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bitumen blends 
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A B S T R A C T   

This study aims to systematically investigate the influence of rejuvenator type/dosage and the 
aging degree of bitumen on the rutting resistance, flow behavior, and elastic/creep potential of 
rejuvenated bitumen at high temperatures. The rutting parameter (G*/sinδ), rutting failure 
temperature (RFT) from Linear viscoelastic test (LVE), zero-shear viscosity (ZSV) from flow test, 
recovery percentage (R0.1, R3.2), creep compliance (Jnr0.1, Jnr3.2), and stress sensitivity parameters 
(Rdiff, Jnrslope) from multiple stress creep and recovery (MSCR) tests of rejuvenated bitumen are 
characterized. The results reveal that bio-oil rejuvenator weakens the high-temperature perfor-
mance of aged bitumen maximally, followed by engine-oil and naphthenic-oil, while aromatic-oil 
rejuvenated bitumen exhibits the best rutting, flow, and creep resistance. The RFT index can most 
effectively evaluate and differentiate the rejuvenation efficiency of various rejuvenators on the 
high-temperature performance, which correlates well with ZSV, R3.2, Jnr0.1, Jnr3.2, Rdiff, and 
Jnrslope indices. Therefore, the RFT index is recommended as the critical indicator for evaluating 
the high-temperature performance of rejuvenated binders. The flow and MSCR characteristics of 
rejuvenated bitumen can be predicted based on RFT values. The determination of critical in-
dicators is beneficial to compare the rejuvenation effectiveness of variable rejuvenators on the 
high-temperature performance of aged bitumen.   

1. Introduction 

Presently, pavement researchers are increasingly focusing their efforts on circular and eco-friendly asphalt pavements, which 
involve the recycling of reclaimed pavement (RAP) waste materials [1–3]. However, the utilization of RAP is constrained by its 
diminished cracking resistance and adhesive properties [4,5]. This deficiency in RAP performance can be primarily attributed to the 
elevated stiffness and susceptibility to cracking of the aged bitumen it contains [6,7]. 

To facilitate the reutilization of RAP material, the pivotal focus revolves around mitigating the challenges associated with the low- 
temperature behavior and fatigue resistance of aged binders [8,9]. The incorporation of rejuvenators, also known as recycling agents, 
plays a crucial role in revitalizing and enhancing the chemical, rheological, morphological, and mechanical attributes of aged bitumen 
[10]. Zhang et al. conducted observations demonstrating the efficacy of sunflower oil in significantly enhancing the rheological 
properties, flow characteristics, and self-healing capabilities of aged bitumen [11–14]. Their findings also unveiled a connection 
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between the thermal properties of rejuvenators and the rheological alterations in aged binders. Furthermore, it became evident that 
rejuvenators, even when sourced from the same origin, exhibited distinct behaviors [15,16]. 

There is a consensus that bitumen aging yields significant benefits by reinforcing the intermolecular bonds within the bitumen 
structure, consequently enhancing its resistance to high-temperature rutting and deformation [17,18]. Nonetheless, the introduction 
of rejuvenators composed of lighter constituents tends to soften the aged bitumen, thereby diminishing its high-temperature perfor-
mance [19]. The guiding principle in the rejuvenation process is to strike a balance between the high-temperature and 
low-temperature properties of the rejuvenated bitumen [20,21]. Achieving this equilibrium necessitates the careful optimization of 
both the type and quantity of rejuvenators, with the goal of improving cracking resistance and adhesion performance while preserving 
the high-temperature characteristics of the aged bitumen [22–24]. The maximum allowable rejuvenator content is typically deter-
mined based on high-temperature performance criteria [25,26]. 

Nonetheless, the utilization of diverse assessment methods and criteria has resulted in challenges when attempting to directly 
compare the efficacy of various rejuvenators in enhancing the high-temperature characteristics of aged bitumen [27,28]. The SHARP 
project has introduced the rutting parameter (G*/sinδ) along with the corresponding rutting failure temperature as commonly 
employed indicators for assessing the rutting performance of bituminous materials [29]. Recent research has shown that the multiple 
stress creep and recovery (MSCR) test can provide better differentiation among complex bitumen samples compared to traditional 
indicators [30]. However, Skronka et al. discovered that the MSCR test tended to overestimate the favouable impact of elasticity on the 
high-temperature rutting performance of asphalt mixtures [31]. Furthermore, Sharma et al. noted a strong correlation between the 
zero-shear viscosity measured in flow tests and the high-temperature rutting performance of asphalt bitumen and mixtures [32]. 

Following the examination of existing literature, several limitations in the assessment of high-temperature performance for reju-
venated bitumen become evident:  

(a) A lack of a standardized methodology and a uniform set of criteria exist for evaluating the high-temperature characteristics of 
bituminous materials.  

(b) The composition disparity in rejuvenator-aged bitumen blends exerts a substantial influence on high-temperature performance. 
Unfortunately, there is a scarcity of comprehensive research dedicated to systematically exploring and contrasting the effec-
tiveness of various rejuvenators in enhancing the high-temperature behavior of aged bitumen.  

(c) The potential relationships among diverse rheological indicators pertaining to high temperatures in rejuvenated bitumen 
remain poorly understood. 

2. Objective and methodology 

The main objective of this study is to explore the influence of aging and rejuvenation conditions on the high-temperature defor-
mation resistance of bitumen with various rheological methods and propose the critical indicators for evaluating the rejuvenation 
effects of various rejuvenators on the high-temperature performance of aged bitumen. Compared to prior research, this study in-
troduces a systematic approach to identify crucial high-temperature assessment criteria for rejuvenated bitumen, considering various 
factors of rejuvenator type/dosage and bitumen aging degree. Fig. 1 illustrates the research roadmap. First, different aged bitumen and 
rejuvenators would be blended with variable rejuvenator dosages to prepare a series of rejuvenated binders. Afterward, three 
commonly-used high-temperature rheological tests (linear viscoelastic, steady-state flow, and multiple stress creep and recovery) will 
be conducted to assess the effects of rejuvenator type/dosage and aging level of bitumen on the high-temperature rutting, flow, and 
resilience behaviors of rejuvenated bitumen. Different evaluation indicators from these tests will be considered to quantitatively reflect 
the rejuvenation efficiency on the high-temperature performance of various rejuvenator-aged bitumen blends. By comparing the 
sensitivity of these evaluation indices to the changeable aging/rejuvenation conditions, the critical high-temperature indicators for 
rejuvenation effect evaluation will be recommended. Lastly, the potential connections between these proposed critical indicators from 
different tests will be disclosed. 

3. Materials and characterization tests 

3.1. Bitumen and rejuvenators 

A bitumen from one European petrochemical company with 70/100 penetration grade was used as the fresh bitumen (VB). The 
conventional properties, saturate, aromatic, resin, and asphaltene (SARA) fractions of fresh bitumen are listed in Table 1. It should be 

Fig. 1. Research protocol and roadmap.  
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mentioned that this work mainly concentrates on the rejuvenation efficiency evaluation of various rejuvenator-aged bitumen blends 
with changeable aging levels and rejuvenator type/dosage, but the influence factor of bitumen type is not considered herein. 

Table 2 displays the physical properties, average weight, and elemental components of selected rejuvenators: Bio-oil (BO), Engine- 
oil (EO), naphthenic-oil (NO), and aromatic-oil (AO) [33]. These rejuvenators are chosen based on the America National Center for 
Asphalt Technology (NCAT) recommendation [34]. It is found that the different rejuvenators exhibit differences in both physical and 
chemical properties. For example, the bio-oil shows the lowest viscosity and molecular weight and highest oxygen dosage, which is 
limited in the other three rejuvenators. Additionally, the aromatic-oil has the largest density, viscosity, Mn, and C/H ratio. All these 
physiochemical differences of rejuvenators will contribute to their different rejuvenation efficiency on the high-temperature perfor-
mance of aged bitumen. 

