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Abstract. Technology-enhanced learning systems, specifically multi-
modal learning technologies, use sensors to collect data from multiple
modalities to provide personalized learning support beyond traditional
learning settings. However, many studies surrounding such multimodal
learning systems mostly focus on technical aspects concerning data col-
lection and exploitation and therefore overlook theoretical and instruc-
tional design aspects such as feedback design in multimodal settings.
This paper explores multimodal learning systems as a critical part of
technology-enhanced learning used for capturing and analyzing the learn-
ing process to exploit the collected multimodal data to generate feedback
in multimodal settings. By investigating various studies, we aim to reveal
the roles of multimodality in technology-enhanced learning across various
learning domains. Our scoping review outlines the conceptual landscape
of multimodal learning systems, identifies potential gaps, and provides
new perspectives on adaptive multimodal system design: intertwining
learning data for meaningful insights into learning, designing effective
feedback, and implementing them in diverse learning domains.

Keywords: Multimodal Learning Analytics (MMLA) · Sensor-based
Technology · Learning Domains

1 Introduction

With the increasing application of Technology-Enhanced Learning (TEL), the
educational roles of teachers and students are constantly changing [39]. The
seismic shift was observed during the pandemic in the last few years, which
forced the educational focus from traditional classroom learning to online and
hybrid environments [39]. Owing to the proliferation of digital platforms and
devices designed for educational purposes [25], TEL technologies have resulted
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in the availability of copious amounts of data on both the learner and their
learning process. As a direct consequence, TEL technologies are being further
enhanced with sophisticated Artificial Intelligence (AI), particularly Machine
Learning (ML) techniques and Learning Analytics (LA).

Such technological advancements have reinforced the role of TEL, not only
as a LA tool but also as a form of feedback agent in learning. For instance,
the advent of ChatGPT1 appears to bring transformative development in the
field, as it has the potential to change the foundations of learning and educa-
tion [27]. Although such interactions are currently limited only to text modality,
information acquisition will become even more accessible via multiple sensory
modalities, with the convergence of diverse speech-based conversational agents
[31] and sensor technologies, in the form of multimodal interactions (e.g., Gen-
erative AI combined with VR agents) [27]. In this context, the importance of
multimodality is not only confined to TEL as data input from the digital world
[13], but also as outputs in both the physical and the virtual world, which can
trigger cognitive, behavioral, and emotional changes in learners.

Multimodal learning systems, a subgroup of TEL, frequently employ multi-
ple sensors and AI techniques to gather contextual learning data from diverse
modalities to provide a comprehensive understanding of learning processes. This
understanding can assist us, as practitioners and researchers, to reflect on the
efficacy of the design of multimodal learning systems: how to digitize learning
and learner information as data [25], how to process and intertwine multimodal
data to best contextualize learning [21,25,44], and how to design and implement
feedback and LA, also called multimodal learning analytics (MMLA) in learning
systems to address students necessities [25,40].

The field of MMLA combines different types of data from multiple modali-
ties and sources to gain contextual insights into the learning process. Di Mitri
et al. [13], in their conceptual framework called “Multimodal Learning Analytics
Model (MLeAM)”, portrayed multimodality in learning systems as a series of
steps involving sensor capturing, annotation, predictions, and feedback imple-
mentation, in a loop. Although their conceptual framework has precisely aligned
the multimodal data stream in input space, the framework has yet to be extended
to the dimensions of feedback design and its implications for learning domains. In
order to get insights into the design of feedback and MMLA, a critical component
of TEL, we examine through a review how previous studies utilize multimodal-
ity in their learning systems from data collection to feedback implementation,
which has yet to be collectively understood in previous research. Therefore, we
investigate multimodal learning systems in three primary stages: 1) data collec-
tion and integration, 2) design decisions for the design of multimodal feedback,
and 3) implications for system implementation in diverse learning domains. The
following three research questions will be tackled by reviewing and analyzing
studies in the field.

– RQ1. How is multimodal data collected and processed to get insights about
learning in MMLA?

1 https://openai.com/.

https://openai.com/
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– RQ2. How is learner feedback designed in the context of multimodal learning
systems?

– RQ3. What are the considerations for implementing multimodal learning sys-
tems in various learning domains?

