

The partial differentials with respect to passive variables are identical for both functions

∂k1 (l1, a1, a2, a3, ...)

∂ai
= ∂k2 (l2, a1, a2, a3, ...)

∂ai
; i = 1,2,3, ... (2.B.3)

This equation is the transfer of the properties of k1 to k2.

2.C. APPENDIX C: PROPERTIES OF HOMOGENEOUS FUNC-
TIONS

A function r(e) is homogeneous of degree nh with respect to all the values of t if the
following statement stands

r (te) = t nh r (e) (2.C.1)
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This definition can be generalised to any finite number of variables for the function.
From the mathematical point of view, homogeneous functions possess a mapping (scal-
ing) characteristic.

One of the properties of an homogeneous function, which is extensively imple-
mented in thermodynamics, is that Euler’s theorem applies. According to this theorem,
if a function r is defined by a variable e, and is homogeneous to degree nh , then such a
function can be written in terms of its partial derivatives with respect to e

nhr (e) = ∂r (e)

∂e
e (2.C.2)

2.D. APPENDIX D: COMPONENTS OF EQUATION (2.22)
The derivative components of the plastic multiplier in Eq. (2.22) are as follows

{r} =
{

rp

rq

}
= 2

{
B 2

(
p −C

)−βA2
(
q −βp

)
A2

(
q −βp

) }
(2.D.1)

{
∂y
∂σ

}
=


∂y
∂p
∂y
∂q


= 2

{
A

(
1−γ)((

q −βp
)2 −B 2

)
+B M (1−α)

((
p −C

)2 − A2
)
+ (

B 2
(
p −C

)−βA2
(
q −βp

) )
A2

(
q −βp

) }
(2.D.2)

{
∂y
∂εp

}
=


∂y

∂ε
p
v

∂y

∂ε
p
s


=

{ ((
1+e0
λ−κ

)
γpcT

)(
A

((
q −βp

)2 −B 2
)
+αMB

((
p −C

)2 − A2
)
−B 2

(
p −C

))
0

} (2.D.3)

∂y
∂T = ∂y

∂A
∂A
∂pcT

∂pcT
∂T + ∂y

∂B
∂B
∂pcT

∂pcT
∂T + ∂y

∂C
∂C
∂pcT

∂pcT
∂T + ∂y

∂B
∂B
∂M

∂M
∂T →

∂y
∂T = (−µγpcT

)(
A

((
q −βp

)2 −B 2
)
+αMB

((
p −C

)2 − A2
)
−B 2

(
p −C

))
...

...+2πB
((

p −C
)2 − A2

)(
(1−α) p + αγ

2 pcT
) (2.D.4)

2.E. APPENDIX E: TEMPERATURE DEPENDENT INCREMENTAL

FORMULATIONS

2.E.1. STRESS-CONTROLLED INCREMENTAL FORMULATION
In a stress-controlled condition, stress increments are imposed to the system as inputs
and the resulting strain increments are calculated. Most geotechnical numerical simu-
lations, e.g. foundation analyses, come under this category.
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The total strain increment can be determined by differentiating Eqs. (2.5) and (2.6){
ε̇v

ε̇s

}
=

{
ε̇e

v
ε̇e

s

}
+

{
ε̇T

v
0

}
+

{
ε̇

p
v

ε̇
p
s

}
(2.E.1)

where the elastic strains are

ε̇e
v =−

(
∂2g1(p,q)
∂p∂p ṗ + ∂2g1(p,q)

∂p∂q q̇
)

ε̇e
s =−

(
∂2g1(p,q)
∂q∂p ṗ + ∂2g1(p,q)

∂q∂q q̇
) (2.E.2)

which can be rewritten in the compact form

{
ε̇e

v

ε̇e
s

}
= [

Ce]{
ṗ

q̇

}
=−

 ∂2g1

∂p2
∂2g1
∂p∂q

∂2g1
∂q∂p

∂2g1

∂q2

{
ṗ

q̇

}

where [Ce ] is the elastic compliance (or flexibility) matrix. With respect to Eq. (2.3) or
Eq. (2.4), the components of the elastic compliance matrix can be derived, respectively,
as

[
Ce]= 1

3Ḡpr e f

(
p

pr e f

)n

[ (
3Ḡ
K̄

(
p

pr e f

)n−m + n̄η2
)

−nη

−nη 1

]
; n̄ = n (n +1)

2
(2.E.3)

[
Ce]= 1

3Ḡpr e f

(
p

pr e f

)n

 (
3Ḡ
K̄

(
p

pr e f

)n−1 + n̄η2
)

−nη

−nη 1

 (2.E.4)

The thermo-elastic strain increment is

ε̇T
v = 3α∗Ṫ (2.E.5)

The plastic strain increments,
{
ε̇p

} = Λ̇ {r}, are easily calculated by Eqs. (2.19)
and (2.20). In summary, the total strain increments in a stress-controlled condition can
be calculated as

{ε̇} = [
Ce] {σ̇}+3α∗Ṫ + Λ̇ {r} (2.E.6)

2.E.2. STRAIN-CONTROLLED INCREMENTAL FORMULATION
In some geotechnical applications, e.g. triaxial soil element tests, strains are applied to
the soil specimen and the stress increments are measured. This condition, where the
total strain is the input and the stress increment is the measured output, is called the
strain-controlled condition.
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The plastic multiplier in Eq. (2.22) is determined for stress-controlled increments,
which should be modified to be strain-increment dependent. Multiplying both sides of

Eq. (2.E.6) by

({
∂y
∂σ

}T
[Ce ]−1

)
results in

{
∂y

∂σ

}T

{σ̇} =
{
∂y

∂σ

}T [
Ce]−1

{ε̇}−3α∗
{
∂y

∂σ

}T [
Ce]−1 Ṫ − Λ̇

{
∂y

∂σ

}T [
Ce]−1

{r} (2.E.7)

Recalling the consistency condition (Eq. (2.21)) and comparing with Eq. (2.E.7), similar
terms can be identified. By substituting and applying algebraic operations, the plastic
multiplier defined by total strain increments can be determined

Λ̇=

{
∂y
∂σ

}T
[De ] {ε̇}+

(
∂y
∂T −3α∗

{
∂y
∂σ

}T
[De ]

)
Ṫ{

∂y
∂σ

}T
[De ] {r}−

{
∂y
∂εp

}T
{r}

(2.E.8)

where [De ] is the elastic stiffness matrix and is the inverse of elastic flexibility matrix [Ce ]
(Eq. (2.E.3) and Eq. (2.E.4), respectively)

[
De]= [

Ce]−1 =
3ḠK̄ pr e f

(
p

pr e f

)m

3Ḡ +nη2K̄
(

p
pr e f

)m−n

 1 nη

nη
(

3Ḡ
K̄

(
p

pr e f

)n−m + n̄η2
)  ; n = n (1−n)

2

(2.E.9)

[
De]= 3ḠK̄ p

3Ḡ +nK̄η2
(

p
pr e f

)1−n

 1 nη

nη

(
3Ḡ
K̄

(
p

pr e f

)n−1 + n̄η2
)  (2.E.10)

By the use of Eq. (2.E.6), the stress increments can be calculated in accordance to strain
increments

{σ̇} = [
De](

{ε̇}−
{

3α∗
0

}
Ṫ − Λ̇ {r}

)
(2.E.11)

where [De ] and Λ̇ are calculated respectively from Eq. (2.E.8) and Eq. (2.E.9) (or (2.E.10)).
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A FLEXIBLE AND ROBUST YIELD

FUNCTION FOR GEOMATERIALS

This chapter presents a new Modified Cam Clay (MCC) type yield function, that is designed
for robust and efficient use with implicit stress integration algorithms. The proposed yield
function attains non-elliptical (e.g. tear and bullet) shapes, as well as the typical elliptical
shape of the MCC model. Like that of MCC, and unlike most other yield functions with
non-elliptical shapes available in literature, it is non-singular and unique throughout
stress space. The experimental yielding stresses of a wide range of geomaterials have been
accurately simulated using the yield surface. The yield function can be used in constitutive
models based on classical elasto-plasticity theory.

This chapter is based on the following paper: Golchin, A., Vardon, P. J., Coombs, W. M. and Hicks, M. A. A
flexible and robust yield function for geomaterials. Computer Methods in Applied Mechanics and Engineering,
387, 114162, 2021.
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LIST OF SYMBOLS

Roman Greek
1 Second order identity tensor α Parameter related to the

shape of the yield surface
A Shape function for yield sur-

face
β Level of inclination of the

yield surface
B Shape function for yield sur-

face
γ Parameter related to the

shape of the yield surface
C Shape function for yield sur-

face
∆ε Strain increment tensor

CPPM Closest point projection
method

∆ε
p
kk Plastic volumetric strain in-

crement
CS Critical State ∆Λ Increment of plastic multi-

plier
CSL Critical State Line ∆σPr edi ctor Stress predictor increment

tensor
c Fourth-order elastic compli-

ance tensor
∆σCor r ecto r Stress corrector increment

tensor
c Centre of the yield surface ε Strain tensor
cv1,
cv2

Co-vertexes of the yield sur-
face

εe Elastic strain tensor

De Elastic stiffness tensor εe,tr i al Elastic trial strain tensor
ee Elastic deviatoric strain ten-

sor
εe

n Elastic strain tensor at time
step n

G Shear modulus εe
n+1 Elastic strain tensor at time

step n+1
g Plastic potential εe

v Elastic volumetric strain
h, h1 Meridian functions of yield

equation
ε

p
v Plastic volumetric strain

h1
′
,h1

′ ′
First and second derivative of
h1

ε̇
p
v Rate of plastic volumetric

strain
I Fourth order identity tensor η Stress ratio
J Jacobian matrix ηK0 Stress ratio at K 0 condition
K 0 Coefficient of earth pressure θ Lode angle
k Level set value κ Elastic compressibility in-

dex
LAD Lode angle dependency λ Elasto-plastic compressibil-

ity index
MCC Modified Cam Clay ζ Lode angle dependent func-

tion
M Critical State stress ratio Π Residual vector
Mc Critical State stress ratio in

compression
Π1,Π2,Π3 Residual equations
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Me Critical State stress ratio in ex-
tension

σ Effective stress tensor

NRi t Number of iterations σtr i al Trial stress tensor
n̂ Tensor of deviatoric direction σn Stress tensor at time step n
p Mean effective stress σn+1 Stress tensor at time step n+1
pn

c Pre-consolidation pressure at
time step n

φc Friction angle

pn+1
c Pre-consolidation pressure at

time step n+1
pc Pre-consolidation pressure
pcs Mean effective stress at Criti-

cal State
ṗc Rate of change of the pre-

consolidation pressure
pr Reference pressure
ptr i al Trial mean effective stress
pR 1,
pR 2

Roots of R1 and R2

pR 3 Point of non-uniqueness (root
of R3)

pR 4 Point of singularity (root of R4)
pt Tension pressure
q Hardening variables
q Deviatoric stress
qcs Deviatoric stress at Critical

State
qt Tensile strength
qtr i al Trial deviatoric stress
R1,2,3,4Geometrical constraint equa-

tions
r Plastic flow tensor
r Spacing ratio
rp Plastic flow along the p-axis
rq Plastic flow along the q-axis
s Deviatoric stress tensor
t Number of roots of the yield

function
tn Time step n
tn+1 Time step n+1
v Vector of increments
y Yield surface
yk Yield function
z Deviatoric function of yield

equation
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3.1. INTRODUCTION
To numerically simulate the mechanical performance of large-scale engineering infras-
tructures, constitutive equations that represent the mechanical behaviour of materials
are used. These can be implemented in boundary-value solvers, such as the finite ele-
ment method or the material point method, using several approaches (see [1–3] for de-
tailed information), of which the most efficient belong to the implicit stress integration
algorithm category [1; 3]. In this category, after the boundary-value solver has calculated
a strain increment, a corresponding (trial) stress state is calculated and, when needed,
this is mapped back onto the yield surface. More specifically, the trial stress state may
temporarily go beyond the admissible stress states that are bounded by the yield sur-
face. When this happens, the stress (located outside the yield surface) is returned back
onto the yield surface using the plasticity component of the constitutive equations. This
return mapping algorithm is generally an iterative procedure, with the stress being up-
dated in each iteration. Usually, the return mapping procedure requires the first deriva-
tives of the yield function and plastic potential with respect to the updated stress state.
Therefore, it is essential for robust computation that computational methods employ a
yield function (and plastic potential) that is defined uniquely in the entire stress space to
ensure the updated stress is correctly mapped onto the yield surface [4]. Otherwise, this
may result in limitations on the time/load steps used, or worse, to non-convergence or
incorrect converged stresses which impairs the predictive capability of the constitutive
equations [4].

Owing to a wide range of behaviours observed for geomaterials, researchers have
paid particular attention to developing yield surfaces and plastic potentials with a variety
of shapes in meridian and deviatoric stress space, in order to capture their behaviour as
accurately as possible. Examples can be found in [5–15]. These constitutive equations
have been derived from different theories, with classical plasticity and thermodynamics
principles being commonly accepted examples.

As will be seen later, the Modified Cam Clay (MCC) [16] yield function and plastic
potential are inherently robust and therefore highly suitable for implicit stress integra-
tion algorithms. However, although the MCC yield function therefore provides a suitable
framework for developing constitutive equations, its elliptical surface does not represent
the observed behaviour of many geomaterials. In fact, MCC has no flexibility to cope
with experimentally determined loci of yield stress points with non-elliptical shapes (e.g.
so-called tear, bullet and egg shapes). Many alternative surfaces can be found in the lit-
erature that have addressed this limitation (see for example [5; 7; 11–13; 17]). However,
most of them have non-unique elastic domains, i.e., locations in stress space outside
the intended elastic domain where the yield function value implies elasticity, a so-called
undesired (false) elastic domain or nucleus. This was investigated by Coombs & Crouch
[18] for the yield surface proposed by Collins & Hilder [11]. One may use the convexi-
fication technique to overcome this problem by developing an alternative formulation
of the yield function which resembles and preserves the non-elliptical shape of the yield
surface at all values; for example, Stupkiewicz et al. [19] used such an approach to extend
the formulation of a previously proposed yield surface [13]. Moreover, Panteghini & La-
gioia [20] corrected the undesired elastic domain of a distorted MCC-type yield surface
with a single shape-parameter via a convexification technique [21], to develop a fully
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convex and unique yield function expression. However, in both of these works, the an-
alytical expression for the yield function is complex and the approach they pursue may
not be practical or convenient for all yield surfaces, as imaginary solutions may arise.

In this chapter, a new yield function is proposed which has the flexibility of attaining
non-elliptical shapes. As for MCC, it is robust for implicit stress integration algorithms,
without having the shortcomings of false elastic domains, singularities or erratic gradi-
ents in meridian stress space. Note that the formulations presented are in accordance
with geotechnical conventions, where compressive stresses and contractive strains are
considered to be positive.

3.2. REQUIREMENTS OF THE YIELD FUNCTION
Yield surface functions are generally defined by the effective stress tensor, σ, and hard-
ening variables, q, which may be tensors (such as kinematic hardening variables) or
scalars (e.g. isotropic hardening variables). Here, as is common in geotechnical engi-
neering, yield surfaces defined in meridian stress space, i.e. by stress invariants p and q
(respectively, the mean effective stress, p = tr(σ)/3 (kPa) and deviatoric stress, q = (3/2
s : s)1/2 (kPa), where s =σ− tr(σ)/3 : 1 is the deviatoric stress tensor and 1 is the second
order identity tensor), and specifically those with isotropic hardening, defined by a pre-
consolidation pressure pc , are considered. This is particularly relevant for history depen-
dent materials such as soils. A function y is defined which is used to control the consti-
tutive behaviour. Hereafter, the terms yield surface and yield function are distinguished
by level sets of y [4]. The yield surface is defined by the level set “zero”, i.e., y(σ,q) = 0
and the yield function is defined for “non-zero” level sets, i.e., yk (σ,q)= k where k > 0.

In elasto-plasticity, a yield surface is employed to divide the stress space into three
regions [4]:

1. stresses inside the yield surface, that represent the elastic domain, y < 0;

2. stress states on the yield surface, y = 0, that undergo elasto-plastic deformation;

3. inadmissible stresses outside the yield surface, which satisfy y > 0.

Yield surfaces should uniquely define the admissible/elastic stress space (y ≤ 0), i.e.,
there should only be one yield surface. Moreover, the yield surface is required to be
convex over its admissible stress space, which means that stresses cannot go outside the
yield surface from one point inside the yield surface to another point inside the yield sur-
face. When the yield surface is implemented in a boundary-value solver with an implicit
stress updating procedure, additional restrictions for the yield function are needed.

When used in boundary-value solvers, usually a so-called return mapping procedure
is used in order to correctly calculate the stress and hardening parameters associated
with a certain strain (increment) (see Figure 3.1). Here, a closest point projection method
(CPPM) is employed as the return mapping approach, where it is assumed that for a time
interval [tn , tn+1], at time step n, the stress tensor, σn , strain tensor, εn , hardening vari-
ables, qn , and yield surface (yn), are converged and defined, and that the stress state
is located on the yield surface. To calculate the corresponding variables at time step
n+1, the return mapping technique applies two steps: (i) by the use of the total strain
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increment (obtained from the boundary-value solver), ∆ε, an incremental stress predic-
tor, ∆σpr edi ctor , is calculated, assuming only elastic behaviour. Consequently, the trial
stress is calculated (σtr i al =σn+∆σpr edi ctor ); (ii) whenσtr i al goes beyond the yield sur-
face (i.e. y > 0), the stress state must be corrected (mapped) back onto the yield surface.
This is performed by the application of a stress increment corrector, ∆σcor r ector . In this
step, the plastic behaviour is estimated, giving a new prediction of the updated stress, the
yield surface and the hardening variables. This may be done iteratively, in order to return
the new stress (σn+1) onto the updated yield surface (yn+1), updated via its hardening
variables (such as pc ). As a result of step (i), σtr i al sits on a non-zero level set of the yield
function (i.e. y(σtr i al ) > 0), and ∆σcor r ector in step (ii) is typically calculated iteratively
by using the first and second derivatives of the yield function (y j

n+1, j = 1,2,3, . . .) (in the
case of an associated flow rule) or plastic potential function (g j

n+1, j = 1,2,3, . . .) at every
state that the return path experiences. To have a correct return mapping path, the yield
function (yk (σ,q)= k) should meet the criteria considered for the yield surface (y = 0),
including uniqueness and convexity. It should be noted that these restrictions are due to
numerical implementation considerations and not material behaviour/energy consider-
ations. Moreover, even if the yield surface satisfies these conditions, it is not automatic
that the yield function also satisfies them. It is also possible to have mathematical ex-
pressions that provide the same yield surface but very different yield functions in terms
of their level set variation.

The majority of this chapter focuses on the uniqueness of yield functions and how
to develop a robust and efficient form for implicit stress updating algorithms. Non-
uniqueness may appear from several sources. Three of these are identified and their
detrimental consequences summarised below:

1. Non-unique elastic domains: in the stress space outside the desired yield surface
(y(σ,q) = 0) it may be possible to identify domains where the condition y > 0 is
not satisfied, i.e., the yield surface defines two (or more) enclosed areas where the
condition y < 0 is satisfied; this is a so-called false (undesired) elastic domain or
nucleus (Figure 3.2a). Potentially, this means that the stress predictor could move
the trial stress into the false elastic domain; then the behaviour is falsely predicted
to be elastic, and consequently would not trigger the return mapping procedures
and, therefore, not calculate plasticity, material hardening or the return to the yield
surface.

2. Singularity: in the stress space outside the yield surface, the yield function or its
derivatives may not be mathematically defined, which is hereafter called a “sin-
gularity” (Figure 3.2b). As a result, there are sudden changes in the behaviour of
the yield function (i.e., discontinuities), for example in its gradients, resulting in
divergence of the solution.

3. Erratic gradients: in the stress space outside the yield surface, high curvatures of
the yield function may be observed (Figure 3.2c), even though it is mathematically
defined at those stress states (in contrast to singularity points). In these regions,
convergence can be difficult.
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Figure 3.1: CPPM return mapping technique in implicit stress integration approach
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Figure 3.2: Sources of non-uniqueness of yield functions: (a) undesired elastic domain (false elastic nucleus)
(yield function of [13]); (b) singularity and discontinuity in the gradient for same level sets (yield function

of [11]); (c) high curvature of the yield function (yield function of [11])

Other issues, including local minima (the stress state getting trapped and being unable
to return to the yield surface), also result in an inefficient stress integration algorithm.
Although these issues are not covered in this chapter, they may be linked to the sources
of non-uniqueness mentioned above and these issues may be solved by following the
approach proposed here.

3.3. ANALYSIS OF FLEXIBLE ELLIPTICAL YIELD FUNCTIONS
Many constitutive modelling approaches and yield surfaces have been proposed for geo-
materials. Collins & Hilder [11], using the principles of thermodynamics, derived a fam-
ily of isotropic yield surfaces for geomaterials (readers may refer to [11; 22] for detailed
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descriptions of the derivation procedure). These yield surfaces have a quadratic-type
formulation, similar to that of an ellipse

y =
(
p −C

)2

A2 + q2

B 2 −1 = 0 (3.1a)

or, alternatively, in the form

y = B 2 (
p −C + A

)(
p −C − A

)+ A2q2 = 0 (3.1b)

Both these forms will be used later to identify the geometrical constraints required
to formulate a unique and non-singular yield surface. Eq. (3.1) is the zero level set of the
general yield function (yk )

yk =
(
p −C

)2

A2 + q2

B 2 −1 = k (3.2a)

yk = B 2
(
p −C −

p
1+k A

)(
p −C +

p
1+k A

)
+ A2q2 = 0 (3.2b)

where k ≥ 0 represents the level set of interest.
A and B are, respectively, the semi-major and semi-minor axes of the yield surface

(Figure 3.3) and C controls the horizontal distance (or shift) between the semi-minor
axis of the surface and the origin (denoted by point O in Figure 3.3). All the surfaces in
Figure 3.3 are bounded on the hydrostatic axis at pc (the pre-consolidation pressure) and
the centre of the surface (point c) is obtained as the intersection of the semi-major and
semi-minor axes. A1, is the horizontal distance of the centre of the yield surface from the
tensile apex (which is here coincident with the origin, so that A1 =C ), whereas A2 is the
horizontal distance between the centre of the yield surface and the compression apex of
the yield surface (pc ). Hence the sum of A1 and A2 is the size of the major axis of the yield
surface (i.e., A1 + A2 =pc ). For an ellipse (Figure 3.3a), it holds that C/(A1 +A2) = 0.5 (i.e.,
A1/A2 = 1) and the gradients (demonstrated by red arrows) at the co-vertexes (shown by
cv1 and cv2) are zero with respect to the p-axis. Flexible non-elliptical shapes can be
formed by several approaches. Here, two of those possible methods are discussed.

The first method fixes the semi-minor axis on the p-axis in the same place as an el-
lipse (i.e. A1 = A2) (Figure 3.3a) and at this point the yield surface is inclined to the p-
axis. Two such surfaces are depicted in Figure 3.3b and Figure 3.3c. Note that, for these
surfaces, the gradients with respect to the p-axis at points cv1 and cv2 are non-zero (in
contrast to the ellipse). In the second approach, the location of the minor-axis on the
p-axis is changed compared to an ellipse (and the gradient at this point is maintained
at zero). This implies that the ratio of A1/A2 changes with respect to elliptical shapes
(i.e. A1/A2 ̸= 1). Figure 3.3d and Figure 3.3e, respectively, illustrate yield surfaces with
A1/A2 < 1 and A1/A2 > 1, that have been developed via this approach. For these sur-
faces, similar to an ellipse, the gradients at points cv1 and cv2 are zero with respect to
the p-axis. A combination of these two methods may also be employed to develop non-
elliptical surfaces of an appropriate form to present the material under consideration.
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(a)

(b) (c)

(d) (e)

Figure 3.3: Definition of A, B and C for yield surfaces: (a), (b) and (c) C/(A1 +A2) = 0.5; (d) C/(A1 +A2) < 0.5; (e)
C/(A1 +A2) > 0.5.

To mathematically incorporate these surfaces in Eq. (3.1), A, B and C are defined in
terms of stress invariants (for example, the hydrostatic pressure p) and hardening vari-
ables (for example, the pre-consolidation pressure pc ), i.e., A = A(p,pc ), B = B(p,pc ) and
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C = C(pc ). Therefore, hereafter they are called "stress-like functions". Note that the value
of A = A(p,pc ) varies between A1 and A2 depending on p. By modifying the definition of
the stress-like functions (A, B and C) and using the general quadratic-form of the yield
surface presented in Eq. (3.1), non-elliptical (flexible) MCC-type yield surfaces compat-
ible with the observed yielding stresses in geomaterials have been proposed [5; 11; 12].
These models employ two-parameter (α and γ) functions to define A, B and C, in order to
form "tear" and "bullet" shape MCC-type surfaces. The functions for four yield surfaces
of the MCC-type family, applicable to soils with zero tensile strength, are summarised in
Table 3.1. Regardless of the different formulations proposed for these functions, they all
comply to certain geometrical restrictions. Assuming an isotropic yield surface, the yield
surface at zero deviatoric stress, q, should be defined at two points, (p,q) = (−pt ,0) and
(p,q) = (pc ,0), where pc and pt are, respectively, the compression and tensile apex of the
yield surface along the hydrostatic axis (p-axis), and pt = 0 for soils. Substitution of these
two points in Eq. (3.1) results in

A(0, pc ) =C (3.3)

A(pc , pc ) =pc −C (3.4)

Eq. (3.3) is equal to A1 in Figure 3.3 and shows that the functions A and C are inter-related
in such a way that function C is the same as function A when the dependency on p is
omitted. Thus, they have similar signs. In addition, Eq. (3.4) represents A2 in Figure 3.3.

Assuming that C represents the hydrostatic pressure at Critical State (CS) conditions,
i.e.

C = pcs (3.5)

where subscript "cs" indicates a CS-related variable, the third geometrical constraint is
then derived by considering that the yield surface is required to be defined at (p,q) =
(pcs ,qcs ) = (pcs ,Mpcs )

B
(
pcs , pc

)= M pcs (3.6)

where M is the CS stress ratio (the gradient of the CS Line (CSL) in p-q stress space). By
substituting Eq. (3.5) in Eq. (3.6) and combining Eq. (3.3) with Eq. (3.4), the following
relations are extracted

A
(
0, pc

)=C (3.7a)

A
(
0, pc

)+ A
(
pc , pc

)=pc (3.7b)

B
(
C , pc

)=MC (3.7c)

Note that the dependency of function B on function C (and consequently on function
A) in Eq. (3.7c) demonstrates how the stress-like functions are linked. The above cri-
teria provide a general method to define stress-like functions in order to develop non-
elliptical (flexible) MCC-type yield surfaces; i.e., any proposed stress-like functions that
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satisfy these conditions result in a flexible MCC-type yield surface in meridian stress
space (see the stress-like functions for several MCC-type yield surfaces presented in Ta-
ble 3.1).

Note that Eq. (3.1) can easily be extended to account for the influence of the third
invariant, the Lode angle θ, by multiplying the function B with an appropriate Lode angle
dependent (LAD) function ζ(θ)

y =
(
p −C

)2

A2 + q2

ζ2B 2 −1 = 0 (3.8a)

or, alternatively, in the form

y = ζ2B 2 (
p −C + A

)(
p −C − A

)+ A2q2 = 0 (3.8b)

A number of these LAD functions are reported in [13; 23–25]. Since these functions
are independent of p and pc , the generality of the above approach is not compromised.
Since the focus of this chapter specifically concerns numerical deficiencies in the merid-
ian plane, the incorporation of a LAD function into the yield surface is hereafter ignored.

3.3.1. ANALYSIS OF THE MODIFIED CAM-CLAY (MCC) MODEL

To use the same yield surface as in the Modified Cam Clay (MCC) model, the functions
A, C and B are defined as A = C = pc /2 and B = Mpc /2, respectively. Thus, for the MCC
model the yield surface (Eq. (3.1)) becomes

y =
(
p −pc /2

)2(
pc /2

)2 + q2(
M pc /2

)2 −1 = 0 (3.9a)

or

y = M 2p
(
p −pc

)+q2 = 0 (3.9b)

Level sets of the MCC yield function in normalised meridian stress space are shown
in Figure 3.4a. All the level sets are defined in meridian (p, q) stress space and are con-
centric with respect to the yield surface, i.e., transformations of the yield surface by an
increase in the yield function have the same shape. In addition, the yield function at any
level set has identical properties, such as identical gradients. Since the MCC yield sur-
face is unique and convex, its level sets (k > 0) also adhere to these properties and are
ensured to be unique and convex, as is obvious from Figure 3.4a. It can also be inferred
from Figure 3.4a that, during the return mapping procedure of an implicit stress integra-
tion approach, any stress state outside the MCC yield surface (resulting from the stress
predictor) can be correctly returned back onto the yield surface. This is because, during
the return mapping, the stress will be located on surfaces that all have their gradients
towards the yield surface (y = 0).
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3.3.2. ANALYSIS OF THE GENERAL FORMULATION OF THE YIELD FUNCTION

(EQ. (3.2)) AND NON-ELLIPTICAL MCC-TYPE MODELS
The stress-like functions of the MCC and three flexible MCC-type yield surfaces [5; 11;
12] are presented in Table 3.1. The functions A, B and C defined for MCC are independent
of the stress invariants p and q (see Table 3.1). On the other hand, for the other three yield
functions, the shape parametersα and γ are related to p to form non-elliptical MCC-type
surfaces. It should be noted that by assigning specific values for the shape parameters,
the dependency of these functions on p can be eliminated to resemble the MCC yield
function. The respective shape parameters for the yield functions from [11], [12] and [5]
are (α,γ) = (1,1), (α,γ) = (1,0) and (α,γ) = (1/2,0) to recover the MCC yield surface.

The level set contours of these four yield surfaces are illustrated in Figure 3.4. It is
observed that all the yield functions (except for MCC) have either singularities or are
non-unique for some level sets. Although the defined stress-like functions result in a
unique yield surface (for a specifically defined range of α and γ), the yield functions
lose their uniqueness or may be undefined for a specific value of p (due to singularity) at
non-zero level sets (see Figure 3.4). These drawbacks can be investigated in the roots and
singularity points of the general yield function equation (Eq. (3.2a)) and will be explored
in the following subsections.

The general formulation of the yield function, Eq. (3.2a), may have several roots in
meridian stress space (p, q), i.e., on the p-axis (when q = 0). The roots are values of p that
satisfy the following three equations

R1 : p −C −
p

1+k A
(
p, pc

)= 0 (3.10a)

R2 : p −C +
p

1+k A
(
p, pc

)= 0 (3.10b)

R3 : B
(
p, pc

)= 0 (3.10c)

The roots corresponding to R1, R2 and R3 (obtained from Eq. (3.10)) for each yield
function [5; 11; 12] are presented in Table 3.1 and are shown, respectively, by solid circle,
open circle and red star in Figure 3.4.

3.3.3. UNIQUENESS
By substituting A, B and C for the MCC yield function in Eq. (3.10), the yield surface
(y = 0 and k = 0) intersects the p-axis at two points; (p,q) = (0,0) and (p,q) = (pc ,0).
These points can easily be determined by considering q = 0 in the yield function. In
other words, the yield surface in meridian stress space has only two roots (the roots of
R1 and R2 in Eq. (3.10a) and Eq. (3.10b)). Since the function B is independent of p, R3

has no root, which keeps the total number of roots of the yield surface function as two.
When the roots of the yield function at non-zero level sets (for a given k) in meridian
stress space are analysed (by solving for p at a given k > 0), again only two roots, (p, q) =
(pc (1−p(1+k))/2,0) and (p, q) = (pc (1+p(1+k))/2,0), are obtained (shown by the solid
and open circles in Figure 3.4).
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For the other three yield functions, by substituting the stress-like functions in
Eq. (3.10), the roots of the yield function for a given k are extracted (see Table 3.1). Since
these functions are defined by p and pc , there is a possibility that the number of roots (t)
for Eq. (3.2b) can exceed two. In fact, t roots (in Eq. (3.2b)) enclose the meridian stress
space with t −1 domain(s) and each domain represents an elastic domain (bounded by
a yield surface). For the MCC yield function, t = 2 and, therefore, the number of elastic
domains is one. However, for the other yield functions, t ≥ 2 (due to the root of R3) and,
as a result, there are one (t = 2) or more (t > 2) elastic domains, which means that it may
be possible to identify the existence of at least one false (undesired) elastic nucleus, in-
dicating a loss of uniqueness. It is therefore concluded that, to avoid false elastic nuclei,
it is required to keep the number of roots of the yield function Eq. (3.2b) (for a given level
set k) equal to two (t = 2).

3.3.4. SINGULARITY (DISCONTINUITY )
By substituting q = 0 in Eq. (3.2a), the yield function reduces to yk = (p−C)2/A2−(1+k) =
0. This function is not defined when A = 0, i.e., at p values that fulfil

R4 : A
(
p, pc

)= 0 (3.11)

At these values of p, the yield function is undefined (as indicated by the solid red squares
in Figure 3.4), thereby causing a sudden change in behaviour such as gradients, i.e., re-
sulting in a discontinuity. This type of behaviour is due to the lack of a fully defined yield
function in meridian stress space. Of the four yield functions investigated, only the yield
functions of MCC and [12] have no singularities (see Table 3.1).

3.3.5. OBSERVATIONS AND CONCLUSIONS
From the above analysis of both forms of the general yield function (Eq. (3.2a) and
Eq. (3.2b)), the following observations are made:

• To form a non-elliptical MCC-type yield surface, the functions A or B (or both)
should be a function of p, and controlled via shape parameters such as α and/or
γ.

• The yield function is required to be defined for all values of its shape parameters.

• To preserve the uniqueness of the admissible elastic region in stress space, the
number of roots (t) of the yield function Eq. (3.2b), obtained from Eq. (3.10), is
required to be equal to two.

• To avoid singularities (discontinuity), the yield function Eq. (3.2a) should be de-
fined for all stresses in meridian stress space.
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(a) (b)

(c) (d)

Figure 3.4: Level sets of (a) MCC; (b) Collins & Hilder [11] with α= 0.5 and γ= 0.5; (c) Chen & Yang [12] with
α= 0.5 and γ= 0.5; (d) Zhang et al. [5] with α= 0.4 and γ= 0.8. Solid circle, open circle, red star and red

square represent, respectively, the roots of R1, R2, R3, and R4 and, for all yield functions, M = 1.0.

3.4. PROPOSED YIELD SURFACE

A countless number of equations can be defined for stress-like functions to form non-
elliptical MCC-type yield functions. By accounting for the observations reported in Sec-
tion 3.3.5, general geometric constraints are designed which result in the development
of a non-elliptical MCC-type yield function that is unique and non-singular, and is ro-
bust for a return-mapping technique using the implicit stress integration approach. Two
shape parameters,α and γ, are used to define the A, B and C functions, following existing
methods. Moreover, an additional parameter, β, which represents the back-stress, is in-
troduced, allowing the yield surface (and its non-zero level sets) to be sheared/distorted
with respect to the p-axis. The yield surface is described by a quadratic-type expression
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which is derived from a thermodynamic basis by defining an appropriate dissipation
function (see [11; 22; 26] for the derivation of a quadratic-type yield surface with β). The
yield surface can therefore be incorporated into constitutive models which have either
a thermodynamic or a phenomenological basis. The modified yield surface and yield
function are respectively expressed as

y =
(
p −C

)2

A2 +
(
q −βp

)2

B 2 −1 = 0 (3.12a)

or

y = B 2 (
p −C + A

)(
p −C − A

)+ A2 (
q −βp

)2 = 0 (3.12b)

and

yk =
(
p −C

)2

A2 +
(
q −βp

)2

B 2 −1 = k (3.13a)

or

yk = B 2
(
p −C +

p
1+k A

)(
p −C −

p
1+k A

)
+ A2 (

q −βp
)2 = 0 (3.13b)

The roots of Eq. (3.13b), when q = 0 and β ̸= 0, are

R1 : p −C −
p

1+k A
(
p, pc

)= 0 (3.14a)

R2 : p −C +
p

1+k A
(
p, pc

)= 0 (3.14b)

R3 : B
(
p, pc

)= 0 (3.14c)

R4 : A
(
p, pc

)= 0 (3.14d)

3.4.1. GEOMETRICAL CONSTRAINTS
As observed in Section 3.3, in order to avoid singularities and to preserve uniqueness, a
yield function in the form of Eq. (3.13b) is required to have only two roots (for a given
level set k) on the hydrostatic axis (p-axis) and a yield function in the form of Eq. (3.13a)
is required to be defined over the entire meridian stress space. However, from Eq. (3.14c)
and Eq. (3.14d), it is shown that there is the possibility to have more than two roots in
Eq. (3.13b), and/or to have discontinuities in Eq. (3.13a). Note that, amongst these roots,
level set values (k) are only incorporated within the roots R1 and R2. To overcome these
discrepancies, the general strategy (followed here) is to define functions A and B individ-
ually so as to have no roots on the p-axis. In this way, the roots R3 and R4 in Eq. (3.14c)
and Eq. (3.14d), respectively, are directly eliminated and the other two roots correspond-
ing to R1 and R2 (for k = 0) satisfy the Eq. (3.7a) and Eq. (3.7b) criteria.

Functions A and B are defined using the shape parameters γ and α, respectively, and
are proposed to have the following general forms

A
(
p, pc

)=pc

π
arctan

(
γ

(
a1 − p

pc

))
+ pc

2
(3.15)
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B
(
p, pc

)= b1 exp

(
α

p

pc

)
(3.16)

These functions are specifically selected in order to have no roots (no intersection with
the p-axis) and to be always positive, i.e., A,B ∈ (0,∞). The parameters a1 and b1 are
determined by satisfying the criteria in Eq. (3.7), which leads to the stress-like functions
being defined as

A
(
p, pc

)= pc

2π

(
2arctan

(
γ

(
pc −2p

)
2pc

)
+π

)
(3.17)

B
(
p, pc

)=MC exp

(
α

(
p −C

)
pc

)
(3.18)

C = pc

2π

(
2arctan

(γ
2

)
+π

)
(3.19)

The MCC yield function is retrieved by setting α= γ= 0.
The variation of functions A and B for different values of α and γ are presented in

Figure 3.5a and Figure 3.5b, respectively. As can be seen, these functions are always
positive, regardless of the (positive or negative) values assigned to the shape parameters.
In addition, the stress-like functions asymptote toward zero when p, depending on the
value of α and γ, approaches ±∞, but never intersect with the p-axis. This ensures that
the functions do not have any roots, thereby avoiding the possibility of non-uniqueness
or singularities. Furthermore, R1 and R2 (for k = 0) in Eq. (3.14a) and Eq. (3.14b), for
three different γ, are depicted in Figure 3.5c, showing that, independently of γ, R1 and
R2 have only one root on the hydrostatic axis (p-axis), intersecting at (p, q) = (pc ,0) and
(p, q) = (0,0) (the origin), respectively. This is similar to the MCC yield surface, but, for
different values of α and γ, giving non-elliptical (flexible) MCC-type surfaces.

3.4.2. CONVEXITY AND RANGE OF SHAPE PARAMETERS α AND γ
The quadratic yield surface (yield function with level set of zero), Eq. (3.12a), with the
addition of a LAD function, can be re-written as

y =−
√√√√B 2

(
1−

(
p −C

)2

A2

)
+

(
q −βp

)
ζ (θ)

= h
(
p

)+ z
((

q −βp
)

,θ
)

(3.20)

Eq. (3.20) demonstrates the formulation of the yield surface that is divided into two sep-
arate functions defined in the meridian, h(p), and deviatoric, z((q−βp),θ), planes. Note
that (q−βp) is the radius of the yield surface, at a shear level of β, in the deviatoric plane.
For such yield surfaces that are distinguished by meridian and deviatoric functions,
through the use of the theorem of convex analysis [27], Bigoni & Piccolroaz [13] demon-
strated that the convexity of the yield surface can be separately investigated in merid-
ian and deviatoric stress spaces; i.e., convexity of the functions, h(p) and z((q−βp),θ),
implies that the yield surface is also convex. Note that the convexity of the deviatoric
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function, z((q−βp),θ), is directly related to the form of the LAD function, ζ(θ). When
convex LAD functions such as those proposed in [13; 23–25] are used, the convexity of
the yield surface in deviatoric space is ensured and, consequently, the convexity of the
yield surface reduces to the convexity of the meridian function. Here, the convexity in
meridian stress space is considered, as it relates to the main topic of this chapter.

The convexity of the meridian function, h(p) (Eq. (3.20)), is satisfied when h
′ ′ (

p
)≥ 0.

h(p) can be rewritten as h
(
p

)=−
√

h1
(
p

)
, where

h1
(
p

)= B 2

(
1−

(
p −C

)2

A2

)
(3.21a)

Consequently, the convexity of the meridian function results in a condition that satisfies(
h1

′ (
p

))2 −2h1
(
p

)
h1

′ ′ (
p

)≥ 0 (3.21b)

where h1
′ (

p
)

and h1
′ ′ (

p
)

are, respectively, the first and second derivatives of the func-
tion h1

(
p

)
with respect to p. Although the yield surface is defined for the entire range

of values of α and γ, it is only convex if a certain combination of these parameters is
used and it is possible to determine these ranges by applying the convexity criterion
(Eq. (3.21b)), which for the current yield surface is shown in Figure 3.6. In practice, the
non-elliptical yielding stresses in geomaterials can be captured by using −2 ≤ α, γ ≤ 2.
The convexity of the yield surface over this range of shape parameters is shown in Fig-
ure 3.6b. Note that the above analysis is limited to the convexity of the yield surface (yield
function at the level set of zero). The convexity of the yield function for a non-zero level
set is investigated in Section 3.7.
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Figure 3.5: (a) Variation of function A with γ; (b) variation of function B with α; (c) variation of R1 and R2 in
Eq. (3.10a) with γ



3

82 3. A FLEXIBLE AND ROBUST YIELD FUNCTION FOR GEOMATERIALS

(a) (b)

Figure 3.6: Ranges of combined α and γ resulting in convex and non-convex surfaces (k = 0), for (a) −5 ≤α,
γ≤ 5; (b) −2 ≤α, γ≤ 2

3.4.3. EXTENSION OF FORMULATION TO ACCOUNT FOR TENSILE STRENGTH
Geomaterials, such as sandstones and concrete, in general may have tensile strength,
i.e., at zero mean effective stress, p = 0, the material has a shear strength of qt . Alterna-
tively, the tensile strength can be characterised by a corresponding tensile pressure, pt ;
i.e., the decompression pressure (initial isotropic pressure) is shifted from (p, q) = (0,0)
to (p, q) = (−pt ,0). The stress-like functions can be modified to extend the formulation
to account for tensile strength. Hence, the yield surface should intersect the p-axis at
p =−pt and p = pc . By applying the aforementioned conditions in Eq. (3.12a), Eq. (3.7)
becomes

A
(−pt , pc

)=C +pt (3.22a)

A
(
pc , pc

)=pc −C (3.22b)

B
(
pcs , pc

)=M pcs (3.22c)

Furthermore, substituting Eq. (3.5) in Eq. (3.22c) and combining Eq. (3.22a) with
Eq. (3.22b) results in

A
(−pt , pc

)=C +pt (3.23a)

A
(−pt , pc

)+ A
(
pc , pc

)=pc +pt (3.23b)

B
(
C , pc

)=MC (3.23c)
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To account for pt in functions A and B, the approach of Bigoni & Piccolroaz [13] is
followed, where the normalised pressure term (p/pc ) is replaced by (p+ pt )/(pc + pt ).
Then, by satisfying the criteria in Eq. (3.23), functions A, B and C are modified to

A
(
p, pc , pt

)= (
pc +pt

)
2π

(
2arctan

(
γ

(
pc −pt −2p

)
2pc

)
+π

)
(3.24)

B
(
p, pc , pt

)=MC exp

(
α

(
p −C

)
pc +pt

)
(3.25)

C
(
pc , pt

)=( pc +pt

π

)
arctan

(γ
2

)
+

( pc −pt

2

)
(3.26)

The tensile strength, qt , can be determined by substituting p = 0 in Eq. (3.12a).