3.2. Preparation of aged and rejuvenated bitumen 

The artificial long-term aged bitumen was prepared in the laboratory by combining the Thin film oven test (TFOT) and pressure 

Table 1 
The conventional indices and chemical components of 70/100 fresh bitumen.  

Properties Value Specification 

25 ℃ Density (g·cm− 3)  1.017 EN 15326 [35] 
25 ℃ Penetration (0.1 mm)  91 ASTM D35 [36] 
Softening point (℃)  48.0 ASTM D36 [37] 
135 ℃ Viscosity (Pa·s)  0.80 AASHTO T316 [38] 
Saturate content (wt%)  3.6 ASTM D4121 [39] 
Aromatic content (wt%) 53.3 
Resin content (wt%) 30.3 
Asphaltene content (wt%) 12.8  

Table 2 
The physical and chemical properties of four rejuvenators.  

Properties Bio-oil Engine-oil Naphthenic-oil Aromatic-oil 

25 ℃ Density (g·cm− 3) 0.911 0.833 0.875 0.994 
25 ℃ Viscosity (cP) 50 60 130 63100 
Flash point (℃) 265–305 > 225 > 230 > 210 
Average weight Mn (g·mol− 1) 286.43 316.48 357.06 409.99 
Carbon content (wt%) 76.47 85.16 86.24 88.01 
Hydrogen content (wt%) 11.96 14.36 13.62 10.56 
Sulfur content (wt%) 0.06 0.13 0.10 0.48 
Oxygen content (wt%) 11.36 0.12 0.10 0.40 
Nitrogen content (wt%) 0.15 0.23 0.12 0.55  

Fig. 2. The 76 kinds of rejuvenated bitumen involved in this study.  
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aging vessel (PAV) test for the short-term and long-term aging process of bitumen, respectively. The aging time and temperature of 
TFOT are 5 h and 163 ℃. Meanwhile, the PAV tests were implemented under the temperature and pressure condition of 100 ℃ and 
2.1 MPa. Different PAV aging times of 20, 40, and 80 h were adopted to obtain the aged binders with discriminative aging degrees. In 
this study, fresh bitumen, short-term aged bitumen, and long-term aged bitumen with 20, 40, and 80 h were abbreviated as VB, SAB, 
LAB20, LAB40, and LAB80. 

All rejuvenated binders were prepared with the same manufacturing process to eliminate their influence on high-temperature 
performance evaluation. The aged bitumen was preheated at 160 ℃ for 30 min to reach a flow state, and the rejuvenator was 
blended in aged bitumen by a mixer at 160 ℃ for 10 min to prepare the homogeneous rejuvenated bitumen. Fig. 2 presents detailed 
information on all rejuvenated binders, including the rejuvenator dosage, rejuvenator type, and aging level of bitumen. To the LAB20 
aged bitumen (slight aging), the rejuvenator content is 1.25%, 2.5%, 3.75%, 5%, 7.5%, and 10%. Meanwhile, the rejuvenator dosage 
scopes for LAB40 and LAB80 are the same, varying from 2.5% to 15% with an interval of 2.5%. Further, the abbreviations of these 
rejuvenated bitumen are also shown in Fig. 2, composed of aging degree, rejuvenator dosage, and rejuvenator type. For instance, the 
2P15B means that rejuvenated bitumen is prepared by mixing the 15 wt% bio-oil rejuvenator in LAB40 aged bitumen. 

3.3. Linear viscoelastic (LVE) rutting test 

All high-temperature tests on bitumen samples are implemented using a dynamic shear rheometer (DSR) with the specimen size of 
25 mm diameter and 2 mm thickness. The temperature sweep test measures the variation trend of rutting parameter in the linear 
viscoelastic region. The temperature rises from 30 ℃ to 70 ℃, with an interval of 10 ℃. The frequency during the LVE test is constant 
at 10 rad/s [40]. All experimental measurements were conducted with at least two replicates to achieve reliable results. 

3.4. Steady state flow test 

The zero-shear viscosity (ZSV) is closely related to the rutting potential of the asphalt binder and mixture [41]. The flow test at 
different temperatures of 40 ℃, 50 ℃, and 60 ℃ was implemented with DSR to measure the difference in flow behavior and ZSV index 
of various rejuvenator-aged bitumen blends. The shear rate of all flow tests varies from 10− 3 s− 1 to 102 s− 1 [42]. The viscosity-shear 
strain flow curves will be obtained to estimate the effects of aging and rejuvenation on the bitumen’s high-temperature shear char-
acteristic and resistance. 

3.5. Multiple stress creep and recovery (MSCR) test 

The MSCR tests were performed at two stress levels of 0.1 kPa and 3.2 kPa at different temperatures of 52 ℃, 58 ℃, 64 ℃, and 
70 ℃, respectively [43]. Ten cycles (a total time of 200 s) were included in the MSCR test at each applied stress level. The bitumen 
specimen experienced 1 s creep and 9 s recovery stages for each cycle. The strain-time response was monitored (as shown in Fig. 3), 
and two rheological indices (non-recoverable creep compliance Jnr (kPa− 1) and recovery percentage R (%)) can be calculated as 
follows: 

Jnr(σ,N) =
εr − εc

σ (1)  

R(σ,N) =
εc − εr

εc − ε0
× 100 (2)  

where σ and N refer to the applied stress (kPa) and the creep/recovery cycles; εr (%) and εr (%) are the shear strain value measured at 
the end of creep and recovery steps, respectively; ε0 (%) represents the initial shear strain in the creeping stage. The Jnr parameter is 
related to the deformation potential of bituminous material, while the R index reflects the resilience. Eqs.3–5 show the R and Jnr 
parameters at both 0.1 kPa and 3.2 kPa stress levels. 
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Fig. 3. Rutting characteristics of fresh and aged bitumen.  
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R0.1 =

∑20

N=11
R(0.1,N)

10
(3)  

Jnr0.1 =

∑20

N=11
Jnr(0.1,N)

10
(4)  

R3.2 =

∑10

N=1
R(3.2,N)

10
(5)  

Jnr3.2 =

∑10

N=1
Jnr(3.2,N)

10
(6) 

The MSCR results are strongly sensitive to the stress level, and two parameters (Jnrslope and Rdiff) are calculated to assess the 
dependence of fresh, aged, and rejuvenated bitumen on the stress applied using Eqs.7 and 8. 

Jnrslope =
dJnr

dσ =
Jnr3.2 − Jnr0.1

3.1
× 100 (7)  

Rdiff =
R3.2 − R0.1

R0.1
× 100 (8)  

where stress differential dσ equals 3.1 kPa; Jnr3.2 and Jnr0.1 are the creep compliance of bitumen at the stress of 3.2kPa and 0.1kPa, 
while the R3.2 and R0.1 are the corresponding recovery percentages. 

4. Results and discussion 

4.1. Rutting potential from LVE test 

The rutting parameter G* /sinδ of fresh and aged bitumen are displayed in Fig. 3 at different temperatures of 30 ℃, 40 ℃, 50 ℃, 
60 ℃ and 70 ℃. The influence of temperature and long-term aging time on the rutting potential of bitumen is investigated. The G* / 
sinδ value of bitumen tends to decrease linearly as the temperature rise, indicating that the rutting potential is larger at higher 
temperatures. This occurs because bitumen molecules exhibit increased molecular mobility and reduced intermolecular forces when 
exposed to high temperatures. The aging degree of bitumen significantly reduces the absolute slope values of G* /sinδ-T curves, 
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showing that a high aging level decreases the temperature sensitivity of rutting performance. Meanwhile, the linearly increasing 
correlations between the G* /sinδ and long-term aging time are detected, regardless of the temperature. This suggests that bitumen’s 
resistance to rutting significantly increases as it undergoes prolonged aging, a phenomenon attributed to the heightened stiffness and 
improved intermolecular interactions within aged bitumen. Moreover, the influence of aging time on G* /sinδ becomes more obvious 
at high temperatures. It means that the aging effect on the rutting performance of bitumen depends on the testing temperature. 