2 Methodology

The literature search was conducted with the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) approach. The review itself
was later adapted to a scoping review due to the erratic landscape of the multi-
modal learning systems we observed based on our preliminary searches, as our
focus was on investigating the emerging topic, multimodality, as a critical compo-
nent of TEL. Therefore, we adopted the five-stage approach of a scoping review
of Arksey and O’Malley [3]: 1) identifying the research questions, 2) identifying
relevant literature based on inclusion and exclusion criteria, 3) selecting studies,
4) analyzing and synthesizing the data, 5) and summarizing and reporting the
results.

Through various search engines, such as Scopus and Web of Science, 1,794
search results were found based on keyword search (i.e. (multimodal OR mul-
tisensory) AND feedback AND (learning OR education)). Only results that
included a description of learning systems designed for human users were
selected, resulting in 274 papers. The results included papers from various sub-
ject areas, such as computer science, engineering, social sciences, psychology,
and art and humanities. Six researchers further coded and filtered the remaining
274 papers in the eligibility check process with inclusion and exclusion criteria,
such as having multimodal components as both the input and output of the sys-
tem implementation. Using Cohen’s Kappa coefficient by comparing observed
and random probabilities, the inter-rater reliability among six coders’ scores has
been evaluated (Cohen’s Kappa: good, 0.9 > 0.81 ≥ 0.8). The primary author
solely proceeded with the rest of the overall review, and 27 papers were cho-
sen for the final review. To compensate limitation of the PRISMA methodology
caused by its strict application of inclusion and exclusion criteria, we applied
the snowball method to extend the discussion with other relevant research in
the field for a further scoping review, which resulted in 30 papers ranging from
2010 to 2023.

3 Results

The search conducted with the methodology described above resulted in 30
papers published between 2010 and 2023. Most of the systems in the resulting
studies were based on a sensor-based approach and built for on-site learning than
online learning. Similarly, they were often geared towards individual learning
scenarios instead of collaborative learning. The majority of the selected studies’
primary intervention was in the form of real-time feedback rather than post-hoc
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feedback, and most targeted learners more than teachers. A significant propor-
tion of studies were conducted in K-12 education and higher education. Table 1
provides an overview of all the selected studies and their learning domains, data
inputs, and feedback modalities.

4 Discussion

4.1 RQ1. How Is Multimodal Data Collected and Processed to Get
Insights About Learning in MMLA?

Multimodal data collection in MMLA is performed using a host of sensors that
correspond to the five primary modalities used by humans (i.e., visual, audi-
tory, tactile, taste, and smell [11]), with various information layers, such as data
types, frequencies, and resolutions. Our literature search yielded no studies that
addressed the modalities of taste and smell, indicating a dearth of technology
capable of capturing them. Of the 30 papers, six studies (20.0%) collected visual
and auditory data, two studies (6.7%) collected visual and tactile data, two stud-
ies (6.7%) collected auditory and tactile data, and two studies (6.7%) collected
all three of them. Tactile data has been most frequently used as the major data
stream in eleven studies (36.7%), while visual and auditory data have been used
in five (16.7%) and two studies (6.7%), respectively.

Sensor-Based Data Collection Visual and auditory sensors are frequently
used to collect audio and video data. Visual data is collected using different types
of cameras (e.g., webcam [30], infrared camera [31], motion capture camera [52]),
which consist of various information layers such as RGB [9], shapes, sizes, and
textures. Visual data is further processed, often with AI and ML techniques, for
various purposes such as image recognition [41], facial expression analysis [10],
gaze and posture analysis [15,37], and trajectory tracking of the body [7,24] and
objects.

Auditory data is captured through the microphone, having volume and fre-
quency as essential features. The human voice is commonly captured as an audi-
tory modality that is used for corpus analysis [1], speech analysis, voice trait
analysis [15,47], and musical trait analysis [34,52].

Tactile sensors, such as Inertial Motion Units (IMUs), are used to capture
learners’ physical movement and orientation detection [20,47] while force tra-
jectory is tracked via force sensors [7]. Additionally, environmental sensors col-
lect information about the physical learning environments, such as temperature,
humidity, noise level, and air quality [49]. More sophisticated physiological sen-
sors technologies (e.g., eye tracker [31,32], electroencephalogram (EEG)) are
also applied for more accurate and deeper insights into the physiological state
of the learner. Such sensors collect physiological information such as heart rate
and skin conductance, which are further interpreted as clues of learners’ stress
levels, arousal, and emotional states [12]. For example, one dominant tendency
in MMLA is the inclusion of physiological sensors to evaluate learners’ affective
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states (e.g., cognitive load from pupil dilation and blinks based on eye tracking
data [30,32]). However, such applications are often criticized for their obstruc-
tiveness. To compensate for such limitations, remote detection technologies that
are developed and implemented in affective computing can be utilized: assess-
ing learners’ bio-data based on vision-based detection (e.g., heart rate [55]) and
behavior recognition algorithms [30], without having to have intrusive biosensors
implemented, which allows more stealth monitoring of learner activities.