3.4.4. PARAMETRIC STUDY OF THE PROPOSED YIELD FUNCTION
The results of a sensitivity analysis of the parameters on the yield surface, Eq. (3.12), and
level set contours of the yield function, Eq. (3.13), defined by Eqs. (3.24)-(3.26), are shown
in Figure 3.7 to Figure 3.9.

In geomechanics, the ratio of the mean effective stress at the CS condition, pcs , to the
over-consolidation pressure, pc , is often used to calibrate the yield surface. This ratio, r,
is called the “spacing ratio” [11; 17] and, by using Eq. (3.5) and Eq. (3.19), it is calculated
as

r = pcs

pc
= 1

2π

(
2arctan

(γ
2

)
+π

)
(3.27)

As the spacing ratio is determined from experimental data, Eq. (3.27) can be used to
calibrate the shape parameter γ as

γ= 2tan

(
π

(
r − 1

2

))
(3.28)

The effect of the shape parameter γ on the yield surface with α= 0 is demonstrated
in normalised stress space (p/pc ,q/pc ) in Figure 3.7a. In the figure β = pt = 0, and the
intersection of the CS stress ratio (M) with the yield surfaces are indicated by red dots
and their corresponding p/pc represents the normalised mean effective stress at the CS
(pcs /pc ), i.e., indicating the spacing ratio, r. As the parameter γ increases, r increases,
as shown by Eq. (3.27). In addition, the yield surface is stretched with respect to the q-
axis as γ increases, which means the material can withstand more deviatoric stress for a
given p.

Figure 3.7b shows how the yield function changes as the shape parameter α varies.
At constant spacing ratio, r (or rather, constant γ; see Eq. (3.28)), the yield surface attains
a tear shape for α ̸= 0. This is shown for r = 0.5 (γ = 0) in Figure 3.7b, where the yield
surface curvature changes with respect to the CS stress point, (p,q) = (pcs ,qcs ).
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In Figure 3.8 the level sets of the proposed yield function for a range of shape param-
eters α and γ are plotted. Figure 3.8e with α= γ= 0 resembles the MCC model, in which
all the level sets intersect the hydrostatic axis (p-axis) at two points. With the new formu-
lations defined for the stress-like functions (Eqs. (3.24)-(3.26)), which have no singulari-
ties or roots, the level sets of the proposed yield surface with different shape parameters
α and γ, similar to MCC, intersect the p-axis at two points, i.e., the yield function for a
given k has only two roots. Therefore, the yield function is defined over the entire do-
main of p (i.e. there is no singularity) and does not produce any undesired (false) elastic
nuclei.

The CS stress ratio, M, indicates the ultimate strength of the material and controls
the size of the yield surface along the q-axis. In terms of the CS friction angle of the
material,φc , this parameter can be determined on the compression and extension sides,
respectively, as

Mc = 6sinφc

3− sinφc
; Me = 6sinφc

3+ sinφc
(3.29)

The change in the shape of the yield surface, as parameter M varies, is depicted in Fig-
ure 3.9a for yield surfaces with (α,γ,β) = (0.5,0.5,0). It is observed that, as M increases,
the size of the yield surface increases, i.e., the yield surface stretches along the q-axis
while the p value of the intersection point of the yield surface with the CSL (shown by
red dots) remains unchanged. Moreover, the level sets of the yield function (Figure 3.9b)
indicate that the uniqueness of the yield function is preserved as M changes.

Geomaterials, such as sands and clays, may be consolidated under K 0 conditions
(i.e. anisotropically consolidated), where the yield surface (and plastic potential) have
been observed to be inclined along a non-zero stress ratio (η ̸= 0). It is important to
capture this feature of geomaterials, as their mechanical behaviour may be significantly
influenced by it. The yield surface (Eq. (3.12)) can be sheared/distorted with respect to
the p-axis by the parameter β and a suitable hardening rule can be assigned for it during
plastic deformation. β may be related to K 0 by [8]

β= 3
(
1−ηK0

)
1+2ηK0

(3.30)

where ηK0 is the stress ratio at K 0 conditions. Shearing/distorting of yield surfaces with
shape parameters (α,γ) = (0.5,0.5), for β= 0, 0.3, 0.6 and 0.9, as well as the original CSL,
are plotted in Figure 3.9c. As the shearing/distortion level (β) increases, the intersection
point of the yield surface with the CSL changes. This implies that the CS may not remain
unique. However, one may follow the approach of Coombs [10] to relate the shape pa-
rameters, α and γ, to β to develop a unique CS yield surface (see Appendix 3.A). Note
that the uniqueness of the CSL does not place any requirements on the yield surface for-
mulation, although some formulations of the CSL utilise features of the yield surface.
The influence of β on the level sets of the proposed yield function is investigated in Fig-
ure 3.9d. The level sets of the yield function with shape parameters (α,γ) = (0.5,0.5) and
β = 0.3 (in Figure 3.9d) indicate that the proposed yield function maintains its unique-
ness as β is varied and does not produce false elastic nuclei or singularities.
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Figure 3.7: Effect of shape parameters on the yield surface for (a) γ; (b) α

The influence of parameter pt on yield surfaces with shape parameters (α,γ,β) =
(0.5,0.5,0) is presented in Figure 3.9e. The yield surface stretches along the p-axis by
increasing pt , whereas it shrinks along the q-axis; i.e., the yield surface flattens as pt

increases. The level sets of the yield surface, for the same shape parameters and |pt /pc | =
0.3 (in Figure 3.9f), indicate that the uniqueness is not lost as pt varies.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Level sets of the proposed yield function for different shape parameters α and γ (for level set
contours [0, 1, 2, 4, 8, 12, 20, 30, 40, 50])
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Figure 3.9: Effect of various parameters on yield surfaces with α= γ= 0.5; (a) effect of parameter M ; (b) level
sets of the yield function with M = 1.25; (c) effect of parameter β; (d) level sets of the yield function with
β= 0.3; (e) effect of parameter pt ; (f ) level sets of the yield function with |pt /pc | = 0.3. The contours

corresponds to level sets [0, 1, 2, 4, 8, 12, 20, 30, 40, 50].
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Table 3.2: Model parameters (taken from [18]).

Parameter Symbol Value
Elastic compressibility index κ 0.00729 (-)
Shear modulus G 18 (MPa)
Elasto-plastic compressibility index λ 0.0447 (-)
Critical State Line gradient in p-q stress space M 0.9635 (-)
Reference pressure pr 100 (kPa)

3.5. EFFICIENCY AND ROBUSTNESS
This section aims to demonstrate the advantages that the proposed yield surface brings
in implicit stress integration algorithms. Therefore, some comparative numerical inves-
tigations are presented using MCC, the models of Collins & Hilder [11], Chen & Yang [12]
and Zhang et al. [5], and the proposed model. These analyses consider stress changes
as might be experienced, for example, due to loading of a soil layer near the ground sur-
face, for a soil close to normally consolidated conditions as might be modelled with a
relatively small yield surface. The applied loads may cause large strain increments and,
when these are passed to a constitutive model, trial stresses are computed that may be a
few times bigger than the hydrostatic extent of the yield surface. All of the yield equations
were integrated via an implicit CPP algorithm and common constitutive components,
including (hyper)elasticity, isotropic hardening rule and the assumption of associated
plastic flow, were used. The complete set of constitutive equations and the numerical
implementation are provided in Appendix 3.B. For two types of tear-shape yield surfaces,
the stress update algorithm using isotropic non-linear and linear elasticity was subjected
to various trial stress states and the number of iterations to find the updated stress state
were recorded. The yield surface includes hardening, whilst remaining pinned at the
origin of p-q stress space. The model’s hardening law is based on the MCC volumetric
hardening relationship, such that

ṗc = pc

λ−κε̇
p
v (3.31)

where λ and κ are the bi-logarithmic elasto-plastic and elastic compressibility indices,
respectively, and ε̇p

v is the rate of plastic volumetric straining. Common material param-
eters based on Lower Cromer Till are provided in Table 3.2.

The shape parameters to form two types of tear-shape surfaces, for each of the yield
equations of Collins & Hilder [11], Chen & Yang [12], Zhang et al. [5], and the proposed
form are presented in Table 3.3. The shape parameters for the models of Chen & Yang
[12], Zhang et al. [5] and the proposed form were determined via regression analysis to
provide a best fit to Collins & Hilder [11]. For Sections 3.5.1 and 3.5.2, the major axis of
each yield surface is aligned with the p axis (that is, β = 0). Analyses involving return
mapping when β ̸= 0 are investigated in Section 3.5.3.
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Table 3.3: Shape parameters to form different tear-shape yield surfaces.

Yield surface Tear-shape yield surface
type I

Tear-shape yield surface
type II

Collins & Hilder [11] α = 1.00, γ = 1.50 α = 1.27, γ = 0.82
Chen & Yang [12] α = 0.64, γ = 4.07 α = 1.18, γ = 4.46
Zhang et al. [5] α = 0.74, γ = 0.21 α = 0.41, γ = -0.43
Proposed form α = 0.09, γ = 2.00 α = -0.58, γ = -0.60

3.5.1. ITERATION-STRESS MAPS FOR NON-LINEAR ELASTICITY
For non-linear (hyper)elasticity, the Cauchy stress (σ) is linked to the elastic strains, εe ,
via

σ= pr

(
εe

v

κ

)
1+2Gee (3.32)

where ee is the elastic deviatoric strain, ee = εe − 1
3ε

e
v 1, εe

v is the elastic volumetric strain,
G is the shear modulus and pr is the reference pressure.

The trial states were related to the hydrostatic extent of the yield surface, pc , such
that the following region of stress space was explored

p tr i al

pc
∈ [0,2] and

q tr i al

pc
∈ [0,1.5] (3.33)

where they were applied from the same starting stress state, (p,q) = (pc /2,0), for all the
models. The strain increment to cause these elastic trial states was determined and ap-
plied in a single step. The number of iterations for each of the trial states is shown in
Figure 3.10, for the two series of tear-shape yield surfaces and the MCC model. A total of
120,400 trial states were explored for each model.

Table 3.4 gives the maximum and total number of iterations, and the number of
points that failed to converge (i.e. hit the maximum number of iterations, which was set
to 25 for this analysis) for the MCC model and for the four other yield equations forming
tear-shape surfaces. The table also provides the number of elasto-plastic trial states (i.e.,
those trial states that were outside the yield surface and required iterations to update the
stress state), and the average number of iterations for the elasto-plastic stress updates.

TEAR-SHAPE TYPE I YIELD SURFACE ANALYSIS

For trial stresses with p/pc > 1.5, the yield function proposed by Collins & Hilder [11]
encountered difficulties to return back to the yield surface and 10,081 points failed to
converge, as shown by the red points in Figure 3.10b, and it is this region that caused
the average number of iterations to be double that of the MCC model. The model of
Zhang et al. [5] predicts the lowest number of elasto-plastic states (47,423) compared to
other models, and is nearly half of those predicted by Collins & Hilder [11], Chen & Yang
[12] and the proposed yield equation. This is due to the false elastic region when p/pc >
1.15 (Figure 3.10f). The model utilising the Chen & Yang [12] yield equation, although
on average requiring a lower number of iterations for elasto-plastic states to converge,
struggles to converge for trial stress states around p/pc = 0 and q/pc = 1.5 (Figure 3.10d),
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or failed to converge (one failure point). The proposed form on average requires only
one more iteration than the MCC model, despite having far more control over the shape
of the yield envelope, and all the trial states converged.

TEAR-SHAPE TYPE II YIELD SURFACE ANALYSIS

Figure 3.10c shows the contours of number of iterations required to return the trial stress
back onto the yield surface of Collins & Hilder [11]. For trial stresses with p/pc > 1.5, the
model faced difficulties to converge and, 157 points failed to return to the yield surface.
Similar behaviour is observed for the model of Chen & Yang [12] (Figure 3.10e) where
319 trial stresses did not converge. The model of Zhang et al. [5] performed the worst,
with some trial stresses falsely predicted to be in an elastic domain (false elastic domain
indicated in Figure 3.10g), and 557 points failed to converge. The proposed yield sur-
face performed the best, as all the trial stresses were converged within a maximum of 9
iterations. The total number of iterations required for all trial stresses to return to the
yield surface using this yield function (667,343) were nearly 20% less compared to those
of Collins & Hilder [11] and Chen & Yang [12], which required 816,518 and 802,520 it-
erations, respectively. Compared to the MCC model, on average one extra iteration is
required to return all of the trial stresses.
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Figure 3.10: Number of iterations in the stress update algorithm for various trial stress locations, for various
yield surfaces and non-linear elasticity: (b), (c), (d) and (e), tear-shape type I yield surface; (f), (g), (h) and (i),

tear-shape type II yield surface.
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Table 3.4: Stress-space iterations for non-linear elasticity: maximum and total number of iterations, number
of points that failed to converge (hit the maximum number of iterations), number of elasto-plastic points
(trial states outside the yield surface with y > 0) and average number of iterations for elasto-plastic points.

The maximum number of iterations was set to 25.

Yield surface Max
(NRi t )

∑
(NRi t ) Number

of failed
y > 0 Average

NRi t

MCC 7 553,100 0 105,176 5.26
Yield surface/ tear-shape type I
Collins & Hilder [11] 25 1,067,544 10,081 99,238 10.76
Chen & Yang [12] 25 525,433 1 99,604 5.28
Zhang et al. [5] 13 239,716 0 47,423 5.06
Proposed form 10 631,188 0 99,290 6.36
Yield surface/ tear-shape type II
Collins & Hilder [11] 25 816,518 157 108,545 7.52
Chen & Yang [12] 25 802,520 319 108,532 7.39
Zhang et al. [5] 25 491,685 557 79,060 6.22
Proposed form 9 667,343 0 108,438 6.15

3.5.2. ITERATION-STRESS MAPS FOR LINEAR ELASTICITY
Here, the previous analysis is repeated but with a linear elastic formulation (that allows
negative p values for trial states to be explored). The Cauchy stress is obtained from

σ= Deεe where De =
(

pr

κ
− 2G

3

)
(1⊗1)+2GI (3.34)

and I is the forth-order identity tensor. The following region of p-q stress space was
explored

p tr i al

pc
∈ [−1,2] and

q tr i al

pc
∈ [0,1.5] (3.35)

with a total of 180,900 equally distributed trial states. The strain increment to cause these
elastic trial states (starting from (p, q) = (pc /2,0)) was determined and applied in a single
step. The number of iterations for each of the trial states is shown in Figure 3.11, for the
MCC model and for the four other yield surfaces for the two different tear-shape surfaces
(with the same shape parameters as analysed for the return mapping using non-linear
elasticity).

Table 3.5 gives the corresponding results of Table 3.4, including the maximum and
total number of iterations, the number of points that failed to converge, the number of
elasto-plastic trial states, and the average number of iterations for elasto-plastic stress
updates, for the five yield equations and linear elasticity. Only those models using MCC
and the yield function proposed in this chapter converged for all the trial stresses. Note
that the model utilising the proposed yield equation only required, on average, 1 addi-
tional iteration compared to the MCC model.

TEAR-SHAPE TYPE I YIELD SURFACE ANALYSIS

It can been seen from Figure 3.11b that the yield equation of Collins & Hilder [11] failed
to converge for some trial states at p/pc<−0.5, and for all trial stresses at p/pc>1.5 (a total
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Table 3.5: Stress-space iterations for linear elasticity: maximum and total number of iterations, number of
points that failed to converge (hit the maximum number of iterations), number of elasto-plastic points (trial

states outside the yield surface with y > 0) and average number of iterations for elasto-plastic points. The
maximum number of iterations was set to 25.

Yield surface Max
(NRi t )

∑
(NRi t ) Number

of failed
y > 0 Average

NRi t

MCC 8 929,318 0 165,676 5.51
Yield surface/ tear-shape type I
Collins & Hilder [11] 25 1,631,974 33,792 159,738 10.22
Chen & Yan [12] 25 1,075,455 330 160,104 6.72
Zhang et al. [5] 25 597,369 542 107,923 5.54
Proposed form 9 954,118 0 159,790 5.97
Yield surface/ tear-shape type II
Collins & Hilder [11] 25 1,400,135 14,249 169,044 8.28
Chen & Yang [12] 25 1,224,038 1,004 169,039 7.24
Zhang et al. [5] 25 917,895 2,244 135,646 6.77
Proposed form 9 1,085,935 0 168,937 6.43

number of 33,792 points shown by the red region). Although the model of Chen & Yang
[12] performed relatively well using non-linear elasticity (Figure 3.10d), the model using
linear elasticity struggled to converge for trial states at p/pc<−0.5 and failed to converge
for 330 trial stresses. The model of Zhang et al. [5] contains a spurious y<0 region when
p/pc>1.5, as indicated in Figure 3.11f. Although the yield equation of Zhang et al. [5] has
the lowest number of total iterations, this is a spurious result because the yield equation
incorrectly predicts that a number of trial states are in a (false) elastic region of stress
space (this point is explained in more detail below). In addition, for some trial stresses
at −1.00≤p/pc≤−0.75 (542 points) the model was not able to converge.

Figure 3.12a shows the distribution of the number of iterations within the stress up-
date algorithm for the MCC model and for the four other models of tear-shape type I,
in terms of the proportion of the total number of trial stress states. For example, for the
MCC model around 37% of the trial states require 6 iterations to converge. Figure 3.12b
shows the normalised cumulative distribution, which indicates the total proportion of
trial states equal to or below the given number of iterations for each of the models. It
is clear from the cumulative distribution (Figure 3.12b) that the Zhang et al. [5] model
spuriously predicts around 40% of the trial states as being within the yield surface, even
though the actual percentage is around 12%, due to an additional region where y<0 for
normalised pressures above p/pc≈1.1, as shown in Figure 3.12d. It is also clear from
Figure 3.12b that around 20% of the trial states struggle to converge for the Collins &
Hilder [11] model, as demonstrated by the step in the cumulative distribution curve for
this model when the number of iterations equals 25. Comparing the Chen & Yang [12]
model with that proposed in this chapter (Figure 3.12b), the proposed formulation has a
shorter tail, with 99% of states converging within 9 iterations, whereas the Chen & Yang
[12] model requires 18 iterations before 99% of the states have converged and only 88%
have converged within 9 iterations.
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TEAR-SHAPE TYPE II YIELD SURFACE ANALYSIS

14,249 trial stresses at −1.00≤p/pc≤− 0.75 failed to converge for the yield equation of
Collins & Hilder [11] (shown in red in Figure 3.11c) and, consequently, this increased the
average number of iterations to 8.28. The model of Chen & Yang [12] faced difficulties
in converging with trial stresses at p/pc>1.5 and p/pc<−1.0 (Figure 3.11e), resulting in
1,004 non-converged stresses. For the studied stress space, two undesired elastic regions
were identified for the model of Zhang et al. [5], where trial stresses were not returned
back on to the yield surface (Figure 3.12d). This is also demonstrated in Figure 3.12d
where 25% of trial stresses were identified to remain in the elastic domain, while the
MCC model showed approximately 8.5% of trial stresses were located inside the yield
surface. Moreover, 2,244 trial stresses were not returned back on to the yield surface.
The proposed yield surface only required 8 iterations to converge for more than 96% of
all the trial stresses (Figure 3.12d) and 9 iterations for all of the trial states to converge.

3.5.3. ITERATION-STRESS MAPS FOR THE PROPOSED YIELD SURFACE AT

SHEARED/DISTORTED STATES
In Sections 3.5.1 and 3.5.2, the analysis of returned mapping stresses were limited to
isotropic yield surfaces where β= 0. Here, to further demonstrate the robustness of the
proposed yield surface for implicit stress integration algorithms, the convergence of trial
stresses when the yield surface is sheared at β= 0.0, β= 0.1, β= 0.3, β= 0.5 and β= 0.7
for two types of tear-shape yield surface are investigated. The same material properties
as reported in Table 3.2 and non-linear elasticity are used. The iteration-stress maps
are shown in Figure 3.13. The shape parameters for the tear-shape type I yield surface
analysed in Figure 3.13a to Figure 3.13i areα= γ= 0.5, and for the tear-shape type II yield
surface in Figure 3.13b to Figure 3.13j they are α= γ=−0.5. Detailed analysis, including
the distribution and normalised cumulative distribution of the number of iterations are
presented in Figure 3.14 for both types of tear-shape yield surface.

For both types of tear-shape yield surface sheared at various β values, all the trial
stresses were converged with a maximum of 8 iterations; the only exception was for the
tear-shape type II yield surface with β= 0, where 9 iterations were needed to return less
than 3% of trial stresses back on to the yield surface (Figure 3.14d). Moreover, most of the
trial stresses were mapped on to the yield surface in 6 iterations for both types of tear-
shape surface. Note that the number of elasto-plastic points reduced as β increased.
This is because the yield surface bounds a larger portion of the stress space as it shears-
off the p-axis.

In conclusion, while other flexible yield surfaces studied in this work have either sin-
gularities which result in difficulties in returning trial stresses back on to the yield sur-
face, or have false elastic nuclei, the proposed yield surface is unique, without any sin-
gularities, and is demonstrated to be robust for implicit stress integration algorithms for
different types of tear-shapes and levels of shearing/distortion.
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Figure 3.11: Number of iterations in the stress update algorithm for various trial stress locations, for various
yield surfaces and linear elasticity: (b), (c), (d) and (e), tear-shape type I yield surface; (f), (g), (h) and (i),

tear-shape type II yield surface.
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Figure 3.12: Distribution of number of iterations for linear elasticity in terms of the proportion of the total
trial states for a given number of iterations and normalised cumulative distribution for: (a) and (b),

tear-shape type I yield surface; (c) and (d), tear-shape type II yield surface.
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Figure 3.13: Number of iterations in the stress update algorithm for various trial stress locations, using linear
elasticity and for two types of tear-shape yield surfaces ((a)-(e), type I; (f)-(j), type II) using the proposed yield

equation, sheared at: (a),(f) β= 0.0; (b),(g) β= 0.1; (c),(h) β= 0.3; (d),(i) β= 0.5; (e),(j) β= 0.7.
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Figure 3.14: Distribution of number of iterations for linear elasticity in terms of the proportion of the total
trial states for a given number of iterations and normalised cumulative distribution for: (a) and (b),

tear-shape type I yield surface; (c) and (d), tear-shape type II yield surface, sheared at β= 0.0, β= 0.1, β= 0.3,
β= 0.5, and β= 0.7.

3.6. COMPARISON WITH EXPERIMENTAL DATA

The applicability of the proposed yield surface to resemble the yield stress points of
a wide range of geomaterials, including clays, sands, carbonate sand, sandstones and
gravel, are investigated here. The calibrated parameters for examples of each geomate-
rial are presented in Table 3.6.

The yield stresses of two clays, namely Boom Clay [28] and Bothkennar Clay [29],
along with the calibrated yield surfaces, are presented in Figure 3.15a and Figure 3.15b,
respectively. The natural Boom Clay samples were initially compressed isotropically
to 9 MPa, followed by isotropic unloading to form samples with a wide range of over-
consolidation ratios. Then, the samples were sheared under drained triaxial stress paths.
The yield stresses were calculated as the intersection of bilinear tangents to the εv -lnp
curves. For Bothkennar Clay [29], undisturbed samples were consolidated under K 0 con-
ditions to resemble in-situ stress states, and then unloaded along the same stress path to
form over-consolidated states. Triaxial drained probing tests were then performed and
the yield stresses were calculated as the intersection of bilinear tangents of the p-εv and
q-εs curves. It can be seen that the proposed non-elliptical yield surfaces successfully
capture the yield stresses of both Boom Clay and Bothkennar Clay, which have respec-
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Table 3.6: Calibrated yield surface parameters for the selected sets of experimental data.

Parameters α γ β Mc /Me pc pt

Boom Clay [28] 1.8 -1.7 0 0.87/N.A. 9 (MPa) 0 (MPa)
Bothkennar Clay [29] 0 -0.2 0.5 1.3/1.3 51 (kPa) 0 (kPa)
Decomposed granite sand [30] 0.35 -0.1 0 0.68/N.A. 600 (kPa) 0 (kPa)
Aio Sand [31] 1 -0.7 0.5 1.015/1.015 1065 (kPa) 0 (kPa)
Carbonate sand [32] 0.8 -0.53 0 0.9/N.A. 1 0
Rothbach Sandstone [33; 34] 1 -0.65 0 1.25/N.A. 250 (MPa) 7 (MPa)
Darley Sandstone [33; 34] 0.95 -0.4 0 1.53/N.A. 380 (MPa) 5 (MPa)
Pancrudo Slate gravel [35] 0.45 1.8 0 2.00/N.A. 1 0
Note: N.A. stands for not applicable

tively been isotropically and anisotropically loaded.
In Figure 3.15c, fully-saturated sand samples collected from a decomposed granite

deposit were isotropically consolidated to 600 kPa and then unloaded isotropically to
attain different over-consolidated stress states [30]. Then, the samples were subjected to
drained triaxial shear stress paths and the yield stresses were measured by an acoustic
emission technique. In this approach, the onset of plastic deformation, i.e. the yield
stress, was detected from the sounds produced by the sliding of grains during shearing.
The calibrated yield surface fits the experimental data with a good accuracy.

Fully-saturated dense Aio Sand [31] samples (Figure 3.15d) were loaded and un-
loaded anisotropically, and then subjected to several drained triaxial stress paths to
determine the yield stress points. The yield stresses form a non-symmetric and non-
elliptical shape which the proposed yield surface captures accurately with the calibrated
parameters.

Many offshore-related structures are constructed on carbonate sands. These geo-
materials exhibit distinctive behaviour, as they have a similar volumetric behaviour to
fine-grained soils (e.g. clay) while their shear behaviour follows that of sands [36]. This
feature is mainly due to carbonate sands being formed from the skeletal remains of ma-
rine organisms. The yield stress points and the calibrated yield surface are presented
in Figure 3.15e, which shows the capability of the proposed yield surface to bound the
non-elliptical shape of the experimental data.

The effectiveness of the proposed yield surface to represent the onset of shear com-
paction of sandstones is demonstrated for Rothbach Sandstone and Darley Dale Sand-
stone [33; 34] in Figure 3.15f and Figure 3.15g, respectively. The experimental data
form non-elliptical envelopes that indicate the initiation of compaction during shear-
ing. These envelopes are well presented by the calibrated yield surface. It should be
noted that tensile pressures have been accounted for in simulating the yield surfaces.

Alonso et al. [35] determined the yield loci of Panncrudo Slate gravel by performing
a single multistage triaxial test. The yield locus in normalised stress space is presented
in Figure 3.15h. The yield stress points form a non-elliptical yield surface, for which the
proposed yield function captures its curvature by its calibrated parameters.
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Figure 3.15: Comparison of the yield surface with experimental yielding stresses for: (a) Boom clay [28]; (b)
Bothkennar clay [29]; (c) decompose granite sand [30]; (d) Aio sand [31]; (e) carbonate sand [32]; data taken
from [36]; (f) Rothbach sandstone [33; 34]; (g) Darley Dale sandstone [33; 34]; (h) Pancrudo slate gravel [35].
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3.7. DISCUSSION ON THE POTENTIAL LOSS OF SIMPLE CON-
VEXITY AT HIGHER LEVEL SETS

The uniqueness of the proposed yield function has been proven and demonstrated in
Sections 3.4 and 3.5. By referring to level set contours, for example in Figure 3.8c, one
may argue that for non-zero value shape parameters, the convexity of the yield function
may be lost as the level sets increase; i.e., although the yield surface is (simply) con-
vex, an increase of the curvature of the yield surface at a higher level set may result in
non-convexity (so that the yield function cannot be considered to be fully convex). For
example, the range of shape parameters resulting in convex surfaces at level set k = 30
is shown in Figure 3.16, where, compared to Figure 3.6 for k = 0, a narrower range is
indicated.

(a) (b)

Figure 3.16: Ranges of combined α and γ resulting in convex and non-convex surfaces (k = 30) for: (a) −5≤α,
γ≤5; (b) −2≤α, γ≤2

The loss of convexity does not affect the ability of the return mapping algorithm for
the proposed yield function. In fact, it is still robust and is generally efficient, although
the level of efficiency is likely to be reduced. Here, to demonstrate the robustness of the
yield function for an implicit stress integration approach, a return mapping analysis for
large strain increments is investigated.

For the simulations, the material parameters G = 55 (MPa), λ = 0.05, κ = 0.01, and
shape parameters α = γ = 0.5 were used, and pc and β were respectively set to 200 kPa
and 0.5. A linear elasticity and associated plastic flow constitutive behaviour, similar to
Section 3.5.2, were considered. Starting from an isotropic stress state at the reference
pressure, (p,q) = (pr ,0), the model was subjected to trial stresses (in a single step) which
were related to the hydrostatic extent of the yield surface, pc , such that a large region
p tr i al /pc ∈ [0,5] and q tr i al /pc ∈ [0,5] in the stress space (p-q) was explored (with ptr i al

and qtr i al being as large as 1000 kPa).
The level sets of the yield surface up to 1000, in the studied stress space, are shown
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in Figure 3.17a and the map of the number of iterations to return the trial stresses back
on to the yield surface is presented in Figure 3.17b. It is obvious that for the considered
shape parameters (α = γ = 0.5), as the level sets of the yield function increase, they be-
come more non-convex. However, as can be seen in Figure 3.17b, even for large trial
stresses that sit on such non-convex level sets, they are returned back on to the yield
surface with an increased number of iterations (although all trial stresses are converged
within a maximum of 13 iterations).

(a) (b)

Figure 3.17: (a) Level sets; (b) number of iterations in the stress update algorithm for various trial stress
locations, using linear elasticity with the proposed yield function (α= γ=β= 0.5) in normalised stress space.

The implicit stress integration is an iterative procedure in which, in each iteration,
the updated stress converges toward the solution that satisfies the CPP energy equation
by using the gradients of the yield surface at that stress value. This means that, in each
iteration, the updated stress sits on a lower level set with a lower curvature intensity, and
eventually returns back onto the yield function with a level set of zero. Because the in-
tensity level of the curvature of the yield surface reduces iteratively, convexity is retrieved
as the level sets reduce. Therefore, the iteration solution of the implicit stress integration
algorithm ensures the correct returning path of the updated stress onto the yield surface.
Thus, the proposed yield function, while not being fully convex (with respect to non-zero
level sets), facilitates reliable return mapping paths for the trial stress.

3.8. CONCLUSION
A new yield function is proposed for geomaterials which is non-singular and uniquely
defined in meridian stress space, and is therefore suitable and robust for implicit stress
integration algorithms. The components and possible roots of the general yield function
in meridian stress space were analysed in depth, and geometrical constraints are de-
signed in such a way that the yield function preserves its uniqueness and non-singularity
at any level set (value). Compared with other yield surfaces studied here, the proposed
form of the yield function presented in this chapter is robust and efficient for return



3.8. REFERENCES

3

103

mapping for large strain increments. It does not have undesired elastic domains, and
therefore avoids the possible prediction of spurious false elastic behaviour or domains
with erratic and divergent gradients, which could have resulted in a high number of it-
erations required to return stress states back onto the yield surface. Moreover, the yield
function can attain elliptical and a wide range of non-elliptical shapes compatible with
the experimental data of geomaterials available in literature.
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APPENDIX

3.A. APPENDIX A: UNIQUE CRITICAL STATE
When the yield surface (Eq. (3.12)) is sheared/distorted in the deviatoric direction via
parameter β, the position of the CS surface (corresponding to isochoric flow) changes
and becomes dependent on the degree of shearing/distortion of the yield surface. With
the following general approach, it is possible to obtain conditions where isochoric plas-
tic flow remains constant throughout the shearing/distortion process, which hereby is
referred to as the "unique Critical State".

For such conditions, it is required that at any level of shearing/distortion, pcs /pc re-
mains constant and qcs /pcs = Mζ(θ) holds valid, where pcs and qsc are the hydrostatic
pressure and deviatoric stress at CS conditions, respectively. The plastic flows along the
p-axis (rp ) and q-axis (rq ) are derived as

rp = ∂g

∂p
; rq = ∂g

∂q
(3.A.1)

where g is the plastic flow potential. Assuming that g has a similar formulation to Eq.
(3.12) with stress-like functions (A, B and C) defined via Eqs. (3.17)-(3.19), equating rp

to zero (rp = 0), which resembles the CS conditions (zero plastic volumetric strain incre-
ments), results in function B being defined by functions A and C and the variable β

B 2
g = Bg

(
A,C ,β

)
(3.A.2)

where Bg represents the function B obtained from criteria applied to the plastic poten-
tial, g.

By using Eq. (3.12), it is possible to obtain an alternative form for function B

B 2
y =

A2
(
q −βp

)2(
A−C +p

)(
A+C −p

) (3.A.3)

where By represents the function B obtained from the yield surface, y.
Note that functions A and C are defined by the shape parameter γ (as well as by p

and pc ) (Eqs. (3.17) and (3.19), respectively) while function B is defined by α and γ (Eq.
(3.18)). Equating Bg to By eliminates parameter α and results in an equation that can be
solved to obtain parameter γ with respect to pcs , pc and β.

Once γ is obtained from the above procedure, α can be determined via Eq. (3.A.2).

3.B. APPENDIX B: NUMERICAL IMPLEMENTATION
Here, a fully implicit backward Euler stress integration scheme is provided for the con-
stitutive relationships presented in Section 3.5. Constitutive variables defined at time t
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and t+∆t are indicated, respectively, by n and n+1. Formulations presented here are in
accordance with geotechnical conventions, where compressive stresses and contractive
strains are considered to be positive and all the stresses are effective. Scalars and tensors
are denoted with italic and bold letters, respectively. The notations (• : •) and (•⊗•), re-
spectively, demonstrate the double contraction and tensor product, and ∥•∥ and tr (•)
represent the absolute value and trace functions, respectively.

The implicit integration of Eq. (3.31) results in

pn+1
c = pn

c exp

(
∆ε

p
kk

λ−κ

)
(3.B.1)

where ∆εp
kk is the plastic volumetric strain increment, determined as

∆ε
p
kk =∆Λtr (r) =∆Λrp (3.B.2)

∆Λ is the plastic multiplier increment and r is the plastic flow direction tensor, which
for an associated flow rule is the derivative of the yield surface with respect to the stress
tensor

r = ∂y

∂σ
(3.B.3)

Three residual equations, corresponding to the state variable (here it is the strain ten-
sor, ε), hardening variable (here it is the pre-consolidation pressure, pc ) and consistency
condition, are defined as

Π1 = εe
n+1 −εe,trial +∆Λr (3.B.4)

Π2 =
pn+1

c

pn
c

−exp

(
∆ε

p
kk

λ−κ

)
(3.B.5)

Π3 = y (3.B.6)

where εe,trial is the trial strain tensor, defined as

εe,trial = εe
n +∆ε (3.B.7)

where ∆ε is the strain increment tensor.
These residual equations are explicitly functions of pc and∆Λ, and implicitly of σ (stress
tensor). In the implicit stress integration scheme, these residual equations are min-
imised via a linearisation technique; that is, the Taylor expansion of the residual equa-
tions with respect to unknown variables at time t+∆t (σ, pc and ∆Λ)

Π1 + ∂Π1
∂σn+1

δσ+ ∂Π1

∂pn+1
c

δpc + ∂Π1
∂∆ΛδΛ= 0

Π2 + ∂Π2
∂σn+1

δσ+ ∂Π2

∂pn+1
c

δpc + ∂Π2
∂∆ΛδΛ= 0

Π3 + ∂Π3
∂σn+1

δσ+ ∂Π3

∂pn+1
c

δpc + ∂Π3
∂∆ΛδΛ= 0

(3.B.8)
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which can be written in compact form as J ·v =Π, where J, v andΠ are, respectively, the
Jacobian matrix, and the increments of the unknown and residual vectors, defined as

J =


∂Π1
∂σn+1

∂Π1

∂pn+1
c

∂Π1
∂∆Λ

∂Π2
∂σn+1

∂Π2

∂pn+1
c

∂Π2
∂∆Λ

∂Π3
∂σn+1

∂Π3

∂pn+1
c

∂Π3
∂∆Λ

 (3.B.9)

v ={
δσn+1 δpn+1

c δ∆Λ
}T

(3.B.10)

Π=−{
Π1 Π2 Π3

}T
(3.B.11)

The unknown increments at each iteration are solved as

v = J−1 ·Π (3.B.12)

and are added to the previous increment values. The iteration procedure continues until
the residual values are within an acceptable tolerance range. The components of the
Jacobian matrix are

∂Π1

∂σn+1
= ∂εe

n+1

∂σn+1
+∆Λ ∂r

∂σn+1
(3.B.13)

∂Π1

∂pn+1
c

=∆Λ ∂r

∂pn+1
c

(3.B.14)

∂Π1

∂∆Λ
= r (3.B.15)

∂Π2

∂σn+1
=− ∆Λ

λ−κ
∂rp

∂σn+1
exp

(
∆ε

p
kk

λ−κ

)
(3.B.16)

∂Π2

∂pn+1
c

= 1

pn
c
− ∆Λ

λ−κ
∂rp

∂pn+1
c

exp

(
∆ε

p
kk

λ−κ

)
(3.B.17)

∂Π2

∂∆Λ
− rp

λ−κ exp

(
∆ε

p
kk

λ−κ

)
(3.B.18)

∂Π3

∂σn+1
= ∂y

∂σn+1
(3.B.19)
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∂Π3

∂pn+1
c

= ∂y

∂pc
(3.B.20)

∂Π3

∂∆Λ
=0 (3.B.21)

∂εe
n+1

∂σn+1
=c (3.B.22)

where c is the fourth-order elastic compliance tensor, and is the inverse of the elastic
stiffness tensor for non-linear and linear elastic constitutive relations.

Considering an associated flow rule (Eq. (3.B.3)), the first and second derivatives of
the yield function are required to obtain Eq. (3.B.13) to Eq. (3.B.20).
The derivative of the yield surface with respect to pc is

∂y

∂pc
= ∂y

∂A

∂A

∂pc
+ ∂y

∂B

∂B

∂pc
+ ∂y

∂C

∂C

∂pc
(3.B.23a)

where

∂y

∂A
=−2

(
p −C

)2

A3 (3.B.23b)

∂y

∂B
=−2

(
q −βp

)2

B 3 (3.B.23c)

∂y

∂C
=−2

(
p −C

)
A2 (3.B.23d)

For an associated flow rule

r = ∂y

∂σ
= rp

∂p

∂σ
+ rq

∂q

∂σ
= 1

3
rp 1+

√
3

2
rq n̂ (3.B.24a)

rp = ∂y

∂p
= 2

(
A∗

A3 − B∗

B 3

)
(3.B.24b)

rq =∂y

∂q
= 2

(
q −βp

)
B 2 (3.B.24c)

n̂ = s

∥s∥ = s

(s : s)
1
2

=
√

3

2

s

q
(3.B.24d)
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where

A∗ =A
(
p −C

)− ∂A

∂p

(
p −C

)2 (3.B.24e)

B∗ =βB
(
q −βp

)+ ∂B

∂p

(
q −βp

)2 (3.B.24f)

The derivative of the flow rule with respect to the stress tensor is

∂r

∂σ
=1

3

∂rp

∂σ
1+

√
3

2

∂rq

∂σ
n̂+

√
3

2
rq
∂n̂

∂σ
(3.B.25a)

∂rp

∂σ
=1

3

∂rp

∂p
1+

√
3

2

∂rp

∂q
n̂ (3.B.25b)

∂rq

∂σ
=1

3

∂rq

∂p
1+

√
3

2

∂rq

∂q
n̂ (3.B.25c)

∂n̂

∂σ
=

√
3

2

1

q

(
I− 1

3
1⊗1− n̂⊗ n̂

)
(3.B.25d)

where

∂rp

∂p
=2

(
1

A6

(
∂A∗

∂p
A3 −3A2 ∂A

∂p
A∗

)
− 1

B 6

(
∂B∗

∂p
B 3 −3B 2 ∂B

∂p
B∗

))
(3.B.25e)

∂rp

∂q
=− 2

B 3

∂B∗

∂q
(3.B.25f)

∂rq

∂p
=− 2

B 3

(
βB +2

∂B

∂p

(
q −βp

))
(3.B.25g)

∂rq

∂q
= 2

B 2 (3.B.25h)

∂A∗

∂p
=A− ∂2 A

∂p2

(
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)2 − ∂A

∂p

(
p −C

)
(3.B.25i)

∂B∗

∂p
=−β2B + ∂2B

∂p2

(
q −βp

)2 −β∂B

∂p

(
q −βp

)
(3.B.25j)
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∂B∗

∂q
=βB +2

∂B

∂p

(
q −βp

)
(3.B.25k)

The derivative of the flow rule with respect to pc is

∂r

∂pc
=1

3
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∂pc
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√
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2

∂rq

∂pc
n̂ (3.B.26a)
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(3.B.26b)
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(
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(3.B.26c)

where
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(
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A− ∂2 A
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∂B∗

∂pc
=β ∂B

∂pc

(
q −βp

)+ ∂2B

∂p∂pc

(
q −βp

)2 (3.B.26e)

Different constitutive models are distinguished by the first and second derivatives of
the stress-like functions. The following are used for the studied yield surfaces

MCC Collins & Hilder
[11]

Chen & Yang [12] Zhang et al. [5]
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For the proposed yield surface, the derivatives are
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4
NUMERICAL IMPLEMENTATION OF

A HYPERPLASTIC

THERMOMECHANICAL

CONSTITUTIVE MODEL BASED ON

GIBBS ENERGY POTENTIAL

The numerical implementation of a thermomechanical constitutive model for fine-
grained soils based on the thermodynamical framework of hyperelasticity-hyperplasticity
is presented. A new implicit stress integration technique for constitutive models compat-
ible with elasticity derived from Gibbs (complementary) energy potential is designed and
used for implementing the thermomechanical model, developed in Chapter 2, in the DI-
ANA FEA finite element boundary-value solver. The accuracy, robustness, effectiveness
and convergence of the stress integration algorithm of the thermomechanical constitu-
tive model is studied. Triaxial and oedometer tests on soils subjected to various thermo-
mechanical stress paths, are modelled in DIANA FEA and many features of fine-grained
soils such as non-linear elasticity, flexible yield surface, non-associated flow rule, Lode
angle dependency, thermo-elastic expansion, thermal shrinkage of the yield surface and
temperature-dependent Critical State stress ratio are thoroughly investigated.