Based on the SHARP recommendation, the rutting failure temperature (RFT) index is proposed to evaluate the rutting resistance of 
bitumen, which is the temperature when the G* /sinδ value is equivalent to 1000 Pa. The RFT results of fresh and aged bitumen are 
shown in Fig. 3(c). As the long-term aging time prolongs from 0 to 20, 40, and 80 h, the RFT value of bitumen increases from 71.76 ℃ 
to 76.57 ℃, 89.19 ℃, and 107.88 ℃. The linear relationship between the RFT and aging time is beneficial to predict the RFT value of 
aged bitumen with other aging degrees. 

To quantitively estimate the rejuvenation effect of rejuvenators on the high-temperature performance of aged bitumen, the reju-
venation percentage parameter is proposed based on different high-temperature indices as Eq.9. 

PR =
Paged − Prejuvenated

Paged − Pfresh
∗ 100 (9)  

where PR is the rejuvenation percentage, and P represents the high-temperature indices in Fig. 1. Meanwhile, the Pfresh, Paged, and 
Prejuvenated are the high-temperature indices of fresh, aged, and rejuvenated binders, respectively. 

Fig. 4 displays the rutting parameter and corresponding rejuvenation percentage RPR of rejuvenated bitumen at 60 ℃. Regardless 
of rejuvenator type and aging degree of bitumen, the Log(G*/sinδ) values of all rejuvenated binders tend to decrease linearly as the 
increased rejuvenator dosage, while the RPR parameter rises linearly. This suggests that the introduction of rejuvenators diminishes 
the high-temperature rutting resistance of aged bitumen due to their softening impact. The ranking of G* /sinδ values of rejuvenated 
bitumen is AORB > NORB > EORB > BORB, while the order of RPR values shows an opposite trend. Hence, the bio-oil rejuvenator 
exhibits the most pronounced reduction in the rutting resistance of aged bitumen, whereas the aromatic-oil effectively preserves its 
high-temperature performance advantage to the maximum extent. It is observed that the RPR values of all rejuvenated binders are 
lower than 100%, indicating that the anti-rutting performance of rejuvenated bitumen is still better than fresh bitumen. However, the 
rejuvenator dosage has to be controlled to ensure sufficient rutting resistance at high temperatures of rejuvenated bitumen, especially 
for bio-oil and engine-oil rejuvenators. 

In addition, the G* /sinδ values of rejuvenated bitumen intensify significantly as the aging level of bitumen deepens, while the RPR 
parameter shows a reduction trend. Consequently, the effectiveness of rejuvenation in revitalizing the rutting resistance of highly aged 
bitumen decreases. It is intriguing that there is no discernible disparity in both G* /sinδ and RPR values between NORB and AORB 

Table 3 
Correlation parameters of RPR-C curves.  

Aging level T (℃) Samples k b R2 Samples k b R2 

LAB20  30 BORB  11.074  8.987  0.982 NORB  7.974  4.033  0.966  
40  10.495  7.483 0.982  7.484  4.766  0.970  
50  9.848  5.016 0.970  7.194  1.423  0.964  
60  9.628  2.192 0.983  7.022  0.184  0.969  
70  9.366  4.971 0.970  7.063  1.372  0.940  
30 EORB  10.050  5.320  0.961 AORB  5.354  -1.84  0.991  
40  9.220 6.310 0.946  5.083  1.661  0.969  
50  8.870 3.790 0.957  5.368  -1.06  0.949  
60  8.610 1.840 0.947  5.198  -2.01  0.927  
70  8.520 4.490 0.942  5.464  -0.02  0.934 

LAB40  30 BORB  6.365  17.095  0.978 NORB  4.897  16.170  0.998  
40  5.704  16.658 0.983  4.624  15.770  0.997  
50  5.343  14.280 0.989  4.358  14.460  0.998  
60  5.294  11.952 0.989  4.244  13.800  0.988  
70  5.287  11.392 0.988  4.349  13.460  0.998  
30 EORB  5.410  15.260  0.990 AORB  3.456  6.809  0.997  
40  4.870 15.230 0.990  3.589  7.778  0.998  
50  4.800 12.340 0.993  3.553  7.558  0.994  
60  4.810 11.200 0.993  3.596  6.157  0.999  
70  4.980 10.200 0.993  3.674  6.063  0.998 

LAB80  30 BORB  4.250  19.271  0.963 NORB  3.012  17.030  0.937  
40  3.602  22.947 0.951  2.598  20.840  0.932  
50  3.229  22.757 0.951  2.340  21.220  0.921  
60  2.995  23.233 0.931  2.344  20.720  0.914  
70  2.960  24.014 0.917  2.349  21.780  0.909  
30 EORB  3.330  20.300  0.927 AORB  2.369  14.810  0.915  
40  2.800 23.890 0.919  2.327  19.780  0.927  
50  2.560 23.580 0.939  2.268  20.690  0.936  
60  2.480 23.770 0.957  2.280  21.110  0.954  
70  2.440 24.710 0.947  2.383  21.770  0.962  
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binders. This can be attributed to the robust intermolecular interactions among LAB80 bitumen molecules and the limited softening 
capacity of naphthenic-oil and aromatic-oil. It is worth mentioning that the rejuvenation effect of these four rejuvenators on the rutting 
performance of aged bitumen can be effectively evaluated and distinguished by the G* /sinδ result. However, the rejuvenation per-
centage result is strongly dependent on the temperature. 

To explore the impact of temperature, Table 3 summarizes the correlation parameters of RPR-C curves of different rejuvenated 
binders at variable testing temperatures. As the temperature increases, the k and b values decrease significantly, suggesting that 
elevated temperatures result in diminished rutting resistance and a reduced capacity of rejuvenators to enhance the high-temperature 
performance of aged bitumen. However, the temperature influences the sensitivity level of the RPR value to rejuvenator dosage be-
comes smaller when the temperature exceeds 50 ℃. Moreover, the rejuvenator type and aging degree of bitumen affect the tem-
perature sensitivity of k and b parameters. The RPR values of BORB and EORB exhibit more sensitivity to temperature variation than 
the NORB and AORB. Additionally, the temperature susceptibility of RPR-C curves of rejuvenated bitumen weakens as the aging level 
of bitumen deepens. 

The random selection of LVE temperature would result in the difference in rejuvenation percentages based on the G* /sinδ 
parameter. To eliminate the temperature effect, the rutting failure temperature (RFT) index is calculated with the G* /sinδ= 1.0kPa 
criteria [43], and the RFT-based rejuvenation percentages (RFTR) are obtained following Eq. 9. The results are displayed in Fig. 5. 
Similar to G* /sinδ, the RFT and RFTR show the linearly decreasing and increasing trend as the rejuvenator dosage rises, respectively. 
It is worth noting that the difference in both RFT and RFTR values of different rejuvenated binders is significant, regardless of the 
rejuvenator dosage and aging level of bitumen. The RFT index proves to be a more suitable choice for assessing and distinguishing the 
high-temperature rutting resistance among diverse blends of rejuvenator-aged bitumen, considering variations in rejuvenator type, 
dosage, and bitumen aging degree. As such, the RFT index is strongly recommended as an effective indicator for characterizing the 
high-temperature performance of rejuvenated bitumen. 