With the current advancement of deep learning technologies, a subset of ML,
and increased computational capabilities, high-resolution sensor data, with an
unstructured data form, has become the resource of deep neural network devel-
opments. Deep neural networks can be used to make a sophisticated prediction
about the learners’ performance in LA, such as their attention prediction during
e-reading [30], and provide personalized support. Before the emergence of deep
learning technologies, only structured data with statistical explainability, such
as log data from learning management systems, had been the target resources of
traditional ML and LA [36]. However, dynamic data with uninterpretable pat-
terns, such as image, video, sound, and text [43], are now widely used for the
various model developments for the classification, prediction, and detection tasks
[31]. It is expected that such emerging models developed based on unstructured
or semi-structured information with non-numeric organizations, such as data
from eye trackers and EEG data, will expand the horizons of MMLA.

Log-Based Data Collection

Log data, collected through learners’ interaction with learning management sys-
tems via mouse clicks, keyboard inputs, and touch, in quantified forms (e.g.,
number, frequency) [26], have been the traditional sources of data in LA. Such
data collection is mainly done in online platforms, such as MOOCs [18], with
bigger sample scales and broader demographics than the sensor-based data col-
lection. Although the collection of log data is often more accessible due to the
absence of complex hardware infrastructure and sensors and can be interpreted
with relative ease [36], the insights from log data have been subject to criticism
for its superficial interpretations [33]. Also, its smaller computation requirements
make it suitable for extensive data collection at larger scales. With the emergence
of generative AI, the log data, such as the discourse between learners and the
system, will become much more valuable due to its potential for personalized
chat-based learning assistants, which will become more common with current
advancements in Transformer-based Natural Language Processing (NLP) mod-
els (e.g., GPT-4) [27].

Questionnaire Data Collection

The questionnaire is one traditional data collection method for learning analyt-
ics: evaluating learning on objective (e.g., knowledge gain) and subjective levels
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(e.g., learning experience). One common approach has been a pre-post question-
naire to measure the objective learning outcomes (e.g., knowledge gain) through
task performances. With increasing emphasis on the User Experience (UX) in
computer-assisted systems, more measures are developed and implemented for
gauging the UX of the system (e.g., System Usability Scale (SUS) [8], Attrakdiff
questionnaire [22]). Most existing measures have been developed especially for
Human-Computer Interaction (HCI), which focus primarily on computer-based
artifacts [2]. However, with the expansion of the physical and virtual ecosystems
of TEL, there are emerging necessities for more standardized measures for evalu-
ating the UX of various peripheral devices (e.g., AR/VR, conversational agents)
and agents (e.g., virtual robots) [31]. Deciding the timing of questionnaire-based
data collection (e.g., real-time, post-hoc) is one challenge, where researchers
should balance the timely aspect and obstructiveness of the data collection.

Observation-Based Data Collection

Observation-based data collection is typical where the targeted learners are not
fully capable of expressing their own perspectives (e.g., children with intellectual
disability) or experts’ opinion takes an essential role in evaluation (e.g., evalu-
ating collaborative learning [9]). In such cases, observers’ evaluation of observ-
able indicators becomes the means of gauging learners’ learning progress and
performances [25]. The evaluation objectives are often learners’ internal states,
such as affects, attention, and perceived experiences [14,30,31], that influence
learning experiences and potential learning outcomes. Since the evaluation is
dependent on third-person observation, having clear annotation standards and
frameworks is essential for the validity of the data. However, in some cases,
practitioners often design and execute the measures themselves without hav-
ing solid standards or frameworks [2]. Another challenge comes from individual
differences: behaviors occur differently due to cultural backgrounds and individ-
ual differences [14], such as behavioral or emotional expressiveness. Alternative
methods of combining human annotations with other layers of ground truths
are suggested to compensate for such limitations: implementation of biosensor
data (e.g., eye tracker [31] electroencephalography (EEG) [14]) and collecting
self-reported ground truths [30] from learners.