This chapter is based on the following paper: Golchin, A., Schreppers, G. J., Coombs, W. M., Hicks, M. A.
and Vardon, P. J. Numerical implementation of a hyperplastic thermomechanical constitutive model for fine-
grained soils based on Gibbs energy potential. In preparation.
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LIST OF SYMBOLS

Roman Greek
1 Kronecker tensor α Internal variables
A Stress-like function α Parameter related to the

shape of the yield surface
B Strain-displacement matrix α∗ Linear thermal expansion co-

efficient
B Stress-like function γ Parameter related to the

shape of the yield surface
BVS Boundary-value solver ∆ε Increment of total strain ten-

sor
C Stress-like function ∆εe Increment of elastic strain

tensor
CSL Critical State Line
Ce Elastic compliance matrix ∆εp Increment of plastic strain

tensor
D Elasto-plastic continuum

tangent tensor
∆ε

p
kk Plastic volumetric strain in-

crement
De Elastic stiffness matrix ∆εT her m Increment of thermo-elastic

strain tensor
DO Consistent tangent operator ∆σ Increment of stress tensor
d Rate of dissipation potential

function
∆Λ Increment of plastic multi-

plier
e Enthalpy ∆T Temperature increment
e0 Initial void ratio ∆t Time increment
ee,tr i al Elastic trial deviatoric strain

tensor
ε Strain tensor

ep Plastic deviatoric strain ten-
sor

εn Strain tensor at time t

Fi nt Unknown internal nodal
force

εe Elastic strain tensor

f Helmholtz free energy poten-
tial

εe,tr i al
n Elastic trial strain tensor

g Gibbs energy potential εe
n Elastic strain tensor at time t

g1 Gibbs free energy potential at
isothermal conditions

εe
n+1 Elastic strain tensor at time

t+1
Ḡ Material parameter related to

elastic shear modulus
εp Plastic strain tensor

h Helmholtz free energy poten-
tial

εT her m Thermo-elastic strain tensor

I Fourth-order identity tensor ε̇ Rate of total strain tensor
J Jacobian matrix ε̇e Rate of elastic strain tensor
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J Second stress invariant ε̇p Rate of plastic strain tensor
J̇ Rate of second stress invariant ε̇T her m Rate of thermo-elastic strain

tensor
K Global stiffness matrix ε1,ε2,ε3 Principle strains
K̄ Material parameter related to

elastic bulk modulus
εv Total volumetric strain

ki Stiffness matrix of element i εs Total deviatoric strain
LAD Lode angle dependency εe

v Elastic volumetric strain

MCC Modified Cam-Clay εe,tr i al
v Elastic trial volumetric strain

M̄ Critical State stress ratio εe
s Elastic deviatoric strain

Mc Critical State stress ratio in
compression mode of loading

εe,tr i al
s Elastic trial deviatoric strain

Mc0 Critical State stress ratio in
compression mode of loading
at ambient temperature

ε̇e
v Rate of elastic volumetric strain

Me0 Critical State stress ratio in ex-
tension mode of loading at am-
bient temperature

ε̇e
s Rate of elastic deviatoric strain

NOI Number of iterations ε
p
v Plastic volumetric strain

N–R Newton-Raphson ε
p
s Plastic deviatoric strain

NE Number of elements ε̇
p
v Rate of plastic volumetric strain

n Parameter of pressure depen-
dency of elastic moduli

ε̇
p
s Rate of plastic deviatoric strain

n̂ Tensor of direction of devia-
toric component of stress and
strain tensors

εT
v Thermo-elastic volumetric

strain

OCR Over consolidation ratio ε̇T
v Rate of thermo-elastic volumet-

ric strain
P Global external nodal force θ Lode angle
p Mean effective stress θ̇ Rate of Lode angle
ptr i al Trial hydrostatic pressure κ Elastic compressibility index
pa Reference hydrostatic pressure λ Elasto-plastic compressibility

index
pc0 Pre-consolidation pressure Λ̇ Plastic multiplier
pcT Apparent pre-consolidation

pressure
µ0 Thermal softening coefficient

pn
cT Apparent pre-consolidation

pressure at time t
ζ LAD function

pn+1
cT Apparent pre-consolidation

pressure at time t+1
π∗ Coefficient of Critical State

stress ratio variation with
temperature

ṗcT Rate of change of the apparent
pre-consolidation pressure

ρ∗ Proportion of stress ratio at
Critical State conditions in ex-
tension mode of loading over
compression mode of loading
at ambient temperature
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q Deviatoric stress σ Cauchy stress tensor
qtr i al Trial deviatoric stress σn Cauchy stress tensor at time t
qy Deviatoric yield stress σn+1 Cauchy stress tensor at time

t+1
q Heat flux vector σe Exact return stress tensor
q0 Initial deviatoric stress σr Return stress tensor
R Vector of residuals σest Estimated stress tensor
R1 Residual equation for the state

variable
σtr i al Trial stress tensor

R2 Residual equation for the
hardening variable

σ∗ Stress tensor at the end of it-
eration

R3 Residual equation for the con-
sistency variable

σ̇ Stress rate tensor

r Plastic flow tensor σ1,σ2,σ3 Principle stresses
rd Plastic flow tensor in dissipa-

tive stress space
σv Vertical stress

rp Plastic flow in p direction χ Generalised dissipative stress
tensor

rd
p Plastic flow in p direction in

dissipative stress space
χp Mean generalised dissipative

stress
rq Plastic flow in q direction χq Deviatoric generalised dissi-

pative stress
rd

q Plastic flow in q direction in
dissipative stress space

χ̄ Generalised stress tensor

S Third stress invariant χ̄p Mean generalised stress
Ṡ Rate of third stress invariant χ̄q Deviatoric dissipative stress
s Deviatoric stress tensor Ωi Domain of element i
T Current absolute temperature
T0 Initial absolute temperature
Tn Absolute temperature at time

t
Tn+1 Absolute temperature at time

t+1
Ṫ Rate of temperature
t Time step
tol Tolerance
u Global unknown nodal dis-

placement
u Internal energy potential
u̇ Rate of change of internal en-

ergy
v Vector of unknown variables
wp Dissipated work
y Yield function in true stress

space
yd Yield function in dissipative

stress space
ẏ Rate of change of the yield

function
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4.1. INTRODUCTION

Boundary-Value Solvers (BVS) efficiently provide approximate solutions for displace-
ments and forces by solving a set of mathematical equations for problems dealing with
complexities in geometry and loading configurations, as well as material behaviour. The
finite element method is one such numerical tool. At the heart of these equations are
material constitutive relations, which significantly influence the accuracy and rationality
of numerical outcomes. For materials whose behaviours are non-linear and dependent
on the history of loading (i.e., stress-path dependent), constitutive relationships need to
be integrated for BVS using numerical algorithms [1].

Many thermo-active geo-structures such as energy-piles, heat storage tanks, ther-
mal retaining walls, pipelines and thermal quay walls, exchange temperature with the
ground and consequently may impose thermal loads to the soil adjacent to these struc-
tures [2]. Such loads have been proven to influence the mechanical behaviour of fine-
grained soils and, therefore, it is essential to use constitutive models that account for
those soil behaviours in numerical simulations. Based on plasticity theory (or its vari-
ants), a number of thermo-mechanical models had been developed in past decades and
were successful, with reasonable accuracy, in capturing the major effects of temperature
on the mechanical behaviour of soils observed in laboratory soil element tests [3–11].
In most of these models, however, thermodynamic restrictions (principles of thermody-
namics) may not unconditionally be satisfied. Thus, certain fundamental material be-
haviour may not be captured/predicted and other phenomena may be spuriously pre-
dicted [12].

In addition, it had been demonstrated that the elastic moduli of soils are non-linearly
proportional to hydrostatic pressure [13–16] and, as such, this effect should be included
in constitutive equations to achieve results with a high or reasonable accuracy.

In Chapter 2 a thermomechanical constitutive model for fine-grained soils was
developed using the (hyperelasticity-) hyperplasticity framework proposed by [17], in
which thermodynamic principles were satisfied unconditionally. The definitions of an
energy potential (e.g. Gibbs energy potential) and a rate of dissipation potential were
sufficient to derive all the components of the model, including (non-linear) elasticity re-
lationships, yield surface, plastic flow and hardening rules, similar to a classical elasto-
plastic model [12]. Note that some soil models adhered to the first law of thermodynam-
ics (conservation of energy) by combining hyperelasticity with classical plasticity theory
to formulate the entire constitutive relationship [18–22]. In these models, a Helmholtz
energy (strain energy) potential or a Gibbs energy (complementary energy) potential was
usually introduced to derive the elastic constitutive relationships.

One method to implement constitutive relationships in a BVS is to use “elas-
tic predictor-plastic corrector” techniques within an implicit stress integration scheme
[1; 23; 24]. In these approaches, the algorithm is first subjected to a trial elastic solution
(elastic predictor) as the result of a strain increment. When the elastic predictor fails to
satisfy the yield criterion (when the trial stress lays outside the yield surface), the algo-
rithm returns the trial stress back on to the yield surface by correcting the stress value in
an iterative procedure which generates plastic strains and the evolution of any harden-
ing variables. These approaches have been widely used for implementing hyperplastic-
ity models and classical plasticity models with hyperelastic constitutive relations derived



4

120 4. NUMERICAL IMPLEMENTATION OF A HYPERPLASTIC MODEL

from the definition of Helmholtz free energy potentials in a BVS (see [21; 22] for models
with linear elastic (stress independent elasticity), and [1; 25–31] for models incorporating
non-linear elasticity). In these models, however, elastic moduli were formulated in terms
of strains, and thus they are inconvenient when compared with laboratory data (where
elastic moduli are mostly formulated in terms of stress). Alternatively, by employing a
Gibbs energy potential, elastic moduli can be defined in terms containing stresses and
this is the approach adopted in this chapter. To the best knowledge of the author, elas-
tic predictor-plastic corrector methods in an implicit stress integration scheme have not
been developed for models having elasticity formulations derived via a Gibbs energy po-
tential. The novelty of this chapter lies in developing such an algorithm. The constitutive
equations of the thermomechanical hyperplasticity model developed in Chapter 2, with
non-linear elasticity formulations extracted from a Gibbs energy potential, were used to
develop the algorithm and can easily be generalised for other Gibbs-type elasticity for-
mulations.

The formulations presented here are in accordance with geotechnical conventions,
where compressive stresses and contractive strains are considered to be positive and all
the stresses are effective. In line with this context, the thermal expansion coefficient
utilised in this chapter are presented with negative values. Scalars and vectors are de-
noted with italic and bold-italic letters, respectively; tensors and matrices are denoted
with bold letters. The notations (• : •) and (•⊗•) , respectively, denote the double con-
traction and tensor product, and ∥ • ∥ and tr (•) represent the norm and trace function,
respectively.

4.2. BACKGROUND
Any continuum medium should satisfy a series of principles such as conservation of
mass, linear momentum, conservation of energy, virtual work and so on. [1; 24]. A com-
bination of different principles may be employed to develop finite element equations
for a mechanical boundary value problem. Considering the problem as static (neglect-
ing the dynamic components) and applying the principle of virtual work [1] (or the weak
form of the momentum balance equation [24]) to a continuum leads to a set of equations
which need to be solved for nodal unknowns:

FI N T = P (4.1)

where FI N T is the unknown internal nodal force vector and P is the global external nodal
force vector. Note that Eq. (4.1) is applicable for both linear and non-linear systems. This
equation represents the discretised version of the momentum equation for a medium
that is discretised into elements by nodes. FI N T and P are determined by assembling
the contributions of individual elements which are determined at the Gaussian points
(quadrature points). For linear problems, the internal nodal force can be determined as

FI N T = Ku (4.2)

where K and u are the global stiffness matrix and the global (unknown) nodal displace-
ment vector, respectively. In general, Eq. (4.2) is nonlinear and dependent on the history
of loading (and displacement). Consequently, an iterative algorithm such as the Newton-
Raphson (N-R) method is required to solve the global finite element problem (Eq. (4.1)).
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The global stiffness matrix K is established by assembling the stiffness matrices ki of all
the elements:

K =ANE

i=1
ki =ANE

i=1

∫
Ωi

BTDO Bd v (4.3)

where i is the number of the corresponding element; A represents the assembly opera-
tor;Ωi represents the domain of element i; NE is the number of elements; B is the strain-
displacement matrix (i.e., connecting the displacement vector u to the strain vector ε);
and DO is the material stiffness matrix (for elastic materials) or the consistent tangent
operator (for elasto-plastic materials) of the element and is defined as the derivative of
the stress increment tensor, ∆σ, with respect to the strain increment tensor, ∆ε:

DO = ∂∆σ

∂∆ε
(4.4)

which represents a linearisation of the constitutive relation (the relationship between
stress and strain). The use of the tangent operator to assemble the global stiffness matrix
provides consistency in a N-R algorithmic solution (e.g. the global finite element itera-
tion) and ensures asymptotic quadratic convergence [24].

Laboratory soil element tests have demonstrated that the mechanical behaviour of
geomaterials, e.g. soils, is dependent on the history of loading which has been experi-
enced by the material (stress path dependency). To capture this behaviour, elasto-plastic
constitutive relationships at continuum level are inevitably developed in rate form, in
which the stress rate tensor, σ̇, and the strain rate tensor, ε̇, are related by

σ̇= Dε̇ (4.5)

where D is the elasto-plastic continuum tangent tensor. Note that the tangent operator
DO (Eq. (4.4)) is in general, different from the continuum tangent D; DO plays a similar
role as D, but for a discretised domain (of a continuum medium).

After the system of governing equations (Eq. (4.1)) is evaluated (also known as the
global iteration), the elasto-plastic rate equation (Eq. (4.5)) needs to be integrated at
the Gaussian points (local integration), to ensure that all state variables are consistently
solved. Any resulting imbalanced forces can be solved via iteration of the solution pro-
cedure. An updated tangent operator (DO) for the next step is then needed for the global
iteration procedure using the N-R approach.

Solutions at the local (Gaussian point) level are necessary for solving the boundary-
value problem (global system) and these significantly affect its robustness, accuracy, ef-
ficiency and convergence [32]. Stress integration schemes are broadly categorised as ex-
plicit, implicit or closed-form methods. The last approach is only applicable for simple
constitutive relations, and is thus not considered here. In the explicit approach (e.g. the
forward-Euler method), stress integration algorithms are formulated based on the con-
ditions at time step t (i.e., at the start of the strain increment). The trial stress is estimated
via the applied strain increment and the elastic stiffness tensor at time t, and when the
stress state goes beyond the admissible stress domain (outside the yield surface), it is
returned back on to the yield surface by the evolution of plastic strains. This procedure
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is completed in a single iteration. The main advantages of this approach are its sim-
plicity to implement and its applicability to almost all constitutive equations. However,
the consistency condition is not enforced at the end of the solution and therefore the
updated stress may deviate from the exact solution [1; 32]. Another drawback of this
approach is the relatively low accuracy. Subjecting the stress integration algorithm to
a relatively small strain increment may control this shortcoming. However, computa-
tional costs will increase, which may affect the efficiency of the overall BVS solution. In
addition, the use of the tangent operator derived from this approach does not result in
asymptotic quadratic convergence of the global iteration, which also influences the effi-
ciency of the boundary-value problem solver.

Stress-updating algorithms developed via an implicit scheme (e.g. backward-Euler
method) are formulated based on updated stresses at time step t +∆t . Solutions are
usually determined by minimising the appropriately-defined residual equations in an
acceptable tolerance range via iteration. Geometrically, this approach means that, when
the trial stress resulting from the strain increment goes outside the yield surface, it is
pulled-back on to the yield surface by iteratively updating the state variables (stresses
and strains) and hardening rules of the material. One of the advantages of this approach
is that the consistency condition is enforced (within the specified tolerance) at the end
of the solution, which ensures that the stress is eventually returned back on to the yield
surface. Hence, accurate results are obtained even for relatively large strain increments
(improving the efficiency on the boundary-value problem). In addition to high accuracy,
a quadratic convergence asymptote is ensured. However, using this approach requires
the calculation of the derivatives of the flow rule and the hardening rules, as well as the
second derivatives of the plastic potential surface with respect to their unknowns. Con-
sequently, this approach may not be suitable for models with complex constitutive rela-
tions. Moreover, this method may encounter convergence difficulties when unsuitable
forms of yield functions and flow directions are utilised. A number of sources causing
these difficulties are explained in Chapter 3, for example, yield functions that have er-
ratic gradients, or false elastic nuclei in stress space (see Chapter 3 for more details).

4.3. THERMOMECHANICAL CONSTITUTIVE MODEL
Hyperplasticity is a continuum plasticity approach which ensures that the constitutive
relations satisfy the principles of thermodynamics (First and Second laws of thermody-
namics) [12; 17]. Specifying an energy potential and a rate of dissipation potential is
sufficient to extract the entire constitutive components of a rate-independent material,
including the yield surface, elasticity relationships, plastic flow and hardening rules. In
Chapter 2 a thermomechanical constitutive model within this framework was presented
by defining a complementary energy potential, also known as Gibbs energy potential,
and a rate of dissipation potential that accounted for temperature effects on the me-
chanical behaviour of fine-grained soils. Consequently, all the constituents of that model
were temperature dependent. While keeping the general formulation similar to that in
Chapter 2, here the energy potential at isothermal conditions and the rate of dissipation
function used in that work are updated to use the flexible and robust yield surface pro-
posed in Chapter 3, and to include Lode angle dependency on the yield surface and flow
rule.
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Geomaterials have often been demonstrated to have yield surfaces that are non-
elliptical in shape. To add flexibility to the yield surface to enable non-elliptical forms,
the stress-like functions proposed in Chapter 3 (and discussed later) are used in the def-
inition of the rate of dissipation potential. The resulting yield surface was shown to be
uniquely defined in stress space, without having false elastic nuclei or erratic gradients,
unlike other hyperplasticity-based constitutive models [33–36]. The constitutive rela-
tions are presented here briefly.

Constitutive equations, in general, can be defined by state variables of stress, σ,
strain, ε, absolute temperature, T, entropy, s, and internal variables, α. Depending on
which set of state variables are selected as independent variables, a scalar energy poten-
tial can be defined in the form of either an internal energy potential, u(ε,α,s), Helmholtz
free energy potential, h(ε,α,T), Gibbs energy potential, g(σ,α,T), or enthalpy, e(σ,α,s).
Note that strain and entropy are thermodynamically conjugate pairs to stress and tem-
perature, respectively, and vice-versa (i.e., (ε↔σ) and (s ↔ T)). Therefore, it is possible
to interchange from one energy potential to another type via Legendre transformation
and by altering the role of independent variables to their corresponding thermodynamic
conjugate pairs. Helmholtz free energy and Gibbs energy are the two commonly used
energy potentials to develop constitutive models for geomaterials. In this work, a Gibbs
energy potential is used. The main advantage is that the elastic constitutive relation-
ships are defined in terms of stresses (for example, the hydrostatic pressure dependency
of elastic moduli).

The Gibbs energy potential is defined by temperature, stress invariants and plastic
strain invariants (as the internal variables) as

g
(
p, q,εp

v ,εp
s ,T

)= g1
(
p, q

)−pεp
v −qεp

s −3α∗p (T −T0) (4.6)

where p, q, εp
v and ε

p
s are the hydrostatic pressure (mean effective stress), deviatoric

stress, plastic volumetric strain and plastic deviatoric strain, respectively, as defined in
Table 4.1 ; T0, T and 3α∗ are the initial temperature (K), current temperature (K), and the
volumetric thermal expansion coefficient, respectively.

Table 4.1: Definition of invariants of stress and plastic strain tensors

Stress related invariants Strain related invariants
Hydrostatic
pressure (kPa)

p = tr (σ)/3
Plastic volumetric
strain

ε
p
v = tr (εp )

Deviatoric
stress (kPa)

q = (3/2 s : s)1/2 Plastic deviatoric
strain

ε
p
s = (2/3 ep : ep )1/2

Lode angle (°) θ = 1
3 sin−1

[
3
p

3
2

(
S
J

)3
]

;−π
6 ≤ θ ≤ π

6

where σ: Cauchy stress tensor; s: Deviatoric stress tensor, s =σ−p1;

1: Second-order identity tensor; J = q/
p

3; S = ( 1
3 Si j S j p Spi

)1/3
;

εp : Plastic strain tensor; ep : Plastic deviatoric strain, ep = εp -
(
ε

p
v /3

)
1

Eq. (4.6) leads to constitutive relationships of decoupled materials, where the total
strain can be divided into elastic and plastic components. The Gibbs energy potential
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for elastic-plastic coupling materials can be found in the works of [12; 19; 20]. g1 is Gibbs
energy potential under isothermal conditions, proposed by [37], as

g1 =− p2−n
0

K̄ (2−n)(1−n)p1−n
a

− p

K̄ (1−n)
;n ̸= 1 (4.7a)

g1 =− 1

K̄

(
ln

(
p

pa

)
−1

)
− q2

6Ḡp
;n = 1 (4.7b)

where p0 =
√

p2 + K̄ (1−n)
3Ḡ

q2 ; pa is the reference hydrostatic pressure (here equal to at-

mospheric pressure 101 kPa); K̄ and Ḡ are material constants related to the elastic bulk
and elastic shear moduli respectively; n is the parameter indicating (hydrostatic) pres-
sure dependency of the elastic moduli.

The total strain tensor is determined by differentiating the complementary energy
potential with respect to the stress tensor:

ε=− ∂g

∂σ
=−∂g1

∂σ
+α∗(T −T0)1+εe +εT her m +εp (4.8)

where εe , εT her m and εp are the isothermal elastic, thermo-elastic and plastic compo-
nents of the total strain, respectively.

The generalised stress, χ̄, is defined as the derivative of the energy potential with
respect to the internal variables (here plastic strains):

χ̄=− ∂g

∂εp (4.9a)

where the mean and deviatoric components are

χ̄p =− ∂g

∂ε
p
v

= p (4.9b)

χ̄q =− ∂g

∂ε
p
s

= q (4.9c)

For rate-independent materials (considered here), the rate of the dissipation poten-
tial function is a first order homogenous function of the rate of internal variables. For
the current model, this potential is expressed by the invariants of the rate of the internal
variables, temperature, and stress invariants:

d =C ε̇p
v +

√
A2

(
ε̇

p
v
)2 +B 2

(
ε̇

p
v
)2

(4.10)

where A, B and C are stress-like functions containing the temperature and stress invari-
ants (explained later). Note that temperature effects and Lode angle dependency (LAD)
are implicitly incorporated in these functions.
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The generalised dissipative stress, χ, is the derivative of the rate of dissipation poten-
tial with respect to the rate of the internal variable:

χ= ∂d

∂ε̇p (4.11a)

where the mean and deviatoric components are

χp = ∂d

∂ε̇
p
v

=C + A2ε̇
p
v√

A2
(
ε̇

p
v
)2 +B 2

(
ε̇

p
v
)2

=C + A2ε̇
p
v

d −C ε̇p
v

(4.11b)

χp = ∂d

∂ε̇
p
s

= B 2ε̇
p
v√

A2
(
ε̇

p
v
)2 +B 2

(
ε̇

p
s
)2

= B 2ε̇
p
s

d −C ε̇p
v

(4.11c)

The yield function (surface) of a rate-independent material is generally determined
by invoking the Legendre-Fenchel transform on the rate of dissipation potential [12].
However, eliminating d between Eqs. (4.11b) and (4.11c) results in an equation, defined
by terms consisting of dissipative stress invariants, which represents the yield surface

yd =
(
χp −C

)2

A2 +
(
χq

)2

B 2 −1 = 0 (4.12)

which forms an ellipse in χp -χq space (dissipative stress space). The plastic flow tensor
(rd ) is normal (associated) to yd with respect to dissipative stresses [17]:

rd = ∂yd

∂χ
(4.13a)

where the mean and deviatoric components are defined as

r d
p = ∂yd

∂χp
= 2

(
χp −C

)
A2 (4.13b)

r d
q = ∂yd

∂χq
= 2

(
χq

)
B 2 (4.13c)

When the deformation of a material is accompanied by irreversibility, the second
law of thermodynamics states that the energy of the material is dissipating and its rate
is always positive. In hyperplasticity theory this notion is satisfied by using Ziegler’s hy-
pothesis [38], which postulates that dissipation (or production of entropy) is maximised
when χ̄ = χ. By utilising this hypothesis, the yield surface (Eq. (4.10)) and plastic flow
(Eq. (4.13)), defined in dissipative stress space, are transformed to true stress space:

y =
(
p −C

)2

A2 + q2

B 2 −1 (4.14)
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rp = 2
(
p −C

)
A2 (4.15a)

rq = 2q

B 2 (4.15b)

Note that the flow rule (Eq. (4.13)) is normal to the yield surface (Eq. (4.10))) in dissipative
stress space (χp -χq ). However, this often does not remain valid in true stress space (p-
q), due to the stress-dependency of functions A, B and C (see below and Chapter 2 for
more details).

4.3.1. STRESS-LIKE FUNCTIONS A, B AND C
Most geomaterials have yield surfaces that are enclosed and non-elliptical in shape.
Eq. (4.14) represents the general equation of an ellipse. Flexible yield surfaces, i.e.,
yield surfaces with distorted and non-elliptical shapes, can be formed by defining stress-
dependent functions within the yield surface function, i.e. the stress-like functions A, B
and C in Eq. (4.14). Several of these functions can be found in literature (e.g. [33–36]).
However, in Chapter 3 it was shown that most of these functions, despite providing flex-
ibility for the yield surface, have difficulties when numerically implemented in implicit
stress integration approaches. Implicit stress integration algorithms using these stress-
like functions suffered in terms of robustness and convergence, due to false elastic nuclei
and erratic gradients of the yield functions when the stress state of the material lays out-
side the yield surface. Here, the stress-like functions proposed in Chapter 3 are used,
which, in addition to providing flexibility for the yield surface were proven to be robust
for applications in an implicit stress integration algorithm:

A
(
p, pcT

)= pcT

2π

(
2arctan

(
γ

(
1

2
− p

pcT

))
+π

)
(4.16a)

B
(
p, pcT

)= M̄C exp

(
α

(
p − c

)
pcT

)
(4.16b)

C
(
pcT

)= pcT

2π

(
2arctan

(γ
2

)
+π

)
(4.16c)

where −1 ≤α≤ 1 and −1 ≤ γ≤ 1 are shape parameters and M̄ is the stress ratio at Criti-
cal State conditions. Note that the Modified Cam-Clay (MCC) yield surface is recovered
when α = γ = 0. Laboratory soil element tests demonstrated that the yield surface is
smaller at higher temperatures [39–43]. To take this phenomenological observation into
account, the apparent pre-consolidation pressure, pcT , is defined to reduce with tem-
perature, while it hardens with plastic volumetric strain similar to the MCC model:

pcT = pc0exp

(
1+e0

λ−κ ε
p
v

)
exp

(−µ (T −T0)
)

(4.17)
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where pc0 is the initial pre-consolidation pressure; λ and κ are the bi-logarithmic elasto-
plastic and elastic compressibility indices, respectively; e0 is the initial void ratio; µ0 is
the coefficient of thermal shrinkage of the yield surface.

It has been demonstrated that, depending on their constituents and mineralogy, the
stress ratio at Critical State conditions of fine-grained soils, e.g. clays and silts, varies with
temperature (i.e., it may increase, decrease or remain unchanged) [44–47]. To account
for this observation, as well as Lode angle dependency (LAD) on the yield surface, the
approach of [30] is followed here where M̄ is defined as

M̄ = ζ(θ)Mc = ζ(θ)(Mc0 +π∗(T −T0)) (4.18)

where Mc and Mc0 are the stress ratios at Critical State conditions in compression load-
ing (θ = π/6; θ is the Lode angle, see Table 4.1) at the current and the ambient temper-
atures (T = T0), respectively, π∗ is the gradient of the variation of M̄ with temperature,
and ζ is the LAD function. Several LAD functions can be found in the literature, e.g.,
[48–51]. Here, the LAD function proposed by [50] is used:

ζ
(
θ,ρ∗)=

 2
(
ρ∗)4

1+ (
ρ∗)4 −

(
1− (

ρ∗)4
)

sin3θ

 1
4

(4.19)

where ρ∗ = Me0/Mc0 and Me0 is the stress ratio at Critical State conditions in extension
loading (θ = −π/6) at the ambient temperature (T = T0). The aforementioned LAD
function results in a convex yield surface in deviatoric stress space (e.g. π-plane), for
ρ∗ ≤ 0.6, corresponding to friction angles less than 48.6° [50].

The flexibility of the yield surface is demonstrated in principle stress space (σ1-σ2-
σ3) in Figure 4.1. For α = γ = 0 (Figure 4.1b) the yield surface attains the MCC model
with a Lode angle dependent shape in the deviatoric plane (ρ∗ = 0.8). The yield surface
using α = γ = −0.5 (Figure 4.1a) is stretched along the hydrostatic axis (σ1-σ2-σ3) and
attains a bullet-shape, while using shape parameters α = γ = 0.5 the yield surface is
flattened along the hydrostatic axis and forms a droplet shape. Figure 4.2 shows the
three-dimensional yield surface in p-q-∆T space. The yield surface is bounded at pcT

and, according to Eq.4.17, it shrinks with respect to temperature increase and expands
due to cooling.

(a) (b) (c)

Figure 4.1: Yield surface in principle stress space with Mc = 1.00 and ρ∗ = 0.8 and different shape parameters
(a) α= γ=−0.5; (b) α= γ= 0 (MCC); (c) α= γ= 0.5
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Plastic flow directions for the studied yield surfaces in Figure 4.1 are presented in
Figure 4.3 in p-q stress space and in deviatoric stress space at p/pcT = 0.4 (cross section
A-A). In general, the flow rule (Eq. (4.15)) is non-associated in p-q space due to the stress-
dependency of the stress-like functions (Eq. (4.16)); this is demonstrated in Figure 4.3a
and Figure 4.3e for yield surfaces using α = γ = −0.5 and α = γ = 0.5, respectively. For
the MCC model, the stress-dependent terms in the functions A and B drop out and the
rate of dissipation potential becomes stress-independent. Thus, the flow rule becomes
associated (Figure 4.3c).

Figure 4.2: Yield surface in p-q-∆T space with Mc = 1.00, µ0 = 0.001, π∗ = 0 and α= γ= 0.5
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A

A

q

p
cT p

(a) (b)

A

A

q

p
cT p

(c) (d)

A

A

q

p
p

cT

(e) (f)

Figure 4.3: Flow rule in p-q stress space and in the deviatoric plane at p/pcT = 0.4 (cross section A-A), for
yield surfaces using Mc = 1.00 and ρ∗ = 0.8 and different shape parameters (a) and (b) α= γ=−0.5; (c) and

(d) α= γ= 0 (MCC); (e) and (f) α= γ= 0.5
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4.3.2. RATE FORM OF ELASTO-PLASTIC RELATIONSHIPS
The isotropic hardening rule of the model is the rate of Eq. (4.17):

ṗcT =
(

1+e0

λ−κ ε̇
p
v −µ0Ṫ

)
pcT (4.20)

The rate of the total strain tensor (Eq. (4.8)) is

ε̇= ε̇e + ε̇T her m + ε̇p (4.21)

where

ε̇e =−∂
2g1

∂σ̇2 : ε̇= [
Ce] : σ̇ (4.22a)

ε̇T her m =α∗Ṫ 1 (4.22b)

ε̇p = Λ̇r (4.22c)

where [Ce ] is the forth-order elastic compliance tensor and Λ̇ is the plastic multiplier,
derived from the consistency condition (ẏ = 0) as

Λ̇=−
{
∂y
∂σ

}T
[De ]

{
ε̇− ε̇T her m

}+ ∂y
∂T Ṫ{

∂y
∂εp

}T
{r}−

{
∂y
∂σ

}T
[De ] {r}

(4.23)

where [De ] is the forth-order elastic stiffness tensor, which is the inverse of [Ce ] (i.e.,
[De ] = [Ce ]−1).

4.4. IMPLICIT STRESS INTEGRATION (LOCAL INTEGRATION)
The stress integration is split into two parts, i.e. an elastic predictor and a plastic correc-
tor. A first estimation of the trial stress (elastic predictor) is calculated using the elastic
trial strain. Whenever the stress is identified to be outside the yield domain, it is returned
back on to the yield surface iteratively via the development of plastic strain (the plastic
corrector). Within a typical time step between times t and t +∆t , where ∆t is the time
increment, it is assumed that the state variables (e.g. stress and strain), hardening vari-
ables (here the apparent pre-consolidation pressure pcT ) and the absolute temperature
at time t (hereafter variables at time t are indicated with n) are converged and known
(i.e., the values of σn , εn , P n

cT and Tn are known), and the strain and temperature incre-
ments (∆εn and ∆T ) are given from the BVS (global iteration). Then, the objective is to
find the state variable (stress) and the hardening variable (pre-consolidation pressure)
at time t +∆t (i.e., to find the values of σn+1 and P n+1

cT ). Note that when the behaviour is
elasto-plastic, these variables are implicitly or explicitly dependent on the magnitude of
the plastic multiplier increment (also known as the consistency variable),∆Λ, which also
has an unknown value. Therefore, there are three unknown values that need to be calcu-
lated (σn+1, PcT and ∆Λ). The general method of developing an implicit stress integra-
tion algorithm consisting of three unknown variables, is to find three residual equations
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and to minimise them simultaneously using an iterative approach such as the Newton-
Raphson method. These residual equations are defined for the state variable (stress or
strain), hardening variable and consistency variable.

When the elasticity relationships are derived based on a Helmholtz (strain) energy
potential, the stress can be directly derived as

σ= ∂h(ε)

∂ε
(4.24)

and is defined by strain-dependent terms. Therefore, it is possible to define the yield
function and plastic flow in strain space by substituting Eq. (4.24). For the majority
of constitutive models found in literature that use Helmholtz (strain) energy potential
to derive elasticity relationships, strain is considered as the state variable to derive the
residual equation for the state variable and consists of expressions defined by strain.
However, as will be shown later, for elasticity relationships which are derived based on
the Gibbs energy potential, the strain is considered to define the residual equation but is
defined by terms containing stresses.

4.4.1. RESIDUAL EQUATION FOR THE STATE VARIABLE
Integrating the rate form of the total strain (Eq. (4.21)) over a time interval of [tn , tn+1] =
[t , t +∆t ] results in∫ t+∆t

t
ε̇d t =

∫ t+∆t

t
ε̇e d t +

∫ t+∆t

t
ε̇T her m d t +

∫ t+∆t

t
ε̇p d t (4.25a)

or

∆ε=∆εe +∆εT her m +∆εp (4.25b)

The temperature increment is a known value at the beginning of the integration and is
passed from the global integration (finite element domain) to local integration (material
model). Therefore, ∆εT her m is calculated, based on Eq. (4.22b), as

∆εT her m =α∗∆T 1 (4.26)

The plastic strain increment (∆εp ) can be approximated, based on Eq. (4.22c), as

∆εp ≈∆Λr
(
σn+1, pn+1

cT

)
(4.27)

Note that integration over r is neglected. The advantage of this assumption is achieving
accurate results with using a less complicated formulation [1].

The elastic strain increment is defined as

∆εe = εe
n+1 −εe

n (4.28)

where εe
n is the elastic strain at time t and is a known value. By using Eq. (4.8), the elastic

strain at time t +∆t , (εe
n+1) is determined as

εe
n+1 =−∂g1 (σn+1)

∂σn+1
(4.29)
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Substituting Eqs. (4.27), (4.28) and (4.29) in Eq. (4.25b), results in

−∂g1 (σn+1)

∂σn+1
+∆Λr

(
σn+1, pn+1

cT

)
︸ ︷︷ ︸

unknown terms

−
(
εe

n +∆ε−∆εT her m
)

︸ ︷︷ ︸
known terms

= 0 (4.30)

Eq. (4.30) can be split into terms with known variables (εe
n +∆ε−∆εT her m) and terms

which are functions of unknown variables (σn+1, pn+1
cT , and ∆Λ). Here, the summation

of known variables is referred to as the elastic trial strain:

εe,tr i al = εe
n +∆ε−∆εT her m (4.31)

Whereas the trial strain remains unchanged, the unknown variables (σn+1, pn+1
cT , and

∆Λ) are update iteratively to fulfil Eq. (4.30) within an accepted tolerance value. Thus, a
tensor residual equation for the state variable can be defined as

R1 = εe
n+1 +∆Λr−εe,tr i al =− ∂g1

∂σn+1
+∆Λr−εe,tr i al (4.32)

Substituting the updated values for σn+1, pn+1
cT and ∆Λ (that are obtained at the end of

the iteration procedure) in Eq. (4.32) results in an approximate solution for Eq. (4.30).

4.4.2. RESIDUAL EQUATION FOR THE HARDENING VARIABLE
The only hardening variable in the model is the apparent pre-consolidation pressure,
where its rate form is presented in Eq. (4.20). Considering the fact that the temperature
increment is known, integrating Eq. (4.20) over a time interval of [tn , tn+1] = [t , t +∆t ]
results in

∫ t+∆t

t

ṗcT

pcT
d t = 1+e0

λ−κ
∫ t+∆t

t
ε̇

p
v d t −µ0

∫ t+∆t

t
Ṫ d t (4.33a)

pn+1
cT = pn

cT exp

(
1+e0

λ−κ ∆ε
p
kk −µ0∆T

)
(4.33b)

where εp
kk (k = 1, 2, 3) is the plastic volumetric strain increment, determined as

ε
p
kk =∆Λtr

(
r
(
σn+1, pn+1

cT

))=∆Λrp
(
σn+1, pn+1

cT

)
(4.34)

The terms in Eq. (4.33b) update at each iteration, in accordance with the unknown vari-
ables σn+1, pn+1

cT and ∆Λ. Therefore, the difference between the terms on the left and
the right sides yields a residual value which needs to be minimised. Note that the resid-
ual equation for the state variable (strain), Eq. (4.32), is non-dimensional (as well as the
residual equation of the consistency condition, Eq. (4.37)). To avoid the dominancy of
large values of pn+1

cT in comparison to other residual equations in the iteration process,
Eq. (4.33) is normalised by pn

cT . Consequently, the second residual equation is obtained
as

R2 =
pn+1

cT

pn
cT

−exp

(
1+e0

λ−κ ∆ε
p
kk −µ0∆T

)
(4.35)
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4.4.3. RESIDUAL EQUATION BASED ON THE CONSISTENCY CONDITION
As mentioned in Section 4.2, one of the advantageous of implicit stress integration ap-
proaches is that the stress state is forced to return back on to the yield surface, which
implies that

y
(
σn+1, pn+1

cT

)= 0 (4.36)

The yield criterion for stress states outside the yield domain attains a non-zero and pos-
itive value (i.e. y > 0). Thus, it is required for y to asymptote toward zero (minimised)
iteratively using the updated values of σn+1 and pn+1

cT . This criterion forms the third
residual equation:

R3 = y
(
σn+1, pn+1

cT

)
(4.37)

4.4.4. LINEARISATION OF THE RESIDUAL EQUATIONS
The residual equations (Eqs. (4.32), (4.35) and (4.37)) need to be minimised and solved
simultaneously. Linearisation is a technique that facilitates this process and involves
Taylor’s expansion of the residual equations with respect to the unknowns at time tn+1:

ℓR1 = R1 + ∂R1

∂σn+1
δσ+ ∂R1

∂pn+1
cT

δpcT + ∂R1

∂∆Λ
δ∆Λ= 0

ℓR2 = R2 + ∂R2

∂σn+1
δσ+ ∂R2

∂pn+1
cT

δpcT + ∂R2

∂∆Λ
δ∆Λ= 0

ℓR3 = R3 + ∂R3

∂σn+1
δσ+ ∂R3

∂pn+1
cT

δpcT + ∂R3

∂∆Λ
δ∆Λ= 0

(4.38a)

where ℓ and δ represent, respectively, the linearisation operator and the increment. Note
that differentiation with respect to known values (the values at step n or values deter-
mined by known increments of ∆ε and ∆T ) drop out. Eq. (4.38a) can be written in com-
pact form as J · v = R, where J, v and R are, respectively, the Jacobian matrix, vector of
increments of unknown variables and residual vector, defined as

J =


∂R1

∂σn+1

∂R1

∂pn+1
cT

∂R1
∂∆Λ

∂R2
∂σn+1

∂R2

∂pn+1
cT

∂R2
∂∆Λ

∂R3
∂σn+1

∂R3

∂pn+1
cT

∂R3
∂∆Λ

=
 A B F

HT ω ρ

ET ϖ ϑ

 (4.38b)

v = {
δεn+1 δpn+1

cT δ∆Λ
}T

(4.38c)

R =− {R1 R2 R3}T (4.38d)

where A, B, F, H, E, ω, ρ, ϖ, and ϑ are the coefficients of derivatives defined in Ap-
pendix 4.B. The unknown increments at each iteration are solved as

v = J−1 ·R (4.39)
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and are added to the values obtained in the previous iteration. The iteration procedure
continues until the residual values are within an acceptable tolerance range (e.g. 10−6).

Instead of using Eq. (4.39) to calculate the updated unknown increments, which re-
quires the calculation of the inverse of the Jacobian matrix (J−1), it is possible to calculate
the unknown increments using a closed-form formulation. This is beneficial for obtain-
ing a closed-form formulation for the tangent operator. Eq. (4.38a) can be re-written by
using Eq. (4.38b) as

Aδσ+BδpcT +Fδ∆Λ=−R1 (4.40a)

HTδσ+ωδpcT +ρδ∆Λ=−R2 (4.40b)

ETδσ+ϖδpcT =−R3 (4.40c)

From Eq. (4.40b), the increment of the hardening variable, δpcT , is determined:

δpcT =− 1

ω

{
R2 +ρδ∆Λ+HTδσ

}
(4.41)

The stress increment, δσ, is determined by substituting Eq. (4.41) in Eq. (4.40a):

δσ= W
{
−R1 + R2

ω
B− r̄∗δ∆Λ

}
(4.42a)

where

W =
[

A− 1

ω
BHT

]−1

(4.42b)

r̄∗ = F− ρ

ω
B (4.42c)

Substituting Eqs. (4.41) and (4.42a) in Eq. (4.40c), the increment of the plastic multiplier
is calculated as

δ∆Λ= R3 − ζ̄T
WR1 + x̄R2ζ̄

T
WB− x̄ϖR2

x̄ϖρ+ ζ̄T
Wr̄∗

(4.43a)

where

ζ̄
T = ET − ϖ

ω
HT (4.43b)

x̄ = 1/ω (4.43c)

The increment of the hardening variable is then determined in a straightforward manner
via Eq. (4.40c) as

δpcT =− 1

ϖ

(
R3 +ETδσ

)
(4.44)
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The steps of the stress integration algorithm are summarised in Box 4.1.