4.2. Shear resistance from flow test 

While the G* /sinδ and RFT parameters obtained from the LVE test are capable of illustrating and distinguishing the impact of 
various rejuvenators on the rutting resistance of aged bitumen, the strain levels involved are relatively small, and the entire LVE region 
lacks realistic deformation. Consequently, a flow test is conducted to assess the shear resistance of bituminous materials under varying 
conditions of aging and rejuvenation. The flow curves of fresh and aged bitumen are illustrated in Fig. 6(a). As observed, the flow 
behavior of bitumen strongly depends on the shear rate. Due to the Newtonian-flow characteristic, the complex viscosity remains 
constant at a low shear rate (<1 s− 1). As the shear rate exceeds the critical point, the viscosity of bitumen decreases significantly as the 
shear rate rises. At this time, the bitumen is a non-Newtonian fluid. 

Moreover, long-term aging exhibits a distinct effect on the complex viscosity and flow behavior of bitumen. As the aging level 
deepens, the viscosity of bitumen remarkably intensifies. Meanwhile, the Newtonian-fluid region shortens gradually. The Carreau 
model is adopted to quantitatively describe the flow curves of fresh, aged, and rejuvenated binders, which is defined as: 
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Fig. 5. Influence of rejuvenator dosage, type, and aging level on rutting failure temperature of rejuvenated bitumen (a) LAB20, (b) LAB40, and 
(c) LAB80. 
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η0

η = [1 + (
γ
γc
)

2
]
s (10)  

where η and γ refer to the viscosity (Pa·s) and shear rate (s− 1), respectively; η0 shows the zero-shear viscosity (ZSV, Pa·s) defined as the 
complex viscosity value with zero external shear rate; γc and s are the constants. Moreover, the γc parameter is related to the shear rate 
of the shear-thinning occurring, and the s index reflects the reduction slope of the viscosity in the Non-Newtonian fluid stage [44,45]. 

The Carreau model fitting curves are also shown in Fig. 6(a), and the ZSV values of fresh and aged bitumen are presented in Fig. 6(b) 
at different temperatures of 40 ℃, 60 ℃, and 80 ℃. The Log(ZSV) value of bitumen has a linear relationship with the long-term aging 
time. The increased aging level results in a higher ZSV value of bitumen, which tends to decrease as the temperature rises. The reason is 
that long-term aging enhances the intermolecular interactions between bitumen molecules with larger ZSV parameters and shear 
resistance capacity. The ZSV values of age bitumen with other aging levels can be predicted using the Log(ZSV)-t correlation formulas 
listed in Fig. 6(b). 

Fig. 7 demonstrates different rejuvenated bitumen flow curves with variable rejuvenator types and dosages. Due to the softening 
effect, the complex viscosity of rejuvenated binder reduces significantly with more rejuvenators included. Furthermore, a higher 
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Fig. 6. Influence of aging on flow behavior and ZSV value of bitumen.  

10-3 10-2 10-1 100 101104

105

106

107

)s.aP(
ytisocsi

V

(a) BORB

BO2.5
BO5
BO7.5
BO10
BO12.5
BO15

Shear rate γ (s-1)
10-3 10-2 10-1 100 101104

105

106

107

(b) EORB

EO2.5
EO5
EO7.5
EO10
EO12.5
EO15

)s.aP(
ytisocsi

V

Shear rate γ (s-1)

10-3 10-2 10-1 100 101104

105

106

107

(c) NORB

NO2.5
NO5
NO7.5
NO10
NO12.5
NO15

)s.aP(
ytisocsi

V

Shear rate γ (s-1)
10-3 10-2 10-1 100 101104

105

106

107

Shear rate γ (s-1)

)s.aP(
ytisocsi

V

(d) AORB

AO2.5
AO5
AO7.5
AO10
AO12.5
AO15

Fig. 7. Flow curves of LAB40 rejuvenated bitumen.  
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concentration of rejuvenator expands the Newtonian-flow region within rejuvenated bitumen, exhibiting an opposite trend compared 
to the aging scenario. Consequently, the addition of these rejuvenators collectively serves to restore the complex viscosity levels and 
flow characteristics of aged bitumen towards those of fresh bitumen. Nevertheless, the rejuvenator types strongly determine the re-
covery situation and dosage sensitivity of viscosity. The bio-oil rejuvenator can maximally decrease the viscosity and expand the 
Newtonian-flow range, followed by the engine-oil and naphthenic-oil, while the AORB binder exhibits the largest viscosity and lowest 
sensitivity to rejuvenator content. In terms of shear resistance capability, both aromatic-oil and naphthenic-oil rejuvenators outper-
form bio-oil and engine-oil rejuvenators, mirroring the trend observed in the rutting parameter results. The aging effect on the flow 
characteristics of rejuvenated binders is displayed in Fig. 8. The intensive aging degree contributes to the enlarged viscosity of 
rejuvenated bitumen dramatically. The zero-shear viscosity magnitude of rejuvenated binders (AORB > NORB > EORB > AORB) is 
independent of the aging level of bitumen. However, the difference in complex viscosity of different rejuvenated bitumen lessens as the 
aging degree of bitumen deepens from LAB20 to LAB40 and LAB80. 

The ZSV parameter and corresponding rejuvenation percentage ZSVR value of rejuvenated bitumen are plotted in Fig. 9. The Log 
(ZSV) values show a linearly decreasing trend as the rejuvenator dosage increases, regardless of rejuvenator type and aging level of 
bitumen. The AORB binder exhibits the highest ZSV value, whereas the BORB shows the lowest point. This suggests that an excessive 
use of bio-oil rejuvenator could lead to inadequate shear resistance in rejuvenated bitumen at elevated temperatures. Moreover, the 
ZSVR parameter increases exponentially as a function of rejuvenator content. When more rejuvenators are added, the recovery per-
centage on ZSV of aged bitumen presents a convergence close to 100%. Hence, it becomes challenging to distinctly discern the 
rejuvenating impact of these rejuvenators on the Zero-Shear Viscosity (ZSV) value of aged binder when higher rejuvenator dosages are 
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employed. The difference in ZSVR values of BORB and AORB binders is significant, but EORB and NORB show similar ZSVR pa-
rameters, especially when the aged bitumen is LAB40 or LAB80. In contrast to G* /sinδ, the ZSV parameter has limitations when it 
comes to distinguishing the rejuvenation effectiveness of engine-oil and naphthenic-oil rejuvenators in highly aged bitumen. 

The ZSV values of rejuvenated binders are measured at different temperatures to detect the temperature effect on the ZSV-based 
rejuvenation efficiency of various rejuvenator-aged bitumen blends. The ZSV and ZSVR results are displayed in Fig. 10. As anticipated, 
elevated testing temperatures result in a noteworthy decrease in the ZSV values of rejuvenated bitumen. Furthermore, the ZSVR 
parameters of rejuvenated bitumen vary at different temperatures. However, reaching a unified conclusion is challenging, as the 
temperature sensitivity of the ZSVR value also hinges on the type of rejuvenator used. Regardless of temperatures, and ZSVR order of 
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Fig. 10. Influence of temperature on ZSV and ZSVR of rejuvenated bitumen (a) LAB20, (b) LAB40, and (c) LAB80.  

Table 4 
The Carreau model’s parameters of the virgin, aged, and rejuvenated binders.  