4.2 RQ2. How Is Learner Feedback Designed in the Context
of Multimodal Learning Systems?

Multimodal learning feedback in the form of in situ real-time feedback has often
been provided via physical components, such as touch-based devices, wearables,
haptic devices, physical prototypes, and speakers. In our literature search, in situ
real-time feedback was more predominant than post-hoc feedback, while some
took the hybrid approach. Such feedback often employed intuitive pictograms,
color-coding, sound effects, vibration, and force feedback to provide immediate
responses as learning interventions. In the meantime, post-hoc feedback has often
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Fig. 1. Multimodal feedback involves decision-making regarding the feedback modali-
ties, characteristics, timing, functions, and specific types of feedback.

been provided as dashboards, narrative text, and personalized voice feedback.
Learner dashboards continue to be a prominent tool for supporting self-regulated
learning in LA and MMLA. Dashboards in LA provide an easy-to-understand
visual representation of complex learning data in real-time, which allows edu-
cators and students to make informed decisions. Generally, the feedback design
in MMLA includes the following design elements: feedback modalities, charac-
teristics, timing, types, and functions (see Fig. 1). In the following sections, we
investigate the feedback elements found in the previous studies concerning their
modalities.

Visual

Graphics are the primary visual element with intuitive delivery. The realistic
graphical features have often been combined with engaging virtual environments
[16,45], gamification elements [4,9,16] for specific learning objectives and con-
texts with enhanced immersion [54]. The symbolic features of the graphic have
been used to communicate complex constructs. Symbolic pictograms, icons, and
emojis are used [15,46] to help reinforce or correct learners’ behaviors. Visual
effects, such as 2D/3D effects and color coding [7,15,19,24,48], are used for high-
lighting specific information in the visual message delivery. Additionally, motion
graphics/animations are used to convey dynamic information, such as a reference
for the model trajectory and movements [24,45].

Dashboards commonly use post-hoc visual language with extensive and collec-
tive information. For example, statistical analysis of learning progress and per-
formances has been shown through data visualization via graphs [1,5,47], tables
[1,5], and gauge bars [35]. Multimodal learning systems track more sophisticated
data from sensors capable of monitoring latent constructs in learners. Video
[10,32] and audio recordings [52] are used as feedback for summative evaluation
via dashboards so learners can reflect on their learning.

Text is used for its descriptive nature, capable of delivering narratives and
details. It is a distinctive feature compared to other visual languages since the
text relies on its semantic nature and the meaning layer, while visual languages
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mainly depend on intuitive understanding. Thanks to its clarity in message deliv-
ery, text feedback has often been used in dashboards for written descriptions
[15,46] and message alerts [7]. To differentiate the information hierarchy, some
visual traits, such as font size [19], highlighting [48], and colors [15,48], have
partially been applied to texts.

Auditory

Sound effects refer to types of auditory stimuli that are artificially made. Sound
effects are used for positive feedback in dashboards for showing approval and
rewards (e.g., bell chime [29]), while alerting sound effects are used for intuitively
signaling learners for behavior corrections (e.g., dog barks [29]). Sound effects
are also used for in situ real-time feedback [32] in multimodal learning systems
for better immersion in certain educational scenarios (e.g., golf putting sound
with different pitches [24]).

Voice feedback has been commonly implemented for its semantic and phonetic
features. Since lexical meaning can be delivered through voice messages, vocal
instructions are given for the concept delivery [6], guidance [37], and dialogue
simulations [1]. The acoustic features have been mainly emphasized for assisting
pronunciations of second language learners and young learners [1]. Various tonal
differences were applied to the vocal feedback to highlight specific information
or certain sound units.

Music has been implemented for musical education [34,52] and context-giving
for the immersions. Musical traits of learners’ instrumental play, such as tempo,
pitch, and timbre, have been corrected by providing specific parts of the musical
recording as guidance. Music can also create a certain ambiance with immersive
visual aids.

Tactile

Physical movements have often been used for providing feedback on the psy-
chomotor aspects of complex skill learning. For instance, model movements
have been demonstrated for sports training (e.g., rowing [35,45]) and deliver-
ing abstract concepts [6,16,41,54]. Fine motor movements were given for hand-
writing education with the trajectory (e.g., handwriting [7,32,42]). The syringe
prototype provided the force feedback [29], intertwining with physical probes for
more effective veterinary training. Movement feedback has often been helpful
for learners with visual impairments for compensating their limitations in visual
knowledge acquisition [6].