Box 4.1: Description of the steps for developing the implicit stress integration algorithm (continued on next
page)

1. Update the temperature (known value)

Tn+1 = tn +∆T

• Compute the thermo-elastic strain via Eq. (4.26)

• Compute the Critical State stress ratio via Eq. (4.18)

2. Compute the elastic trial strain tensor, εe,tr i al , via Eq. (4.31)

• Calculate the volumetric and deviatoric invariants of the elastic trial
strain using

εe,tr i al
v = tr

(
εe,tr i al

)
εe,tr i al

s =p
2/3

(
ee,tr i al : ee,tr i al

)1/2

ee,tr i al = εe,tr i al − tr
(
εe,tr i al

)
/3 : 1

3. Estimate the trial stress (elastic predictor)

• Estimate the hydrostatic pressure, p tr i al , and the deviatoric trial
stresses, q tr i al , via Eqs. (4.F.3a) and (4.F.3b) in Appendix 4.F (or al-
ternatively Eqs. (4.F.4a) and (4.F.4b)), respectively

• Determine the direction of the deviatoric part of the trial stress by
considering that the deviatoric strain and deviatoric stress tensors are
coaxial (see Appendix 4.E)

n̂ = ee,tr i al

∥ee,tr i al ∥ =
√

2
3

ee,tr i al

εe,tr i al
s

• Determine the trial stress tensor via

σtr i al = p tr i al 1+
√

2
3 q tr i al n̂

4. Set the initial values of variables by assuming elastic conditions

• The apparent pre-consolidation pressure is set to its value at time step
t ( pcT = pn

cT )

• The increment of plastic multiplier is set to zero (∆Λ= 0)

5. Check the yield condition via Eq. (4.14) with the estimated trial stress

• If y
(
σtr i al

)< 0, then
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i. σn+1 =σtr i al ; pn+1
cT = pn

cT ; ∆Λ= 0

ii. Set the tangent operator stiffness matrix equal to elastic tangent
stiffness, Eq. (4.E.11) in Appendix 4.E

• If y
(
σtr i al

)≥ 0, then: iteration process

i. While |R| ≤ tol (= 10−6) (residuals are not in the range of accepted
tolerance)

Compute the invariants of the trial stress σtr i al

Compute the flow rule and derivatives with respect to the trial
stress σtr i al and pcT

Calculate the residuals via Eqs. (4.32), (4.35) and (4.37)

Calculate the increments of unknowns via Eqs. (4.42), (4.43)
and (4.44)

Update the unknowns
σi+1 =σi +δσ;

(
pcT

)
i+1 =

(
pcT

)
i +δpcT ; ∆Λi+1 =∆Λi +δ∆Λ

where i is the iteration number

ii. Update σ, pcT and ∆Λ, based on the values calculated in the last
iteration that was converged

iii. Calculate the tangent operator stiffness matrix, Eq. (4.48)

4.4.5. TANGENT OPERATOR STIFFNESS MATRIX
During the iteration procedure, the residuals (Eqs. (4.32), (4.35) and (4.37)) asymptote
toward zero (i.e. converging). When the variables are converged (i.e., within a set toler-
ance range), Eqs. (4.30), (4.33b) and (4.37) are approximated; i.e.

−∂g1 (σn+1)

∂ (σn+1)
+∆Λr

(
σn+1, pn+1

cT

)− (
εe

n +∆ε−εT her m
)
≈ 0 (4.45a)

pn+1
cT

pn
cT

−exp

(
1+e0

λ−κ ∆ε
p
kk −µ0∆T

)
≈ 0 (4.45b)

y
(
σn+1, pn+1

cT

)≈ 0 (4.45c)

These equations are defined by terms including variables σn+1, pn+1
cT and∆Λ. Taking the

time derivative (rate) of these equations with respect to their variables and linearising,
yields a set of equations similar to Eq. (4.38a):

Âδσ+ B̂δpcT + F̂δΛ= δε (4.46a)
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Ĥ
T
δσ+ ω̂δpcT + ρ̂δΛ= 0 (4.46b)

Êδσ+ ϖ̂δpcT = 0 (4.46c)

where, by using the coefficients defined in Eq. (4.38b), it follows that

Â = A; B̂ = B; F̂ = F; Ĥ
T = HT; ω̂=ω ρ̂ = ρ; Ê

T = ET; ϖ̂=ϖ (4.46d)

Note that the known terms, such as the variables at step n and the thermo-elastic strain
increment (∆εT her m), are known values and do not vary over time, whereas the strain
tensor increment, ∆ε, is treated as a variable, where ∂∆ε/∂t = ∂ε. Following a similar
approach as those of determining the increments of unknown variables (i.e., Eqs. (4.42),
(4.44) and (4.43)), the estimated stress tensor increment and plastic multiplier increment
are

δσ= W
{
δε− r̄∗δΛ

}
(4.47a)

δΛ= ζ̄
T

W

x̄ϖρ+ ζ̄T
Wr̄∗

δε (4.47b)

Further, substituting Eq. (4.47b) in Eq. (4.47a) results in a formulation which represents
the tangent operator stiffness matrix:

δσ=
{

W−W
ζTWr̄∗

x̄ϖρ+ ζ̄T
Wr̄∗

}
δε= DOδε (4.48)

4.5. ACCURACY, ROBUSTNESS AND EFFECTIVENESS OF THE

STRESS INTEGRATION ALGORITHM
To demonstrate the robustness and effectiveness of the proposed stress integration al-
gorithm, several aspects were investigated, including the shape of the yield surface,
number of iterations required for the algorithm to return the stress back on to the yield
surface (iteration-stress map) for trial stresses varying in magnitude and direction, and
Gudehus plots which demonstrate the stress response when the algorithm is subjected
to strain probes. In addition, iso-error plots for yield surfaces with different shape pa-
rameters subjected to trial stresses varying in magnitude and direction were analysed to
assess the accuracy of the proposed algorithm.

4.5.1. FORM OF THE YIELD SURFACE
The influence of the form of the yield function was investigated in Chapter 3. It was
demonstrated that the form of the yield function significantly affects the efficiency and
robustness of the implicit stress integration algorithm, mostly due to false elastic nuclei
and erratic gradients (singularities). The level sets of the normalised yield function given
in Eq. (4.14) with the proposed stress-like functions (Eq. (4.16)) for a range of shape pa-
rameters α and γ are shown in normalised stress space in Figure 4.4. It is observed that
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the normalised form of the yield function has no false elastic nuclei or erratic gradients,
and thus is very suitable for implicit stress integration algorithms (see Chapter 3 for more
details).

(a) (b) (c)

Figure 4.4: Level sets (contours) of the yield function ([0, 1, 2, 4, 8, 12, 20, 40] from inside to outside) using
Eq. (4.14) for different shape parameters (a) α= γ=−0.5; (b) α= γ= 0 (MCC); (c) α= γ= 0.5

4.5.2. ITERATION-STRESS MAPS

Starting from an isotropic stress state at the reference pressure, (p, q) = (pa ,0), and con-
sidering isothermal conditions (no temperature variation), the model was subjected to
several trial stresses which were related to the hydrostatic extent of the yield surface, pcT ,
such that the region p tr i al /pcT ∈ [0,3] and q tr i al /pcT ∈ [0,3] in meridian stress space
(p-q) was explored. The following parameters where used for the simulations: K̄ = 700,
Ḡ = 200, n = 0.5, λ= 0.20, κ= 0.09, Mc0 = 1.05, ρ∗ = 0.8, and pcT was set to 200 kPa. The
strain increments inducing these trial stresses were determined and applied in a single
step. The number of iterations (NOI) required to converge the trial stresses, i.e., to re-
turn them back on to the yield surface by using the stress integration algorithm, were
measured and are plotted in Figure 4.5 for three yield surfaces with shape parameters
α= γ=−0.5, α= γ= 0 and α= γ= 0.5 (similar to the yield surfaces/functions in Figure
4.1 and Figure 4.4). Note that the maximum allowed NOI was set to 25.

From Figure 4.5, it was observed that for all yield surfaces the NOIs were less than
11, i.e., all the trial stresses were returned back on to the yield surface. It is seen, as ex-
pected, that the larger the trial stresses applied (in terms of magnitude), the higher the
NOI required for convergence. The MCC model (α = γ = 0) had the lowest NOI (Fig-
ure 4.5b); the trial stresses in the studied stress domain were mostly converged within
7 iterations (8 iterations were required only for trial stresses close to p tr i al /pcT = 3 and
q tr i al /pcT = 3). Yield surfaces with α= γ=−0.5 andα= γ= 0.5 had, respectively, higher
curvature (gradients) near the compression apex (i.e. p = pcT ) and decompression apex
(i.e. at the origin, p = 0). The former yield surface required a maximum of 11 iterations
to converge trial stresses (close to p tr i al /pcT = 3 and q tr i al /pcT = 3), while all the trial
stresses investigated for the latter yield surface were returned back on to the surface with
a maximum of 9 iterations.
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4.5.3. GUDEHUS PLOTS
It is essential that the return mapping algorithm can return trial stresses, induced by
strain increments, at any location and direction in three-dimensional stress space. The
following example demonstrates the robustness of the stress integration algorithm to
address this necessity. The parameters of the model were set to α = γ = 1.0, n = 0.5,
λ= 0.21, κ= 0.02, Mc0 = 0.8, ρ∗ = 0.8, and the hydrostatic extent of the yield surface was
set to pcT = 200 kPa.

64 locations on the yield surface (total number of clouds), defined in principle stress
space (σ1-σ2-σ3), were randomly selected to check the robustness of the return mapping
algorithm at any stress state. At each location, the model was subjected to 832 strain
probes (increments) in all directions in principle strain space (ε1-ε2-ε3) with an equal
magnitude of 1×10−3 (1000 micron); i.e., at each location on the yield surface the return
mapping algorithm was subjected to a strain sphere with radius of 1000 micron. The
directions of the individual strain probes were obtained using the HEALPix software [52],
which divided the surface of the sphere into equal area patches. The stress response to
these strain probes (also known as Gudehus surfaces [53]) are shown in Figure 4.6a and
Figure 4.6b for models with elastic moduli parameters of K̄ = 150 and Ḡ = 90 (K̄ /Ḡ =
1.67) and K̄ = 60 and Ḡ = 100 ( ¯K /Ḡ = 0.6), respectively. The surfaces (clouds) are shaded
according to the degree of dissipated work, calculated as

w p =σ : ε̇p (4.49)

where bright areas demonstrate where dissipation happened (i.e. the return mapping
algorithm was activated) in accordance to the strain probes. Although both models were
subjected to the same isotropic strain spheres, the stress responses (clouds) varied in
size and shape. For strain probes that were toward the inside of the yield surface, the
stresses were identical to the trial stresses (elastic predictor) and formed the part of the
stress sphere (cloud) with greater radius (darker areas on the stress cloud). On the other
hand, for strain probes directed outside of the yield surface, stress responses were deter-
mined via the elasto-plastic relation (using the stress return algorithm). For those strain
probes where plastic work developed, the stress integration algorithm returned the stress
back onto the yield surface (brighter areas on the stress cloud). Therefore, the stress was
smaller than the trial stress and consequently formed the part of the stress cloud with
smaller radius.

It was observed that the size of a stress response cloud varied with the hydrostatic
pressure (p) corresponding to its location. This behaviour is attributed to the non-linear
and pressure dependency of the constitutive elastic relations of the model. For strain
increments probing at regions with low hydrostatic pressures (near the decompression
apex), the corresponding stress clouds were smaller in size compared to stress clouds lo-
cated near the compression apex of the yield surface with higher hydrostatic pressures.

The ratio of parameters corresponding to the elastic bulk and elastic shear moduli,
K̄ /Ḡ , governed the shape of the stress clouds. For the model using K̄ > Ḡ , the stress
clouds were elongated along the hydrostatic axis (Figure 4.6a), while for the model in
which Ḡ > K̄ , the stress clouds were flattened in the deviatoric plane. In conclusion, the
non-linear elasticity employed for the model played an important role on the response
of the model.
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(a)

(b)

(c)

Figure 4.5: Number of iterations of the stress integration algorithm for various trial stress locations for yield
surfaces with shape parameters (a) α= γ=−0.5; (b) α= γ= 0 (MCC); (c) α= γ= 0.5
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(a) (b)

Figure 4.6: Stress response of the model in principle stress space (Gudehus plots) with elastic moduli
(a)K̄ /Ḡ = 1.67; (b) K̄ /Ḡ = 0.6. Stress responses are shaded according to the degree of dissipated work, where

dark areas correspond to elastic response and white areas represents elasto-plastic response

4.5.4. ISO-ERROR PLOTS
The accuracy of the stress integration algorithm on returning trial stresses back on to the
yield surface was investigated by studying the iso-error contours for yield surfaces with
different shapes. The parameters of the model were set to K̄ = 250, Ḡ = 400, n = 0.7,
λ = 0.45, κ = 0.05, Mc0 = 0.7, ρ∗ = 0.8, and the yield surface was bounded at pcT = 200
kPa. The trial stresses in the deviatoric plane were related to the deviatoric yield stress qy

(calculated via Eq. (4.14)) at a specific hydrostatic pressure, so as to have a normalised
magnitude of q tr i al /qy ∈ [1,7] and a direction corresponding to a Lode angle varying in
the range of θ ∈ [−π/6,π/6]. Elastic deviatoric strains corresponding to trial deviatoric
stresses were calculated. Starting from an isotropic state at the desired normalised hy-
drostatic pressure (p/pcT = 0.2, 0.4, 0.6, 0.8 and 0.95), the model was subjected to these
elastic deviatoric strains in a single step. The results (i.e. returned stresses σr ) were then
compared with the returned stresses (σe ), which were obtained by dividing each single
elastic daviatoric strain into 1000 sub-increments. The errors were then calculated using
the following equation:

error =
p

{σr −σe } : {σr −σe }p
σe :σe

(4.50)

where σr is the return stress when the model was subjected to the single elastic devia-
toric strain and σr is the (almost exact) returned stress obtained by splitting the single
elastic trial strain into 1000 sub-increments. The errors were measured in deviatoric
planes located at p/pcT = 0.95, 0.8, 0.6, 0.4 and 0.2, and each is shown in Figure 4.7 in
one sixth of the deviatoric plane of the principle stress space, for three yield surfaces
with shape parameters α= γ=−0.5 α= γ= 0 and α= γ= 0.5 (respectively, Figure 4.7a,
Figure 4.7b and Figure 4.7c). Respectively, in Figure 4.7d, Figure 4.7e and Figure 4.7f, the
corresponding numbers of iterations (NOI) required for converging the elastic deviatoric
strains when they are subjected in one step are presented. The errors and NOI to return
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the trial stresses were observed, as expected, to increase when the stress integration al-
gorithm was subjected to larger elastic deviatoric strains.

For all models, the smallest errors were measured at the deviatoric plane located at a
normalised hydrostatic pressure of p/pcT = 0.95 (region (I) near the compression apex),
although it required the highest NOIs to pull-back the trial stress on to the yield sur-
face. In addition, at the deviatoric plane near the decompression apex (region (V) for
all models where p/pcT = 0.2), the returned stresses had the largest deviation from the
exact solution. These errors were higher for the yield surface with shape parameters
α = γ = 0.5, compared to the other two surfaces; up to 20% errors were measured for
the elastic trial strains that were almost seven times larger than the deviatoric yield value
(q tr i al /qy ≈ 7).

All trial stresses on the deviatoric planes located at p/pcT ≥ 0.6 (regions (I), (II) and
(III)) were returned back on to the yield surface with high accuracy (errors less than 4%).
Errors started to build up as p/pcT decreased. A maximum error of 10% was measured
for trial stresses on the deviatoric planes located at p/pcT = 0.4 and normalised magni-
tudes of q tr i al /qy = 7, which is a reasonable result for such large strain increments.

In conclusion, the proposed stress integration algorithm maps large elastic devia-
toric strains at deviatoric planes located at p/pcT ≥ 4 on to the yield surface with high
accuracy. For deviatoric planes located at low hydrostatic pressures (e.g. p/pcT < 0.4),
smaller elastic strains converged with a reasonable accuracy.
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Figure 4.7: Maps of iso-error (left) and numbers of iterations (right) required for convergence corresponding
to the single elastic trial strain on deviatoric planes located at (I) p/pcT = 0.95, (II) p/pcT = 0.8, (III)

p/pcT = 0.6, (IV) p/pcT = 0.4, (V) p/pcT = 0.2 (a) and (b) for the model with α= γ=−0.5; (c) and (d) for the
model with α= γ= 0; (e) and (f) for the model with α= γ= 0.5.
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4.5.5. CONVERGENCE ANALYSIS AT THE MATERIAL POINT (GAUSSIAN

POINT )
The effectiveness of the proposed return mapping algorithm was investigated by
analysing the stress convergence at different locations on a stress path, at the mate-
rial point (Gauss point) level. Material parameters were set to K̄ = 50, Ḡ = 150, n = 1,
λ = 0.15, κ = 0.03, Mc0 = 0.85, ρ∗ = 0.8 and α = γ = 0.5, and the hydrostatic extent of
the yield surface was initially set to pcT = pa . The material was subjected to drained
isotropic compression starting from an isotropic stress state at the reference pressure,
(p, q) = (pa ,0) to (p, q) = (400 kPa,0). This was followed by shearing of the material under
undrained conditions by subjecting the return mapping algorithm to strain increments
of ∆ε= 1×10−4 [1 0 0; 0 -0.5 0; 0 0 -0.5]. The stress path in p-q stress space and the de-
viatoric stress versus deviatoric strain curve are shown, respectively, in Figure 4.8a and
Figure 4.8b. Three points on the stress path, corresponding to loading steps of 5, 30 and
200 (demonstrated by open circles on the stress path and stress-strain curves in Figure
4.8a) were selected to investigate the convergence behaviour of the residuals (|R1|, R2

and R3) and residual stress. These loading steps were specifically selected to assess the
convergence behaviour at the initial stage of shearing (step 5), Critical State conditions
(step 200) and a location on the stress-strain curve with the highest change in gradients
(step 30). The convergence of the residual stress, Rσ, was measured via

Rσ =
√(

σest −σ∗)
:
(
σest −σ∗)

(4.51)

where σest is the estimated stress at each iteration and σ∗ is the stress at the end of the
iteration process.

The convergence of residuals, |R1|, R2 and R3, and their rate of convergence are, re-
spectively, shown for each of the studied loading steps in Figure 4.8c and Figure 4.8d.
In Figure 4.8e the residual stresses at each iteration, normalised with respect to the ini-
tial residual stress, are shown for each of the studied loading steps. It was observed that
convergence of the residuals and stress residuals were obtained with 4 iterations for all
loading steps with a quadratic pattern; i.e., the residuals and residual stresses reduced
and converged quadratically. This is also demonstrated in Figure 4.8d and Figure 4.8f,
where the residuals and residual stresses at each iteration are plotted against their cor-
responding previous step. The gradients of these lines indicated that the convergence
rates for all the studied steps were equal or close to a value of two, which represented a
quadratic convergence rate.
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Figure 4.8: (a) Stress path in p-q stress space; (b) stress-strain curve; (c) residuals with respect to iteration
number; (d) rate of convergence of residuals for the studied loading step; (e) normalised residual stress with

respect to iteration number for the studied loading steps; (f) rate of convergence of residual stress for the
studied loading step
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4.6. NUMERICAL EXAMPLES
In Section 4.5 the performance of the return mapping algorithm was investigated locally
on a Gaussian point. However, it is also essential to check the stability of the algorithm
within the context of a finite element formulation when the algorithm is subjected to
thermo-mechanical stress paths and when using different material parameters. There-
fore, the implicit stress integration algorithm of the current thermomechanical model
was implemented in the DIANA FEA finite element software via a user-defined subrou-
tine. DIANA FEA supports the use of user-defined material models with hydro and ther-
mal analyses in a fully coupled solution procedure. In this section, DIANA FEA is used to
investigate the thermo-mechanical behaviour of fine-grained soils observed in triaxial
and oedometer experimental soil mechanics tests subjected to various thermomechani-
cal stress paths, along with a sensitivity analysis on the parameters of the material model.

4.6.1. TRIAXIAL TEST

A schematic view of the triaxial test is shown in Figure 4.9a. A cylindrical fine-grained soil
specimen, with a height and diameter of 200 mm and 100 mm, respectively, is bounded
between rigid plates on the top and the bottom. The specimen is subjected to a hydro-
static pressure σ3 and an axial stress σ1, which is the addition of σ3 and σd (the de-
viatoric stress). Due to symmetry of the loading, boundary conditions and geometry,
this test was modelled with a 2D axisymmetric formulation in FEM. The finite element
model incorporating boundary conditions and FE mesh are shown in Figure 4.9b. The
bottom rigid plate is modelled via vertical supports in which vertical displacements at
bottom nodes were prevented. The top rigid plate applies uniformly distributed vertical
displacements to the top of the soil specimen. This was modelled by relating the dis-
placements of the top nodes of the soil specimen (slave nodes) to the displacement of
the master node located at the top (along the axis of symmetry). The axial force is then
applied on the master node. Therefore, any displacements, due to vertical force applied
on this node, results in the same amount of displacement for all the nodes at the top of
the soil specimen. Also, the hydrostatic pressure was modelled by applying a traction to
the nodes on the right boundary of the soil specimen.

TRIAXIAL REFERENCE MODEL ( TRM)
The soil specimen in the triaxial reference model is subjected to three thermomechanical
stress path phases:

1. Initial phase: A normally consolidated soil with an apparent pre-consolidation
pressure (pcT ) set to 50 kPa is subjected to an internal and external hydrostatic
pressure of σ3 = 50 kPa at ambient temperature (T = 20°C) (the material is ini-
tially in an isotropic stress state);

2. Heating phase: While the hydrostatic pressure was kept constant and the speci-
men was free to expand/shrink radially, the specimen was incrementally heated
from the top, bottom and side boundaries to the target temperature T = 40°C.
Sufficient time was allowed to reach a uniformly distributed temperature in all
the elements.
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3. Mechanical phase: After the completion of the heating phase, the axial load
on the top boundary of the specimen was increased with displacement-
controlled increments to reach a deviatoric strain (εs ) level of 0.4 (40 %).

The above procedure represents a triaxial test subjected to compression and heating un-
der drained conditions, where the material followed a stress path with ∆q/∆p = 3 in the
mechanical compression phase (Figure 4.10a).

(a) (b)

Figure 4.9: (a) Schematic view of triaxial test in the laboratory; (b) Finite element model of the triaxial test in
DIANA FEA software
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Figure 4.10: (a) Stress path of the reference model (triaxial compression test); (b) triaxial extension test stress
paths

* TRM: Triaxial reference model

The parameters used in the reference model are presented in Table 4.2.
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Table 4.2: Model parameters

α (-) γ (-) ρ∗ (-) Mc0 (-) π∗ (1/K) Ḡ (-) K̄ (-) n (-) λ (-) κ (-) µ0 (1/K) α∗ (1/K)
0 0 1.0 0.85 0.000 900 350 0.5 0.2 0.09 0.005 −3.04∗10−5

In the following tests, the influence of the material parameters on the thermomechani-
cal response of the specimen is studied.

In Figure 4.11 the thermomechanical response of FEM models, subjected to target
temperatures of 20°C (not heated), 60°C and 80 °C in the heating phase, are compared
to the response of the reference model (heated to 40°C). The material parameters of the
reference model were used for all the simulations. It is observed that, as the tempera-
ture increased, the thermally induced volumetric strains (developed during the heating
phase) increased (i.e., the material shrank more) (Figure 4.11a and Figure 4.11c), which
is consistent with laboratory observations. Figure 4.11b shows the variation of deviatoric
stress (q) versus deviatoric strain (εs ) of all the models, which followed the same curve
of the reference model. This response is due to the use of a temperature-independent
Critical State parameter (π∗ = 0). Therefore, all the models reached the same deviatoric
stress when subjected to mechanical loads.

The effect of the thermal shrinkage parameterµ0 on the thermomechanical response
of the material is shown in Figure 4.12. Both simulations (i.e., the reference model us-
ing µ0 = 0.005 and µ0 = 0.010) were heated from the ambient temperature to 40°C in the
heating phase. It is observed from Figure 4.12a and Figure 4.12c that, as µ0 increased, a
larger thermally-induced volumetric strain was produced during the heating phase.

Figure 4.13 presents the effect of temperature-dependency of the Critical State pa-
rameter (π∗) on the thermomechanical behaviour of the model. The thermomechanical
responses of two simulations with π∗ = 0.002 and π∗ = −0.002 (while other parameters
remained identical to those of the reference model) are compared to the response of
the reference model (π∗ = 0). The parameter did not affect the thermally-induced vol-
umetric strain during heating. This behaviour is due to the freedom of the specimen to
expand/shrink during heating (i.e., no vertical and radial constraints). However, as the
material is subjected to mechanical loads, the models using π∗ = 0.002 and π∗ =−0.002
reached a higher and lower deviatoric stress (and therefore Critical State stress ratio),
respectively, compared to the deviatoric stress of the reference model (π∗ = 0) (Figure
4.13b). Due to the development of shear stresses and shear strains during mechanical
loading, the mechanically-induced volumetric strains are influenced by the parameter
which increased as π∗ increased (Figure 4.13a and Figure 4.13c).

The effect of the shape parameters (α and γ) on the response of the material sub-
jected to identical thermo-mechanical stress paths as the reference model ((α,γ) = (0,0);
i.e., the MCC elliptical shape) are presented in Figure 4.14 for yield surfaces using (α,γ) =
(0.5,0.5) and (α,γ) = (−0.5,−0.5) (yield surfaces similar to Figure 4.1). It is evident that,
in comparison with the reference model, a softer or stiffer response can be predicted by
altering the shape parameters (while other parameters remain identical to the reference
model). With the use of the yield surface with shape parameters (α,γ) = (0.5,0.5) a stiffer
deviatoric response and lower volumetric response was obtained, while a softer devia-
toric behaviour accompanied with higher volumetric strain was observed when using
the yield surface (α,γ) = (−0.5,−0.5).
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Figure 4.11: Effect of temperature on the material’s thermomechanical response in triaxial test (a) εv vs.p; (b)
q vs. εs ; (c) εv vs. εs

* TRM: Triaxial reference model
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Figure 4.12: Effect of parameter µ0 on the material’s thermomechanical response in triaxial test (a) εv vs.p; (b)
q vs. εs ; (c) εv vs. εs

* TRM: Triaxial reference model
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The effect of over-consolidation ratio (OCR = p/pcT ) is shown in Figure 4.15. In the
initial phase step, the initial apparent pre-consolidation pressures (pcT ) were set to 50
(the reference model), 75, 150, 200, 250 and 300 kPa to form initial stress states at OCRs
of 1.0, 1.5, 3.0, 4.0, 5.0 and 6.0, respectively. During the heating phase no thermally-
induced plastic strains were produced for models with OCR > 1 and the material re-
sponded thermo-elastically (Figure 4.15a). During the mechanical loading phase, an
elastic response was observed for models with OCR > 1 until the stress state of the mate-
rial encountered the yield surface, after which an elasto-plastic response was obtained
(Figure 4.15a). As the OCR increased, a larger dilation was observed (i.e., increase in
volumetric strain) (Figure 4.15a and Figure 4.15c). In addition, higher peak deviatoric
stresses were obtained for models with higher OCRs, followed by a softening in which all
the models reached an identical deviatoric stress at large deviatoric strains, indicating
that the Critical State conditions were reached (Figure 4.15b).

In the previous analyses all models were subjected to compression loading in the
mechanical phase, where the deviatoric stress q increased with an increase in mean ef-
fective stress p, and the stress path shown in Figure 4.10a was followed. However, the
Lode angle dependency of the material model is not observed with such a stress path.
To investigate the role of LAD on the mechanical response, the mechanical phase step
in the reference model was modified to extension loading. Extension loading was simu-
lated by decreasing the axial force (in the mechanical phase step), where deviatoric stress
q was developed as the mean effective stress p decreased following the stress path pre-
sented in Figure 4.10b. The thermomechanical responses of the material using ρ∗ = 1.0,
0.9, 0.8, 0.7 and 0.6 are shown in Figure 4.16. As ρ∗ decreased, the deviatoric stress (and
stress ratio) at large deformations (representing the Critical State conditions) decreased
(Figure 4.16b). In addition, slightly higher mechanically-induced volumetric strains were
developed for models using higher ρ∗.
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Figure 4.13: Effect of parameter π∗ on the material’s thermomechanical response in triaxial test (a) εv vs.p;
(b) q vs. εs ; (c) εv vs. εs

* TRM: Triaxial reference model
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Figure 4.14: Effect of shape parameters (α and γ) on the material’s thermomechanical response in triaxial test
(a) εv vs.p; (b) q vs. εs ; (c) εv vs. εs

* TRM: Triaxial reference model
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Figure 4.15: Effect of OCR on the material’s thermomechanical response in triaxial test (a) εv vs.p; (b) q vs. εs ;
(c) εv vs. εs

* TRM: Triaxial reference model
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Figure 4.16: Effect of Lode angle dependency on the material’s thermomechanical response in triaxial test (a)
εv vs.p; (b) q vs. εs ; (c) εv vs. εs
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4.6.2. OEDOMETER TEST
The schematic view of an oedometer test is shown in Figure 4.17a. A cylindrical fine-
grained soil specimen with a height and diameter of 20 mm and 75 mm, respectively, is
placed in a rigid mould and subjected to a vertical stress σv via a rigid load cap. Due
to symmetry in the loading, boundary conditions and geometry, this test was modelled
with a 2D axisymmetric formulation in FEM. The finite element model, including the
boundary conditions and mesh, is shown in Figure 4.17b. The rigid mould is modelled
using horizontal supports on the right boundary of the model, and vertical supports on
the bottom boundary of the model, which prevents displacements in the horizontal and
vertical directions, respectively. Considering a rigid load cap, the soil specimen is sub-
jected to uniformly distributed vertical displacements at the top boundary. To model this
loading condition, the vertical displacements of all the nodes of the soil specimen at the
top boundary (slave nodes) are connected to the vertical displacement of the top node
along the axis of symmetry (master node), and the vertical stress was applied on the top
boundary. Consequently, all the top nodes follow the same amount of displacement as
the master node due to the loading.

OEDOMETER REFERENCE MODEL (ORM)
The soil specimen in the reference model is subjected to four thermomechanical phases:

1. Initial phase: A normally consolidated soil with an apparent pre-consolidation
pressure (pcT ) of 50 kPa is subjected to an external vertical force equal to a vertical
stress of σv = 50 kPa and an internal pressure of 50 kPa at ambient temperature
(T = 20°C) (the material is initially in an isotropic stress state);

2. First compression loading phase: At ambient temperature, the vertical load on the
top boundary of the specimen was increased with stress-controlled increments
from σv = 50 kPa to σv = 100 kPa;

3. Thermal cycle phase: While the vertical stress was kept constant, the specimen
was incrementally heated from the top, bottom and side boundaries to the tar-
get temperature T = 40°C. This procedure was followed by a cooling phase to the
ambient temperature. A sufficient amount of time was allowed for both thermal
phases to reach a uniformly distributed temperature in all the elements.

4. Second compression loading phase: After the completion of the thermal cycle
phase, the vertical load on the top boundary of the specimen was increased with
stress-controlled increments to reach a vertical stress of 150 kPa (at ambient tem-
perature).

Note that the parameters presented in Table 4.2 were used for the material in the refer-
ence model.
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(a) (b)

Figure 4.17: (a) Schematic view of oedometer test in the laboratory; (b) finite element model of the oedometer
test

In Figure 4.18 the thermomechanical response of FEM models of the oedometer test,
subjected to target temperatures of 20°C (unheated), 60°C and 80°C in the heating phase
followed by cooling to the ambient temperature, are compared to the responses of the
reference model (heated to 40°C). The material parameters of the reference model were
used for all the simulations. The variation of volumetric strain with vertical stress (εv

versus σv ) and the variation of apparent pre-consolidation pressure versus temperature
(T versus pcT ) are shown in Figure 4.18a and Figure 4.18b, respectively, for the entire
thermomechanical stress path. All the models had an identical volume reduction ver-
sus vertical stress when following the first compression loading phase. As the tempera-
ture incrementally increased during the heating phase, pcT tended to decrease due to
thermal shrinkage and, at the same time, increased due to volumetric strain hardening
(Eq. (4.20)), with an overall increase (Figure 4.18b). At the end of the thermal cycle phase
pcT was higher than the stress state of the material, inferring that the material was in an
over-consolidated state. Thus, at the beginning of the second compression loading phase
the material responded elastically until the stress state of the material encountered the
yield surface, after which an elasto-plastic response was observed (a bilinear response
in the second compression loading phase in Figure 4.18a). As the temperature increased,
larger thermally-induced volumetric strains were produced (Figure 4.18a) and thus the
material attained a higher pcT (Figure 4.18b).

The effect of the thermal shrinkage parameterµ0 on the thermomechanical response
of the material in the oedometer test is shown in Figure 4.19. All simulations (mod-
els using µ0 = 0.005 (reference model), µ0 = 0.001 and µ0 = 0.01) were heated from the
ambient temperature to 40°C in the heating phase and cooled back to the ambient tem-
perature. It is observed in Figure 4.19a and Figure 4.19b that, as the µ0 increased, larger
thermally induced volumetric strains were produced during the heating phase and the
material had a higher pcT at the end of the thermal cycle. This led to a larger elastic re-
sponse upon loading in the second compression loading phase.

In an oedometer test, due to the loading path and the constraints imposed by the
rigid mould, the deviatoric stress q is developed as the specimen is subjected to a ver-
tical force. Thus the temperature-dependency of the Critical State parameter (π∗) may
affect the thermomechanical behaviour of the model, which is shown in Figure 4.20. The
thermomechanical responses of two simulations using π∗ = 0.01 and π∗ =−0.01 (while
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other parameters are identical to those of the reference model) are compared to the re-
sponses of the reference model (π∗ = 0) when they are subjected to a thermal cycle of
20°C-40°C-20°C. It was observed that lower values of π∗ (e.g. π∗ = −0.01) lead to the
larger development of thermally-induced volumetric strains and thus higher pcT at the
end of the thermal cycle. This infers that the material attains a higher over-consolidated
state. Therefore, a larger elastic response was observed, initially after further compres-
sion (the second compression loading phase).

The influence of the initial over-consolidation ratio (OCR = p/pcT ) on the thermo-
mechanical response of the model is presented in Figure 4.21. In the initial phase step,
the initial (apparent) pre-consolidation pressures (pcT ) were set to 50 (the reference
model), 75, 100 and 150 kPa to form OCRs of 1.0, 1.5, 2.0 and 3.0, respectively, and the
parameters of the material model were set to be identical to the reference model. For
FEM models with material stress states at OCR = 1.0 and 1.5, thermally-induced (plas-
tic) volumetric strains were developed from the beginning of the heating phase (Figure
4.21a) and thus pcT further increased (Figure 4.21b) with temperature increase. On the
other hand, for the model with a material at OCR = 2.0, the initial response to heating
was observed to be thermo-elastic and toward the end of heating phase the response be-
came thermo-elasto-plastic. For the model with a material initial state at OCR= 3.0, the
stress state of the material remained inside the yield surface and thus the entire response
was thermo-elastic without significant changes in pcT . The stress state of the material
also remained inside the yield surface upon further compression and thus the material
responded elastically.

In conclusion, the return mapping algorithm was subjected to various thermo-
mechanical paths, along with a wide range of material parameters. All simulations were
stable, which indicates that the material tangent stiffness matrix was assembled within
the global stiffness matrix (finite element) without difficulties.
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Figure 4.18: Effect of temperature on the material’s
thermomechanical response in oedometer test (a) εv

vs. σv ; (b) T vs. pcT
* ORM: Oedometer reference model
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Figure 4.19: Effect of parameter µ0 on the material’s
thermomechanical response in oedometer test (a) εv

vs. σv ; (b) T vs. pcT
* ORM: Oedometer reference model
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Figure 4.20: Effect of parameter π∗ on the material’s
thermomechanical response in oedometer test (a) εv

vs. σv ; (b) T vs. pcT
* ORM: Oedometer reference model
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Figure 4.21: Effect of OCR on the material’s
thermomechanical response in oedometer test (a) εv

vs. σv ; (b) T vs. pcT
* ORM: Oedometer reference model
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4.7. CONCLUSION

A new implicit stress integration technique for elasto-plastic models, with elasticity re-
lationships derived from a Gibbs energy potential function, was proposed. The pro-
posed stress integration technique was then employed to implement the thermome-
chanical model developed in Chapter 2 (with some modifications) in a finite element
boundary-value solver via a user-defined material subroutine. The model was devel-
oped within the framework of hyperplasticity and many features of fine-grained soils,
including non-linear elasticity, flexible yield surface, non-associated flow rule, Lode
angle dependency, thermo-elastic expansion, thermal shrinkage of the yield surface
and temperature-dependent Critical State stress ratio were embedded in the Gibbs en-
ergy potential and rate of dissipation potential functions. The accuracy, robustness
and effectiveness of the stress integration algorithm of the thermomechanical consti-
tutive model was thoroughly investigated via studying iso-error plots, iteration-stress
maps and Gudehus plots, and the residuals and stress convergence were checked to be
quadratic. Implementing the thermomechanical model within the DIANA FEA finite
element software allowed a rigorous investigation of the stability performance of the
algorithm and the constitutive model. An extensive number of finite element models
subjected to various sophisticated mechanical and thermal cycle loading paths, similar
to those encountered in thermomechanical drained triaxial and oedometer laboratory
soil tests, were simulated and the role of the constitutive model parameters on the per-
formance of the model and the algorithm was investigated. In all examples, the finite
element model was stable. The analyses demonstrated in this chapter suggest that the
thermo-mechanical constitutive model and the proposed stress integration approach
show potential for simulating the thermo-mechanical behaviour of thermo-active geo-
structures, such as energy-piles using finite element software. It is important to note that
the current study only explored triaxial conditions and one-dimensional conditions, and
other load conditions prevalent in thermo-active piles were not comprehensively tested.
Hence, further investigations are needed to fully validate this model and approach under
more diverse and complex conditions.
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4.A. APPENDIX A: RATES OF STRESS INVARIANTS AND THEIR

DERIVATIVES WITH RESPECT TO STRESS TENSOR
Rate and derivative of the hydrostatic pressure, p:

ṗ = 1

3
1 : σ̇ (4.A.1a)

∂p

∂σ
= 1

3
1 (4.A.1b)

Rate and derivative of the deviatoric stress tensor, s:

ṡ =
(

I− 1

3
1⊗1

)
σ̇ (4.A.2a)

∂s

∂σ
= I− 1

3
1⊗1 (4.A.2b)

where I is the fourth-order identity tensor and 1 is the second-order identity tensor.
Rate and derivative of the deviatoric stress, q:

q̇ =
√

3

2
n̂ : σ̇ (4.A.3a)

∂q

∂σ
=

√
3

2
n̂ (4.A.3b)

where n̂ is the direction (norm) of deviatoric stress tensor (or deviatoric strain tensor,
since they are coaxial):

n̂ = s

∥ s ∥ = s

(s : s)
1
2

=
√

3

2

s

q
(4.A.4)

Rate and derivative of the second stress invariant, J :

J̇ =
p

3

2

s

q
: σ̇= s

2 j
: σ̇ (4.A.5a)

∂J

∂σ
=

p
3

2

s

q
= s

2J
(4.A.5b)
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Rate and derivative of the third stress invariant, S:

Ṡ = 1

3S2

(
s̃− 2

3
J 21

)
: σ̇ (4.A.6a)

∂S

∂σ
= 1

3S2

(
s̃− 2

3
J 21

)
(4.A.6b)

where

s̃ = s̃i j = si r sr j =
s1r sr 1 s1r sr 2 s1r sr 3

s2r sr 1 s2r sr 2 s2r sr 3

s3r sr 1 s3r sr 2 s3r sr 3

 (4.A.7)

Rate and derivative of the Lode angle, θ:

θ̇ =
p

3

2Jcos3θ

(
s̃

J 2 − 2

3
1− 3

p
2

2

(
S

J

)3

n̂

)
: σ̇ (4.A.8a)

∂S

∂σ
=

p
3

2Jcos3θ

(
s̃

J 2 − 2

3
1− 3

p
2

2

(
S

J

)3

n̂

)
(4.A.8b)

4.B. APPENDIX B: COEFFICIENTS OF DERIVATIVES
Coefficient A:

A = ∂R1

∂σn+1
=− ∂2g1

∂σn+1∂σn+1
+∆Λ ∂r

∂σn+1
(4.B.1)

where − ∂2g1
∂σn+1∂σn+1

=c and ∂r
∂σn+1

are computed respectively, via Eqs. (4.E.11) and (4.D.5).

Coefficient B:

B = ∂R1

∂pn+1
cT

=∆Λ ∂r

∂pn+1
cT

(4.B.2)

where ∂r
∂pn+1

cT
is computed via Eq. (4.D.14).

Coefficient F:

F = ∂R1

∂∆Λ
= r (4.B.3)

where r is calculated via Eq. (4.D.1).

Coefficient HT:

HT = ∂R2

∂σn+1
= ∂R2

∂∆ε
p
kk

∂∆ε
p
kk

∂σn+1
=−∆Λ1+e0

λ−κ
∂rp

∂σn+1
e

1+e0
λ−κ −µ0∆T (4.B.4)
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where
∂rp

∂σn+1
is computed via Eq. (4.D.3).

Coefficient ω:

ω= ∂R2

∂pn+1
cT

= 1

pn
cT

−∆Λ1+e0

λ−κ
∂rp

pn+1
cT

e
1+e0
λ−κ −µ0∆T (4.B.5)

where
∂rp

pn+1
cT

is computed via Eq. (4.D.15).

Coefficient ρ:

ρ = ∂R2

∂∆Λ
= ∂R2

∂∆ε
p
kk

∂∆ε
p
kk

∂∆Λ
=−rp

1+e0

λ−κ e
1+e0
λ−κ −µ0∆T (4.B.6)

Coefficient ET:

ET = ∂R3

∂σn+1
= ∂y

∂σn+1
(4.B.7)

where ∂y
∂σn+1

is calculated via Eq. (4.C.1).

Coefficient ϖ:

ϖ= ∂R3

∂pn+1
cT

= ∂y

∂pcT
(4.B.8)

where ∂y
∂pcT

is computed via Eq. (4.C.11).