Samples γc s Samples γc s Samples γc s 

VB  8.71  0.65 LAB20  1.01  0.59 LAB80 0.65 1.90 
SAB  2.86  0.50 LAB40  0.83  0.89 - - - 
1P1.25B  1.58  0.93 2P2.5B  0.75  0.70 4P2.5B 0.03 0.22 
1P2.5B  1.95  0.79 2P5B  1.55  0.67 4P5B 0.18 0.42 
1P3.75B  2.05  0.68 2P7.5B  1.87  0.52 4P7.5B 0.36 0.52 
1P5B  2.24  0.57 2P10B  1.92  0.48 4P10B 0.38 0.53 
1P7.5B  2.38  0.48 2P12.5B  2.08  0.33 4P12.5B 0.45 0.53 
1P10B  2.57  0.34 2P15B  2.20  0.27 4P15B 0.47 0.52 
1P1.25E  1.37  0.78 2P2.5E  0.71  0.54 4P2.5E 0.02 0.22 
1P2.5E  1.42  0.71 2P5E  0.89  0.80 4P5E 0.15 0.49 
1P3.75E  1.75  0.65 2P7.5E  1.36  1.29 4P7.5E 0.21 0.45 
1P5E  2.22  0.60 2P10E  1.42  1.04 4P10E 0.27 0.47 
1P7.5E  2.27  0.55 2P12.5E  1.90  1.02 4P12.5E 0.31 0.42 
1P10E  2.98  0.49 2P15E  2.09  0.70 4P15E 0.37 0.58 
1P 1.25 N  1.12  0.70 2P 2.5 N  0.49  0.68 4P 2.5 N 0.01 0.38 
1P 2.5 N  1.18  0.59 2P5N  0.74  0.69 4P5N 0.12 0.38 
1P 3.75 N  1.20  0.58 2P 7.5 N  0.93  0.56 4P 7.5 N 0.20 0.48 
1P5N  1.52  0.55 2P10N  1.39  1.57 4P10N 0.18 0.45 
1P 7.5 N  2.14  0.53 2P 12.5 N  1.73  0.97 4P 12.5 N 0.23 0.45 
1P10N  2.59  0.48 2P15N  2.02  1.33 4P15N 0.34 0.51 
1P1.25 A  1.23  0.81 2P2.5 A  0.42  0.95 4P2.5 A 0.02 0.22 
1P2.5 A  1.42  0.62 2P5A  0.67  0.94 4P5A 0.03 0.48 
1P3.75 A  1.58  0.57 2P7.5 A  1.03  0.55 4P7.5 A 0.05 0.34 
1P5A  1.64  0.52 2P10A  1.21  1.02 4P10A 0.08 0.46 
1P7.5 A  1.96  0.53 2P12.5 A  1.67  1.04 4P12.5A 0.12 0.35 
1P10A  2.07  0.53 2P15A  2.05  1.02 4P15A 0.16 0.56  
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rejuvenated binders at LAB20 and LAB40 is the same as BORB > EORB > NORB > AORB. Therefore, the bio-oil rejuvenator would 
weaken the shear-resistance performance of aged bitumen to the greatest extent, while the aromatic-oil shows the largest retention 
effect. 

Moreover, the degree of bitumen aging influences the pattern of change in ZSVR values concerning temperature and the type of 
rejuvenator. These ZSVR values progressively decrease as the aging level intensifies. When the bitumen is severely aged (LAB80), the 
ZSVR values at 60 ℃ of 4P10E, 4P10N, and 4P10A are higher than that at 40 ℃ and 80 ℃. Due to the elevated stiffness of LAB80, the 
rejuvenation impact of rejuvenators (EO, NO, AO) on the ZSV parameter is constrained at lower temperatures. However, bio-oil, 
possessing greater molecular mobility, can still effectively restore the ZSV. Interestingly, the ZSVR value for 4P10A surpasses that 
of 4P10N, indicating that the rejuvenating effect of aromatic-oil on the flow characteristics of severely aged bitumen becomes more 
pronounced. This phenomenon can be attributed to the strong polarity of aromatic-oil, which robustly interacts with and dissolves 
asphaltene clusters, thereby expediting the reconstruction of the colloidal structure in aged bitumen [46]. 

Table 4 lists the γc and s parameters in Carreau models of fresh, aged, and rejuvenated binders. The γc decreases and the s parameter 
increases distinctly during the long-term aging process. This indicates that increased aging levels reduce the extent of the Newtonian- 
fluid region and amplify the susceptibility of complex viscosity to shear rate changes. The introduction of rejuvenators enhances the γc 
value while reducing the s parameter of aged bitumen to levels comparable to fresh bitumen. This implies that these four rejuvenators 
have the capacity to rejuvenate the flow properties of aged bitumen, with their effectiveness being notably impacted by the type of 
rejuvenator, dosage, and the degree of bitumen aging. In detail, the rejuvenator content shows a positive connection with the γc 
parameter but a negative relationship with the s value of rejuvenated bitumen. Moreover, a high aging degree of bitumen results in a 
lower γc and a higher s value. It should be mentioned that the ZSV parameter directly related to the high-temperature shear resistance 
of bitumen will be analyzed as the potential indicator for rejuvenation efficiency evaluation. While it is observed that aging and 
rejuvenation conditions have notable effects on flow characteristics such as the γc and s parameters, establishing a direct link between 
these parameters and high-temperature mechanical performance poses a challenge. Consequently, this study does not delve into the 
discussion of these flow parameters, as they will be subject to further exploration in future research. 

4.3. Anti-deformation capacity from MSCR test 

4.3.1. MSCR curves of fresh, aged, and rejuvenated bitumen 
The MSCR test always characterizes the high-temperature deformation and recovery capacity of bituminous material [47]. Fig. 11 

illustrates the MSCR curves of fresh and aged bitumen at two stress levels of 0.1 and 3.2 kPa. The increased applied stress and loading 
time both enlarge the strain of bitumen. With an escalation in aging level, the strain value gradually decreases owing to the heightened 
stiffness of aged bitumen. This observation indicates that a higher degree of aging enhances the deformation resistance of bitumen, a 
trend that aligns with findings in both the LVE rutting parameter and flow characteristics. Different parameters are outputted from 
MSCR curves to quantitatively evaluate the effects of aging and rejuvenation on the deformation potential and elastic performance of 
bitumen, including the recovery percentage (R0.1, R3.2), non-recoverable creep compliance (Jnr0.1, Jnr3.2), and stress sensitivity pa-
rameters (Rdiff, Jnrdiff). 

Fig. 12 displays the MSCR parameters of fresh and aged bitumen. The R0.1 and R3.2 values of bitumen tend to increase exponentially 
as the aging degree deepens. Meanwhile, the aging time extension leads to an exponential reduction of parameters Jnr0.1, Jnr3.2, Rdiff, 
and Jnrdiff. Additionally, the temperature greatly influences bitumen’s elastic recovery and creep potential. As the temperature rises, 
the R-value decreases while Jnr, Rdiff, and Jnrdiff enlarge. It means that high temperatures weaken the elastic recovery and increase the 
deformation level and stress sensitivity of bitumen. As the stress level increases from 0.1 kPa to 3.2 kPa, the R-value decreases, and Jnr 
increases. Therefore, the aging impact on the MSCR parameters of bitumen depends on the temperature and stress level, which should 
be considered in the following rejuvenation process. Further, these MSCR parameters of aged bitumen with other aging levels can be 
predicted by the listed correlation equations between the MSCR parameters and aging time. 

The MSCR curves of LAB40 rejuvenated bitumen with variable rejuvenator type and dosage are shown in Fig. 13. Regardless of 
rejuvenator type and stress level, the increment in rejuvenator content enlarges the strain value of rejuvenated bitumen. This can be 

0 50 100 150 2000

100

200

300

400

500

600

)
%(

niartS

(a) 0.1kPa
VB
SAB
LAB20
LAB40
LAB80

Time (s)
200 220 240 260 280 300
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

)
%(

niartS

(b) 3.2 kPa

VB
SAB
LAB20
LAB40
LAB80

Time (s)

Fig. 11. The MSCR curves of fresh and aged bitumen.  