Vibrations constitute the majority of tactile feedback found in literature, often
referred to as vibrotactile feedback, in the form of small vibrations and frictions.



176 Y. Lee et al.

Vibrations are simplistic and are not able to encode complex information. Vibra-
tions have been implemented for concept delivery (e.g., texture rendering [23]),
guidance (e.g., haptic trajectory [7]), and as corrective feedback (e.g., vibration
buzzers [16,46]). All vibration feedback, and other tactile feedback, have mostly
been adopted as real-time feedback due to their temporal context-specific nature
and, therefore, not used in the dashboards.

4.3 RQ3. What Are the Considerations for Implementing
Multimodal Learning Systems in Various Learning Domains?

To answer RQ3, we analyzed the multimodal learning systems found in our
literature according to the three learning domains from revised Bloom’s taxon-
omy [28]: cognitive, psychomotor, and affective domains. The cognitive domain
involves the development of our mental skills and acquiring knowledge. The
Psychomotor domain relates to discreet physical functions, reflex actions, and
interpretive movements of the human body, while the affective domain involves
our feelings, emotions, and attitudes. Furthermore, we also cluster the learning
systems according to their specific application domain and learning goals and
present some of the largest clusters. It should be noted that it is not our inten-
tion to present learning systems as exclusive to one domain, and we only seek to
categorize the learning systems according to their primary learning objective.

Cognitive Domain

Conceptual Learning: Multimodal feedback loops for conceptual learning pri-
marily focus on facilitating knowledge delivery and comprehension. Providing
haptic feedback, in addition to visual-oriented course content, to demonstrate
various physical phenomena has shown an enhanced understanding of the phe-
nomena in learners [16,23]. The inclusion of additional modalities in instructions
of conceptual learning can assist learners with visual impairments (e.g., haptic
feedback from a stylus on Phantom Omni2 [6]).

Language Learning: Multimodality is also beneficial in various aspects of lan-
guage learning, which has traditionally been considered a predominately cogni-
tive domain. Improving pronunciation and intonation in learning a foreign lan-
guage has been a commonly targeted learning objective through various meth-
ods, such as visual aids with ideal mouth movements [48] and audio feedback with
standard pronunciation [1]. Children and learners with disabilities have been the
main end user of learning systems for first-language learning. For children, teach-
ing how to read [19], write with characters [7], and improve handwriting skills [7]
has been the main focus. For writing tasks, force feedback has been commonly
given through stylus [42,53,54] and colored trajectory feedback [7] to indicate
learners’ errors intuitively.

2 http://www.immersion.fr/.

http://www.immersion.fr/
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Medical Education: Multimodal learning systems for medical education have
been implemented to compensate for textbook-oriented education, aiming at
more practice-based learning. Yeom et al. [53] suggested a 3D visual and tactile
education system offering vivid visuals and tactile structures of human organs
for gross anatomy class. Similarly, Palpation education tools [4], ultrasonogra-
phy simulator [50], injection simulators for human patients [38], and animals [29]
have been designed to promote authentic real-life practices of such complex skills
with mock-ups. Those mock-ups have embedded collective sensors and software
for learning analytics and feedback so that learners can receive real-time feed-
back during their learning practices [4,29]. Medical education systems also tend
to involve physical props, mainly for tactile data collection and embedded per-
formance assessment algorithms to provide real-time instructions and feedback.

Affective Domain

Clear Communication Skills: Systems have been developed to improve clear
communication skills during learners’ presentations. With real-time evaluation,
learners were asked to reflect on their performances and improve their skills over
practice [15,37,46,51]. Combining visual and auditory data collected from a web-
cam, microphone, and Kinect [15,46,51], learners’ posture, gaze, facial expres-
sion, and voice traits for clear communication have been evaluated. Systems gave
the correction in real-time, by short written descriptions [15,46], real-time pos-
ture analysis [46,51], and performance analysis on the dashboards as post-hoc
feedback [15,37,46].