Coefficient ϑ:

ϑ= ∂R3

∂∆Λ
= ∂y

∂∆Λ
= 0 (4.B.9)

4.C. APPENDIX C: DERIVATIVES OF THE YIELD SURFACE
Derivative of the yield surface, y, with respect to stress tensor σ:
The derivative of a yield surface, defined by stress invariants p, q and θ (y = y(p, q,θ)),
with respect to the stress tensor, is

∂y

∂σ
= n = ∂y

∂p

∂p

∂σ
= ∂y

∂q

∂q

∂σ
= ∂y

∂θ

∂θ

∂σ
(4.C.1)

where ∂p
∂σ , ∂q

∂σ and ∂θ
∂σ are determined, respectively, in Eqs. (4.A.1), (4.A.3) and (4.A.8). For

the current yield function (Eq. (4.E.14)), the derivatives with respect to stress invariants
are

∂y

∂p
= rp + ∂y

∂A

∂A

∂p
+ ∂y

∂B

∂B

∂p
(4.C.2)
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∂y

∂q
= rq (4.C.3)

∂y

∂θ
= ∂y

∂B

∂B

∂θ
(4.C.4)

and

∂y

∂A
=−2

(
p −C

)2

A3 (4.C.5)

∂y

∂B
=−2

q2

B 3 (4.C.6)

∂y

∂C
=−2

(
p −C

)
A2 (4.C.7)

and

∂A

∂p
=−γ

π

(
1+γ2

(
1

2

p

pcT

)2)−1

(4.C.8)

∂B

∂p
=α B

pcT
(4.C.9)

∂B

∂θ
= ∂B

∂M̄

∂M̄

∂θ
= 3

4

B
(
1− (

ρ∗)4
)

cos3θ

1+ (
ρ∗)4 −

(
1− (

ρ∗)4
)

si n3θ
(4.C.10)

Derivative of the yield surface, y, with respect to pcT :

∂y

∂pcT
= ∂y

∂A

∂A

∂pcT
+ ∂y

∂B

∂B

∂pcT
+ ∂y

∂C

∂C

∂pcT
(4.C.11)

where

∂A

∂pcT
= A

pcT
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γp

πpcT
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− p

pcT
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(4.C.12)

∂B

∂pcT
=−αB

(
p −C

)(
pcT

)2 + ∂B

∂C
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∂pcT
(4.C.13)

∂C

∂pcT
= C

pcT
(4.C.14)

∂B
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= B

(
1
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− α

pcT
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4.D. APPENDIX D: PLASTIC FLOW TENSOR AND ITS DERIVA-
TIVES

Plastic flow tensor is determined using its invariants rp and rq as

r = rp
∂p

∂σ
+ rq

∂q

∂σ
= 1

3
rp 1+

√
3

2
n̂ (4.D.1)

The derivative of plastic flow with respect to stress tensor, σ, is

∂r

∂σ
= 1

3

∂rp

∂σ
1+

√
3

2

∂rq

∂σ
n̂+

√
3

2
rq
∂n̂

∂σ
(4.D.2)

rp and rq may be dependent on the stress invariants (p, q and θ). Thus, their deriva-
tive with respect to the stress tensor results in

∂rp

∂σ
= ∂rp

∂p

∂p

∂σ
+ ∂rp

∂q

∂q

∂σ
+ ∂rp

∂θ
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3
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2

∂rp

∂q
n̂+

p
3
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S
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) (4.D.3)

∂rq
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Further substituting Eqs. (4.D.3) and (4.D.4) in Eq. (4.D.2) results in the following
fourth-order tensor:

∂r

∂σ
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∂σ
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(
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(
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J
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q
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)
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2
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∂rp
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(s̃⊗1) (4.D.5g)

(
∂r

∂σ

)
7
= 3

2
p

2 j 3cos3θ

∂rq

∂θ
(s̃⊗ n̂) (4.D.5h)

and
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∂p
= 2

A2 + ∂rp

∂A

∂A

∂p
(4.D.6)

∂rp

∂q
= 0 (4.D.7)

∂rp

∂θ
= 0 (4.D.8)

∂rq
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= ∂rq

∂B

∂B
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(4.D.9)

∂rq

∂q
= 2

B 2 (4.D.10)

∂rq
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= ∂rq

∂B

∂B

∂θ
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where

∂rp

∂A
=−4

(
p −C

)
A3 (4.D.12)

∂rq

∂B
=−4

q

B 3 (4.D.13)

The derivative of plastic flow tensor with respect to pcT is

∂r

∂pcT
= 1

3

∂rp

∂pcT
1+

√
3

2

∂rq

∂pcT
n̂ (4.D.14)

where

∂rp

∂pcT
= ∂rp

∂A

∂A

∂pcT
+ ∂rp

∂C

∂C

∂pcT
(4.D.15)

∂rq

∂pcT
= ∂rp

∂B

∂B

∂pcT
(4.D.16)
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4.E. APPENDIX E: FIRST AND SECOND DERIVATIVES OF

THE GIBBS (COMPLEMENTARY ) ENERGY POTENTIAL AT

ISOTHERMAL CONDITIONS
The Gibbs energy potential at isothermal conditions (Eq. (4.6)) is a function of p and q .
By using the chain rule, the elastic strain tensor is derived:

εe =−∂g1
(
p, q

)
∂σ

=−
(
∂g1

∂p

∂p

∂σ
+ ∂g1

∂q

∂q

∂σ

)
(4.E.1)

In addition, ∂g1
∂p = εe

v and ∂g1
∂p = εe

s (according to hyperplasticity theory), and by substi-
tuting Eqs. (4.A.1) and (4.A.3) in Eq. (4.E.1), the elastic strain tensor is determined:

εe = ∂g1

∂σ
= 1

3
εe

v 1+
√

3

2
εe

s n̂ (4.E.2)

The rate of elastic strain tensor is

ε̇e = 1

3
ε̇e

v 1+
√

3

2
ε̇e

s n̂+
√

3

2
˙̂n (4.E.3)

For the above equation, ε̇e
v , ε̇e

s and ˙̂n need to be determined.
With two times differentiating the Gibbs (complementary) energy potential, g1, with

respect to p and q , the elastic constitutive relationship is derived:

{
ε̇e

v
ε̇e

s

}
=

[
ce

11 ce
12

ce
21 ce

22

]{
ṗ
q̇

}
=−

 ∂2g1
∂p∂p

∂2g1
∂q∂p

∂2g1
∂p∂q

∂2g1
∂q∂q

{
ṗ
q̇

}
(4.E.4)

where C e
21 =C e

12. Substituting Eqs. (4.A.1) and (4.A.3), respectively, for ṗ and q̇ results in

ε̇e
v =

(
1

3
C e

111+
√

3

2
C e

12n̂

)
: σ̇ (4.E.5)

ε̇e
s =

(
1

3
C e

211+
√

3

2
C e

22n̂

)
: σ̇ (4.E.6)

The derivative of n̂ with respect to stress tensor, σ, is

∂n̂

∂σ
= 1

∥ s ∥
(
∂s

∂σ
− s

∥ s ∥
∂ ∥ s ∥
∂σ

)
= 1

∥ s ∥
(
∂s

∂σ
− n̂

∂ ∥ s ∥
∂σ

)
(4.E.7)

where

∂ ∥ s ∥
∂σ

(4.E.8)
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Further substituting Eqs. (4.A.2) and (4.E.8) in Eq. (4.E.7), lead to

∂n̂

∂σ
=

√
3

2

1

q

(
I− 1

3
1⊗1− n̂⊗ n̂

)
(4.E.9a)

˙̂n =
√

3

2

1

q

(
I− 1

3
1⊗1− n̂⊗ n̂

)
: σ̇ (4.E.9b)

Substituting Eqs. (4.E.5), (4.E.6) and (4.E.9) in Eq. (4.E.3), the incremental elastic strain
tensor is derived:

ε̇e = c : σ̇ (4.E.10)

where c is the fourth-order elastic compliance tensor:

c = 3

2

εe
s

1
I+

(
1

9
C e

11 −
1

2

εe
s

q

)
(1⊗1)+

√
1

6
C e

12 (n̂⊗1+1⊗ n̂)+ 3

2

(
C e

22 −
εe

s

q

)
(n̂⊗ n̂) (4.E.11)

The above equation also serves as the second derivative of Gibbs energy potential with
respect to the stress tensor, σ:

c =− ∂2g1

∂σ∂σ
(4.E.12)

For the Gibbs energy potential defined for n ̸= 1 (Eq. (4.E.7)), it follows that

C e
11 =

1

K̄ (1−n) p1−n
a pn

o

(
1− np2

p2
o

)
(4.E.13a)

C e
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1

3Ḡp1−n
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o
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1− nK̄ (1−n) q2

3Ḡp2
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)
(4.E.13b)

C e
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(4.E.13c)

εe
s =−∂g1

(
p, q

)
∂q

= q

3Ḡp1−n
a pn

o
(4.E.13d)

For the Gibbs energy potential with n = 1 (Eq. (4.E.7)), it follows that

C e
11 =

1

K̄p

(
1+ K̄

3Ḡ

q2

p2

)
(4.E.14a)

C e
22 =

1

3Ḡp
(4.E.14b)
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C e
21 =C e

12 =− 1

3Ḡ

q

p2 (4.E.14c)

εe
s =−∂g1

(
p, q

)
∂q

= q

3Ḡp
(4.E.14d)

Note that, for the case of n = 1,
εe

s
q =C e

22, so that the elastic compliance tensor reduces to

c = 3

2
C e

22I+
(

1

9
C e

11 −
1

2
C e

22

)
(1⊗1)+

√
1

6
C e

12 (n̂⊗1+1⊗ n̂) (4.E.15)

4.F. APPENDIX F: TRIAL STRESS TENSOR
The elastic volumetric strain and the elastic deviatoric strain (εe

v and εe
s ) are calculated,

respectively, as the derivative of Gibbs energy potential under isothermal conditions
with respect to p and q . For the Gibbs energy potential defined for n ̸= 1 (Eq.4.E.7),
these variables are

εe
v =−∂g1

(
p, q

)
∂p

= 1

K̄ (1−n)

(
p

p1−n
a pn

o
−1

)
(4.F.1a)

εe
v =−∂g1

(
p, q

)
∂q

= q

3Ḡp1−n
a pn

o
(4.F.1b)

For the Gibbs energy potential with n = 1 (Eq. (4.E.7)), these variables are

εe
v =−∂g1

(
p, q

)
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= 1
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ln
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− q2

6Ḡp2
(4.F.2a)

εe
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(
p, q

)
∂q

= q

3Ḡp
(4.F.2b)

By combining the elastic deviatoric strain with the elastic volumetric strain, it is possible
to obtain (trial stress invariants) p and q which are defined by elastic strain increments.
For Gibbs energy potential with n ̸= 1, they are

p = pa
(
K̄ (1−n)εe

v +1
) 1

1−n

(
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(
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(4.F.3a)

q =
(

3Ḡεe
s

K̄ (1−n)εe
v +1

)
p (4.F.3b)

and for the Gibbs energy potential with n = 1, these variables are

p = paexp

(
K̄ εe

v +
3ḠK̄

2

(
εe

s

)2
)

(4.F.4a)

q = 3Ḡεe
s p (4.F.4b)





5
A THERMO-MECHANICAL TWO

SURFACE/BUBBLE MODEL FOR

FINE-GRAINED SOILS

The formulation of a two surface/bubble thermo-mechanical constitutive model consis-
tent with the principles of thermodynamics is presented. This allows plastic deformations
inside the outer yield surface, resulting in a smooth stress-strain prediction and progres-
sive cyclic deformations. This is achieved by the translation of the inner yield surface (also
known as the bubble surface) with the stress state of the soil, inside the outer yield sur-
face, by using a kinematic rule. The constitutive equations, including the hardening rules,
are derived by specifying a Gibbs-type energy potential and a rate of dissipation poten-
tial function, ensuring thermodynamic consistency. The kinematic rule is divided into
isothermal and non-isothermal parts. With the isothermal component, the model is ca-
pable of capturing the hysteresis behaviour of soils during cyclic mechanical loading. With
the non-isothermal part, the model is able to predict the shakedown behaviour of soils ob-
served when they are subjected to heating-cooling cycles. The performance of the model is
compared with various experimental data for isothermal and non-isothermal conditions,
and is shown to be in good agreement.

This Chapter is based on the following paper: Golchin, A., Vardon, P. J. and Hicks, M. A. A thermodynam-
ically consistent two surface/bubble thermo-mechanical model considering thermal and mechanical cyclic
behaviour of fine-grained soils. International Journal of Solids and Structures, 254–255, 111847, 2022.
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LIST OF SYMBOLS

Roman Greek
1 Second order identity tensor α Parameter related to the shape

of the yield surface
〈〉 Macaulay bracket α∗ Coefficient of linear thermal

expansion
Ai Stress-like function for the in-

ner yield surface
γ Parameter related to the shape

of the yield surface
Ao Stress-like function for the

outer yield surface
ε Strain tensor

Bi Stress-like function for the in-
ner yield surface

εp Plastic strain tensor

Bo Stress-like function for the
outer yield surface

εe Elastic strain vector in triaxial
space

b Parameter controlling the
accumulated thermo-plastic
strains

εT her m Thermo-elastic strain vector in
triaxial space

Ci Stress-like function for the in-
ner yield surface

εp Plastic strain vector in triaxial
space

Co Stress-like function for the
outer yield surface

ε
p
i Plastic strain vector related to

di

Cχ Parameter controlling the plas-
tic strains

ε
p
o Plastic strain vector related to

do

CS Critical State ε̇ Rate of strain vector
Ce Elastic compliance matrix ε̇

p
i Rate of plastic strain vector re-

lated to inner yield surface
c1 Thermodynamical constraint

function
εv Total volumetric strain

c2 Thermodynamical constraint
function

εs Total deviatoric strain

(cI )p Thermodynamical constraint
function under isothermal
conditions along the p-axis

εe
v Elastic volumetric strain

(cH )p Thermodynamical constraint
function under heating phase
along the p-axis

εe
s Elastic deviatoric strain

(cI )q Thermodynamical constraint
function under isothermal
conditions along the q-axis

ε̇e
v Elastic volumetric strain incre-

ment

(cH )q Thermodynamical constraint
function under heating phase
along the q-axis

ε̇e
s Elastic deviatoric strain incre-

ment

De Elastic stiffness matrix ε
p
v Plastic volumetric strain
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d Rate of dissipation potential
function

ε
p
s Plastic deviatoric strain

di Sub-rate of dissipation func-
tion related to inner yield sur-
face

ε̇
p
v Plastic volumetric strain incre-

ment

do Sub-rate of dissipation func-
tion related to outer yield sur-
face

ε̇
p
s Plastic deviatoric strain incre-

ment

e Void ratio ε
p
v,i Plastic volumetric strain related

to the inner yield surface
e0 Initial void ratio ε

p
v,o Plastic volumetric strain related

to the outer yield surface
ep Plastic deviatoric strain tensor ε

p
s,i Plastic deviatoric strain related

to the inner yield surface
g Gibbs free energy potential ε

p
s,o Plastic deviatoric strain related

to the outer yield surface
g1 Isothermal Gibbs free energy

potential
ε̇

p
v,i Plastic volumetric strain incre-

ment related to the inner yield
surface

Ḡ Maximum elastic shear modu-
lus

ε̇
p
v,o Plastic volumetric strain incre-

ment related to the outer yield
surface

H Function ε̇
p
s,i Plastic deviatoric strain incre-

ment related to the inner yield
surface

K̄ Maximum elastic bulk modu-
lus

ε̇
p
s,o Plastic deviatoric strain incre-

ment related to the outer yield
surface

M Critical State stress ratio κ Elastic compression index
M0 Critical State stress ratio at am-

bient temperature
λ Elasto-plastic compression in-

dex
n Power of p for shear modulus Λ1 Lagrangian multiplier
OCR Over consolidation ratio Λ2 Lagrangian multiplier
p Hydrostatic pressure –̇Λ Plastic multiplier
pcT Apparent pre-consolidation

pressure
µ Coefficient of thermal softening

of the inner yield surface
pc 0 Initial pre-consolidation pres-

sure
µ0 Coefficient of thermal softening

of the outer yield surface
ṗcT Rate of the apparent pre-

consolidation pressure
υ Specific volume

pi T Compression apex of the inner
yield surface

π∗ Coefficient of Critical State stress
ratio variation with temperature
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ṗi T Rate of change of the compres-
sion axis of the inner yield sur-
face

ρ Coordinates of the decompres-
sion apex of the inner yield sur-
face

p̃i T Size of the major-axis of the in-
ner yield surface

ρ̇ Kinematic rule

p̃i 0 Initial size of the major-axis of
the inner yield surface

ρ̇I Kinematic rule under isother-
mal conditions

˙̃pi T Rate of change of the major-
axis of the inner yield surface

ρ̇H Kinematic rule during heating
phase

p̂ Hydrostatic coordinate of pro-
jection centre

ρp Hydrostatic coordinate of de-
compression apex of the inner
yield surface

p̄ Hydrostatic coordinate of im-
age stress

ρq Deviatoric coordinate of de-
compression apex of the inner
yield surface

pa Atmospheric hydrostatic pres-
sure

ρ̇p Kinematic rule along the p-axis

q Deviatoric stress
(
ρ̇I

)
p Kinematic rule along the p-axis

under isothermal conditions
q̂ Deviatoric coordinate of pro-

jection centre

(
ρ̇H

)
p Kinematic rule along the p-axis

under heating phase
q̄ Deviatoric coordinate of image

stress
ρ̇p Kinematic rule along the q-axis

r i
p Plastic flow along the p-axis

(
ρ̇I

)
q Kinematic rule along the q-axis

under isothermal conditions
r i

q Plastic flow along the q-axis σ Stress tensor
ri Plastic flow tensor σ Stress vector
ri Plastic flow vector in triaxial

space
σ̇ Stress increment tensor

Ri ni Ratio between the inner and
outer yield surfaces

σ̂ Stress coordinates of the pro-
jection centre

s Deviatoric stress tensor ˙̂σ Incremental changes of the
projection centre

T Absolute temperature σ̄ Coordinates of the image stress
in triaxial space

T 0 Initial absolute temperature χi Dissipative stress related to di

Ṫ Temperature increment χo Dissipative stress related to do

up Pore water pressure χρ Dissipative stress related to
kinematic variable ρ

Ẇ p Total plastic work increment χi
p Hydrostatic dissipative stress

related to di
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yi Inner yield surface in true
stress space

χo
p Hydrostatic dissipative stress re-

lated to do

yo Outer yield surface in true
stress space

χi
q Deviatoric dissipative stress re-

lated to di

yd
i Inner yield surface in dissipa-

tive stress space
χo

q Deviatoric dissipative stress re-
lated to do

yd
o Outer yield surface in dissipa-

tive stress space
χ̄i Generalised stress related to εp

i

ẏi Rate of change of inner yield
surface

χ̄o Generalised stress related to εp
o

χ̄i
p Hydrostatic generalised stress

related to εp
i

χ̄o
p Hydrostatic generalised stress

related to εp
o

χ̄i
q Deviatoric generalised stress re-

lated to εp
i

χ̄o
q Deviatoric generalised stress re-

lated to εp
o
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5.1. INTRODUCTION
To account for plastic strains in over-consolidated states and to capture the cyclic me-
chanical behaviour of soils, several theories and models in plasticity of soils have been
developed, of which multi-surface models and bounding surface models are examples.
Multi-surface models (also known as nested surface models), which were proposed orig-
inally for metals, were developed independently by Mróz [1] and Iwan [2]. In these mod-
els, it is assumed that several yield surfaces exist, each with an associated hardening
modulus, that can kinematically translate with the stress state of the material. In bound-
ing surface models, which were first proposed by Dafalias & Popov [3] and Krieg [4] for
metals, and later extended for soils by Dafalias [5] and Dafalias & Herrmann [6], mainly
two surfaces were employed; a "bounding surface" which encloses all the admissible
stress states and a "yield surface" which translates within the bounding surface. The
stress state, when located on the yield surface, is mapped (with different approaches)
onto the bounding surface (using the so-called image stress) and the distance between
these stresses indicates how far the stress state is from the bounding surface, which con-
trols the magnitude of plastic strain increments through the plastic modulus formula-
tion. The further the distance, the smaller the plastic strain increment. These concepts
have been employed by many researchers (e.g. [7–23]), and have been successful in cap-
turing the main behaviour of soils.

The concept of bounding surface plasticity has been also extended to account for
the effects of temperature on the behaviour of soils and for capturing the thermal cyclic
shakedown behaviour of soils [24–27]. As previously discussed, these types of consti-
tutive model may not always satisfy the laws of thermodynamics; i.e., by employing a
certain range of parameters or following a certain stress path these models may not con-
serve energy (first law of thermodynamics) or result in negative dissipation (second law
of thermodynamics) for deformations associated with plastic behaviour and, therefore,
they are not unconditionally thermodynamically consistent. For example [24] showed
that the response of their thermo-mechanical model is stress path independent when it
is subjected to stress paths under isotropic conditions (where the deviatoric stress q = 0).
However, for stress paths including non-isotropic stress states (where q ̸= 0) their model
fails to satisfy thermodynamics criteria.

As also previsouly outlined, constitutive equations may also be obtained by using
the principles of thermodynamics and several frameworks have been proposed (see
[28; 29], for example). Hyperplasticity, firstly developed by Collins & Houlsby [30], is one
of those approaches, which has been initially described in Chapter 2. There, a single sur-
face thermo-mechanical constitutive model within this framework was developed which
successfully captured the monotonic response under isothermal conditions, the tem-
perature effects on volumetric behaviour and shear behaviour, and the cyclic response of
normally and slightly consolidated fine-grained soils when subjected to a single heating-
cooling cycle. These results were consistent with the majority of thermo-mechanical
models, but has the advantage of being unconditionally thermodynamically consistent.

Similar also to the majority of (non-hyperplastic) models found in literature (e.g.,
[31–34]), the model presented in Chapter 2 also failed to capture a number of key fea-
tures for advanced stress paths. This included not capturing a smooth stress-strain re-
sponse for highly over-consolidated states, due to the use of a single yield surface which
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resulted in an abrupt change in response when the mechanical behaviour changed from
an elastic to an elasto-plastic response. Moreover, when simulating the mechanical
cyclic behaviour of soils (loading-unloading) for over-consolidated states, since the state
of the material is inside the yield surface, a portion of the response (depending on the
OCR) was predicted to be purely elastic. This issue was also attributed to the use of
a single yield surface in the model. In addition, the model could not predict the ac-
cumulated plastic strains when soils were subjected to several heating-cooling cycles.
After the first heating-cooling cycle (for normally and slightly over-consolidated soils),
the model predicted the subsequent behaviour as a thermo-elastic response. Therefore,
to some extent, the model was incapable of predicting the thermo-plastic behaviour of
slightly over-consolidated soils during heating-cooling cycles. One approach to resolve
the aforementioned shortcomings is to utilise an inner yield surface, similar to bounding
surface plasticity models, which can translate (move) in the stress space within the outer
(bounding) surface. Thus, a certain amount of plasticity within the outer yield surface is
developed.

In this chapter, the single surface thermo-mechanical constitutive model developed
in in Chapter 2 is upgraded to a two surface (bubble-type) constitutive model. The model
is developed using the framework of hyperplasticity with a newly defined rate of dissipa-
tion potential function (resulting in the yield surface formulation proposed in Chapter 3
and a newly proposed temperature-dependent kinematic hardening rule. Consequently,
the model is capable of capturing the mechanical cyclic behaviour and thermal (heating-
cooling) cyclic shakedown behaviour of fine-grained soils, as well as their monotonic
thermo-mechanical behaviour, and the formulation is ensured to be consistent with the
principles of thermodynamics.

Note that the formulations presented here are in accordance with geotechnical con-
ventions, where compressive stresses and contractive strains are considered to be posi-
tive and all stresses are effective stresses. In line with this context, the thermal expansion
coefficient utilised in this chapter are presented with negative values.

5.2. THERMO-MECHANICAL BEHAVIOUR OF FINE-GRAINED

SOILS
The thermo-mechanical behaviour of fine-grained soils is reviewed in depth in Section
2.2, a summary is provided here, highlighting the features referenced in this chapter.

At elevated temperatures, fine-grained soils exhibit a reduction in pre-consolidation
pressure in comparison with the pre-consolidation pressure at ambient temperature
[35–38]. The observed variation of normalised pre-consolidation pressure (pcT /pcT 0 ,
where pcT 0 is the pre-consolidation pressure at ambient temperature T = T0) with tem-
perature (T ) for several soils is shown in Figure 5.1a.

Depending on the mineralogy and constituents of the soil, the influence of temper-
ature on the shear behaviour of soils does not show a unique pattern. Figure 5.1b shows
the variation of Critical State stress ratio (M) against temperature for a wide range of
soils. It is observed that M may increase, decrease or remain unchanged at elevated
temperatures [36–40].

When a fine-grained soil is subjected to heating at normally and slightly over-
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consolidated states, the soil undergoes permanent (plastic) volumetric contraction
[25; 41]. As the soil attains higher over-consolidated states (higher OCRs), the sever-
ity of permanent volumetric strains due to heating reduces [42] and the thermo-elastic
behaviour, caused by the volumetric expansion of soil particles, dominates the defor-
mation of the soil. This is demonstrated in Figure 5.1d, where the soil samples were
subjected to a single heating-cooling cycle between 20◦C and 95◦C at different OCRs.
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Figure 5.1: Thermo-mechanical behaviour of fine-grained soils: (a) normalised pre-consolidation pressure
variation with temperature; (b) variation of Critical State stress ratio with temperature; (c) oedometer test

results of void ratio reduction due to heating-cooling cycle; (d) thermo-plastic behaviour of soils subjected to
heating at various OCRs; (e) shakedown behaviour of soils when subjected to several heating-cooling cycles

Fine-grained soils also exhibit hardening behaviour when they are subjected to
heating-cooling cycles; i.e., after being subjected to thermal cycles, the soil attains a
denser state due to the reduction of its volume. The oedometer results for the void ratio
reduction of two different clays [41; 43] subjected to one heating-cooling cycle is pre-
sented in Figure 5.1a. Moreover, permanent volumetric strains are accumulated when
the soil is subjected to several thermal cycles [25; 44]. However, the amount of perma-
nent strains reduces as the number of thermal cycles increase, and this continues until
the behaviour becomes thermo-elastic (Figure 5.1e). This is known as cyclic thermal
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shakedown behaviour and is shown in Figure 5.1e for Geneva clay subjected to thermal
cycles between 5◦C and 60◦C [25] and Loess clay subjected to heating-cooling cycles be-
tween 70◦C and 15◦C [44].

5.3. CONCEPTUAL FRAMEWORK
The proposed constitutive model utilises the formulation of an adapted Modified Cam-
Clay type surface which is able to have non-elliptical shapes, proposed in Chapter 3,
for both the outer yield surface and the inner yield surface. The outer yield surface is
extended into the temperature domain, in a manner consistent with [31], so that the
observed reduction in pre-consolidation pressure is captured. However, this constitutive
model uses the existing formulation in Chapter 2 as a starting point, as this approach is
thermodyamically consistent. In order to capture a smooth stress-strain response and
the observed thermo-mechanical cyclic behaviour, a second surface (the inner yield or
bubble surface) is included, as is shown schematically in Figure 5.2a.
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Figure 5.2: (a) The inner and outer yield surfaces (α= γ= 0) in meridian plane; (b) non-associated flow rule of
the inner yield surface (α= γ= 0.5)

The two surfaces are geometrically similar in shape, with the possibility of hav-
ing elliptical (Figure 5.2a) and non-elliptical shapes (Figure 5.2b) in the meridian (p-q)
plane. The outer yield surface is pinned to the origin of the stress space (p, q) = (0,0)
and is bounded at the apparent pre-consolidation pressure at the current tempera-
ture (p, q) = (pcT ,0) (Figure 2(a)). This surface is regarded as the surface encapsulat-
ing the loading history that the soil has experienced (i.e., the bounding surface) and
can expand/shrink with temperature without hardening/softening (temperature depen-
dent yield surface) (Figure 5.3) and with hardening/softening for plastic (volumetric)
strains, consistent with the observed behaviour of fine-grained soils. The inner yield
surface indicates the elastic domain and is bounded on the p-axis between ρp , as the
de-compression apex, and pi T , as the compression apex, with a major-axis size (hydro-
static extent) of p̃i T (p̃i T = pi T −ρp ) (Figure 5.2a). When the state of the soil is inside the
inner yield surface, the mechanical behaviour is (thermo) elastic, and stress states ly-
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ing on the inner yield surface indicate an elasto-plastic response. The magnitude of the
plastic strains is controlled by the proximity of the inner yield surface to the outer yield
surface (i.e., controlled by the distance between the stress state (p, q) lying on the in-
ner yield surface, and the geometrically similar position on the outer yield surface (p̄, q̄)
(also called the image stress)). The inner surface can move (translate) with the state of
the soil inside the outer yield surface; i.e., the domain in which the inner yield surface
can move is limited by the enclosed area of the outer yield surface in temperature and
stress space.

The translation of the inner yield surface is triggered when plastic strain increments
are developed and is governed by a kinematic rule, which is controlled by the distance
between the stress (on the inner yield surface) and the image stress (on the outer yield
surface) and the growth of the inner and outer yield surfaces.

The inner yield surface, similar to the outer yield surface, shrinks in size in response
to an increase in temperature (heating phase) (Figure 5.3a). To capture the progress of
plasticity during consecutive heating-cooling cycles, the hydrostatic extent of this sur-
face reacts neutrally to a decrease in temperature, i.e., the size of the major-axis of the
surface remains unchanged during cooling (Figure 5.3b). This feature enables the state
of the material to encounter the inner yield surface during the heating phase and is in
contrast to the outer yield surface which expands as temperature decreases. With these
features, the model is able to predict a smooth stress-strain response at any state, simu-
late the mechanical cyclic response, and predict the shakedown behaviour and accumu-
lated plastic strains observed when soils are subjected to several heating-cooling cycles.
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Figure 5.3: (a) The inner and outer yield surfaces under heating phase in meridian (p-q) space (α= γ= 0.5);
(b) the inner and outer yield surfaces under cooling phase

The elasticity formulation used for the model is non-linear and the plastic flow
is non-associated, i.e., not necessarily perpendicular to the inner yield surface (Fig-
ure 5.2b), without the necessity of defining a separate plastic potential as is the case for
conventional plasticity models. This feature is obtained by following the thermodynam-
ically consistent hyperplastic approach [28; 30]. The temperature effects on the shear
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behaviour are accounted for by defining a temperature-dependent Critical State stress
ratio (M). The effect of temperature on volumetric behaviour is encapsulated in the
temperature-dependency of the outer yield surface, and in the temperature-dependent
isotropic hardening rule of the inner yield surface (Figure 5.3). In addition, the thermal-
dependency of the inner yield surface is proposed to be dependent on the state of the
soil, to capture the thermo-mechanical behaviour of the soil at highly over-consolidated
states, as well as slightly over and normally consolidated states. Note that all the afore-
mentioned mechanisms are embedded in the formulation of a newly proposed rate of
dissipation potential.

5.4. FORMULATION
The constitutive equations presented here are defined in triaxial stress space and are de-
veloped within the framework of hyperplasticity theory [28; 30], where the formulations
are derived by specifying an energy potential and a rate of dissipation function (for rate
independent materials). A detailed description of the thermodynamics equations relat-
ing to the thermo-mechanical aspects can be found in Chapter 2. A Gibbs-type energy
potential, defined by the independent variables, is selected for the energy potential. The
independent variables are the true stress invariants in triaxial stress space (hydrostatic
pressure or mean effective stress, p = tr(σ)/3 (kPa) and deviatoric stress, q = (3/2 s:s)1/2

(kPa), where σ and s = σ− tr(σ)/3 : 1 are, respectively, the stress and deviatoric stress
tensors), internal variables (which here are the plastic strain invariants, i.e., the plas-
tic volumetric strain, εp

v = tr(εp ), and the plastic deviatoric strain, εp
s = (2/3 ep : ep )1/2;

ep = εp − tr(εp )/3 : 1, where εp , ep and 1 are the plastic strain, plastic deviatoric strain,
and identity tensors, respectively), and the absolute temperature T(K). The energy po-
tential is defined as

g = g1
(
p, q

)− (
pεp

v,o +qεp
s,o

)− (
pεp

v,i +qεp
s,i

)
−3α∗p (T −T0) (5.1)

where "i" and "o", respectively, correspond to the variables of the inner and outer yield
surfaces, α∗ is the linear thermal expansion coefficient of the soil skeleton and g1(p, q)
represents the Gibbs energy potential at isothermal conditions, where the elastic compo-
nent of the model is derived from Appendix 5.A. The form of the energy potential consid-
ered here (Eq. (5.1)) results in a "decoupled" material behaviour [30] through the decou-
pling terms pεp

v and qεp
s , in which the elastic and plastic behaviours became indepen-

dent of each other. The choice for a decoupled formulation is made in order to obtain
a less complex formulation and ease of implementing the constitutive equations into
boundary-value solvers such as FEM and MPM. Energy potentials incorporating elastic-
plastic coupling can be found in the works of [11; 14; 45]. Note that some researchers
may argue that plastic strains should not be considered as internal variables (see for ex-
ample [46; 47] and assume that by nature the behaviour of the material is the sum of
elastic and plastic strains. For such an assumption, the decoupling terms drop out of the
energy potential function.

To derive the rate-independent plasticity formulation, the definition of an appropri-
ate rate of dissipation potential function (d) is necessary and this is required to be a first
order homogenous function of plastic strain rates [30], and unlike [48; 49], the rate of
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dissipation function (Eq. (5.2)) is defined in such a way that the use of a shift stress to
transfer stresses from dissipative stress space to true stress space is eliminated [28; 50].
As a result, the derived formulations become simpler. The total rate of dissipation po-
tential consists of two sub-rate of dissipation potentials (do and di ) relating to the rate
of dissipation of the outer yield surface and the inner yield (bubble) surface. The con-
stitutive model is enriched by a kinematic rule assigned to the internal variable ρ. The
approach proposed by [50; 51] is followed here to ensure that the proposed kinematic
rule is formulated in a consistent manner with thermodynamics. This operation is per-
formed via the addition of thermodynamic complementary constraint functions (c1 and
c2) using the standard method of Lagrangian multipliers. The rate of dissipation function
is defined as

d =do +di +Λ1c1 +Λ2c2 (5.2a)

do =Co ε̇
p
v,o +

√
A2

o
(
ε̇

p
v,o

)2 +B 2
o
(
ε̇

p
s,o

)2
(5.2b)

di =
(
Ci +ρp

)
ε̇

p
v,i +ρq ε̇

p
s,i +

√
A2

i

(
ε̇

p
v,i

)2 +B 2
i

(
ε̇

p
s,i

)2
(5.2c)

c1

(
ε̇

p
v,i , ρ̇p , p,ρp , pcT , p̃i T

)
= 0 (5.2d)

c2

(
ε̇

p
s,i , ρ̇q , q,ρq , pcT , p̃i T

)
= 0 (5.2e)

where do and di are, respectively, the rate of dissipation potentials that the outer and
inner yield surfaces are derived from; ε̇p

v,k and ε̇
p
s,k (k = i ,o) are plastic volumetric and

deviatoric strain increments corresponding to the inner and outer yield surfaces; Ak , Bk

and Ck are stress-like functions of the inner and outer yield surfaces; ρp and ρq are, re-
spectively, the hydrostatic and deviatoric components of the kinematic variable ρ which
represent the coordinates (location) of the de-compression apex of the inner yield sur-
face in meridian stress space; and, ρ̇p and ρ̇q are the incremental translations of the
inner yield surface along the p-axis and q-axis, respectively. Note that the sub-rate of
dissipation potentials considered in Eq. (5.2a) have the general formulation of the rate
of dissipation function in the existing formulation of Chapter 2 without considering the
rotation/shearing of the surface with respect to the p-axis.

The thermodynamic constraint functions, c1 and c2, are augmented by Lagrangian
multipliers (Λ1 and Λ2) in the rate of dissipation potential d (Eq. (5.2a)) [50; 51]. Note
that c1 and c2 are numerically zero (Eq. (5.2d) and Eq. (5.2e)), which implies that

d = do +di (5.2f)

This means that the termsΛ1c1 andΛ2c2 in Eq. (5.2a) do not produce any work and they
represent constraints to optimise the maximum rate of dissipation, d (Eq. (5.2a)) [52];
i.e., the addition of constraints restricts the solutions for maximising d to a subset where
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the conditions c1 = 0 and c2 = 0 are valid. The specific formulations of c1 and c2 are
considered later in this section.

According to the principles of thermodynamics, it is assumed that dissipative ma-
terials (e.g. geomaterials) prefer to follow a state path which produces the maximum
rate of dissipation (to ensure the second law of thermodynamics is satisfied). When the
rate of dissipation is maximised, i.e., when Ziegler’s postulation is valid, it follows that
Λ1 =Λ2 = 0 (see Appendix 5.A). This means that constitutive equations may be obtained
from the Gibbs energy potential (Eq. (5.1)) along with the rate of dissipation potential
function Eq. (5.2f), with extra conditions that satisfy the constraint functions (c1 and c2).
These additional conditions form the kinematic rule. In short, the addition of the con-
straint functions ensures that only the possible state paths (i.e., when the kinematic rule
is valid) are considered. This approach has been used by other researchers to add several
constraints to constitutive equations [50–53].

The outer yield surface and the inner yield surface are derived from the sub-rate of
dissipation potentials and are defined by dissipative stresses which are obtained by dif-
ferentiating the rate of dissipation potential with respect to the internal variables. The
flow rule is derived by considering associated conditions to the inner yield surface in
dissipative stresses (i.e., the flow rule is perpendicular to the inner yield surface defined
in dissipative stress space). The derivation of the outer yield surface, the inner yield sur-
face, and the plastic flow in true (triaxial) stress space (p, q) are provided in Appendix 5.A
and are summarised, respectively, as

Outer yield surface : yo = B 2
o

(
p −Co

)2 + A2
o q2 − A2

oB 2
o = 0 (5.3)

Inner yield surface : yi = B 2
i

(
p̃ −Ci

)2 + A2
i q̃2 − A2

i B 2
i = 0 (5.4)

flow :
{

ri
}
=

{
r i

p

r i
q

}
= 2

{
B 2

i

(
p̃ −Ci

)
A2

i q̃

}
(5.5)

where p̃ = p −ρp and q̃ = q −ρq ; ri , r i
p , and r i

q are, respectively, the plastic flow vector
(in triaxial stress space), the plastic flow along the p-axis and the plastic flow along the
q-axis. Note that, although the plastic flow in dissipative stress space (Eq. (5.A.15)) is
associated with respect to the inner yield surface in dissipative stress space (Eq. (5.A.14)),
the plastic flow in true stress space (Eq. (5.5)) may become non-associated with respect
to the inner yield surface defined in true stress space (Eq. (5.4)) (see Figure 5.2b). This
observation is due to the stress dependency of the rate of dissipation potential function
via stress-like functions (see Chapter 2 for more details).

The stress-like functions (Ak , Bk and Ck ; k = i ,o) define the shape and the size of the
surfaces in true stress space and are generally expressed by terms consisting of the true
stresses, isotropic hardening variables and shape parameters. In Chapter 3 a new set of
these functions was proposed, which provides flexibility for the yield surface to attain
various non-elliptical shapes and improves the robustness when using implicit stress
integration schemes for numerically implementing in boundary-value solvers. This was
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achieved by eliminating the potential for false elastic nuclei and divergent zones. The
stress-like functions for the outer yield surface are

Ao
(
p, pcT

)=pcT

2π

(
2arctan

(
γ

(
1

2
− p

pcT

))
+π

)
(5.6a)

Bo
(
p, pcT

)=MCo exp

(
α

(
p −Co

)
pcT

)
(5.6b)

Co
(
pcT

)=pcT

2π

(
2arctan

(γ
2

)
+π

)
(5.6c)

where α and γ are shape parameters that affect the shape of the surface to form a wide
range of non-elliptical shapes (e.g. tear and bullet shapes) observed for fine-grained
soils and have values in the range −2 ≤ α, γ ≤ 2 (see Appendix 5.F). The effect of these
parameters on the shape of the outer and the inner yield surfaces in meridian stress
space (p, q) for (α,γ) = (0,−1), (0,0) and (0,1.5) is shown in Figure 5.4. Note that for
(α,γ) = (0,0) the elliptical shape of the MCC model is obtained.
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Figure 5.4: The inner and outer yield surfaces in meridian (p-q) space: (a) (α,γ) = (0,−1); (b) (α,γ) = (0,0); (c)
(α,γ) = (0,1.5)

pcT is the apparent pre-consolidation pressure defined as

pcT = pc0 exp

(
1+e0

λ−κ ε
p
v

)
exp

(−µ0 (T −T0)
)

(5.7)

where pc0 is the initial pre-consolidation pressure, λ and κ are the bi-logarithmic elasto-
plastic and elastic compressibility indices, respectively, e0 is the initial void ratio, and µ0

is the coefficient of thermal shrinkage of the outer yield surface, first presented by [31], to
capture the observed pre-consolidation pressure reduction due to temperature increase
(Figure 5.1a). M is the stress ratio at Critical State conditions and is defined as

M = M0 +π∗ (T −T0) (5.8)
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where π∗ is the gradient of the variation of M with temperature T , and M0 is the Critical
State stress ratio at ambient temperature T = T0, which is compatible with the observed
behaviour in Figure 5.1b.

The corresponding stress-like functions for the inner yield surface are similar to
those for the outer yield surface, where p and pcT are respectively replaced by p̃ and
p̃i T :

Ai
(
p̃, p̃i T

)= p̃i T

2π

(
2arctan

(
γ

(
1

2
− p̃

p̃i T

))
+π

)
(5.9a)

Bi
(
p̃, p̃i T

)=MCi exp

(
α

(
p̃ −Ci

)
p̃i T

)
(5.9b)

Ci
(
p̃i T

)= p̃i T

2π

(
2arctan

(γ
2

)
+π

)
(5.9c)

where p̃i T is the isotropic hardening variable representing the size of the major-axis of
the inner yield surface, and is defined as

p̃i T = p̃i 0 exp

(
1+e0

λ−κ ε
p
v

)
exp

(−µ〈T −T0〉
)

(5.10)

where p̃i 0 is the initial value of p̃i T , 〈〉 is the Macaulay bracket which operates as 〈x〉 =
(x +|x|)/2, and

µ=µ0

(
pi T

pcT

)b

(5.11)

where pi T (= ρp + p̃i T ) indicates the coordinates of the compression apex of the inner
yield surface (Figure 5.2a) along the p-axis. The coefficient of thermal shrinkage of the
inner yield surface, µ, varies with the ratio of the hydrostatic coordinate of the com-
pression apex of the inner yield surface with respect to the hydrostatic coordinate of the
compression apex of the outer yield surface, pi T /pcT , in order to capture the thermo-
mechanical behaviour of soils at various over-consolidated stress states. For normally-
consolidated states, pi T /pcT = 1, and thus µ = µ0. For over-consolidated states, how-
ever, pi T /pcT < 1 which results in µ < µ0. As a result, the coefficient of thermal shrink-
age (and consequently, thermally induced plastic strain increments) reduces as the state
of the soil becomes over-consolidated, which is compatible with experimental observa-
tions (Figure 5.1d). The parameter b in Eq. (5.11) controls the amount of accumulated
plastic strains when the soil is subjected to heating-cooling cycles.

Plastic strain increments in triaxial space are calculated as

{
ε̇p}= Λ̇{

ri
}
= Λ̇

{
r i

p

r i
q

}
(5.12)
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where Λ̇ is the plastic multiplier representing the magnitude of the plastic strain incre-
ments and is defined, for strain controlled conditions (see Appendix 5.C), as

Λ̇=
{
∂yi
∂σ̃

}T
[De ]

{
ε̇− ε̇T her m

}+ ∂yi
∂p̃i T

Up̃i T + ∂yi
∂M Ṁ{

∂yi
∂σ̃

}T
[De ]

{
ri

}+{
∂yi
∂σ̃

}T
{M I +M H }− ∂yi

∂p̃i T
Mp̃i T

(5.13)

where De is the elastic stiffness matrix; ε̇ and ε̇T her m are, respectively, the vectors of total
strain and thermal strain increments in triaxial space; ∂yi /∂σ̃, ∂yi /∂p̃i T and ∂yi /∂M are
the derivatives of the inner yield surface with respect to σ̃, p̃i T and M (see Appendix 5.D);
and Up̃i T , MI , MH and Mp̃i T are defined in Appendix 5.C.