S. Ren et al.                                                                                                                                                                                                             



Case Studies in Construction Materials 19 (2023) e02522

12

ascribed to the softening impact of rejuvenators, as their inclusion diminishes the deformation resistance of aged bitumen. Addi-
tionally, different rejuvenators exert distinct effects on the elastic recovery and creep properties of aged bitumen. When the stress level, 
loading time, and rejuvenator dosage keep constant, the ranking of strain value of rejuvenated bitumen is BORB > EORB > NORB 
> AORB. Thus, the bio-oil rejuvenator shows the largest effect on softening the aged bitumen, and the aromatic-oil rejuvenated 
bitumen exhibits the strongest deformation resistance. Additionally, the stress level significantly impacts the MSCR curves of reju-
venated bitumen more than the rejuvenator type and dosage. 

The effect of the aging level on the MSCR curves of rejuvenated bitumen is reflected in Fig. 14. As expected, the increased aging 
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level declines the strain value, indicating that the high aging degree positively affects the anti-deformation performance of rejuvenated 
bitumen. The aging influence is more obvious at a higher stress level. In addition, the aging degree has less effect on the strain order of 
rejuvenated binders (BO > EO > NO > AO), but the ranking becomes less significant as the aging level of bitumen deepens. Inter-
estingly, the strain values of AO10 are lower than NO10 when the aging bitumen is LAB80. The strong intermolecular interaction and 
compatibility between the aromatic-oil and severely-aged bitumen molecules would accelerate the deagglomeration of asphaltene 
clusters. 

4.3.2. R0.1 parameter of rejuvenated bitumen 
The R0.1 parameter and corresponding rejuvenation percentage RR0.1 of rejuvenated bitumen are plotted in Fig. 15 at different 

temperatures of 52, 58, 64, and 70 ℃. Regardless of rejuvenator type and temperature, the R0.1 value of rejuvenated bitumen decreases 
linearly as a function of rejuvenator dosage, and the RR0.1 value enlarges linearly. At all temperatures, the R0.1 and RR0.1 value of the 
BORB binder is the minimum and maximum. It indicates that bio-oil rejuvenator maximally weakens the elastic recovery capacity of 
aged bitumen. Interestingly, the R0.1 of AORB is lower than EORB and NORB due to the low-stress level. This result does not agree with 
the LVE G* /sinδ and flow ZSV conclusion (BORB < EORB < NORB < AORB). Thus, the R0.1 parameter is inappropriate for assessing 
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Fig. 14. Aging effect on the MSCR curves of rejuvenated bitumen, (a-1)(a-2) LAB20, (b-1)(b-2) LAB40, and (c-1)(c-2) LAB80.  

2.5 5.0 7.5 10.0 12.5 15.0
30

40

50

60

R0.1=-1.998*C+61.698, R2=0.997

R0.1=-1.657*C+59.645, R2=0.999
R0.1=-1.437*C+59.254, R2=0.994

R
0.

1
)

%(

Rejuvenator dosage (wt%)

BORB
EORB
NORB
AORB

(a) 52℃

R0.1=-2.004*C+60.257, R2=0.990

2.5 5.0 7.5 10.0 12.5 15.0

20

30

40

R0.1=-1.832*C+47.993, R2=0.999

R0.1=-1.616*C+47.832, R2=0.989
R0.1=-1.541*C+46.966, R2=0.992

R0.1=-1.917*C+46.796, R2=0.980

R
0.

1
)

%(

(b) 58℃

Rejuvenator dosage (wt%)
2.5 5.0 7.5 10.0 12.5 15.0

10

20

30

R0.1=-1.400*C+34.674, R2=0.981

R0.1=-1.455*C+35.757, R2=0.996
R0.1=-1.434*C+34.987, R2=0.991

R0.1=-1.620*C+34.618, R2=0.971

R
0.

1
)

%(

(c) 64℃

Rejuvenator dosage (wt%)
2.5 5.0 7.5 10.0 12.5 15.0

0

10

20 R0.1=-1.284*C+25.064, R2=0.946
R0.1=-1.226*C+24.628, R2=0.995

R0.1=-1.222*C+23.952, R2=0.968
R0.1=-1.418*C+24.192, R2=0.947

R
0.

1
)

%(

(d) 70℃

Rejuvenator dosage (wt%)

2.5 5.0 7.5 10.0 12.5 15.0
0

20

40

60

80

R
R

0.
1

)
%(

Rejuvenator dosage (wt%)

BORB
EORB
NORB
AORB

(e) 52℃RR0.1=3.584*C+7.195, R2=0.990
RR0.1=2.570*C+8.988, R2=0.994
RR0.1=2.964*C+8.288, R2=0.999
RR0.1=3.574*C+4.617, R2=0.997

2.5 5.0 7.5 10.0 12.5 15.0
0

20

40

60

80
(f) 58℃

R
R

0.
1

)
%(

Rejuvenator dosage (wt%)

RR0.1=3.799*C+13.98, R2=0.980
RR0.1=3.053*C+13.64, R2=0.992
RR0.1=3.203*C+11.93, R2=0.989
RR0.1=3.631*C+11.61, R2=0.999

2.5 5.0 7.5 10.0 12.5 15.0
20

40

60

80
(g) 64℃

R
R

0.
1

)
%(

Rejuvenator dosage (wt%)

RR0.1=3.79*C+20.45, R2=0.971
RR0.1=3.35*C+19.59, R2=0.991
RR0.1=3.40*C+17.79, R2=0.996
RR0.1=3.27*C+20.32, R2=0.981

2.5 5.0 7.5 10.0 12.5 15.0
20

40

60

80

100
(h) 70℃

R
R

0.
1

)
%(

Rejuvenator dosage (wt%)

RR0.1=4.25*C+27.80, R2=0.947
RR0.1=3.66*C+28.52, R2=0.968
RR0.1=3.67*C+26.50, R2=0.995
RR0.1=3.28*C+31.86, R2=0.995
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and distinguishing the various rejuvenators’ effects on the high-temperature performance of aged binders. 

4.3.3. R3.2 parameter of rejuvenated bitumen 
Fig. 16 illustrates the R3.2 and RR3.2 values of rejuvenated binders. With the increase in rejuvenator dosage, the R3.2 parameter 

decreases linearly or exponentially, depending on the temperature, while the RR3.2 tends to increase relatively. It should be noticed 
that the R3.2 (RR3.2) values of various rejuvenated bitumen can be differentiated as a ranking of BORB < EORB < NORB < AORB 
(converse for RR3.2), which is the same as the LVE rutting parameter and flow results. Therefore, the R3.2 parameter can effectively 
evaluate the elastic recovery performance of rejuvenated binders at high temperatures. Nevertheless, the temperature affects the 
variation trend of RR3.2 values of rejuvenated binders. At low temperatures (52 ℃ and 58 ℃), the RR3.2 has a linear relationship with 
rejuvenator dosage, which increases exponentially at high temperatures (64 ℃ and 70 ℃). The temperature has to be mentioned when 
the rejuvenation effect of various rejuvenators on the elastic recovery property of aged bitumen is investigated. 