Psychomotor Domain

Sports Education: In sports education or training, learning goals are predomi-
nantly psychomotor. As such, during sporting activities, real-time physical fea-
tures have been evaluated: posture and strike patterns [24] for the golf swing,
body orientation and posture [35] for rowing, and body movement [20] for
dancing. These learning systems aim to correct learner errors in real time
and offer actionable plans to improve learners’ motor skills. As motor-skills
development demands conscious repetitive practices [17] where learners rely on
apprenticeship-based education, systems can computationally model experts or
mentors [32] and use ML to provide real-time feedback.

Musical Education: Systems in musical education were implemented to support
human-machine ensemble [34] and violin play [52]. Based on visual and auditory
indicators collected from a camera and a microphone, the phasing of violin play
was analyzed on the dashboard [52]. To support the human-machine play [34], the
shadow visual of the pianist and pre-recorded music piece has been played along
with the learner’s play during repetitive practices. Through visual aid, learners
were taught to understand the current issues, correct errors, and internalize
better techniques in an analytical and reflective manner.
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4.4 Challenges and Opportunities

Generalization vs. Personalization of Multimodal Learning Systems. While most
systems aim at the best generalizability in the application, more and more learn-
ing systems target feedback provisions with personalization since one system
should be general enough to cover targeted user groups while it should effec-
tively reflect individuals’ critical learning necessities. In this regard, future stud-
ies for refining the generalizability and personalization of critical learning necessi-
ties, timing, frequencies, and effects in multimodal learning system design would
greatly benefit the community.

Overarching MMLA Frameworks for Higher-Level Learning Objectives. Multi-
modal learning systems are often modeled as domain-specific and context-based
since most systems aim to improve concrete learning activities with clear system
goals. However, in many cases, such goals are set based on fragmentary frame-
works, lacking overarching models for higher-level learning objectives that can
be universally applied to general domains or even domain-specific instructional
design. Having such an overarching framework could work as a common ground
where practitioners and researchers can exchange and share their knowledge
and grow as a community while defining learning features is often the biggest
challenge in MMLA with advancements in a data-driven approach.

Closing the Feedback Loop in MMLA. Our findings suggest that despite the
advances in AI and ML algorithms, multimodal learning systems often fail to
close the feedback loop. Though the systems we examined in our study included
feedback in the system loop, most MMLA systems in the field need to take the
current analytics into the context of the next round of feedback provision. In
this sense, closing the feedback loop based on various modalities and evaluating
the effect of the feedback loop for further optimization seems to be an essential
challenge in the field.

5 Conclusion

In this scoping review, we investigated multimodal learning systems, which is
an integral extension of modern TEL systems. We investigate systems in three
stages as an extension to the MLeAM framework: 1) multimodal data collection
and processing, 2) multimodal feedback design decisions, and 3) multimodal
system implementation for various learning domains. The result indicates the
necessity of a more holistic understanding of the whole process in order to design
effective systems and multimodal instruction patterns. We also identified critical
challenges in multimodal learning systems, such as defining learning indicators,
balancing the generalization and personalization of analytics and interventions,
and closing the feedback loop in multimodal learning systems. Our paper pro-
vides an overview of the role multimodality plays in defining the potential of
the next generations of TELs and outlines important considerations for data
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collection, feedback design, and MMLA design for adaptive TEL system imple-
mentations.

With more evidence-based, data-driven approaches taken in LA, the quality
of data is getting increasingly important, especially in the context of MMLA.
Although data is becoming more accessible through sensors on commercialized
devices (e.g., laptops, webcam [30]) and increasing public datasets, engineering
competencies are becoming more critical in MMLA [44] as how data is collected
and processed impacts the quality of data and therefore, the predictions it makes.
Based on our analysis of RQ1, MMLA builds upon, rather than replacing, tradi-
tional LA but using data from multiple modalities. By doing so, MMLA is able
to make more robust predictions about learners’ performance across multiple
domains, as evidenced by RQ3, and can also provide more personalized feed-
back. However, even with the increased roles of data engineering and advance-
ments in AI, researchers’ insights, experiences, and domain knowledge are still
critical [44]. For example, the black-box nature of ML models makes decisions
and predictions in MMLA often not explainable and requires human interpreta-
tions. Explainable AI (e.g., tree-based models) [43] can supplement the current
MMLA in partially addressing this issue by providing better interpretability of
such analysis. This also holds true for the LA dashboards, as evidenced by RQ2,
with the majority of multimodal learning systems still relying on the affordances
of traditional LA dashboards, which support necessities for the stronger MMLA
and feedback design based on multimodalities.
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