5.4.1. ISOTROPIC HARDENING RULES
The model has two isotropic hardening rules assigned to the isotropic hardening vari-
ables of the outer and inner yield surfaces (pcT and p̃i T , respectively). Two mechanisms
control the size of the outer yield surface, in which one, similar to the MCC model, is
due to the development of plastic strains and the other is influenced by temperature
changes. The isotropic hardening rule of the outer yield surface is determined from the
rate of Eq. (5.7)

ṗcT = pcT

(
1+e0

λ−κ ε̇
p
v −µ0Ṫ

)
(5.14)

The rate of Eq. (5.10) defines the isotropic hardening rule for the inner yield surface:

˙̃pi T = p̃i T

(
1+e0

λ−κ ε̇
p
v − (

µ
〈

Ṫ
〉+ µ̇〈T −T0〉

))
(5.15)

The outer yield surface and the inner yield surface harden (grow) incrementally with
plastic volumetric strain increments, via the respective terms pcT ((1+e0)/(λ−κ)) ε̇

p
v

and p̃i T ((1+e0)/(λ−κ)) ε̇
p
v .

The hydrostatic extent of the outer yield surface changes for any variation of tem-
perature (heating and cooling). The surface shrinks or expands due to an increase or
decrease of temperature, respectively, via the term ṗcT =−µ0pcT Ṫ . However, due to the
presence of Macaulay brackets in Eq. (5.15), the hydrostatic extent of the inner yield sur-
face only shrinks as the temperature increases (heating phase) and remains unchanged
when the temperature decreases (cooling phase) (see Figure 5.3). This behaviour is con-
trolled via the term ˙̃pi T =−p̃i T

(
µ

〈
Ṫ

〉+ µ̇〈T −T0〉
)
.

Note that the constitutive assumption of independent behaviour of the inner yield
surface on the cooling phase is consistent with experimental observations. For example,
Ng et al. [44] observed that when Loess clay samples were subjected to thermal cycles
(and the vertical stress was kept constant), the gradients of the strain-temperature curves
during cooling were almost always the same. In addition, these gradients were the same
as the recoverable gradient after many thermal cycles. Therefore, it can be inferred that
the response of the soil during cooling is recoverable (thermo-elastic) and that the inner
surface is independent on cooling.
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5.4.2. KINEMATIC RULE
The purpose of introducing the inner yield surface is to capture the plastic strains that
have been observed for stress states inside the outer yield surface. This requires the
inner yield surface to move (translate), in accordance with the state of the soil, within
the domain enclosed by the outer yield surface. Therefore, a so-called kinematic rule
is needed. The kinematic rule can be assigned to any specific point of the inner yield
surface. For example, in a number of models the kinematic rule is assigned to the centre
of the inner yield surface [17–19; 21; 49; 54]. For the model proposed here, the kinematic
rule is assigned to the internal variable ρ= (ρp ,ρq ), which represents the coordinates of
the decompression apex of the inner surface. This reduces the geometrical complexity
of the kinematic rule, specifically when the two surfaces have non-elliptical shapes.

The thermodynamic constraint functions in Eq. (5.2) are defined as

c1 = ρ̇p − (cI )p − (cH )p = 0 (5.16a)

c2 = ρ̇q − (cI )q − (cH )q = 0 (5.16b)

where (cI )p and (cH )p are the hydrostatic kinematic constraint functions under isother-
mal and heating conditions respectively, and (cI )q and (cH )q are the respective devia-
toric kinematic constraint functions under isothermal and heating conditions, which,
all together, form the kinematic rule of the inner yield surface. Note that these con-
straint functions should be first order homogenous functions with respect to their in-
ternal variables (a thermodynamic requirement), similar to the definition of the rate of
dissipation function d. As explained before, when the rate of dissipation is maximised,
Eq. (5.2d) and Eq. (5.2e) are valid (c1 = c2 = 0) (see Appendix 5.A). Therefore, from c1 and
c2 (Eq. (5.16b)), the kinematic rule along the hydrostatic and deviatoric axes are deter-
mined: {

ρ̇
}= {

ρ̇p

ρ̇q

}
=

{
(cI )p

(cI )q

}
+

{
(cH )p

(cH )q

}
= {
ρ̇I

}+{
ρ̇H

}
(5.17)

The kinematic rule has been decomposed into components due to isothermal ρ̇I and
heating ρ̇H , which are explained in the following subsections.

INTERACTION BETWEEN THE INNER YIELD SURFACE AND THE OUTER YIELD SURFACE UN-
DER ISOTHERMAL CONDITIONS

The derivation of the kinematic rule under isothermal conditions, by modifying the ap-
proach of Coombs et al. [49], is explained in detail in Appendix 5.B. With this kinematic
rule, the inner yield surface and the outer yield surface interact with each other, such
that a stress point on the inner yield surface (with an elasto-plastic response) moves to-
ward the image stress projected on the outer yield surface. The kinematic rule under
isothermal conditions is defined as{

ρ̇I

}= {
(cI )p

(cI )q

}
=

(
1

Wr

(
ṗc

pcT
−

˙̃pi

pcT

)
−Cχ

∥∥ε̇p∥∥){
ρ

}+Cχ

∥∥ε̇p∥∥Wr {σ} (5.18)

where ∥ε̇p∥ is the magnitude of the plastic strain increment; Cχ is a parameter which
controls the pace of the inner yield surface approaching the outer yield surface; and Wr ,
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pc , ṗc and ˙̃pi are defined in Appendix 5.B. This kinematic rule is activated when plastic
strain increments are produced, i.e., when the response is elastic it is zero. In addition, it
can be shown that the proposed formulation is a first order homogenous function of its
rate variables (a thermodynamic requirement).

KINEMATIC RULE UNDER NON-ISOTHERMAL CONDITIONS

The kinematic rule under isothermal conditions (Eq. (5.18)) is extended in order to cap-
ture the accumulated plastic strains and shakedown behaviour observed, when soils are
subjected to consecutive heating-cooling cycles. This kinematic rule allows the sim-
ulation of progressive strains due to thermal cycles. The kinematic rule under non-
isothermal conditions is defined as

{
ρ̇H

}={ (
ρ̇H

)
p(

ρ̇H
)

q

}
=

{
(cH )p

(cH )q

}
=−H

(
Ṫ

){ (
ρ̇I

)
p

0

}
(5.19)

where H
(
Ṫ

)
is a function similar to the Heaviside function, defined as

H
(
Ṫ

)={
0 when Ṫ ≤ 0 (under isothermal and cooling phase)

1 when Ṫ > 0 (heating phase)
(5.20)

Due to the presence of H
(
Ṫ

)
, the model activates the kinematic rule ρ̇H only during

the heating phase. For isothermal conditions and during cooling, Ṫ ≤ 0 which results
in H = 0. On the other hand, during heating Ṫ > 0 which results in H = 1 and activates
the kinematic rule ρ̇H . An example of a soil element that is subjected to thermal cycles
is provided to explain the role of the kinematic rule ρ̇H on capturing the shakedown
behaviour and the progressive development of plastic strains due to thermal cycles.

Assume a soil in an isotropic state (q = 0) and at an ambient temperature (T = T0) has
a hydrostatic pressure of p1 and has experienced a maximum hydrostatic pressure of pcT

(pre consolidation pressure) where pcT > p1. The state of the soil is (p, q,T ) = (p1,0,T0)
and is inside the inner yield surface. While the hydrostatic pressure is held constant
(p = p1), the soil is subjected to heating from T = T0 to T = T1 (as shown in Figure 5.5a
in p-T space). Due to heating and considering that the state of the soil is inside the
yield surface (thermo-elastic response), the isotropic hardening rules for the outer and
inner yield surfaces (Eqs. (5.14) and (5.15), respectively) reduce to ṗcT = −µ0pcT Ṫ and
˙̃pi T = −p̃i T

(
µ

〈
Ṫ

〉+ µ̇〈T −T0〉
)
. Therefore, the outer and inner yield surfaces shrink in

accordance with their respective isotropic rule. While the state of the material is in-
side the inner yield surface, the behaviour is thermo-elastic and the kinematic rule ρ̇I
is deactivated. The shrinkage of the inner surface continues (as the temperature in-
creases) until the state of the soil encounters it at T = T∗ (position pi T

∗ = p1). Due to the
consistency condition, which requires that the stress state remains on the yield surface,
and, since p is kept constant, ˙̃pi T = 0. Hence, plastic volumetric strain increments are
then produced to compensate the thermal shrinkage and are determined from Eq. (5.15)

as ε̇p
v =

(
1+e0
λ−κ

)−1 (
µ

〈
Ṫ

〉+ µ̇〈T −T0〉
)
. As plastic volumetric strain increments are pro-

duced, the kinematic rule ρ̇I activates and drags the inner yield surface to the right.
By using the heating kinematic rule ρ̇H (Eq. (5.19)), the inner yield surface is moved by
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the same magnitude of ρ̇I in the opposite direction (position ρp
∗∗). Therefore, during

the heating phase, plastic volumetric strains are produced progressively while the state
of the soil (p, q,T ) remains on the compression apex of the inner yield surface (posi-
tion pi T

∗∗) and the size of the inner surface and the coordinates of the decompression
apex remain unchanged (Figure 5.5). This observation is mathematically expressed as
ṗi T

(= ˙̃pi T + ρ̇p
)= ˙̃pi T = ρ̇p = 0.

For a cooling phase following the heating phase (from T = T1 to T = T0 in Figure 5.5b),
due to Macaulay bracket in Eq. (5.15) the isotropic rule for the inner yield surface is de-
activated ( ˙̃pi T = 0). In addition, during cooling the state of the soil does not go outside
the inner yield surface, and thus the response of the soil becomes thermo-elastic and
no plastic strains are developed. This implies that the kinematic rule (Eq. (5.17)) is not
activated (ρ̇ = 0). Thus, the size and position of the inner yield surface does not change
(i.e. ρp

∗∗∗ =ρp
∗∗ and pi T

∗∗∗ =pi T
∗∗). Therefore, at the end of the cooling phase (at

T = T0) the state of the soil remains at the compression apex of the inner yield surface
(pi T

∗∗∗ = p1). Upon subsequent heating, plastic strains are produced from the begin-
ning of heating. Moreover, during the cooling phase the isotropic rule for the outer yield
surface is activated (Eq. (5.14)) and is ṗcT = −µ0pcT Ṫ (where Ṫ < 0). Consequently, at
the end of cooling the size of the out surface is larger than before being subjected to
heating-cooling (pcT

∗∗∗ > pcT ).

The aforementioned strategy allows the inner yield surface to capture the plastic
strains in successive thermal cycles and the shakedown behaviour. The magnitude of
plastic strains developed during the heating phase is related to the coefficient of thermal
shrinkage µ (Eq. (5.11)). After each heating-cooling cycle, the size of the outer yield sur-
face, pcT , increases, while the coordinate of pi T remains unchanged (e.g. pcT

∗∗∗ > pcT

and pi T
∗∗∗ = pi T

∗∗ = p1 in Figure 5.5b). According to Eq. (5.11), the coefficient of ther-

mal shrinkage (µ) decreases, i.e., µ∗∗∗ = µ0
(
pi T

∗∗∗/pcT
∗∗∗)b < µ= µ0

(
pi T /pcT

)b . This
implies that the magnitude of plastic strains produced during the subsequent heating
phase decreases. Therefore, the generated plastic strains in subsequent thermal cycles
decrease progressively, until at a sufficiently high number of thermal cycles the produced
plastic strains become negligible, resulting in shakedown behaviour.

5.5. CALIBRATION AND THE ROLE OF PARAMETERS

The model is defined by 13 parameters and, except for the new parameters of Cχ and b
defined in this model, the others are the same as those defined in the model developed
in Chapter 2 and are calibrated in accordance with Chapter 2. Therefore, the original
parameters are briefly explained, and then the new parameters are investigated com-
prehensively.

λ, κ and M0 are defined similarly to the ones in the MCC model. Hence, λ and κ

are the bi-logarithmic elasto-plastic and elastic compressibility indices, respectively, and
can be determined from oedometer and isotropic triaxial tests. M0 is the Critical State
stress ratio at ambient temperature (T = T0) and is determined as the gradient between
the stress ratio (q/p) at Critical State and the origin (p, q) = (0,0) in the stress space of
drained and undrained triaxial tests.

Ḡ and K̄ are the coefficients representing the maximum shear and bulk moduli
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Figure 5.5: Performance of the model: (a) during heating phase; (b) during cooling

(which are related to the initial small strains), respectively, and can be determined from
resonant column tests, bender element tests or approximately from the tangential val-
ues of the q-εs and p-εv curves of the drained and undrained triaxial tests at low strain
levels. The pressure-dependency (p) of the shear and bulk moduli are linked through the
parameter n which usually has a value less than one.

The flexibility of the inner and outer yield surfaces, i.e., adapting them with exper-
imentally determined loci of the yield stresses of geomaterials, is via parameters α and
γ. Typically, at least three triaxial tests, consisting of one isotropic compression test at
a normally consolidated state, and two triaxial shear tests at lightly over-consolidated
and highly over-consolidated states, are needed to adjust the parameters α and γ via
regression analysis to provide the best fit to the yield stresses.

3α∗ is the volumetric thermal expansion coefficient. As shown in Figure 5.1e, when
fine-grained soils at isotropic stress states (q = 0) are subjected to several heating-cooling
cycles, thermal (plastic) volumetric strains are accumulated at each thermal cycle and,
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when the soil is subjected to a sufficiently high number of thermal cycles, the accumu-
lated strains level-off. This means that, in subsequent thermal cycles, the response of
the soil becomes thermo-elastic and the volumetric behaviour of the soil is mostly dom-
inated by the volumetric thermal expansion of the grains. 3α∗ can then be determined as
3α∗ =∆εv /∆T , where ∆εv is the volumetric change due to heating ∆T . In addition, the
gradient of the ∆T -εv curve during cooling may also be used to determine 3α∗, because
it is assumed that soils behave thermo-elastically during cooling.

π∗ is the gradient of M with respect to temperature changes ∆T (Figure 5.1b) and is
determined as π∗ = (MT −MT 0)/(T −T0) (Eq. (5.8)), where MT and MT 0 are, respectively,
the Critical State stress ratio at the current temperature and the ambient temperature.

µ0 represents the variation of the apparent pre-consolidation pressure, pcT , as
the temperature changes (Figure 5.1a). µ0 is calculated from Eq. (5.7) as µ0 =
−ln(pcT /pcT 0)/(T −T0), where pcT and pcT 0 are the pre-consolidation pressures at the
current temperature and the ambient temperature, respectively. This equation indicates
that at least two triaxial tests with the same pre-consolidation pressure at two different
temperatures are needed to determine µ0.

Cχ controls the pace with which the inner yield surface approaches the outer yield
surface, i.e., it controls the magnitude of the generated plastic strains when the inner
yield surface is inside the outer yield surface. Figure 5.6 shows the deviatoric stress ver-
sus axial strain (q-εa) and volumetric strain versus axial strain (εv -εa) curves of the soil
response for Cχ values of 100, 1000 and 10000 at different stress states (OCRs of 1, 2,
6 and 12), when subjected to drained triaxial shearing under isothermal conditions. By
comparing the q-εa curves, it can be seen that, at a specific deviatoric stress (e.g. q = 150
kPa), lower (plastic) axial strains are produced at larger values of Cχ, which implies that
a stiffer response is obtained when a higher Cχ is used. Moreover, although all responses
are smooth, a sharper response is observed at higher Cχ when the inner yield surface ap-
proaches the outer yield surface. In addition, by comparing Figure 5.6b with Figure 5.6f,
it is seen that the amount of dilation of the soil specimens at high OCRs (e.g. 6 and 12) is
smaller at higher Cχ.

The stiffening effect of Cχ is more pronounced on the hysteresis behaviour of the
soil. Figure 5.7 presents the response of a soil subjected to several isotropic loading-
unloading-reloading cycles at ambient temperature, for various Cχ values. For lower Cχ

(e.g. Cχ = 100 in Figure 5.7a), more plastic strains are produced upon reloading, which
results in bigger hysteresis loops. At higher values of Cχ the hysteresis loops become flat-
ter, which indicates a stiffer response of the soil where less plastic strains are produced
during reloading. In the aforementioned analysis, Cχ can be determined by matching
the best fit to the size of the hysteresis response (loop) in cyclic loading tests, including
conventional isotropic loading-unloading-reloading compression tests. Note that Ri ni

in Figure 5.7 is the initial ratio between the size of the inner yield surface and the outer
yield surface (Ri ni = p̃i T /pcT ).

The coefficient of thermal shrinkage of the inner yield surface, Eq. (5.11), varies be-
tween 0 and µ0 as a function of the coordinates of the compression apex of the in-
ner yield surface with respect to the outer yield surface, through the value of the term
pi T /pcT which is controlled by the parameter b. This mechanism is designed to capture
the thermo-plastic behaviour observed at over-consolidated states and the accumulated
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thermo-plastic strains during cyclic thermal loadings. The variation of the normalised
thermal shrinkage coefficient, µ/µ0, with pi T /pcT for various values of b are shown in
Figure 5.8. For low values of b (e.g. b = 0.01), µ is almost the same as µ0 for most stress
states inside the outer yield surface, while for higher values (e.g. b = 100) µ becomes
nearly zero at stress states slightly less than the normally-consolidated states.

The effect of parameter b on the response of the soil is best observed when the soil
is subjected to several heating-cooling cycles (Figure 5.9). Figure 5.9a-5.9c show the vol-
umetric strains developed with b = 0.01, 1 and 100, when the soil is subjected to five
thermal cycles at a normally consolidated state (pi T /pcT = 1 and q = 0). In the first heat-
ing phase of all the simulations, pi T /pcT = 1 (the inner and outer yield surfaces coincide
on pcT ); thus, µ = µ0 and the magnitudes of thermally-induced volumetric strains are
identical. Simultaneously, the outer yield surface becomes bigger (see Eq. (5.14)). Upon
cooling, the response of the soil is thermo-elastic and the compression apex of the inner
yield surface (pi T ) remains unchanged. Therefore, after the first heating-cooling cycle,
p/pi T = 1 and pi T /pcT < 1, which represents an over-consolidated state. For the sec-
ond heating phase when using lower b values (e.g. b = 0.01 in Figure 5.9a), µ ≈ µ0, and
hence the amount of plastic volumetric strains produced during subsequent heating-
cooling cycles remains almost the same as for the first heating phase. As the parameter
b increases (e.g. b = 100), µ becomes smaller during the subsequent heating phase, and
so the amount of plastic strains in each thermal cycle becomes smaller. The accumu-
lated volumetric strains after each thermal cycle for different values for b are plotted
in Figure 5.9d. It can be seen that, for lower values of b (e.g. b = 0.01), the accumu-
lated strains due to the heating-cooling cycles have not levelled-off after five thermal
cycles, whereas when using higher values (e.g. b = 100) the accumulated volumetric
stains remain almost steady after three cycles, thereby representing how the model can
successfully capture the shakedown behaviour of fine-grained soils when they are sub-
jected to several thermal cycles. From the knowledge of accumulated volumetric strains
and number of cycles (e.g. Figure 5.1e), the parameter b can be calibrated.



5.5. CALIBRATION AND THE ROLE OF PARAMETERS

5

195

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Axial strain, 

a

0

100

200

300

400

500

600

700

800

900

1000
D

ev
ia

to
ri

c 
st

re
ss

, q
 (

kP
a)

OCR = 1
OCR = 2
OCR = 6
OCR = 12

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Axial strain, 

a

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

V
ol

um
et

ri
c 

st
ra

in
, 

v

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Axial strain, 

a

0

100

200

300

400

500

600

700

800

900

1000

D
ev

ia
to

ri
c 

st
re

ss
, q

 (
kP

a)

OCR = 1
OCR = 2
OCR = 6
OCR = 12

(c)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Axial strain, 

a

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

V
ol

um
et

ri
c 

st
ra

in
, 

v

(d)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Axial strain, 

a

0

100

200

300

400

500

600

700

800

900

1000

D
ev

ia
to

ri
c 

st
re

ss
, q

 (
kP

a)

OCR = 1
OCR = 2
OCR = 6
OCR = 12

(e)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Axial strain, 

a

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

V
ol

um
et

ri
c 

st
ra

in
, 

v

(f)

Figure 5.6: Effect of parameter Cχ on drained behaviour response: (a) q-εa response with Cχ = 100; (b) εv -εa
response with Cχ = 100; (c) q-εa response with Cχ = 1000; (d) εv -εa response with Cχ = 1000; (e) q-εa

response with Cχ = 10000; (f) εv -εa response with Cχ = 10000
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Figure 5.9: Effect of parameter b on the volumetric strain vs. temperature difference response for: (a) b = 0.1;
(b) b = 10; (c) b = 100; (d) effect of parameter b on the accumulated volumetric strain with thermal cycles

5.6. PERFORMANCE OF THE MODEL
The performance of the model has been validated by comparing simulations with a va-
riety of experimental data, including oedometer and triaxial tests subjected to thermal
cycles and tests under drained and undrained conditions on different soil types. The
tests cover a wide range of stress paths and loading histories. The calibrated parameters
used for the simulations are reported in Table 5.1.
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NG ET AL. [44] TEST

Ng et al. [44] investigated the thermo-mechanical behaviour of a reconstituted Loess
clay, subjected to several heating-cooling cycles, by using a temperature-controlled oe-
dometer apparatus. The soil specimen was first consolidated to a vertical stress of 50
kPa and then subjected to five heating-cooling cycles between 70◦C and 15◦C, starting
from an ambient temperature of 25◦C. The performance of the model is compared with
experimental data in T-εv space and the accumulated volumetric strain versus number
of thermal cycles in Figure 5.10a and Figure 5.10b, respectively. The experimental data
show a shakedown response with respect to thermal cycles, in which, after five thermal
cycles, the response of the soil becomes almost thermo-elastic. It is observed that the
model can capture the amplitude of thermally-induced volumetric strains at each ther-
mal cycle accurately, and the accumulated strains with respect to the number of cycles
matches well with the experimental data.
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Figure 5.10: Comparison of model predictions with experimental data of Ng et al. [44]: (a) temperature vs.
volumetric strain; (b) accumulated volumetric strain vs. the number of thermal cycles

DI DONNA & LALOUI [25] TEST

The cyclic response of Geneva clay, subjected to several heating-cooling cycles, was in-
vestigated by Di Donna & Laloui [25] by using a temperature-controlled oedometer ap-
paratus. The soil specimen was compressed under a vertical stress of 250 kPa and then
subjected to four thermal cycles between 60◦C and 5◦C, starting from an ambient tem-
perature of 20◦C. The predictions of the model are compared with experimental data in
Figure 5.11. The soil, similar to Loess clay (Figure 5.10), shows a shakedown behaviour
which is well captured by the model.

BALDI ET AL. [42] TESTS

Baldi et al. [42] studied the thermo-mechanical behaviour of Boom clay by perform-
ing a single thermal cycle at different stress states. Soil specimens with an initial pre-
consolidation pressure of 6 MPa where subjected to heating and cooling between 20◦C
and 95◦C at hydrostatic pressures of 1 MPa, 2 MPa and 6 MPa, giving OCRs of 6, 3 and
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1, respectively. The predictions of the model (with calibrated parameters) and experi-
mental data are shown in Figure 5.12 (variation of volumetric strain with temperature
at different stress states). The model accurately predicts the volume changes of the soil
at OCRs of 1 and 3 and slightly over-predicts the thermo-mechanical compressive strain
behaviour of the highly over-consolidated specimen (OCR = 6).
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Figure 5.11: Comparison of model predictions with experimental data of Di Donna & Laloui [25]: (a)
temperature vs. volumetric strain; (b) accumulated volumetric strain vs. the number of thermal cycles
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Figure 5.12: Comparison of the model predictions with experimental data of Baldi et al. [42]: temperature vs.
volumetric strain

ABUEL-NAGA ET AL. [43] TESTS

The thermo-mechanical behaviour of Bangkok clay, using a temperature-controlled oe-
dometer and triaxial apparatus, is shown in Figure 5.13.

The void ratio (e) variation versus the vertical stress of a soil specimen in the
temperature-controlled oedometer is shown in Figure 5.13a. At an ambient temperature
of 22◦C, the soil specimen was compressed to 100 kPa. Next, with the vertical stress be-
ing held constant, the specimen was subjected to a single heating-cooling cycle between
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95◦C and 22◦C. As a result, the soil experienced a reduction in void ratio, i.e., it attained a
denser state. The test was ended by further compression with the vertical stress increas-
ing to 200 kPa at room temperature. Due to the heating-cooling cycle, the soil exhibited
an initial stiffer response upon the second compression phase, i.e., the soil behaved as
an over-consolidated soil. This behaviour is attributed to the denser state that the soil
had attained after the thermal cycle. This behaviour, as well as the void ratio reduction
during the thermal cycle, is well captured by the model.

Figure 5.13b presents the volumetric behaviour of the same soil in an isotropic com-
pression test using a triaxial apparatus, at three different temperatures of 25, 70 and
90◦C. Samples were first compressed to 300 kPa at an ambient temperature (T = 25◦C)
and then unloaded to 25 kPa to attain an OCR of 12. This was followed by a heating phase
to reach the desired temperature. Finally, the specimens were isotropically loaded with
the hydrostatic pressure increasing beyond 300 kPa. The predictions of the model are
also depicted in Figure 5.13b and show satisfactory results. It should be noted that the
stress-strain curves predicted by the model are smooth, in contrast to the model devel-
oped in Chapter 2 which exhibited a bilinear response.
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Figure 5.13: Comparison of model predictions with experimental data of Abuel-Naga et al. [43]: (a) void ratio
vs. vertical stress in oedometer test; (b) volumetric strain vs. mean effective stress during isotropic triaxial

compression at different temperatures

UCHAIPICHAT & KHALILI [38] TESTS

The drained behaviours of a saturated silty soil at various stress states and three tem-
peratures of 25, 40 and 60◦C were investigated by Uchaipichat & Khalili [38] by using a
temperature-controlled triaxial apparatus. At a room temperature of 25◦C, all the sam-
ples were first isotropically compressed under a hydrostatic pressure of 200 kPa, and
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then unloaded by the hydrostatic pressure decreasing to 50 kPa, 100 kPa and 150 kPa,
resulting in respective stress states with OCR = 4, OCR = 2 and OCR = 4/3. The tempera-
tures of the samples for each over-consolidated state were then elevated to the targeted
temperatures and this was followed by shearing under drained conditions. Experimen-
tal data of deviatoric stress versus deviatoric strain (q-εs ) and volumetric strain versus
deviatoric strains (εv -εs ), as well as the corresponding model predictions, are presented
in Figure 5.14. The predictions of the model, similar to those in Chapter 2, are in good
agreement with experimental data, except for the early stage of εv -εs curves for over-
consolidated states (OCR = 4). Note that Uchaipichat & Khalili [38] reported that the
Critical State stress ratio (M) of the studied soil was temperature independent. There-
fore, the simulations were conducted using π= 0.
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Figure 5.14: Comparison of model predictions with experimental data of Uchaipichat & Khalili [38]: (a)
deviatoric stress vs. deviatoric strain at different OCRs and temperatures; (b) volumetric strain vs. deviatoric

strain at different OCRs and temperatures

GHAHREMANNEJAD [40] TESTS

In the study of Ghahremannejad [40], illitic clay samples were first heated to reach the
target temperatures of 22◦C (room temperature) and 75◦C. With the temperature held
constant, specimens were subjected to drained isotropic compression with the hydro-
static pressure increasing to 400 kPa, resulting in a normally-consolidated stress state.
Then, the specimens were sheared under undrained conditions. The stress path in p-q
stress space, and the corresponding deviatoric stress and pore pressure (up ) versus de-
viatoric strain experimental data, along with model predictions are shown, respectively,
in Figure 5.15a, Figure 5.15b and Figure 5.15c. Comparison of the simulations with ex-
perimental data indicates that the current model successfully captures the undrained
behaviour of fine-grained soils at various temperatures.
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Figure 5.15: Comparison of model predictions with undrained experimental data of Ghahremannejad [40] at
different temperatures: (a) stress path; (b) deviatoric stress vs. axial strain; (c) pore pressure vs. axial strain

For clarification on how the model performs, the initial and final configurations of
the inner (bubble) and outer yield surfaces are also plotted in p-q stress space in Fig-
ure 5.15a. The initial states of the surfaces are shown by dashed lines and the final
configurations of the surfaces are depicted by solid lines. The stress path, Critical State
stress ratio (M) and yield surfaces in blue correspond to test results and model predic-
tions at T = 22◦C, while those in red correspond to model predictions and tests results
at T = 75◦C. The soil exhibits a temperature-dependent Critical State stress ratio (M)
where its value is reduced at elevated temperatures. This observation is well captured by
the model through the parameter π∗. As a result, the sizes of the initial and final inner
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and outer yield surfaces are smaller at T = 75◦C, compared to the corresponding sur-
faces at T = 22◦C. Therefore, the inner yield surface corresponding to T = 75◦C follows a
shorter stress path to reach the outer yield surface during undrained shearing.

OTHER SIMULATIONS

While the main focus of this section is to validate the proposed model with thermo-
mechanical test results, the capability of the model in capturing the hysteresis behaviour
of soils is investigated here.

Figure 5.16 shows the specific volume (ν = 1+ e) versus logarithm of vertical stress
from an oedometer test on undisturbed Ariake clay (Suddeepong et al. [55]), along with
the model prediction. The specimen, under isothermal conditions, was subjected to two
loading-unloading-reloading paths and hysteresis loops were therby formed. The model
well captures the hysteresis loops through the parameter Cχ.
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Nakai & Hinokio [56] performed drained cyclic tests with different stress paths on
Fujinomori clay by using a triaxial apparatus under isothermal conditions. Figure 5.17
shows the results of a normally-consolidated clay which was subjected to one cyclic
drained shearing at a hydrostatic pressure of 196 kPa. The model predictions (q/p-
εv and q/p-εs curves) are compared with experimental data in Figure 5.17a and Fig-
ure 5.17b, respectively. It can be seen that the model can successfully predict the narrow
hysteresis loop of the experimental q/p-εv curve and the wider hysteresis loop in the
experimental q/p-εs curve.

5.7. CONCLUSION
A thermodynamically consistent two surface/bubble model has been developed which
successfully simulates the hysteresis behaviour of soils during cyclic mechanical load-
ings and shakedown behaviour when they are subjected to heating-cooling cycles. These
behaviours have been captured by assigning a kinematic rule for the heating phase along
with an isothermal kinematic rule. As a result, the model predicts plastic strains at highly
over-consolidated states and during the heating phase of cyclic thermal loads. The mag-
nitude of thermally-induced plastic strains reduces as the state of the soil becomes over-
consolidated and the model has a control on the accumulated plastic strains due to ther-
mal loads.
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APPENDIX

5.A. APPENDIX A: ENERGY POTENTIAL, YIELD SURFACE AND

PLASTIC FLOW
The Gibbs energy potential proposed by Houlsby et al. [61] is used as the energy potential
for isothermal conditions

g1
(
p, q

)=− p2−n
o

K̄ (2−n) (1−n) p1−n
a

− p

K̄ (1−n)
(5.A.1a)

where

p2
o = p2 + K̄ (1−n)

3Ḡ
q2 (5.A.1b)

and pa (kPa) is the atmospheric pressure (101 kPa); K̄ and Ḡ are material constants, re-
spectively related to the elastic bulk modulus and shear modulus; and n (0 < n < 1) is
the constant representing the power dependence of the bulk and shear moduli on the
hydrostatic pressure p. For the case when the elastic bulk and shear moduli are linearly
proportional to p (for cases in which n = 1), the free energy is natural-log dependent on
p

g1
(
p, q

)=− 1

K̄
p

(
ln

(
p

pa

)
−1

)
− q2

6Ḡp
(5.A.1c)

The total strain and generalised stresses (in triaxial space) are derived, respectively, by
differentiating the energy potential (Eq. (5.1)) with respect to the true triaxial stresses
(σ={p, q}T) and the internal variables (εp

i ={εp
v,i ,εp

s,i }T, εp
o ={εp

v,o ,εp
s,o}T and ρ= {ρp ,ρq }T)

{ε} =−
{
∂g
∂σ

}
= {
εe

}+{
ε

p
i

}+{
ε

p
o
}+{

εT her m
}

=−


∂g1
∂p
∂g1
∂q

+
{
ε

p
v,i

ε
p
s,i

}
+

{
ε

p
v,o

ε
p
s,o

}
+3α∗ (T −T0)

{
1

0

} (5.A.2)

{
χ̄i

}=−
{
∂g

∂ε
p
i

}
= {σ} =

{
p
q

}
(5.A.3)

{
χ̄o

}=−
{
∂g

∂ε
p
o

}
= {σ} =

{
p
q

}
(5.A.4)
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{
χ̄ρ

}
=−

{
∂g

∂ρ

}
=−


∂g
∂ρp
∂g
∂ρq

=
{

0
0

}
(5.A.5)

where ε is the total strain (in triaxial space), and χ̄i , χ̄o and χ̄ρ , respectively, are the
generalised stresses related to the inner yield surface, outer yield surface and kinematic
variable. It should be noted that ρ is an internal variable that is introduced in the defi-
nition of the rate of dissipation potential function (Eq.(5.2)) (and not in the definition of
the energy potential, Eq. (5.1)).

Dissipative stresses are derived by differentiating the total rate of dissipation po-
tential (Eq. (5.2a)) with respect to the rates of the internal variables (εp

i ={εp
v,i ,εp

s,i }T,

ε
p
o ={εp

v,o ,εp
s,o}T and ρ= {ρp ,ρq }T)

{
χi

}={
∂d

∂ε̇
p
i

}
=


∂d
∂ε̇

p
v,i

∂d
∂ε̇

p
s,i

=


(
Ci +ρp

)+ A2
i ε̇

p
v,i√

A2
i

(
ε̇

p
v,i

)2+B 2
i

(
ε̇

p
s,i

)2

ρq + B 2
i ε̇

p
s,i√

A2
i

(
ε̇

p
v,i

)2+B 2
i

(
ε̇

p
s,i

)2

+
 Λ1

∂c1

∂ε̇
p
v,i

Λ2
∂c2

∂ε̇
p
s,i


(5.A.6)

{
χo

}={
∂d

∂ε̇
p
o

}
=


∂d
∂ε̇

p
v,o

∂d
∂ε̇

p
s,o

=


Co + A2

o ε̇
p
v,o√

A2
o
(
ε̇

p
v,o

)2+B 2
o
(
ε̇

p
s,o
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B 2
o ε̇
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s,o√

A2
o
(
ε̇

p
v,o
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o
(
ε̇

p
s,o
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 (5.A.7)

{
χρ

}
=

{
∂d

∂ρ̇

}
=


∂d
∂ρ̇p

∂d
∂ρ̇p

=
 Λ1

∂c1
∂ρ̇p

Λ2
∂c2
∂ρ̇p

 (5.A.8)

where χo and χi are the dissipative stresses related to do and di , respectively, and χρ is
the dissipative stress related to the kinematic variable ρ. Note that ∂c1/∂ε̇p

v,i , ∂c2/∂ε̇p
s,i ,

∂c1/∂ρ̇p , and ∂c2/∂ρ̇q are non-zero terms.
By maximising the rate of dissipation, i.e., using Ziegler’s postulate [30] (where χ =

χ̄), χi = χ̄i (equating Eq. (5.A.3) with Eq. (5.A.6)), χo = χ̄o (equating Eq. (5.A.4) with
Eq. (5.A.7)) and χρ = χ̄ρ (equating Eq. (5.A.5) with Eq. (5.A.8)), it is determined that

{
χi

}= {σ} =
{

p
q

}
(5.A.9)

Λ=0 (5.A.10)

By substituting Eq. (5.A.10) in Eqs. (5.A.6) and (5.A.8), the dissipative stresses related to
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the inner yield surface and kinematic variable are simplified to

{
χi

}={
∂d

∂ε̇
p
i

}
=


∂d
∂ε̇

p
v,i

∂d
∂ε̇

p
s,i
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(
Ci +ρp

)+ A2
i ε̇

p
v,i√

A2
i

(
ε̇
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v,i

)2+B 2
i

(
ε̇

p
s,i

)2

ρq + B 2
i ε̇

p
s,i√

A2
i

(
ε̇

p
v,i

)2+B 2
i

(
ε̇

p
s,i

)2

 (5.A.11)

{
χρ

}
=

{
∂d

∂ρ̇

}
=

{
0
0

}
(5.A.12)

The general approach of deriving the inner and outer yield surfaces for rate-independent
materials, with the rate of dissipation potential being a first order homogenous function
of plastic strain increments, is by invoking the Legendre-Fenchel transform on the rate
of dissipation potential. This procedure can also be done in a simpler way by eliminating
the sub-rate of dissipation functions do and di in Eq. (5.A.7) and Eq. (5.A.11), respectively.
Eventually, the surfaces in the dissipative stress space (χp -χq ) are determined as

Outer yield surface: yd
o =B 2

o

(
χp,o −C0

)2 + A2
o

(
χq,o

)2 − A2
oB 2

o = 0 (5.A.13)

Inner yield surface: yd
i =B 2

i

(
χp,i −ρp −Ci

)2 + A2
i

(
χq,i −ρq

)2 − A2
i B 2

i = 0 (5.A.14)

which form ellipses in χp -χq space (dissipative stress space).
The flow rule (direction of plastic strain increments) is always normal to the inner

yield surface in dissipative stress space (yd
i ), i.e., it is along the derivatives of the inner

yield surface with respect to dissipative stresses corresponding to the inner yield surface
(χp,i and χq,i )

{
ri

d

}
=

{
r i

p

r i
q

}
= 2

{
B 2

i

(
χp,i −ρp −Ci

)
A2

i

(
χq,i −ρq

) }
(5.A.15)

Substituting Eq. (5.A.9) in Eqs. (5.A.13)-(5.A.15), the inner yield surface, the outer yield
surface and the plastic flow in true stress space (p-q) are derived as those in Eqs. (5.3)-
(5.5), respectively.

The incremental formulations for strain controlled conditions and stress controlled
conditions (as the input) are presented in Appendix 5.C.

5.B. APPENDIX B: ISOTHERMAL KINEMATIC RULE
The projection or similarity centre is the point about which the inner yield surface and
the outer yield surface are geometrically similar, such that a ray extending from the
projection centre passes through points on the inner yield surface and the outer yield
surface with a common normal. The projection point can be determined by consid-
ering the intersection of two lines. Each line connects two points, one on the inner
yield surface and the other on the outer yield surface, that have an identical normal on
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each surface. Here, these two lines are selected to connect the compression and de-
compression apexes of both surfaces (Figure 5.18a). The decompression apexes of the
inner and the outer yield surfaces, respectively, have coordinates (p, q) = (ρp ,ρq ) and
(p, q) = (0,0), and the compression apexes for corresponding surfaces have coordinates
(p, q) = (pi T ,ρq ) and (p, q) = (pcT ,0), where pi T is geometrically defined as

pi T = ρp + p̃i T (5.B.1)

By determining these two lines, the projection centre is their point of intersection
(
p̂, q̂

)
and is determined as

p̂ = ρp /Wr

q̂ = ρq /Wr

}
→

{
p̂
q̂

}
= 1

Wr

{
ρp

ρq

}
(5.B.2a)

or

σ̂= ρ

Wr
(5.B.2b)

where Wr is defined as

Wr = 1− p̃i T

pcT
(5.B.3)

where p̃i T and pc T are the size of the major-axis of the inner and outer yield surfaces,
respectively. The coordinates of the projection centre are controlled by Wr and the coor-
dinates of the decompression apex of the inner yield surface, ρ (Eq. (5.B.2b)). Vice versa,
the decompression apex of the inner yield surface is linked to the projection centre

ρ =Wr σ̂ (5.B.4)

q

p

(p� ,q� )
(�p,�q)

(piT,�q)

(0,0) (pcT,0)

piT
~

(a)

q

p

(p� ,q� )

(0,0) (pcT,0)

(p1,q1)

(p2,q2)

(p3,q3)

(���p1, ���q1)

(���p2, ���q2)

(���p3, ���q3)

(b)

Figure 5.18: (a) Definition of projection centre; (b) definition of image stress
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The corresponding image stress on the outer yield surface can be obtained from any
stress on the inner yield surface (Figure 5.18b). The image stress,

(
p̄, q̄

)
, on the outer

yield surface is determined from the properties of similar triangles (Figure 5.18a)

p̄ = p +
(

Wr
1−Wr

)(
p − p̂

)
q̄ = q +

(
Wr

1−Wr

)(
q − q̂

)
→

{
p̄

q̄

}
=

{
p

q

}
+

(
Wr

1−Wr

)({
p

q

}
−

{
p̂

q̂

})
(5.B.5a)

or, equivalently,

{σ̄} = {σ}+
(

Wr

1−Wr

)
({σ}− {σ̂}) (5.B.5b)

The kinematic rule is the rate of Eq. (5.B.4):{
ρ̇

}= Ẇr {σ̂}+Wr
{

˙̂σ
}

(5.B.6)

where

Ẇr = (1−Wr )
ṗcT

pcT
−

˙̃pi T

pcT
(5.B.7)

Under isothermal conditions, the temperature dependency terms of ˙̃pi T (Eq. (5.14))
and ṗcT (Eq. (5.15)) are dropped; thereby, they are respectively defined by ˙̃pi and ṗc :

˙̃pi =p̃i T
1+e0

λ−κ ε̇
p
v (5.B.8)

ṗc =pcT
1+e0

λ−κ ε̇
p
v (5.B.9)

The isothermal kinematic rule, assigned to the decompression apex (ρ̇), is complete
once the evolution rule of the projection centre ( ˙̂σ) is designed. Two mechanisms form
the evolution rule of the projection centre, σ̂= (

p̂, q̂
)
:

• When the inner yield surface translates with the stress state along the hydrostatic
pressure axis (p-axis) under isothermal conditions (no temperature change), in-
cremental plastic volumetric strains are produced and, simultaneously, the outer
yield surface hardens isotropically with the plastic volumetric strain increments (see
Eq. (5.A.9))). The hydrostatic translation (along the p-axis) of the inner yield surface
is restricted by the isotropic growth of the outer yield surface, which implies that the
projection centre translates proportionally to the hydrostatic incremental growth of
the outer yield surface (isotropic hardening). Mathematically, this means that

{
˙̂σ1

}= ṗc

pcT
{σ̂} (5.B.10)
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• When plastic strains are developed, the inner yield surface translates toward the im-
age stress, projected on the outer yield surface, which is mathematically expressed
as {

˙̂σ2
}=Cχ

∥∥ε̇p∥∥ ({σ}− {σ̂}) (5.B.11)

where ∥ε̇p∥ is the magnitude of the plastic strain increment and Cχ is a parameter
which controls the pace of the inner yield surface approaching the outer yield sur-
face.

The evolution rule of the projection centre is the sum of
{

˙̂σ1
}

and
{

˙̂σ2
}
,{

˙̂σ
}=Cχ

∥∥ε̇p∥∥ ({σ}− {σ̂})+ ṗc

pcT
{σ̂} (5.B.12)

and consequently, by using Eq. (5.B.6), the kinematic rule assigned to the decompression
apex for isothermal conditions is determined as

{
ρ̇I

}= (
ṗc

pcT
−

˙̃pi

pcT

)
{σ̂}+Cχ

∥∥ε̇p∥∥Wr ({σ}− {σ̂}) (5.B.13)

By further substituting Eq. (5.B.2b) in Eq. (5.B.13) and eliminating {σ̂}, the kinematic rule
(Eq. (5.18)) is derived.