4.3.4. Jnr0.1 parameter of rejuvenated bitumen 
The variations of creep compliance Jnr0.1 and rejuvenation efficiency JnrR0.1 of rejuvenated binders versus rejuvenator dosage are 

shown in Fig. 17. As the rejuvenator content rises, the Jnr0.1 and JnrR0.1 values of all rejuvenated binders show an exponentially 
increasing trend. Regardless of temperature and rejuvenator content, the ranking of Jnr0.1 and JnrR0.1 value of rejuvenated binders is 
BORB > EORB > NORB > AORB. This indicates that bio-oil rejuvenated bitumen exhibits the highest creep potential, whereas 
aromatic-oil rejuvenated bitumen demonstrates the lowest degree of creep. Elevated temperatures expedite the increase in the JnrR0.1 
value of rejuvenated bitumen, which is attributed to heightened molecular mobility. Overall, the Jnr0.1 parameter can effectively 
evaluate and distinguish the effects of these rejuvenators on the high-temperature creep potential of aged bitumen, but the 
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Fig. 16. The influence of rejuvenator dosage on the R3.2 values of rejuvenated bitumen.  
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Fig. 17. The influence of rejuvenator dosage on the Jnr0.1 value of rejuvenated bitumen.  
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rejuvenation efficiency based on the Jnr0.1 parameter is dependent on temperature. 

4.3.5. Jnr3.2 parameter of rejuvenated bitumen 
Fig. 18 shows Jnr3.2 and JnrR3.2 curves versus rejuvenator dosages of different rejuvenated bitumen. Similar to the Jnr0.1 index, the 

Jnr3.2 and JnrR3.2 values of rejuvenated binders increase exponentially as rejuvenator content increases. Meanwhile, the ranking of 
Jnr3.2 and JnrR3.2 is BORB > EORB > NORB > AORB, the same as Jnr0.1 and JnrR0.1. Therefore, both Jnr0.1 and Jnr3.2 can be effective 
indicators for assessing the rejuvenation effects of various rejuvenators on the high-temperature creep performance of aged bitumen. 
Compared to JnrR0.1, the JnrR3.2 values are slightly higher when the rejuvenator type/dosage and aging degree of bitumen is the same. 
Measuring the Jnr0.1 and Jnr3.2 parameters of rejuvenated bitumen is unnecessary, but the stress level and temperature should keep 
constant when comparing the rejuvenation efficiency of different rejuvenators. 

4.3.6. Rdiff parameter of rejuvenated bitumen 
The stress sensitivity of rejuvenated binders is estimated with parameters Rdiff and Jnrslope. Fig. 19 shows the influence of reju-

venator type/dosage and temperature on aged bitumen’s Rdiff and RdiffR values. As the rejuvenator content increases, the Rdiff values 
enlarge gradually, but the variation trend depends on the temperature. This illustrates that the stress sensitivity of rejuvenated bitumen 
becomes more pronounced with increasing rejuvenator content. Irrespective of the rejuvenator dosage and temperature, bio-oil 
rejuvenated bitumen exhibits the highest Rdiff, followed by engine-oil and naphthenic-oil rejuvenated binders, while aromatic-oil 
rejuvenated bitumen displays the lowest Rdiff. In addition, the order of RdiffR values of rejuvenated binders is BORB > EORB 
> NORB > AORB. Nevertheless, the temperature significantly affects the RdiffR values of rejuvenated binders. When the temperature is 
70 ℃, and the rejuvenator dosage exceeds 10%, the RdiffR values of BORB, EORB, and NORB binders converse to 100%. Therefore, the 
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Fig. 18. The influence of rejuvenator dosage on the Jnr3.2 value of rejuvenated bitumen.  
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Fig. 19. The influence of rejuvenator dosage on the Rdiff value of rejuvenated bitumen.  
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temperature should be lower than 64 ℃ to effectively assess the influence of rejuvenator content on the RdiffR value and differentiate 
the rejuvenation efficiency of various rejuvenators. 

4.3.7. Jnrslope parameter of rejuvenated bitumen 
Fig. 20 illustrates the Jnrslope and JnrslopeR parameters of rejuvenated binders. As rejuvenator content increases, the Jnrslope and 

JnrslopeR values enlarge exponentially. Moreover, high temperature promotes the enhancement in both Jnrslope and JnrslopeR values. 
When the temperature and rejuvenator content keep constant, the ranking of Jnrslope and JnrslopeR of rejuvenated binders is the same as 
Rdiff (BORB > EORB > NORB > AORB). Compared to the Rdiff parameter, there is no convergence point in Jnrslope-C and JnrslopeR-C 
curves. Additionally, the difference in JnrslopeR values of different rejuvenated binders is significant. Thus, the Jnrslope parameter can be 
an effective indicator for evaluating the rejuvenation efficiency of various rejuvenators on the stress sensitivity of aged bitumen. 

4.4. Critical indicators recommendation and their potential connections 

It is detected that the rejuvenation efficiency of rejuvenators on high-temperature elastic and recovery performance of aged 
bitumen depends on the evaluation methods and indicators. In this section, the sensitivity levels of different indicators from the LVE 
rutting, flow, and MSCR tests are calculated and compared in Fig. 21. It should be mentioned that the score of these critical high- 
temperature indicators contains six terms: rejuvenation potential; sensitivity to rejuvenator dosage and type; sensitivity to aging 
degree of bitumen; temperature influence; and the scope of rejuvenation percentages. It is more possible for a high-temperature in-
dicator with a higher score to effectively evaluate and distinguish the rejuvenation effects of various rejuvenator-aged bitumen blends. 

As shown in Fig. 21, the G* /sinδ and RFT parameters from the LVE test show score of 5 and 6, while the ZSV index only presents a 
score of 4. Regarding the MSCR parameters, the R3.2, Jnr0.1, Jnr3.2, and Jnrslope score the same 5, but R0.1 and Rdiff have low scores of 3 
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and 2, respectively. Based on the score result, the parameters RFT and ZSV can be effective indicators from LVE and flow test, whereas 
R3.2, Jnr0.1or Jnr3.2, and Jnrslope parameters are recommended to estimate the elastic performance, creep potential, and stress sensitivity 
of rejuvenated bitumen. 

In addition, the RFT index exhibits the highest score than ZSV and MSCR parameters, indicating that the RFT parameter is the first 
choice to evaluate and differentiate the high-temperature performance of various rejuvenator-aged bitumen systems. However, the 
flow and MSCR tests reflect the deformation capacity of bituminous materials. Therefore, it is important to correlate the RFT index 
with other parameters, which are plotted in Fig. 22. It is observed that the RFT index correlates well with other effective high- 
temperature indicators. Regardless of rejuvenation conditions (rejuvenator type/dosage and aging degree of bitumen), the RFT 
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Fig. 23. Log(G*/sinδ)− 1/T correlation curves of rejuvenated bitumen.  
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parameter shows a positive linear relationship with the ZSV index but has a negative linear correlation with the Jnr0.1 and Jnr3.2. 
Moreover, the R3.2 value of rejuvenated bitumen tends to increase exponentially as a function of the RFT parameter. In addition, the 
stress sensitivity parameters, Rdiff and Jnrslope, decrease exponentially as the RFT value rises. Therefore, the RFT index from the LVE test 
can be measured first, and the flow and MSCR parameters will be further predicted using these correlation equations. 

Table 5 
Ea and A parameters of rejuvenated binders.  