5.C. APPENDIX C: RATE-FORM FORMULATION
STRAIN-CONTROLLED INCREMENTAL FORMULATION

In order to determine the strain-controlled rate-form formulation, all the incremental
formulations, including the isotropic and kinematic rules, need to be re-written. Here,
the rate equations are split into plastic multiplier (Λ̇) dependent and independent terms,
which are respectively denoted by Mi and Ui , where subscript i represents the variable.

The isotropic hardening rule for the outer yield surface (Eq. (5.14)) is rewritten as

ṗcT = Λ̇MpcT +UpcT (5.C.1a)

where

MpcT =pcT
1+e0

λ−κ r i
p (5.C.1b)

UpcT =−µ0pcT Ṫ (5.C.1c)

where r i
p is the flow rule along the p-axis and ε̇

p
v = Λ̇r i

p . The isotropic hardening of the
inner yield surface (Eq. (5.15)) is rewritten as

˙̃pi T = Λ̇Mp̃i T +Up̃i T (5.C.2a)

where

Mp̃i T =p̃i T

(
1+e0

λ−κ r i
p −Mµ 〈T −T0〉

)
(5.C.2b)



APPENDIX 5.C

5

219

Up̃i T =− (
µ

〈
Ṫ

〉+Uµ 〈T −T0〉
)

p̃i T (5.C.2c)

The kinematic rule under isothermal conditions (Eq. (5.18)) is rewritten as{
ρ̇I

}= Λ̇ {M I } (5.C.3a)

where

{M I } =
{

(MI )p

(MI )q

}
=

(
1

Wr

(
Mpc

pcT
− Mp̃i

pcT

)
−Cχ

∥∥∥ri
∥∥∥){

ρp

ρq

}
+Cχ

∥∥∥ri
∥∥∥Wr

{
p
q

}
(5.C.3b)

and

Mp̃i =p̃i T
1+e0

λ−κ r i
p (5.C.3c)

Mpc =pcT
1+e0

λ−κ r i
p (5.C.3d)

The kinematic rule under non-isothermal conditions (Eq. (5.18)) is rewritten as{
ρ̇H

}= Λ̇ {M H } (5.C.4a)

where

{M H } =
{

(MH )p

(MH )q

}
=−H

(
Ṫ

){ (MI )p

0

}
(5.C.4b)

The kinematic rule is therefore, the sum of Eq. (5.C.3a) and Eq. (5.C.4a){
ρ̇

}= {
ρ̇I

}+{
ρ̇H

}
(5.C.5)

µ̇ is the rate of µ (Eq. (5.11))

µ̇=µb

(
ṗi T

pi T
− ṗcT

pcT

)
(5.C.6)

which can be rewritten as

µ̇= –̇Λ
(
Kp

)
µ
+Hµ (5.C.7a)

where

Mµ =
(

1

µb
+ p̃i T

pi T
〈T −T0〉

)−1 (
(MI )p + (MH )p

pi T
− MpcT

pcT
+ 1+e0

λ−κ
p̃i T

pi T
r i

p

)
(5.C.7b)

Uµ =−
(

1

µb
+ p̃i T

pi T
〈T −T0〉

)−1 (
µ

p̃i T

pi T

〈
Ṫ

〉+ UpcT

pcT

)
(5.C.7c)

The total strain increment can be determined by differentiating Eq. (5.A.2)
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{ε̇} = {
ε̇e}+{

ε̇
p
i

}+{
ε̇

p
o
}+{

ε̇T her m
}

(5.C.8)

where the elastic strain increments are

{
ε̇e}={

ε̇e
v

ε̇e
s

}
= [

Ce] {σ̇} =−
 ∂2g1

∂p2
∂2g1
∂p∂q

∂2g1
∂q∂p

∂2g1

∂q2

{
ṗ

q̇

}
(5.C.9)

where [Ce ] is the elastic compliance (or flexibility) matrix. With respect to Eq. (5.A.1a)
or Eq. (5.A.1c), the components of the elastic compliance matrix can be derived, respec-
tively, as

[
Ce]= 1

3Ḡp1−n
a pn

o

 3Ḡ
K̄ (1−n)

(
1− np2

p2
o

)
−npq

p2
o

−npq
p2

o
1− n(1−n)K̄

3Ḡ
q2

p2
o

 (5.C.10a)

[
Ce]= 1

3Ḡp

 3Ḡ
K̄

(
1+ K̄

3Ḡ
q2

p2

)
− q

p

− q
p 1

 (5.C.10b)

The thermo-elastic strain increments are{
ε̇T her m

}
=

{
ε̇T her m

v

ε̇T her m
s

}
= 3α∗Ṫ

{
1

0

}
(5.C.11)

By using Eqs. (5.12) and (5.C.8), the stress increments are determined:

{σ̇} = [
De](

{ε̇}−
{
ε̇T her m

}
− Λ̇

{
ri

})
(5.C.12)

where [De ] is the elastic stiffness matrix, which is the inverse of elastic flexibility matrix
[Ce ].

The consistency condition of the inner yield surface (ẏi = 0) is

ẏi =
{
∂yi

∂σ̃

}T {
˙̃σ
}+ ∂yi

∂p̃i T

˙̃pi T + ∂yi

∂M
Ṁ (5.C.13)

where
{
∂yi
∂σ̃

}
=

{
∂yi /∂p̃
∂yi /∂q̃

}
,
{

˙̃σ
}= { ˙̃p

˙̃q

}
and Ṁ =π∗Ṫ .

By further substituting Eq. (5.C.2), Eq. (5.C.5) and Eq. (5.C.12) in Eq. (5.C.13), the plastic
multiplier for strain-controlled loading conditions is derived

Λ̇=
{
∂yi
∂σ̃

}T
[De ]

{
ε̇− ε̇T her m

}+ ∂yi
∂p̃i T

Up̃i T + ∂yi
∂M Ṁ{

∂yi
∂σ̃

}T
[De ]

{
ri

}+{
∂yi
∂σ̃

}T
{M I +M H }− ∂yi

∂p̃i T
Mp̃i T

(5.C.14)

The derivatives of the yield surface with respect to its variables(
∂yi /∂σ̃,∂yi /∂p̃i T ,∂yi /∂M

)
are presented in Appendix 5.D.



APPENDIX 5.D

5

221

STRESS-CONTROLLED INCREMENTAL FORMULATION

For stress-controlled conditions, the stress increment {σ̇} is the input and the corre-
sponding strain increment is calculated. To derive the stress-controlled incremental for-
mulations, the plastic multiplier (Eq. (5.C.14)) needs to be revised. By using Eq. (5.C.8)
and substituting for the term

{
ε̇− ε̇T her m

}
in Eq. (5.C.14), and using Eq. (5.C.10), the

plastic multiplier is revised as

Λ̇=
{
∂yi
∂σ̃

}T
{σ̇}+ ∂yi

∂p̃i T
Up̃i T + ∂yi

∂M Ṁ{
∂yi
∂σ̃

}T
{M I +M H }− ∂yi

∂p̃i T
Mp̃i T

(5.C.15)

5.D. APPENDIX D: DERIVATIVE OF THE YIELD SURFACE WITH

RESPECT TO ITS VARIABLES
The derivatives of the yield surface with respect to its variables are presented here:

{
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∂σ̃

}
=


∂yi
∂p̃
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=
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r i
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}
(5.D.1)
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where
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Ṁ =π∗Ṫ (5.D.14)

5.E. APPENDIX E: THE MAGNITUDE OF PLASTIC STRAIN IN-
CREMENTS IN TRIAXIAL SPACE

The magnitude of the plastic strain increment produced by activation of the inner yield
surface,

∥∥ε̇p
∥∥, is calculated here. The plastic volumetric strain increment and plastic

deviatoric strain increment are defined respectively as

ε̇
p
v = tr

(
ε̇p)

(5.E.1)

ε̇
p
s = (

2/3 ėp : ėp)1/2 (5.E.2)

where ":" is the double contract operator, and ε̇p and ėp are, respectively, the plastic
strain increment tensor and the plastic deviatoric strain increment tensor defined as

ėp = ε̇p − (
ε̇

p
v /3

)
: 1 (5.E.3)

where 1 is the second order identity tensor.
The magnitude of the plastic strain increment is∥∥ε̇p∥∥= (

ε̇p : ε̇p)1/2 (5.E.4)

Substituting Eq. (5.E.3) in Eq. (5.E.4) results in

∥∥ε̇p∥∥=
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which simplifies to
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It can also be rewritten in terms of the plastic multiplier and flow rule as
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5.F. APPENDIX F: RANGE OF SHAPE PARAMETERS α AND γ
The range of shape parameters α and γ are investigated from two perspectives:

CONVEXITY AND RANGE OF SHAPE PARAMETERS α AND γ

From constitutive modelling and numerical perspectives, yield surfaces should be con-
vex to avoid numerical difficulties. In Chapter 3, with the use of convexity analysis, it was
demonstrated that the yield surface presented by Eq. (5.3) and stress-like functions de-
fined in Eq. (5.6) are always convex when −2 ≤α,γ≤ 2. The proposed yield surface was
shown to successfully represent the yield stress points of a wide range of geomaterials.

THERMODYNAMICS AND RANGE OF SHAPE PARAMETERS α AND γ

From a thermodynamics perspective, the rate of dissipation is required to be non-
negative. Therefore, shape parameters defining the rate of dissipation and the yield sur-
faces may need to be limited within a range that satisfies this thermodynamical require-
ment.
The total plastic work increment Ẇ p associated with a continuum element is the prod-
uct of the effective stress σ and plastic strain increment ε̇p and is equal to the rate of
dissipation d (since there is no shift stress) [48]:

Ẇ p =σε̇p = d (5.F.1a)

where, in triaxial stress space, it is rewritten as:

Ẇ p = pε̇p
v +q ε̇p

s = d ; where d ≥ 0 (5.F.1b)

Using Eq. (5.F.2) and considering that plastic deformations are associated with the inner
yield surface, Eq. (5.F.1b) reduces to

Ẇ p = (
p̃ +ρp

)
ε̇

p
v + (

q̃ +ρq
)
ε̇

p
s = di (5.F.1c)

where p̃ = p −ρp and q̃ = q −ρq . Substituting Eq. (5.C.2) in Eq. (5.F.1c) results in
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The right-hand side of Eq. (5.F.2) is non-negative. Therefore, the ranges of the shape pa-
rameters α and γ are restricted to values resulting in non-negative values of the term
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on the left-hand side of Eq. (5.F.2). The range of values of the term
(
p̃ −Ci

)
ε̇

p
v + q̃ ε̇p

s
(left-hand side of Eq. (5.F.2)) was investigated for −2 ≤ α, γ ≤ 2 (obtained from convex-
ity analysis) and 0 ≤ p̃/pi T ≤ 1 (the range of p̃ varying inside the inner yield surface)
which where non-negative, similar to the right-hand side of Eq. (5.F.2). Therefore, it was
concluded that the accepted range of the shape parameters α and γ is −2 ≤α, γ≤ 2.



6
EXPERIMENTAL INVESTIGATION OF

SOIL–STRUCTURE INTERFACE

BEHAVIOUR UNDER MONOTONIC

AND CYCLIC THERMAL LOADING

The effect of temperature on the monotonic and cyclic shearing response of a soil–structure
interface is of critical importance for the application of thermal-active geo-structures.
To investigate this, soils and soil-concrete interfaces were comprehensively tested with
a temperature-controlled direct shear device under both fixed temperatures and ther-
mal/mechanical cycles within the range of 2–38°C. Monotonic and cyclic shearing with
various boundary conditions, including constant normal load (CNL), constant normal
stiffness (CNS) and constant volume (CV) were conducted to resemble the conditions
that thermal-active-geo-structures may experience. The strength properties of the sand,
clay, and sand–concrete and clay–concrete interfaces were partially influenced by heat-
ing and cooling under all boundary conditions. However, several effects were observed
which could affect the performance of thermo-active structures. Heating cycles caused
the clay–concrete interface to be overconsolidated, implying a lower excess pore pressure
would be generated during shearing. The cyclic CNS tests suggested that the interface
strength could degrade due to (thermally induced) cyclic shear displacements, with this
effect strongly related to the state of the soil rather than the temperature directly. In these
tests, the medium dense sand–concrete interface degraded to almost zero shear strength
after 5 cycles, whereas the clay–concrete interface asymptotically degraded to around 60%
of its strength after 10 cycles.

This chapter is based on the following paper: Guo, Y., Golchin, A., Hicks, M. A., Liu, S., Zhang, G. and Vardon, P.
J. Experimental investigation of soil–structure interface behaviour under monotonic and cyclic thermal load-
ing. Acta Geotechnica, 18, 2023.
The author of this thesis proposed the experimental programme, co-supervised the execution of the tests, lead
the interpretation of the results and co-authored the paper.
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6.1. INTRODUCTION
The soils adjacent to thermo-active geo-structures are typically subjected to annual and
daily cyclic temperature variation, depending on the operation mode of the ground
source heat pump (GSHP) system. The mechanical behaviour of the soil–structure in-
teraction may change due to these thermal effects and thereby influence the bearing
capacity or settlement of the structure. At the same time, the thermally-induced defor-
mation of the structure imposes cyclic shearing along the interface [1; 2], which may also
impact the bearing capacity or settlements. While the thermo-mechanical behaviour of
soils has been investigated thoroughly under triaxial boundary conditions [3–11], inves-
tigations on thermo-mechanical response at the interface level are limited. Therefore, a
more comprehensive investigation into the thermo-mechanical behaviour of interfaces
subjected to monotonic and cyclic thermal loadings, as well as on thermal effects on the
cyclic shearing induced by energy-structures, is required.

The isothermal behaviour of a soil–structure interface element depends on several
factors, such as the material type (wood, steel or concrete) of the structure [12], the sur-
face roughness [13–16], soil crushability [17], particle angularity [18–20], particle size
[21], the rate of shearing [22], and soil anisotropy [23]. Amongst these, the soil mean par-
ticle size and the roughness of the surface of the structure play a crucial role, for which
the normalised roughness Rn was proposed [14; 24]:

Rn = Rmax (L = D50)

D50
(6.1)

where Rmax is the distance between the highest peak and lowest valley within a gauged
length of L = D50 (where D50 is the mean particle size). Rn is suitable for describing
granular material interfaces because it considers the microscopic angle between asperi-
ties and the particles, while parameter Rmax is more often used to characterise clay inter-
faces, due to the difference in failure mechanism along the interface (i.e., sliding of a thin
layer of oriented clay) [25; 26]. The roughness was shown to be linearly correlated with
the soil interface friction coefficient before prior to a threshold value, after which the
friction coefficient approached that of the soil indicating a failure inside the soil rather
than along the soil–structure interface [17; 22; 27].

Another aspect influencing the mechanical response of the soil-interface is the
boundary conditions. The volumetric response of the shear zone (a thin layer around
structures where large shear strains are localised) during shearing can alter the normal
stress applied to the interface (depending on the normal boundary conditions) which
could lead to a different shear resistance. Three scenarios are often used for the bound-
ary conditions in direct shear tests and these may be quantified by the normal stiffness
(K ) acting on the interface layer, which is the ratio of normal stress and normal dis-
placement rates (i.e., K = ∆σn/∆δ where ∆σn is the normal stress variation and ∆δ is
the normal displacement variation on the interface). The boundary conditions may be
mimicked as springs with a stiffness of K [28] attached to the soil (Figure 6.1). Assum-
ing a zero stiffness for the springs (i.e. K = 0), conventional direct shear tests known
as constant normal load (CNL) may be performed (Figure 6.1a), which is the simplest
way to determine the shear strength parameters [24]. By keeping the stiffness constant
during shearing, it is possible to perform a constant normal stiffness (CNS) test via a di-
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rect shear apparatus (Figure 6.1b). This may be most representative of field conditions,
in which deformations in the shear zone are confined by the surrounding soil, which
leads to changes in the normal stress [29]. This was verified by comparing centrifuge, in-
situ pile experiments and laboratory CNS tests [30–32]. Cyclic degradation of the pile-
interface was successfully replicated by cyclic CNS tests [33; 34]. In some direct shear
tests the height of the specimen during shearing may be fixed (also known as constant
volume, i.e., CV). For these tests the normal stiffness tends to infinity (K = ∞, Figure
6.1c) and represent an equivalent undrained shear condition [25; 35; 36]. The vertical
stress change in CV shearing is equal to the pore pressure developed during undrained
direct shear tests [37].

CNL

K = 0 (σn = constant )
Shear zone

Structure

(a)

CNS

K = constant
Shear zone

Structure

(b)

CV

K = ∞

Structure

Shear zone

(c)

Figure 6.1: Schematic of boundary conditions normal to the soil-interface: (a) constant normal load; (b)
constant normal stiffness; (c) constant volume

During energy pile system operations, these boundary conditions may be encoun-
tered along the soil–structure interface in different circumstances. For GSHP systems
operating continuously, the temperature at the interface is expected to change mono-
tonically until a quasi-static heat transfer is reached. Since the temperature is almost
unchanged or varies at a relatively low rate, the normal stress on the structure is ex-
pected to be relatively constant (e.g. thermal expansion of structure, volume change of
the interface induced by soil–structure displacement is negligible) resembling the CNL
condition. For intermittent operation, where the energy pile provides both heating and
cooling at different periods during the year and/or only operates for given hours within
a day, the thermal impulse could cause significant short-term temperature fluctuations.
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The cyclic shearing imposed by thermal deformation of the pile is more likely to be con-
fined elastically by the surrounding soil, resembling the CNS condition. For energy piles
bearing a variable load (e.g. in a de-icing system for a bridge deck [38]) or for short term
thermal loads, the loading would impose a “fast shearing” along the soil–structure inter-
face, which can be undrained and can be investigated under CV conditions. Therefore,
it is of interest to evaluate the thermal effects under suitable boundary conditions. CNL
and CV conditions can be reasonably considered fundamental soil behaviour and used
in the calibration of constitutive models, whereas the CNS condition represents a soil
element in a certain problem dependent condition.

At present, there has only been a limited amount of work investigating the impact of
temperature on soil-interfaces and the results exhibit some inconsistencies/variabilities,
especially for clay–concrete interfaces. Direct shear tests on quartz sand [39; 40] and
Fontainebleau sand [41; 42] subjected to CNL boundary conditions have suggested that
sand–concrete interface behaviour is not affected in the temperature range of 5 – 60°C.
However, temperature effects on clay–concrete interfaces are less consistent. The fric-
tion angle (at the interface level) was found to be unchanged [42–45] or to decrease [39]
with temperature. A more evident thermal influence was the increase of adhesion after
heating, as observed with interfaces of illite [39], kaolin [42; 46] and red clay [40], while
the overconsolidated (OC) kaolin [43] and red clay [44] interfaces exhibited temperature
independent adhesion. Yazdani et al. [47] observed that the shear strength of a kaolin
interface subjected to heating was unchanged under a normal stress of 150 kPa, whereas
the shear strength increased under normal stresses of 225 and 300 kPa. They concluded
that the thermal strengthening was related to normal stress level, and not due to tem-
perature effects.

Temperature has also been shown to affect the volumetric response of clay-interfaces
during shearing. It was observed from monotonic CNL and cyclic CNS shearing tests [39;
42] that the contraction of normally consolidated clay-interfaces during shearing was
reduced due to thermal consolidation, while this was not obvious in other experiments
[44; 45].

Previous studies have mostly focused on the monotonic temperature influence, es-
pecially heating, on the monotonic shearing behaviour of the soil interface, although the
results show somewhat inconsistent trends. Moreover, limited data are available relat-
ing to thermal influences on cyclic shearing and undrained shearing behaviour of the
soil–structure interface. Regarding these aspects, a comprehensive series of tests were
performed using a well calibrated temperature controlled direct shear system, to inves-
tigate the shear response of interfaces within the temperature range of 2–38°C (compat-
ible with minimum and maximum temperatures that an energy-pile may experience)
under CNL, CNS and CV conditions. The void ratios of all samples were recorded and
the thermal influences on the volume change during shearing carefully examined con-
sidering the creep effect. The objective is to provide a comprehensive data set, which
covers a large range of conditions to which energy geo-structures are subjected, and to
draw conclusions on the overall shear behaviour of interfaces under various thermal and
mechanical stress paths relevant for energy geo-structures.
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6.2. EXPERIMENTAL SETUP AND CALIBRATION
A modified direct-shear apparatus manufactured by Wille Geotechnik was used in this
study (Figure 6.2a). The shear box was 10 × 10 × 3.2 cm and installed inside a thermally
insulated carriage. As shearing proceeds, the extent of the shearing surface reduces con-
tinuously, and therefore the effective surface area is used for calculating stresses. The
load cap has a porous contact with the sample allowing water outflow (Figure 6.2b). The
lower part of the shear box was 1 cm in depth, with a porous stone at the bottom. A
concrete block was embedded inside for the soil–concrete tests. The shearing platform
was levelled via a bubble level and the levelness was monitored throughout the tests.
Vertical and horizontal displacements were measured by two linear variable differential
transformers (LVDTs), with an accuracy of 0.001 mm. In this work, positive normal dis-
placements signify contraction and negative signify dilation.

The thermal load was provided by a heat pump connected with two pairs of heat
exchangers embedded in the load cap and the base of carriage (Figure 6.2b). The tem-
perature at the interface level was monitored by a PT100 sensor (TP1, accuracy 0.1°C) in
the shear box, which was also used to control the heat pump. The load cap and the car-
riage were thermally insulated. Similarly, insulation lids were installed surrounding the
shear box to prevent thermal loss and water evaporation, and thus the temperature of the
soil–concrete system was relatively uniform. The maximum temperature difference be-
tween the top insulation board and TP1 was found less than 0.5°C after thermal equilib-
rium. The whole system was kept in a climate room maintaining a constant temperature
of 20 ± 2°C. Considering that the magnitude of thermal influences on the volume change
and the shear strength of a sample could be relatively small, the LVDTs and shear force
measurements were carefully calibrated by imposing thermo-mechanical paths analo-
gous to that in the subsequent experiments, using a dummy iron sample or the empty
shear box. Details of the calibration process are presented in the Appendix 6.B.

6.3. MATERIAL PROPERTIES AND SAMPLE PREPARATION

6.3.1. SAND
Geba sand, a commercial fine uniform silica sand, was used in this study. Its physical
properties are given in Table 6.1. The size of particles ranged from 0.05 to 0.46 mm,
and the grain size distribution [48] is shown in Figure 6.3. To prepare the sample, the
thermocouple (Figure 6.2b) was first placed inside the shear box. Then, dry sand was
poured uniformly and levelled with a 10 ×10 cm square tamper. A 20 mm thick medium
dense (Dr = 50%) sand sample, with a targeted dry density of 1.43 g/cm3, was reached
by compaction.

6.3.2. CLAY
Speswhite clay was used to investigate the thermo-mechanical behaviour of fine-grained
soils. This clay consists of kaolinite with a small fraction of illite [49]. The Atterberg
limits (Table 6.1) were measured in accordance with BS1377-2 [50], and its particle-size
distribution (Figure 6.3) was obtained via the laser diffraction method.

The samples were prepared by mixing kaolin powder with sufficient water to form
a homogenous slurry with a water content of 1.5 liquid limit (LL). Then, the slurry was
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Figure 6.2: (a) Layout of temperature direct shear system; (b) Schematic view of the temperature-controlled
direct shear box

consolidated under 47.5 kPa in a large oedometer cell (diameter of 19 cm). After consoli-
dation, samples of 10 ×10× 2 cm were trimmed from the clay cake via a cutting ring. The
water contents of samples varied between 47.6% and 48.5%. After lowering the sample
into the shear box, the thermocouple was inserted into the sample.
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Figure 6.3: Grain-size distribution of Geba sand and kaolin clay

Table 6.1: Summary of physical properties of Geba sand [48] and kaolin clay

Geba
sand

cu = D60/D10
Minimum
void ratio

Maximum
void ratio

D50

(mm)
Specific gravity

(Gs )
1.38 0.64 1.07 0.11 2.68

kaolin
clay

LL(%) PL(%) Ip (%)
Hydraulic

conductivity
(m/s)

Specific gravity
(Gs )

49.3 27.4 21.9 10−8 ∼ 10−9 2.65

6.3.3. SOIL–CONCRETE INTERFACE

For the interface tests, a 10 ×10 ×1 cm concrete block was first positioned in the lower
shear box (Figure 6.2b) followed by a similar procedure for preparing the soil samples.
The thermocouple was inserted through a pre-drilled hole inside the concrete block to
record and control the temperature at the interface.

The surface of the concrete block was profiled via an optical stereo microscope along
5 lines in the shearing direction as illustrated in Figure 6.4a. For each line, the aver-
age Rn over two measurements of 13 mm was calculated (Figure 6.4b). Paikowsky et al.
[18] suggested that values of Rn between 0.02 and 0.5 are categorised as “intermediate”
roughness, which implies that a portion of the shear strength of the soil mobilises at the
interface level.

6.4. EXPERIMENTAL PROGRAMME

6.4.1. TEST PARAMETERS FOR SOIL AND SOIL-INTERFACE

After preparation, samples were consolidated in the shear box at room temperature
(20°C). Initially, a normal contact force of 5 kPa was applied on the samples, and then
samples were submerged by distilled water [51] and left for 1–2 hours. Then, the target
normal stress was reached following the loading sequence of 25, 50, 100 and 150 kPa
(stopping where required) prior to temperature variation. Each intermediate load step
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Figure 6.4: (a) Surface of the concrete block; (b) normalized roughness at different lines

was maintained for 2 hours. It should be noted that creep would proceed simultane-
ously during the temperature variation. Thus, the last consolidation step for iso-thermal
tests was prolonged for the same duration used to achieve the target temperature in the
parallel experiments. Any thermal or shearing load was imposed on the sample under a
normally consolidated (NC) state.

The thermo-mechanical behaviour was investigated at ambient temperature (20°C),
2 and 38°C. Sand and sand interface samples were subjected to temperature variation
and shearing at rates of 9°C/h and 0.25 mm/min, respectively. For clay and clay interface
tests, 3°C/h for the monotonic thermal loading were chosen and 5°C/h for thermal cycles
to reduce the test duration. Insignificant excess pore pressure would be induced by such
rates [39; 42; 43]. Based on the one-dimensional consolidation tests results of the clay
samples subjected to normal stresses between 50–150 kPa, a shear rate of 0.26 mm/min
was recommended [51]. Here, monotonic shear tests were conducted at 0.012 mm/min
to ensure no excess pore pressure was generated. A shearing rate of 0.12 mm/min was
selected for cyclic shearing after a comparison between the results of the two rates show-
ing negligible differences.

6.4.2. THERMO-MECHANICAL LOADING PATHS
The performed tests are categorised in four series:

SERIES I: TEMPERATURE EFFECT ON THE MECHANICAL BEHAVIOUR OF SOILS AND SOIL-
CONCRETE INTERFACE

The loading paths of these tests are depicted in Figure 6.5a. Samples were first consol-
idated (path O − A, where normal stresses, σn = 50, 100, and 150 kPa were selected),
heated/cooled to 38 or 2°C from the ambient temperature (20°C) (path A − A1/A2), fol-
lowed by monotonic shearing with the normal stress kept constant (CNL).

SERIES II: EFFECT OF THERMAL CYCLES ON THE MECHANICAL BEHAVIOUR OF

SOIL–CONCRETE INTERFACE

Samples were first consolidated to normal stresses of 50 or 150 kPa (path O − A). Then,
samples were subjected to 5 heating or cooling cycles (path A − A1/A2) varying respec-
tively between 20 to 38°C, or 20 to 2°C. After the thermal cycles, the sand-concrete sam-
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Figure 6.5: Schematic diagram of thermo-mechanical load paths: (a) Series I; (b) Series II; (c) Series III; (d)
Series IV

Loading path description: O − A: Consolidation; A−B : CNL (monotonic shearing); A−C : CV (1: contraction,
2: dilation); A−D : CNS (cyclic shearing); A− A1/A2: Temperature variation (drained condition)

ples were monotonically sheared under drained conditions at 20°C while the normal
stress was kept constant (CNL) (path A −B). On the other hand, clay–concrete sam-
ples were sheared while the total volume of the sample was kept constant (CV) (path
A −C1/C2), to investigate the thermal cycle effect under undrained shearing conditions
[35; 52]. The possible loading paths are shown in Figure 6.5b.

SERIES III: TEMPERATURE EFFECT ON THE CYCLIC SHEAR RESPONSE OF SOIL–CONCRETE

INTERFACE

The soil-interface of an energy pile may experience cyclic mechanical shearing, due to
the thermal elongation/shortening of the pile caused by the thermal loading. The distri-
bution of shear displacement is highly dependent on the constraints from surrounding
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soils and the superstructure. Therefore, it is possible to identify a location along the
length of the pile (also known as the null point) at which the magnitude of soil–structure
displacement would be zero. Then the magnitude of the soil–structure displacement in-
creases from the null point toward the two ends of the pile in the opposite direction. In
a idealised case where the null point is situated near the pile head (e.g. in a floating pile,
with a uniform soil profile where the pile head is almost completely restrained at the
surface) the pile tip would experience the largest displacement [53].

To identify a maximum realistic magnitude of the shearing displacement, the unre-
strained expansion of a 20m long concrete pile, with a 20°C temperature increase and a
thermal expansion of 10−5/°C is calculated. This results in a 4 mm expansion. In longer
piles this could be higher, but is likely to be lower due to soil restraints.

To investigate the thermal effects under such a loading condition, samples were first
consolidated to 150 kPa, then heated/cooled to 38°C or 2°C from 20°C, followed by a
series of two-way cyclic shearing tests with a displacement amplitude of ±4 mm. CNL
conditions were selected to represent (i) the fundamental soil shear strength in relation
to different stress levels (which is most useful to describe the behaviour numerically),
and (ii) long duration shear processes (e.g. a half year) for which due to creep processes
the normal force on the pile could be reasonably constant. The loading paths of these
tests are demonstrated in Figure 6.5c.
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Figure 6.6: Field monitoring data of inlet and outlet temperature of GSHP systems in Jiangsu Province, China.
(a) Continuous operation system; (b) Intermittent operation system

SERIES IV: TEMPERATURE EFFECT ON CYCLIC SHEAR RESPONSE OF SOIL–CONCRETE INTER-
FACE WITH CNS BOUNDARY CONDITIONS

For an intermittent operation GSHP system, the daily thermal load is applied to the
pile at a much higher rate. The temperature of the pile could change from the ground
temperature to a maximum value of approximately 10°C higher in a few hours as ob-
served from another field monitoring record (Figure 6.6b). In this case, a more rapid
cyclic shearing would likely be imposed along the soil-interface. Considering such load-
ing condition, samples were consolidated to 150 kPa and then one-way cyclic interface
shear tests with a maximum displacement of 2 mm were conducted at temperatures 2,
20 and 38°C. Due to the relatively short duration of the shearing process (note, this is still
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much slower than for cyclic loading typically observed in offshore foundations), the sur-
rounding soil is assumed to react elastically (and drained) to the volume changes at the
interface, and thus a CNS condition was chosen for this test series. Based on the elas-
tic expanding cylinder theory [30], a range of K would be reasonable, e.g., 100 to 1200
kPa/mm [39], and therefore a medium level stiffness of K = 500 kPa/mm was selected
for the current qualitative investigation. Where creep is low, longer duration thermal cy-
cles can also be well represented by these conditions. The loading paths are presented
in Figure 6.5d.

6.5. EXPERIMENTAL RESULTS
To ensure the reliability of the test results, repeatability tests were conducted at 20°C on
Geba sand and kaolin clay specimens consolidated to 50 kPa, and the results are shown
in Figure 6.7. Although the parallel tests results were not perfectly overlapping, the max-
imum difference was 1.5 kPa for Geba sand and 1.8 kPa for kaolin clay which are con-
sidered acceptable. This could be regarded as a reference for an overall accuracy of the
experiment and only the variation beyond this accuracy could be considered as the con-
sequence of thermal influences.
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Figure 6.7: atability tests: (a) Geba sand and (b) kaolin clay

6.5.1. SERIES I-A: TEMPERATURE EFFECT ON THE SOILS
The test results for sand–sand and clay–clay shearing are presented in Figure 6.8. The
shear stress versus shear displacement responses (Figure 6.8a and Figure 6.8d) demon-
strate that temperature has a negligible effect on the drained shearing behaviour in
terms of ultimate shear strength. The ultimate shear stresses and the corresponding nor-
mal stresses were linearly correlated and are shown in Figure 6.8b and Figure 6.8e. The
average peak friction angle obtained from the best-fitted line for the sand and clay were
33.90° and 20.87° respectively. The average apparent cohesion for clay was 4.79 kPa. The
difference between the friction angles at three levels of temperature are less than 1° for
the two soils, which suggests a negligible influence of the temperature variation on the
shear behaviour. Normal displacement versus shear displacement curves of soil–soil in-
terface shearing are presented in Figure 6.8c and Figure 6.8f. The thermal effects on the
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Figure 6.8: CNL results for soil samples at T = 2, 20, 38°C. Geba sand: (a) shear stress vs. shear displacement;
(b) failure envelopes; (c) normal displacement vs. shear displacement; kaolin clay: (d) shear stress vs. shear

displacement; (e) failure envelopes; (f) normal displacement vs. shear displacement

normal displacements versus shear displacements for sand and clay at different temper-
atures are not obvious. The reason is hypothesised to be that the thermally-induced vol-
ume change is relatively insignificant compared to the pre-shear void ratio differences
(due to sample preparation). The volume changes of each sample during temperature
variation differed depending on the material (sand or clay), normal stress level, creep,
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and thermal load direction (i.e. heating or cooling), with hypotheses for the underlying
cause discussed in more detail in Section 6.5.3. For brevity, the evolutions of volume
change in the heating/cooling process for each sample were not presented, as they were
almost identical as the first half cycle from the cyclic results presented in Figure 6.10
and Figure 6.13. Overall, for sand specimens, the maximum thermally-induced volume
strain was less than 0.1%, equal to a void ratio change (∆e) around 0.002. For clay speci-
mens, the maximum volume strain developed during heating, and was about 0.08% cor-
responding to ∆e ≈ 0.001 (comparable to experiments in the literature [3; 8; 54]). These
volume changes are less than the variation of initial void ratio (e0) after sample prepara-
tion (see Table 6.2 in Appendix 6.A). The specimens with a higher void ratio contracted
slightly more during shearing, and therefore the differences of initial state (even when
small) become significant and make the thermal influence, if any, harder to identify.

6.5.2. SERIES I-B: TEMPERATURE EFFECT ON THE SOIL–CONCRETE INTER-
FACES

The corresponding tests results for a soil–concrete interface are presented in Figure 6.9.
The sand–concrete interface exhibited a hardening behaviour and mobilised 80±3% of
the ultimate shear strength of the sand tests. The volumetric response (Figure 6.9c) of the
sand–concrete interface is dominantly contractive, compared to the sand–sand shear-
ing behaviour (Figure 6.8c), indicating that more sliding of the soil grains occurred along
the interface [55]. For the results at 2°C, the mobilised shear stresses matched very well
with that at 20°C, and represents an friction angle 26.3°. For shearing tests at 38°C, al-
though a slight increase on the mobilised shear stress was observed (Figure 6.9a and
Figure 6.9b), similar to the observations from Vasilescu et al. [56], the differences were
within the accuracy of the direct shear apparatus and were too small to be considered as
the consequence of temperature. It can be concluded that the effect of temperature on
the sand–concrete interfaces, in the studied range, can be neglected for practical pur-
poses.

In Figures 6.9d–6.9f, the test results related to clay–concrete interface shearing are
presented. A strain hardening mechanism was observed at the clay–concrete interface
until a peak shear stress was mobilised at shear displacements of 1.5–2.5 mm, after which
a strain softening mechanism was followed. This behaviour indicates that failure occurs
at the interface level and can be attributed to the sliding of clay particles along the inter-
face [57]. The average peak and ultimate shear stresses were about 82% and 68% of those
mobilised at the clay–clay interface, respectively. Figure 6.9d and Figure 6.9e show a neg-
ligible effect of temperature on the peak shear stresses and the ultimate shear stresses.

The limited clay–concrete interface studies [42; 43; 47; 58] also indicate a small vari-
ation of the friction angle with temperature, in agreement with this study. However, the
temperature effects on adhesion differ between studies. The change of the liquid film
thickness could explain such a difference [44]. The viscous impulse (Iv ) for two circular
interfaces bridged by a fluid film may be given by [59]

Iv = 16ηR3

3hts
(6.2)

where η is the dynamic viscosity of the thin liquid film along the interface, h is the thick-
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Figure 6.9: CNL results for soil-interface samples at T = 2, 20, 38°C. Geba sand–concrete interface: (a) shear
stress vs. shear displacement; (b) failure envelopes; (c) normal displacement vs. shear displacement; kaolin

clay–concrete interface: (d) shear stress vs. shear displacement; (e) failure envelopes; (f) normal
displacement vs. shear displacement

ness of the liquid film, ts is the shearing time, and R is the circular meniscus radius. This
indicates that adhesion is related to the change of η and h. The temperature variations
in previous studies were similar (∆T = 20–30°C) yielding a comparable change of water
viscosity. The different adhesions could have resulted from ∆h, which strongly depends
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on how clay fabric rearranges during temperature variation. The thermal response of the
clay fabric is known to be stress history dependent. For NC clay [39; 44], the collapse of
clay fabric during thermal consolidation would reduce the h and increase the adhesion.
For an OC soil during heating [43] or a NC soil during a cooling process [42], the arrange-
ment of clay fabric is considered to be dispersed or unchanged, and thus the cohesion is
found to slightly drop or to be unchanged after heating. Meanwhile, the physicochem-
ical mechanisms proposed by [60] suggested that soils with higher plasticity would un-
dergo greater volume change during heating because of their higher chemical reactivity.
Due to the low-medium plasticity clay used in this study, it experienced a relatively low
volume change during temperature change (details addressed in the next section) and
thus exhibited a small variation of adhesion due to temperature change.
The temperature effects on the normal displacement response during shearing are again
almost indistinguishable (Figure 6.9c and Figure 6.9f), which is suggested to be for the
same reason as for the soil tests.

6.5.3. SERIES II: EFFECT OF THERMAL CYCLES ON THE SOIL–CONCRETE IN-
TERFACE

Figure 6.10 shows the volume change and temperature variation (recorded by TP1)
in sand–concrete interfaces subjected to heating/cooling cycles at normal stresses of
50 and 150 kPa. Thermo-elastic behaviour was assumed for the concrete block (α =
1.2× 10−5/°C), and its thermal vertical deformation was removed during data process-
ing. Due to a relatively low rate of temperature change, it was essential to consider creep
effects [61] in the interpretation of data to reveal the net influence of thermal cycles. The
secondary compression index (Cαe ) is defined as [62]

Cαe =−de/d
(
logt

)
(6.3)

where t is the elapsed time of the secondary compression. Accordingly, the volumetric
strain during thermal cycles caused by creep (dashed line in Figure 6.10) was estimated
by extending the logarithmic fitting of the deformation after the completion of the pri-
mary consolidation assuming a temperature independent Cαe . Examples of the consol-
idation process are provided in Appendix 6.C.

Under the lower normal stress (50 kPa), both heating and cooling cycle induced
plastic strains in addition to creep (Figure 6.10a and Figure 6.10b), mainly observed
within the initial 1–2 thermal cycles. A thermo-elastic response is also seen via the
strain fluctuating with temperature. Under the higher normal stress (150 kPa), the ob-
served deformations (Figure 6.10c and Figure 6.10d) are virtually identical with the esti-
mated creep throughout the test, with the thermo-elastic fluctuation still observed. The
thermo-plastic strains at the end of each cycle are presented in Figure 6.11a, after the
subtraction of the estimated creep from the total deformation. It can be inferred that
the thermally-induced plastic strain was dependent on vertical stress and becomes less
significant under higher normal stress (150 kPa). This behaviour is different from the
established theory for clay [63–65], which assumes thermo-plastic strain is dependent
on the thermal loading direction. The observed phenomenon can be explained from a
micro-mechanism that may occur in sand. The external load is mainly carried by the
“strong force network” of particles with larger inter-particle forces, while the rest (up to
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Figure 6.10: Volume change of sand–concrete interface during thermal cycles: (a) Heating cycles at 50 kPa; (b)
Cooling cycles at 50 kPa; (c) Heating cycles at 150 kPa; (d) Cooling cycles at 150 kPa

60% [66]) carries small load constituting the “weak cluster” [62]. Under lower normal
stress, the contact between grains could be relatively lose with some unstable voids [67].
When temperature changes, the thermal-elastic deformation of grains could be suffi-
cient to trigger the rearrangement of the soil skeleton, resulting in a macro-scale defor-
mation. However, under higher confinement, sand particles forming strong chain-forces
are more stable and less influenced by thermal agitation.

After the thermal cycles, the sand–concrete interface samples were sheared to 10 mm
and compared with the isothermal tests. Figure 6.12a shows that the effects of heat-
ing/cooling cycles, prior to shearing, are negligible on the mobilised shear stress at the
interface level. Some unexpected abrasion happened on the concrete surface during the
sample preparation for the cooling cycle test and it led to a small strength increase. The
test was thus repeated under 20°C (dashed grey line) to verify such an increase was not
caused by the thermal cycles.

The volumetric strains of the clay–concrete interface samples subjected to heat-
ing/cooling cycles are shown in Figure 6.13. The creep effect was estimated in the same
way as for the sand-interface programme. During the cooling cycles, the volume change
followed the trend of secondary consolidation and showed a nearly thermo-elastic re-
sponse (Figure 6.13b and Figure 6.13d). For the heating cycle tests, irreversible contrac-
tion was mainly induced during the first 2–3 cycles, after which it kept increasing at a
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Figure 6.11: Accumulated thermo-plastic strain after the completion of each thermal cycle: (a)
Sand–interface; (b) Clay–interface

lower rate. The thermo-plastic deformation for each cycle is plotted in Figure 6.11b.
The thermo-elastic deformation became more visible in the 4–5 cycles (Figure 6.13a and
Figure 6.13c) because of the lower plastic strains generated. As opposed to the thermal
cycle effects observed in the sand-concrete interface samples, in clay-concrete interface
samples, the higher vertical stress resulted in larger thermo-plastic strains.