Samples Ea A Samples Ea A Samples Ea A 

VB  125882 3.3E-17 LAB20  128219 9.8E-17 LAB80  100333 5.8E-11 
SAB  127129 5.2E-17 LAB40  123987 1.6E-15     
1P1.25B  124461 3.2E-16 2P2.5B  118599 5.3E-15 4P2.5B  107009 1.2E-12 
1P2.5B  122515 4.2E-16 2P5B  117128 5.4E-15 4P5B  109121 3.6E-13 
1P3.75B  121592 4.6E-16 2P7.5B  116471 4.7E-15 4P7.5B  107890 1.3E-13 
1P5B  121243 4.1E-16 2P10B  112813 9.7E-15 4P10B  106569 3.9E-13 
1P7.5B  118674 6.8E-16 2P12.5B  110194 1.9E-14 4P12.5B  104008 6.5E-13 
1P10B  115506 1.5E-15 2P15B  113087 4.6E-14 4P15B  103717 5.2E-13 
1P1.25E  126107 1.9E-16 2P2.5E  120894 2.5E-15 4P2.5E  109155 5.4E-13 
1P2.5E  123895 2.6E-16 2P5E  118233 4.1E-15 4P5E  111408 1.7E-13 
1P3.75E  123787 2.5E-16 2P7.5E  119913 1.4E-15 4P7.5E  106694 5.2E-13 
1P5E  121767 3.6E-16 2P10E  118242 1.8E-15 4P10E  108431 2.3E-13 
1P7.5E  122207 2.2E-16 2P12.5E  118341 1.2E-15 4P12.5E  108847 1.5E-13 
1P10E  117518 9.0E-16 2P15E  118292 9.0E-16 4P15E  108082 1.7E-13 
1P 1.25 N  125084 2.8E-16 2P 2.5 N  121734 1.7E-15 4P 2.5 N  107783 1.1E-12 
1P 2.5 N  124818 2.3E-16 2P5N  120237 2.0E-15 4P5N  111275 2.2E-13 
1P 3.75 N  124643 2.1E-16 2P 7.5 N  119796 1.7E-15 4P 7.5 N  108423 3.3E-13 
1P5N  123330 3.5E-16 2P10N  119472 1.3E-15 4P10N  111316 1.1E-13 
1P 7.5 N  123056 2.1E-16 2P 12.5 N  118150 1.5E-15 4P 12.5 N  108331 2.4E-13 
1P10N  119896 5.3E-16 2P15N  117477 1.4E-15 4P15N  110560 8.2E-14 
1P1.25 A  125575 2.5E-16 2P2.5 A  124037 10E-16 4P2.5 A  112863 1.7E-13 
1P2.5 A  128684 6.3E-17 2P5A  124369 6.4E-16 4P5A  115698 4.3E-14 
1P3.75 A  128293 6.7E-17 2P7.5 A  124186 5.2E-16 4P7.5 A  115240 2.9E-14 
1P5A  128950 4.2E-17 2P10A  124752 3.1E-16 4P10A  117086 1.4E-14 
1P7.5 A  127653 5.4E-17 2P12.5 A  125882 1.5E-16 4P12.5A  118375 6.5E-15 
1P10A  126015 8.5E-17 2P15A  126248 1.1E-16 4P15A  121251 1.8E-15  
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Fig. 24. Log(Jnr3.2)− 1/T correlation curves of rejuvenated bitumen.  
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4.5. Temperature susceptibility at the high-temperature region 

The temperature susceptibility of rejuvenated binders is evaluated through the Log(G*/sinδ)-(1/T) correlation curves, shown in  
Fig. 23. The G* /sinδ values of fresh, aged, and rejuvenated binders enlarges linearly as the increase in 1/T. With the aging degree 
deepening, the slope value decreases, indicating that the temperature sensitivity weakens. Different rejuvenated bitumen exhibits the 
variable change trend of G* /sinδ to temperature. The slope ranking of rejuvenated bitumen is BORB < EORB < NORB < AORB, and a 
high aging level reduces the temperature susceptibility of rejuvenated bitumen. The activation energy Ea and precondition parameter 
A are calculated by the Arrhenius equation shown below: 

Ln(H) =
Ea
R

•
1
T
+ Ln(A) (11)  

where H refers to high-temperature parameters (G*/sinδ or Jnr3.2), Ea is the activation energy, and R is gas constant 
(8.314 J·mol− 1·K− 1). Table 5 lists the Ea and A values of rejuvenated bitumen. The Ea value of bitumen declines gradually as the aging 
degree deepens. Moreover, the Ea values of rejuvenated bitumen tend to reduce as the rejuvenator dosage rises. In addition, the 
rejuvenator type greatly influences the Ea and A of rejuvenated bitumen. The bio-oil rejuvenated bitumen exhibits the lowest Ea value, 
followed by the engine-oil and naphthenic-oil rejuvenated bitumen, and the aromatic-oil rejuvenated bitumen has the largest Ea value. 
It denotes that the bio-oil rejuvenator maximizes the temperature sensitivity, while the aromatic-oil rejuvenated bitumen presents the 
smallest temperature susceptibility. 

Fig. 24 illustrates the Log(Jnr3.2)− 1/T curves of rejuvenated bitumen to detect the influence of high-temperature parameters on the 
temperature sensitivity result. As the increase of (1/T), the Ln(Jnr3.2) values of fresh, aged, and rejuvenated bitumen decrease linearly. 
The long-term aging promotes the sensitivity of bitumen Jnr3.2 value to (1/T). Meanwhile, it is found that the rejuvenator type and 
aging degree of bitumen both contribute to the variation trend of Jnr3.2-1/T curves of rejuvenated binders. The Jnr3.2 value of bio-oil 
rejuvenated binder shows the lowest temperature sensitivity. The activation energy Ej of rejuvenated bitumen is calculated based on 
Jnr3.2-1/T correlations, and its relationship with the Ea parameter is shown in Fig. 25. It is demonstrated that the Ej values of fresh, 
aged, and rejuvenated binders exhibit linear correlations with the corresponding Ea parameter. It means that both G* /sinδ and Jnr3.2 
indices show similar functions to reflect the temperature sensitivity of bituminous material. However, the Ej-Ea curves of rejuvenated 
binders are significantly affected by the rejuvenator type and the aging degree of bitumen. Interestingly, the Ej value of aromatic-oil 
rejuvenated bitumen shows a negative linear connection with the Ea parameter. Thus, the G* /sinδ and Jnr3.2 indices exhibit the 
opposite effect on assessing the temperature susceptibility of aromatic-oil rejuvenated bitumen. 

5. Conclusions and recommendations 

This study aims to systematically investigate the complex effects of rejuvenator type/dosage and aging degree of bitumen on the 
high-temperature performance of rejuvenated bitumen. The variations of rutting, flow, and elastic/creep parameters of rejuvenated 
binders are compared to propose the critical indicators for evaluating and distinguishing the rejuvenation efficiency of different re-
juvenators on the high-temperature property of bitumen. The main findings are listed as follows:  

(1) The bio-oil rejuvenator maximally weakens the high-temperature performance of aged bitumen, followed by the engine-oil and 
naphthenic -oil, while the aromatic-oil rejuvenated bitumen exhibits the best rutting, flow, and creep resistance.  

(2) Based on the score result, the parameters RFT and ZSV can be effective indicators from LVE and flow test, whereas R3.2, Jnr0.1or 
Jnr3.2, and Jnrslope parameters are recommended to estimate the elastic performance, creep potential, and stress sensitivity of 
rejuvenated bitumen.  

(3) The RFT parameter is recommended as the critical indicator for effectively evaluating and differentiating the rejuvenation 
effectiveness of various rejuvenators on the high-temperature performance of aged bitumen. In addition, the RFT index cor-
relates well with other effective high-temperature indicators. 
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Fig. 25. Relationship between the activation energy based on LVE and MSCR tests.  
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(4) The temperature sensitivity outputs of rejuvenated bitumen based on G* /sinδ and Jnr3.2 values are similar but strongly affected 
by the rejuvenator type. The aromatic-oil rejuvenated bitumen shows a different change trend of the Ea-Ej curve with the other 
three rejuvenated binders. 

This paper mainly concentrates on the macroscale rheological evaluation of the high-temperature performance of different 
rejuvenator-aged bitumen blends. In future work, the microscale underlying mechanism on the difference in rejuvenation efficiency of 
various rejuvenators on high-temperature rutting, flow, elastic and creep performance of aged bitumen using multiscale evaluation 
methods (such as chemical characterizations, molecular dynamics simulations, and morphological observations), as shown in Fig. 26. 
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