After the heating/cooling cycles, the clay–concrete samples were sheared under CV
conditions (resembling undrained conditions). The variation of shear stress against nor-
mal stress is shown in Figure 6.14a. To ensure the only variable between the parallel CV
shearing tests was the thermal history, two isothermal specimens were consolidated un-
der 150 kPa for 35h (equal to the duration of the thermal cycles) and 2h respectively.
During shearing, the former behaved stiffer (the black line labelled with “20°C, 35h” in
Figure 6.14b), indicating that the creep process does influence the subsequent shear-
ing, and therefore was selected as the reference. Figure 6.14a shows that heating/cooling
cycles have a significant effect on the clay–concrete interface and this effect is more pro-
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Figure 6.12: CNL results for sand–concrete interface after heating/cooling cycles: (a) shear stress vs. shear
displacement; (b) normal displacement vs. shear displacement
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Figure 6.13: Volume change of clay–concrete interface during thermal cycles: a Heating cycles at 50 kPa; b
Cooling cycles at 50 kPa; c Heating cycles at 150 kPa; d Cooling cycles at 150 kPa

nounced at higher stresses. All samples experienced a normal stress reduction during
shearing, where the maximum change was in the isothermal sample and the minimum
change was in the sample after heating cycles. The reduction of normal stress in the CV
conditions imply contraction and therefore the generation of positive pore water pres-
sures. Therefore, the shear stress versus (effective) normal stress curves of the interface
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experiments resemble the stress path (deviatoric stress versus mean effective stress) of
undrained triaxial experiments on clays samples [4; 9; 68–70]. The peak and residual fail-
ure envelopes obtained from isothermal tests (Figure 6.9e) are considered to fit well with
the CV shear results. Therefore, the strength parameters of the clay–concrete interface
are considered to be independent of the temperature history.
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Figure 6.14: Constant-volume shearing results for clay–concrete interface tests after thermal cycles. (a) shear
stress vs. effective normal stress; (b) shear stress vs. shear displacement. The labels “20ºC, 35h” and “20ºC, 2h”

indicate the consolidation duration for the iso-thermal samples.

For the sample consolidated at a normal stress of 150 kPa and subjected to heating
cycles (shown by red solid line), the stress path started to evolve vertically at the begin-
ning of shearing before inclining towards the peak failure envelope. Based on Critical
State soil mechanics, such a stress path implies a typical OC soil response, suggesting an
expanded yield surface after heating cycles, and would imply lower pore pressure gen-
eration in field conditions. In contrast, the path after cooling cycles mostly overlapped
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with the isothermal one, and the vertical stress decreased immediately after the shear-
ing started. Such a trajectory, without the "vertical" segment, implies the stress state re-
mains NC. It is assumed in many constitutive models (see [64; 71; 72] and Chapters 2 and
4 for example) that the yield surface will expand during drained heating, and therefore
be larger when the soil returns to the ambient temperature, while cooling cycles would
not alter the size of the yield surface. Therefore, it appears that the thermo-mechanical
response of a clay–concrete interface may also be characterised in the framework of Crit-
ical State soil mechanics with a temperature-dependent yield surface.

6.5.4. SERIES III: TEMPERATURE EFFECT ON THE CYCLIC SHEAR RESPONSE

OF SOIL–CONCRETE INTERFACE LAYER

The sand–concrete interfaces were subjected to 30 two-way shearing cycles at three tem-
peratures (2, 20 and 38°C). For clarity, only the results of cycle numbers 1, 5, 29 and 30
are presented in Figure 6.15a and Figure 6.15c. In the first cycle, for all temperatures,
the maximum shear stress reached 88 kPa, which is similar to the value observed for the
monotonic shearing tests. For the rest of the cycles, the shear stress decreased and then
stabilised at 85 kPa. The shear responses at different temperatures were very similar in-
dicating a negligible thermal effect of the shear strength and stiffness under cyclic CNL
shearing.

The normal displacement against shear displacement forms a hysteresis loop (Fig-
ure 6.15c) and the sample volume continued to reduce as the cyclic shearing proceeded
(Figure 6.15d). The net contraction at each shearing cycle decreased with increasing cy-
cles and almost 60% of the contraction was accumulated in the first 5 cycles. Comparing
the volume changes at different temperatures, the sand–concrete interface samples at
2 and 20°C, respectively, experienced the highest and the least accumulated volume re-
duction (Figure 6.15d). This may be for two reasons: temperature effects, and the slight
differences in pre-shear void ratios, which were 0.821, 0.847 and 0.831, respectively, for
the interface elements sheared at 20, 38 and 2°C. The sample sheared at 20°C had the
smallest pre-shear void ratio and thus exhibited less contraction due to shearing. The
interface sample sheared at 2°C, while having a lower pre-shear void ratio compared to
the interface sample sheared at 38°C, experienced a higher volume change during cyclic
shearing. This behaviour may reflect the effect of temperature on the volumetric be-
haviour.

The same test programme was performed on clay–concrete interface samples for 10
cycles and the results are shown in Figure 6.16. For all three interface specimens, sheared
at 2, 20 and 38°C, the shear stresses peaked at 57 kPa and then decreased to 48 kPa at +4
mm within the first cycle (Figure 6.16a). As the shearing cycle continued, the peak shear
stresses decreased to 46 kPa, with the residual shear stress stabilised at ± 37 kPa after the
3rd cycle (Figure 6.16b). Although the peak shear stresses were reached at different shear
displacements in the first cycle (Figure 6.16a), the difference was eliminated in subse-
quent cycles (i.e., second, fifth and tenth cycles). Thus, the temperature influences on
the cyclic peak shear and residual shear strengths are again observed to be insignificant.

The accumulated volume changes during the cycles are depicted in Figure 6.16c and
Figure 6.16d. The volume change was significant at the beginning and then kept increas-
ing with a lower rate as the shearing proceeded. Up to 60% of the total deformation was
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Figure 6.15: Two-way cyclic shearing tests of sand–concrete interface at T = 2, 20, 38°C under CNL (150 kPa)
condition: (a) shear stress vs. displacement; (b) shear stress vs. cycle number; (c) normal displacement vs.

shear displacement; (d) normal displacement vs. cycle number

accumulated within the first 1.5 cycles (Figure 6.16d). The specimen sheared at 20°C ex-
perienced the largest net contraction within most of the cycles. This result reflects that
the temperature change could (partially) mitigate the contraction during cyclic shearing,
while this was not observed in monotonic shearing (the first 1/4 cycle in Figure 6.16c).
Note that the pre-shear void ratio for clay–concrete interface samples sheared at 20, 38
and 2°C were 0.959, 0.964 and 0.961 respectively, which would not explain this behaviour.
This observation requires further confirmation before firm conclusions can be made.

6.5.5. SERIES IV: TEMPERATURE EFFECT ON CYCLIC SHEAR RESPONSE OF

SOIL–CONCRETE INTERFACES WITH CNS BOUNDARY CONDITIONS
The test results of the sand–concrete interface for Series IV are summarised in Figure
6.17. Due to the relative contractive characteristic of medium-dense sand during shear-
ing, the normal stress and mobilised shear strengths reduced significantly within the first
1–2 cycles (Figure 6.17a and Figure 6.17b) where most of the normal displacement oc-
curred (Figure 6.17c). Similar stress paths were observed for tests at 2, 20 and 38°C. These
stress paths varied inside a failure envelope (Figure 6.17a) and with a slope determined
to be 0.56, which is identical to the stress ratio (τ/σn) derived from the cyclic CNL tests.
Thus, the temperature is seen to have negligible influence on the cyclic friction angle
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Figure 6.16: Two-way cyclic shearing tests of clay–concrete interface at T = 2, 20, 38°C under CNL (150 kPa)
condition: (a) shear stress vs. displacement; (b) shear stress vs. cycle number; (c) normal displacement vs.

shear displacement; (d) normal displacement vs. cycle number

of the sand–concrete interface, regardless of the boundary conditions. The tempera-
ture effect on the volumetric response (Figure 6.17d) was not distinguishable because
sand-interfaces tend to approach the emi n state of sand during cyclic CNS shearing [73].
Thus, for thermo-active geo-structures, the possible strength degradation/reduction of
the sand–structure interface due to thermal effects may be neglected.

The shearing responses for the clay–concrete interface are shown in Figure 6.18. The
normal stresses and shear stresses decreased gradually under CNS shearing (Figure 6.18a
and Figure 6.18b). The stress paths under three levels of temperature were bounded at
the peak shear stress envelope rather than the residual strength envelope (Figure 6.18a)
derived from the monotonic tests (Figure 6.9e), indicating temperature-independent
strength parameters in cyclic CNS shearing. The rate of degradation (Figure 6.18b) is
far less than that of the sand-interface (Figure 6.17b), as the normal stress and shear
stress of the sample sheared at 20°C remained at 56 kPa and 21 kPa, respectively, after 10
shearing cycles. Moreover, the degradation tended to stabilise in the last few cycles.

The stress paths of the samples sheared at 38 and 2°C (Figure 6.18a) converged with
the stress path of the sample sheared at 20°C in the first 1–2 cycles, but progressively
shifted towards the right side with increasing cycles suggesting a lower reduction in the
normal stress, consistent with the observations made in Section 6.5.4. As the friction
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Figure 6.17: One-way cyclic shearing tests of sand–concrete interface at T = 2, 20, 38°C under CNS (500
kPa/mm) condition: (a) shear stress vs. displacement; (b) shear stress vs. cycle number; (c) normal

displacement vs. shear displacement; (d) normal displacement vs. cycle number

angle remained unchanged, the shear stress degradation is closely associated with the
volumetric behaviour at different temperatures (Figure 6.18c and Figure 6.18d). The pre-
sheared void ratio cannot be overlooked to draw a rigorous statement on the tempera-
ture effect. Note that the void ratios before shearing were 0.964, 0.963, 0.948 for speci-
mens sheared at 20, 38 and 2°C. The differences of the initial state between 20 and 38°C
specimens can be safely ignored, and thus heating process can be again seen to partially
mitigate the contraction during cyclic CNS shearing.
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Figure 6.18: One-way cyclic shearing tests of clay–concrete interface at T = 2, 20, 38°C under CNS (500
kPa/mm) condition: (a) shear stress vs. displacement; (b) shear stress vs. cycle number; (c) normal

displacement vs. shear displacement; (d) normal displacement vs. cycle number

6.6. CONCLUSIONS
The shearing behaviour of soil-interfaces was investigated via a series of temperature-
controlled direct shear tests. These were conducted within a temperature range of
2–38°C and a normal stress range of 50-150 kPa, thereby covering the most common op-
erating conditions of GSHP applications. Based on this study, the following conclusions
can be drawn:

1. The strength parameters of the sand and clay interface may reasonably be con-
sidered as constant within the relatively mild temperature range typical of energy-
structure applications under various boundary conditions (e.g., CNL, CNS and CV)
(e.g. see Figure 6.9).

2. Thermal cycles could introduce volume reduction to the interface layer, depend-
ing on the soil type, stress level, and thermal load direction. For sand–concrete
interfaces, both heating and cooling cycles introduced plastic deformation under
lower normal stress, but elastic deformation under higher normal stress (see Fig-
ure 6.10). For clay–concrete interfaces, heating cycles caused plastic deformation
while cooling cycles did not, regardless of normal stress level, which is consistent
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with the observed thermal behaviour of clays in oedometer and triaxial tests (see
Figure 6.13).

3. The volumetric strains caused by temperature variation have minimal influence
on the volumetric response of sandy specimens during monotonic shearing due to
the insignificant strain magnitude; maximum 0.1% in monotonic thermal loading
(see Figure 6.8) and maximum 0.23% in cyclic thermal loading) (see Figure 6.12).

4. After heating cycles, the stress paths from CV shearing of clay-interfaces exhib-
ited a typical OC clay response during undrained shearing (see Figure 6.14a), and
therefore indicated that a lower excess pore pressure would be generated, and im-
plying a potential to be characterized in constitutive models with a temperature-
dependent yield surface.

5. The cyclic movements between the structure and surrounding soil, induced by an-
nual or daily temperature variations (corresponding to two-way cyclic CNL shear-
ing and one-way cyclic CNS shearing, respectively) are shown to likely cause more
significant effects at the interface compared with the direct temperature effects
(see Figure 6.15 and Figure 6.16 for two-way cyclic shearing under CNL condi-
tions and Figure 6.17 and Figure 6.18 for one-way cyclic shearing under CNS con-
ditions). Such effects are more significant for one-way CNS tests, where a medium
dense sand-concrete interface shear strength reached negligible values after 5 cy-
cles, whereas a clay-concrete interface maintained 60% of its strength after 10 cy-
cles.

6. The mechanical cyclic shearing tests indicated the possible progressive reduction
of shaft friction, especially for sand–concrete interfaces (see Figure 6.17), and the
consequences should be addressed in energy pile applications. For piles founded
in sand, which are generally considered end-bearing, this impact may not sig-
nificantly reduce the bearing capacity, but it may result in changes in stress re-
distribution over cycles and additional settlements. In floating piles, which rely
on clay–concrete interface strength for both ultimate bearing capacity and settle-
ments, this reduction in shear strength can be significant (see Figure 6.18). How-
ever, for long term loads (annual cycles), creep may increase the confining stresses
and have a strengthening impact. The degree of such mechanical impacts will vary
along the pile depending on the relatively distance to the null point and magnitude
of the temperature change.
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APPENDIX

6.A. APPENDIX A: PRE-SHEARED VOID RATIO AND VOLUME

CHANGE AFTER SHEARING FOR SERIES I

Table 6.2: Summary of pre-sheared void ratio and volume change after shearing for Series I, where eo = void
ratio before temperature variation, ∆Vs = volume change after shearing (+ for contraction, - for dilation)

Test Material
Normal stress

σn (kPa)
Thermal path e0

∆Vs

(mm)
1

Sand

50 20°C 0.836 -0.141
2 50 20-38°C 0.844 -0.084
3 50 20-2°C 0.857 -0.015
4 100 20°C 0.835 -0.054
5 100 20-38°C 0.850 -0.184
6 100 20-2°C 0.823 -0.089
7 150 20°C 0.811 -0.190
8 150 20-38°C 0.823 -0.126
9 150 20-2°C 0.813 -0.064

10

Sand–interface

50 20°C 0.839 0.128
11 50 20-38°C 0.821 0.071
12 50 20-2°C 0.839 0.156
13 100 20°C 0.823 0.105
14 100 20-38°C 0.837 0.218
15 100 20-2°C 0.821 0.056
16 150 20°C 0.824 0.166
17 150 20-38°C 0.826 0.162
18 150 20-2°C 0.826 0.158
19

Clay

50 20°C 1.015 0.129
20 50 20-38°C 1.055 0.166
21 50 20-2°C 1.058 0.186
22 100 20°C 0.979 0.192
23 100 20-38°C 1.037 0.345
24 100 20-2°C 1.017 0.307
25 150 20°C 0.984 0.361
26 150 20-38°C 0.977 0.395
27 150 20-2°C 0.979 0.291
28

Clay–concrete
50 20°C 1.063 0.212

29 50 20-38°C 1.047 0.137
30 50 20-2°C 1.022 0.103
31 150 20°C 0.967 0.179
32 150 20-38°C 0.962 0.177
33 150 20-2°C 0.945 0.212
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6.B. APPENDIX B: CALIBRATION OF THE TEMPERATURE CON-
TROLLED DIRECT-SHEAR APPARATUS

The calibration of a modified direct-shear apparatus manufactured by Wille Geotechnik
in response to temperature change is presented here.

The shear box was kept in a climate room fixed at constant room temperature and
was carefully insulated to minimise thermal exchanges with the surroundings, although
temperature changes are induced during the testing which had the potential to affect
the sensor readings. In addition, consequential thermal expansion/contraction of the
system may occur. Therefore, the system was calibrated for changes of temperature.

CALIBRATION OF THE LVDT
The vertical displacements of samples subjected to mechanical and thermal loads, are
recorded via a vertical LVDT. An iron dummy sample (with known coefficient of thermal
expansion) of 32 mm height was installed in the shear box and a 50 kPa vertical stress was
applied to ensure a full contact between the sample and the load cell. Subsequently, the
sample was subjected to thermal cycles between 2°C and 38°C (covering the temperature
range studied in this work) with a relatively slow rate of 5°C/h, and displacements were
recorded. The readings of the LVDT with the thermo-elastic deformations of the dummy
sample subtracted, along with temperature variation, are shown in Figure 6.19a. The
recorded vertical displacement variation accounted for the thermal deformation from
the components of the apparatus plus any temperature shift of the readings. The vari-
ation was seen to have an almost linear relationship with the temperature change and
resulted in no apparent accumulation after thermal cycles. Therefore, all records from
the vertical LVDT in this study were calibrated by a linear temperature calibration factor.
For the horizontal LVDT, it changed by less than 0.002 mm during these thermal cycles
and thus no calibration was necessary.
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Figure 6.19: Calibration of the apparatus: (a) vertical LVDT under thermal cycle; (b) shear stress under test
temperature
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CALIBRATION OF THE SHEAR STRESS

Two shear tests were conducted at ambient temperature (20°C), with and without using
the (empty) shear box, followed by two shear tests using the empty shear box at 2°C and
38°C. For the test without shear box, the shear box was disassembled then shear test was
conducted. The recorded shear stress accounted for the friction on the actuator motor.
For the tests using the empty shear box, the load cap was lowered inside the shear box,
filled with water, and insulated to minimise thermal losses. Then, after reaching the
desired temperatures (with a thermal rate of 5°C/h), shearing continued to 10 mm. The
measured shear stresses against shear displacements are presented in Figure 6.19b. It is
demonstrated that for the shear test without using the shear box (dashed line in Figure
6.19b), the measured shear stress is negligible and remains almost constant (less than
0.05 kPa fluctuation) during the test. The test result with an empty shear box at ambient
conditions yielded a mean shear stress of 0.90 kPa, which should be subtracted from the
readings of the shear stress to extract the actual stress carried by the soil sample. For the
shear tests with the empty shear box at 2°C and 38°C, it can be seen that the shear stress
readings deviate by about 0.95 kPa and 1.73 kPa, respectively, from the test without the
shear box. These values are subtracted from the measured shear stresses during data
processing.

6.C. APPENDIX C: EXAMPLES OF THE PRIMARY CONSOLIDA-
TION
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Figure 6.20: Examples of the primary consolidation process for the two soils: (a) Geba sand; (b) Kaolin clay





7
SHEAR CREEP BEHAVIOUR OF

SOIL-STRUCTURE INTERFACES

UNDER THERMAL CYCLIC LOADING

The coupling effect of initial shear stress and thermal cycles on the thermomechanical be-
haviour of clay- and sand-concrete interfaces was studied. A set of drained monotonic
direct shear tests was conducted at the soil-concrete interface level. Samples were initially
sheared to half of the material’s shear strength and then they were subjected to 5 heat-
ing/cooling cycles before being sheared to failure. The test results showed that the effect
of thermal cycles on the shear strength of the materials was negligible, yet shear displace-
ment occurred during application of thermal cycles without an increase in shear stress,
confirming the coupling between the initial shear stresses and temperature. In addition, a
slight increase of stiffness due to the coupling was observed which diminished on further
shearing.

This chapter is based on the following paper: Golchin, A., Guo, Y., Vardon, P. J., Liu, S., Zhang, G and Hicks, M.
A. Shear creep behaviour of soil-structure interfaces under thermal cyclic loading. Géotechnique Letters, 13, 1,
2023.
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7.1. INTRODUCTION
Several investigations have been carried out to study the effect of thermal cycles on the
behaviour of soil-structure interfaces (see [1–8] and Chapter 6 for example). In gen-
eral, thermal cycles were found to have a limited effect on the soil-interface strength
and deformation. However, previous studies mostly considered the effect of thermal cy-
cles without initial shear stresses being applied. In energy geo-structures, due to the
structural loads, interfaces are likely to be subjected to mechanical (shear) loads prior
to application of the thermal loads. In this chapter, the coupling effects of thermal cy-
cles with constant shear stresses on the behaviour of soil-structure interfaces are inves-
tigated, which is one of the first studies investigating this phenomenon.

Direct shear element tests have been used here as they resemble the mechanism of
shear strength mobilisation at the interface layer between soil and structures [9] and
may mimic many boundary conditions (BCs) that are applied on interface layers, affect-
ing the mechanical behaviour of the interface layer. In this work, as the most significant
temperature cycles in thermo-active geo-structures are annual and the aim is to illus-
trate fundamental material behaviour, rather than a problem specific behaviour, CNL
conditions are selected.

7.2. EXPERIMENTAL SETUP AND MATERIALS
The experimental setup, calibration of the thermomechanical apparatus, material used
for the thermomechanical tests, and specimen preparation method are similar to those
explained in Chapter 6 and are described in detail in Sections 6.2 and 6.3.

7.3. EXPERIMENTAL PROGRAMME
A set of tests was designed to resemble the thermomechanical loading paths of thermo-
active geo-structures already subjected to shear stresses, as indicated by the loading
paths presented in Figure 7.1. Samples at ambient temperature (20°C) were firstly con-
solidated to the desired normal stresses (50 kPa and 150 kPa, corresponding to paths
O–A1 and O–A2, respectively). With the normal stresses held constant, the samples were
then sheared using stress-controlled loading to half of the shear strength (τ f ) on the soil-
concrete interface; i.e., the ratio of mobilised shear stress (τ) to shear strength (τ/τ f )
reached 0.5 (paths A1–B1 and A2–B2, respectively, for tests at σn =50 kPa and σn = 150
kPa). The shear strength values had been obtained by monotonic shearing (at the desired
normal stress). Clay- and sand-concrete interfaces were sheared at rates of 0.12mm/min
and 0.25mm/min, respectively. Samples were then left for 3 hours (on average) to al-
low creep behaviour to evolve. Then, starting from room temperature (20°C), with the
shear stress kept constant, samples were subjected to 5 heating cycles (20–38–20°C) or
5 cooling cycles (20–2–20°C). Clay- and sand-concrete interfaces were subjected to tem-
perature changes at 3°C/h and 9°C/h, respectively. Finally, at ambient (room) temper-
ature, the samples were sheared to failure under constant normal stress loading (CNL)
conditions (paths B1–C1 and B2–C2).
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Figure 7.1: Thermomechanical stress path of the experimental programme; heating cycles and cooling cycles
are shown, respectively, by red and blue arrows

7.4. RESULTS AND DISCUSSION
The evolution of total shear displacements recorded for the clay- and sand-concrete in-
terfaces when subjected to thermal cycles (with an initially applied shear stress which is
kept constant) are shown in Figure 7.2 and Figure 7.3, respectively. It is observed that,
for both types of soil, the displacement increased with time. Before being subjected to
thermal cycles, the temperature of the samples was kept at 20°C for approximately two
hours. The solid vertical line (shown in green) in Figure 7.2 and Figure 7.3 indicates when
the thermal cycles began. Before starting the thermal cycles, the measured displacement
of all samples exhibited an almost logarithmic correlation with time (i.e., the measured
displacement between Time = 0 and the solid line). The shear displacement induced
by creep (i.e., with respect to time) was then extrapolated by extending the logarithmic
curve fitted to the initial phase of the shear displacement versus time curve.

The sample void ratios prior to applying the shear stress, after applying the shear
stress and immediately before applying the thermal cycles, and after applying the ther-
mal cycles are presented in Table 7.1. Table 7.2 presents the measured shear displace-
ments at different stages of the thermomechanical loading paths, including at τ/τ f = 0.5
(i.e. under the initial shear stress), and at the beginning and end of the thermal cycles.
Note that shear displacements due to creep are also included in Table 7.2. The percent-
age ratio (Ra) of the measured shear displacement during the thermal cycles (∆LTC ) over
the measured shear displacement at τ/τ f = 0.5 (LS ) for the clay- and sand-concrete in-
terfaces were higher at σn = 50 kPa compared to σn = 150 kPa. For clay-concrete inter-
faces, Ra varied approximately between 30% and 33% at σn = 50 kPa, and between 21%
and 25% at σn = 150 kPa. For sand-concrete interfaces, the corresponding values were
lower, with Ra varying approximately between 17% and 19% atσn = 50 kPa, and between



7

262 7. THERMAL CYCLIC SHEAR CREEP BEHAVIOUR OF SOIL-STRUCTURE INTERFACES

13% and 16% at σn = 150 kPa.
The net shear displacement evolution due to thermal effects was then calculated as

the difference between the recorded shear displacement and the estimated shear dis-
placement due to creep. Figure 7.4 shows the percentage ratio (Rna) of the net accu-
mulated temperature induced shear displacement over the corresponding LS with re-
spect to the number of thermal cycles. The results show that additional shear displace-
ment (approximately between 13% and 22% of the shear displacement at the initial shear
stress of τ/τ f = 0.5 for clay-concrete interfaces and approximately between 6% and 11%
of the shear displacement at the initial shear stress of τ/τ f = 0.5 for sand-concrete in-
terfaces) took place at both the clay- and sand-concrete interfaces as a consequence of
temperature variation occurring with a constant shear stress, with most additional shear
displacement occurring within the first two thermal cycles. Note that, for most sam-
ples, the net shear displacement due to temperature variation increased during heating,
whereas it became steadier (or slightly reduced) when the temperature decreased.

After the thermal cycles were completed, the specimens were further sheared until
failure. The shear stress versus shear displacement curves for the entire process (paths
A1–C1 and A2–C2) for clay- and sand-concrete interfaces, respectively, are presented in
Figure 7.5 and Figure 7.6, and are compared with monotonic soil-interface shearing re-
sults at ambient temperature in order to identify the changes of ultimate shear strength
due to thermal cycles. It is observed that the effect of coupling between thermal cycles
and initial shear stress on the peak and Critical State shear strengths, for both types of
soil interfaces, was negligible.

The specimens after thermal cycles initially behaved more stiffly (zones A and B in
Figure 7.5 and Figure 7.6), with the tangent to the shear stress versus shear displacement
curves being higher after thermal cycles compared to the corresponding slope before
thermal cycles. Such reinforcement was destroyed after a further slight shearing (shear
displacements less than 0.1 mm for both types of soil interface) and the stiffnesses re-
turned to a similar level to those of specimens monotonically sheared at ambient tem-
perature.

Table 7.1: Void ratio at different stages of thermomechanical loading paths

Normal stress, σn (kPa) Thermal cycles econ eS_i ni eT C _i ni eTC _end

Clay-concrete
interface

50 Heating 1.248 1.056 1.046 1.041
50 Cooling 1.270 1.051 1.047 1.040

150 Heating 1.262 0.945 0.935 0.925
150 Cooling 1.263 0.991 0.981 0.977

Sand-concrete
interface

50 Heating 0.837 0.782 0.769 0.766
50 Cooling 0.835 0.780 0.761 0.759

150 Heating 0.820 0.728 0.706 0.699
150 Cooling 0.825 0.733 0.721 0.717

econ : Initial void ratio (i.e. void ratio before consolidation)
eS_i ni : Void ratio before applying shear stress to τ/τ f =0.5
eTC _i ni : Void ratio before applying thermal cycles
eTC _end : Void ratio after applying thermal cycles
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Table 7.2: Shear displacement at different stages of thermomechanical loading paths

Normal stress, σn (kPa) Thermal cycles LS (mm) LT C _i ni (mm) LTC _end (mm) ∆LTC (mm) Ra(%)

Clay-concrete
interface

50 Heating 0.40 0.42 0.55 0.13 32.5
50 Cooling 0.20 0.24 0.30 0.06 30

150 Heating 0.58 0.64 0.76 0.12 20.7
150 Cooling 0.44 0.48 0.59 0.11 25

Sand-concrete
interface

50 Heating 0.37 0.38 0.45 0.07 19
50 Cooling 0.41 0.46 0.53 0.07 17

150 Heating 0.63 0.64 0.72 0.08 12.7
150 Cooling 0.50 0.51 0.59 0.08 16

LS : Shear displacement at τ/τ f = 0.5
LTC _i ni : Shear displacement at the beginning of thermal cycles
LTC _end : Shear displacement at the end of thermal cycles
∆LT C : Shear displacement during thermal cycles (= LT C _end - LTC _i ni )
Ra : Percentage of the measured shear displacement during thermal cycles with respect to the measured shear displacement at
τ/τ f =0.5 (= ∆LTC /LS × 100)
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Figure 7.2: Evolution of shear displacement of clay-concrete interface during thermal cycles: (a) heating
cycles at σn = 50 kPa; (b) cooling cycles at σn = 50 kPa; (c) heating cycles at σn = 150 kPa; (d) cooling cycles at

σn = 150 kPa
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Figure 7.3: Evolution of shear displacement of sand-concrete interface during thermal cycles: : (a) heating
cycles at σn = 50 kPa; (b) cooling cycles at σn = 50 kPa; (c) heating cycles at σn = 150 kPa; (d) cooling cycles at

σn = 150 kPa

For the first time, the phenomenon of shear displacements of soil-concrete inter-
faces under thermal cycles, where the interface is subjected to a constant shear stress,
has been observed. The process is complex and may be explained by utilising and
combining several aspects of existing knowledge on the thermomechanical mechanism
of sands and clays, the micro- and macro-mechanical interaction between soil grains,
and energy generation and dissipation (energy level changes) at the interface level
(thermodynamics perspective).

The “interface layer” between soils and structures (in this study, a soil-concrete
interface) is a thin layer of the soil that is in contact with the structure. Therefore, the
thermomechanical behaviour of soils may (partially) govern the thermomechanical
behaviour of the interface layer.

The thermomechanical behaviour of saturated sandy soils is mostly dominated
by the difference in the volumetric thermal expansion coefficients between the soil
particles and water, as well as the change in the viscosity of water due to temperature
variation [10; 11].

On the other hand, the thermomechanical behaviour of saturated fine-grained
soils, especially clayey soils, is dominated by physicochemical internal forces which
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result in changes in the thickness of the hydration layers of soil particles, and the
development of “disjoining pressures” (see 2 for more details). In addition, Houhou et al.
[12] demonstrated that thermal loads affect the microstructure of clayey soils which are
formed by clay particles and pores between them (pores varying in size; i.e., micro- and
macro-size, and density). Due to thermal loads, macro-size pores may collapse which
consequently may reduce in size and/or may experience a change in their density,
resulting to volume change, while micro-size pores are less affected or remain intact
[12]. In both of these cases (sands and clays), the cyclic thermal loads impact the force
chains on a micro-scale allowing additional shear deformation to occur under constant
shear stresses when subjected to thermal cycles.

In addition, the micro- and macro-mechanics at the interface level significantly
affect the mechanical response of the interface layer. The initial shear loading induces
shear forces/stresses between the soil particles. The normalised roughness between the
soil and the structure also influences the level of mobilised forces/stresses; larger values
of normalised roughness result in higher mobilised forces/stresses at the interface layer
and potentially failure through the soil, not at the interface. In this work, an interme-
diate roughness of the interface is found , which implies that failure at the interface
and in the soil at the same time is likely to occur (see Chapter 6). In such a case, the
representative volume element (RVE) of the material in contact with the structure (at
the interface level) may be considered to be comprised of two fractions associated with
strong and weak force chains [13], where the majority of the shear deformations (plastic
deformations) occur in the fraction of the RVE corresponding to weak force chains as a
result of inter-grain slippage and rotation [14; 15].
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Figure 7.4: Rna : (a) clay-concrete interfaces; (b) sand-concrete interfaces
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Figure 7.5: Shear stress versus shear displacement of clay-concrete interface: (a) all specimens; (b) magnified
box A for the samples at σn = 50 kPa; (c) magnified box B for the samples at σn = 150 kPa
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When the temperature changes at the interface level, due to governing thermome-
chanical mechanisms (e.g. development of disjoining pressures for clayey soils and ther-
mal expansion of particles and water for sandy soils), the macro-size pores in the frac-
tion of the material associated with weak force chains may collapse. Consequently, the
thermodynamically stable state of the soil can be prone to a thermodynamically unsta-
ble state. At the thermodynamically unstable state caused by heating, soil particles ro-
tate and reorient temporarily (mostly in the fraction associated with weak force chains),
which results in the observed evolution of shear displacement. This process continues
until soil particles attain a sufficient number of contacts with adjacent particles and suf-
ficient interlocking stresses are mobilised. Consequently, a new thermodynamically sta-
ble state is reached. The increase in the interlocking stresses, and in the area and number
of contacts between particles, forms a new micro- and macro-mechanical structure in-
side the soil with macro-size pores reduced in size compared to before thermal loading.
After several thermal cycles, the size of the macro-size pores are sufficiently reduced so
that they may not be affected by thermal loads, leading to a cessation in shear displace-
ment development which is consistent with the observed experimental results. This
mechanism may be the main reason for the observed stiffer behaviour of the shearing
after thermal cycles were applied to the soil (Figure 7.5 and Figure 7.6).

7.5. CONCLUSION
To investigate the thermomechanical stress and temperature histories that soils experi-
ence at the interface level of thermo-active geo-structures such as energy-piles, a set of
experiments were conducted to investigate the coupling effect of shear stress and ther-
mal cycles on the behaviour of soil-concrete interfaces. Samples were sheared to half of
the interface’s shear strength prior to being subjected to 5 heating/cooling cycles. The
results indicated that shear displacements evolved when soil-concrete interfaces were
subjected to thermal cycles, although only negligible changes in shear strength were
observed. This is an important observation which should be considered in the design
procedure of thermo-active structures. The observed temperature-induced shear dis-
placements under constant shear stresses may result in additional and unwanted settle-
ments during the serviceability life-time of these structures, especially for those whose
main load-transfer mechanism to the soil and bearing capacity are through skin-friction
mobilisation such as floating piles. Although a slight increase of stiffness was observed
after thermal cycles under constant shear stresses, due to the newly formed micro- and
macro-mechanical structures in the soil, these structures appear to be destroyed by sub-
sequent shearing due to additional loading.
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8
CONCLUSIONS AND FUTURE WORK

8.1. INTRODUCTION
The short- and long-term performances of thermo-active geo-structures such as energy-
piles impose a complex set of mechanical and thermal loads on the soil surrounding
the structure. These loads may significantly affect the behaviour of the soil and conse-
quently, may influence the performance of the soil-structure system so that additional
safety criteria may need to be considered. The goal of this thesis was to advance in-
sights into the main mechanisms governing the thermomechanical behaviour of soils
and soil-interfaces, and to incorporate them in thermomechanical constitutive mod-
els which further can be used to develop numerical tools to facilitate studying thermo-
active geo-structure applications such as energy-piles. To achieve this goal, thermome-
chanical constitutive models were developed, a numerical algorithm was proposed to
implement the constitutive models in boundary-value solvers, and direct shear tests
were conducted to understand the thermomechanical behaviour of soil-structure in-
terfaces. The main conclusions from the core chapters of the thesis (Chapters 2-7) are
synthesised in the following section, and these are followed by an overview of potential
future research.

8.2. SINGLE SURFACE THERMOMECHANICAL CONSTITUTIVE

MODEL FOR FINE-GRAINED SOILS
In Chapter 2, a thermomechanical constitutive model which was developed based on
the thermodynamical framework of Hyperplasticity-Hyperelasticity. The model was for-
mulated with the introduction of a Gibbs-type energy potential and a newly proposed
rate of dissipation potential. Through using the energy potential, a non-linear thermo-
elasticity relationship was derived. The newly proposed rate of dissipation potential re-
sulted in a flexible yield surface which resembles the yield surface proposed by Collins
& Hilder [1], but with a simpler formulation (by eliminating shift stress components)
and embedded phenomenological temperature effects on the volumetric and shear be-
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haviour of fine-grained soils, observed in laboratory-scale tests. Moreover, due to the
presence of stress components in the definition of the rate of dissipation potential, a
non-associated flow rule was derived, without introducing a plastic potential similar to
conventional elasto-plastic constitutive models. All parameters of the model (12 or as
low as 10) may be calibrated based on conventional geotechnical laboratory tests. In ad-
dition, a descriptive physicochemical micro-scale mechanism was presented to explain
how phenomenological thermoemchanical observations can be incorporated in consti-
tutive equations.

The following conclusions were drawn:

• The constitutive model is unconditionally thermodynamically consistent.

• Comparing the predictions using the thermomechanical constitutive model with
laboratory test results showed that the model is capable of capturing the majority
of thermomechanical volumetric and deviatoric behaviours of soils.

• The proposed constitutive model may not be suitable for boundary-value solvers,
such as finite element methods, when numerically implemented using an implicit
stress integration algorithm if certain numerical remedies are not considered. This
is due to the existence of undesired elastic nuclei and/or domains with erratic gra-
dients. This drawback is addressed in Chapter 3.

• Although the model captures the main thermomechanical behaviour of fine-
grained soils, it failed to capture some features such as smooth stress-strain re-
sponses and hardening and shakedown behaviour of soils when subjected to
heating-cooling cycles. This drawback is addressed in Chapter 6.

8.3. A FLEXIBLE AND ROBUST YIELD FUNCTION FOR GEOMATE-
RIALS

Many flexible yield surfaces proposed in literature for geomaterials may not be suitable
for boundary-value solvers when using implicit stress integration algorithms. The return
mapping numerical algorithm may not be able to return the stress back onto the yield
surface when subjected to large strain increments, due to undesired elastic nuclei and/or
domains with erratic gradients or divergence. In Chapter 3, a new flexible yield surface
was proposed which is non-singular and uniquely defined in meridian stress space. This
was achieved by designing and imposing geometrical constraints on the formulation of
a quadratic-form yield surface via the roots of the yield surface in meridian stress space.
The flexibility of the yield surface was also validated by comparing with experimental
data for geomaterials available in literature. It was concluded that the proposed flexi-
ble yield surface was suitable and robust for implementing in boundary-value solvers
when using implicit stress integration algorithms. This yield surface was further used
in Chapter 4 for implementing the thermomechanical model developed in Chapter 2 in
a finite-element context, and for developing a two surface/bubble thermomechanical
model developed in Chapter 6.



8.4. NUMERICAL IMPLEMENTATION OF THE FLEXIBLE SINGLE YIELD SURFACE

THERMOMECHANICAL CONSTITUTIVE MODEL

8

273

8.4. NUMERICAL IMPLEMENTATION OF THE FLEXIBLE SIN-
GLE YIELD SURFACE THERMOMECHANICAL CONSTITUTIVE

MODEL
In Chapter 4, the thermomechanical constitutive model presented in Chapter 2 was
modified to include Lode angle dependency and the flexible yield surface proposed in
Chapter 3 and generalised in three-dimensional stress space. Then, a numerical al-
gorithm was proposed to implement the thermomechanical constitutive model which
consisted of a flexible, Lode angle dependent and temperature-dependent yield surface,
non-associated flow rule and non-linear thermo-elasticity relationships, in a boundary-
value solver, such as the finite element method, with an implicit stress-integration tech-
nique of the elastic predictor-plastic corrector type. The numerical algorithm was formed
by simultaneously solving the residual equations defined for the state variable (here,
strain was considered), the hardening variable (here, the pre-consolidation pressure)
and consistency condition. The accuracy, robustness and effectiveness of the algo-
rithm was thoroughly investigated via studying iso-error plots, iteration-stress maps
and Gudehus plots. The stress and residuals were also checked and were confirmed to
be quadratic. Then, the thermomechanical model was implemented into the DIANA
FEA finite element software via a user-defined material model subroutine. Fine-grained
soils subjected to various thermomechanical stress paths in triaixal and oedometer tests,
when using a wide range of material parameters, were simulated via this algorithm. All
simulations were stable and the predicted thermomechanical behaviours were aligned
with those observed in the laboratory-scale tests presented in Chapter 2. It was con-
cluded that the numerical algorithm can be used to numerically investigate the ther-
momechanical behaviour of a thermo-active geo-structure and soil system for various
mechanical and thermal load scenarios.

8.5. TWO SURFACE/BUBBLE THERMOMECHANICAL CONSTITU-
TIVE MODEL FOR FINE-GRAINED SOILS

A two surface/bubble-type thermomechanical model was developed in Chapter 5 to
address the shortcomings of the single surface model explained in Section 8.2, which
were the incapabilities of simulating smooth stress-strain responses and hardening and
shakedown behaviour of fine-grained soils when subjected to thermal cycles. The two
surface model was developed by introducing an additional yield surface (inner yield sur-
face) that could translate inside the outer yield surface with a kinematic rule. The model
was formulated in accordance with the framework of Hyperelasticity-Hyperplasticity,
which ensured that the principles of thermodynamics were unconditionally satisfied.
Thus, all constitutive components were derived based on the definition of a Gibbs-type
energy potential and a rate of dissipation potential. A new rate of dissipation potential
was developed that consisted of three components: (1) the sub-rate of dissipation poten-
tial for the inner yield surface, (2) the sub-rate of dissipation potential for the outer yield
surface, and (3) the kinematic rule that governs the translation of the inner yield sur-
face. The sub-dissipation potentials of the inner and outer surfaces had similar formu-
lation to the formulation of the flexible yield surface presented in Chapter 3. The kine-
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matic rule was added to the rate of dissipation by using the concept of thermodynam-
ical constraints and consisted of isothermal and non-isothermal components. Smooth
stress-strain responses and progressive elasto-plastic deformations when subjected to
mechanical cyclic loads were obtained with the isothermal component of the kinematic
rule. With the non-isothermal component of the kinematic rule, the model could predict
the state-dependent plastic deformations when subjected to thermal cycles. By compar-
ing experimental data with the predictions made with the thermomechanical model, it
was concluded that the model successfully captured the hysteresis cyclic behaviour and
thermal shakedown behaviour of fine-grained soils when they are subjected to mechan-
ical cyclic and thermal cyclic loads, respectively.

8.6. THERMOMECHANICAL BEHAVIOUR OF SOIL-STRUCTURE

INTERFACE
The effect of temperature with various mechanical boundary conditions and stress lev-
els for soil-concrete interfaces was investigated experimentally via a temperature con-
trolled direct shear apparatus and presented in Chapters 6 and 7. The thermomechani-
cal stress paths were designed to mimic those that a soil-interface may experience during
the short- and long-term operation of an energy pile. The main conclusions from these
tests were:

• The shear properties such as friction angle of the studied soils (here kaolin clay
and Geba sand) were temperature independent.

• Soil-interfaces may experience volume changes (mainly reduction) when sub-
jected to thermal cycles. This thermally-induced volume change depends on the
soil type, stress level and thermal load direction and are more pronounced when
samples are subjected to cyclic shearing afterwards.

• The cyclic displacements due to annual or daily temperature variations of an
energy-pile may significantly influence the shear responses of the soil-interfaces,
which can influence the capacity and performance of the soil-pile system.

• Due to the coupling effect of the initial shear stress and thermal cycles, the soil-
interface may experience additional shear displacements and therefore settle-
ments.

These findings should be considered in the design procedure of energy-piles as well
as in the traditional design consideration of a normal pile.

8.7. RECOMMENDATIONS FOR FURTHER RESEARCH
In this thesis, progress has been made in understanding and quantifying the main mech-
anisms governing the thermemchanical behaviour of soils, by developing thermome-
chanical constitutive models and numerical algorithms for boundary-value solvers, and
by performing laboratory scale tests on soil-structure interfaces. The findings of this the-
sis are useful for design and analysing the performance of energy-piles. However, many
other aspects should be studied which may lead to a more robust tool that can be used
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for thermo-active geo-structure applications. The following recommendations and sug-
gestions may be potential topics for further research.

• The effect of temperature on soil anisotropy can be investigated via laboratory-
scale tests and can be implemented in constitutive models via a rota-
tional/kinematic hardening rule in the two surface/bubble thermomechanical
constitutive model presented in Chapter 5.

• A numerical algorithm can be developed to implement the two surface/bubble
thermomechanical model presented in Chapter 5 in boundary-value solvers with
an implicit stress integration technique.

• Thermomechanical interface models can be developed based on the findings
of Chapter 6 and Chapter 7. Then, they can be numerically implemented in
boundary-value solvers such as finite-element methods.

• The predictive performance of boundary-value solvers coupled with the constitu-
tive models proposed here should be validated via field tests.

• With the use of the thermomechanical constitutive model for soils and soil-
interfaces, the performance of thermo-active geo-structures such as energy-piles
can be thoroughly studied.
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