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Capturing Interaction Quality in Long Duration
(Simulated) Space Missions With Wearables
Ekin Gedik , Jeffrey Olenick , Chu-Hsiang Chang, Steve W.J. Kozlowski , and Hayley Hung

Abstract—Space exploration is evolving with the recent increase in interest and investment. For the success of planned long-duration

crewed missions, good interpersonal interactions between crew members are crucial. In this study, we evaluate the use of wearables

for detection and estimation of the quality of each social interaction participants have throughout a long mission rather than aggregate

measures of interactions. Our proposed method utilizes Temporal Convolutional Networks(TCNs) for extracting individual

representations from acceleration and audio streams and learnable pooling layers(NetVLAD) to aggregate these representations into

fixed-size representations. Use of NetVLAD layers provides an intelligent alternative to simple aggregation for handling variable-sized

interactions and interactions with missing data. We evaluate our method on a 4-month simulated space mission where 5 participants

wore Sociometric Badges and provided reports on their interactions in terms of effectiveness, frustration, and satisfaction. Our method

provides an average ROC-AUC score of 0.64. Since we are not aware of any comparable baselines, we compare our method to hand-

crafted features formerly utilized for cohesion estimation in similar scenarios and show it significantly outperforms them. We also

present ablation studies where we replace the components in our approach with well-known alternatives and show that they provide

better performance than their respective counterparts.

Index Terms—Learnable pooling, long duration space missions-, missing data, social interactions, temporal convolutional networks,

wearable sensing

Ç

1 INTRODUCTION

ALTHOUGH humankind set foot on the moon a half century
ago, human space exploration has largely been confined

to near-Earth orbit since those pioneering Apollo missions so
many years ago. That is beginning to change as major invest-
ments are being made to develop capabilities that enable
humans to return to the moon and, using it as a base, to

embark on long duration (LD) missions ranging frommonths
to years to explore asteroids and eventually Mars. Although
there are many physical challenges to surmount, LD space
missions are also fraught with threats to the psycho-social
health of the crew due to the isolated, confined, and extreme
(ICE) nature of the mission. The crew will be isolated from
family, friends, and colleagues in a small social world consist-
ing of just four to six astronauts. Mars is some 450 million
miles away from Earth, necessitating approximately eight to
nine months for one-way transit. As space explorers embark
on an interplanetary mission, increasing distance will make
synchronous communication with Earth impossible due to
transmission time lags. In addition, although space is vast,
human habitation for space travel is spartan and confined,
entailing very limited personal space; virtually no privacy;
andminimal creature comforts for sleeping, personal hygiene,
and recreation. Finally, space is an extreme environment,with
persistent dangers from low gravity (i.e., loss of muscle mass,
lower bone density), radiation (i.e., genetic mutations,
increased cancer risk), and potential equipment failure that
stress well-being and threaten life itself. In such ICE environ-
ments, it is essential that the crew members maintain good
interpersonal interactions and team cohesion [1]. How can
interaction quality (measured in terms of how efficient, satis-
fying and/or frustrating the interaction was perceived by the
interacting group members) be captured unobtrusively and
assessed automatically?

Pervasive sensing technologies have proven themselves
to be good candidates for human and group behavior
research since they allow unobtrusive monitoring of indi-
vidual actions and interactions between peers with minimal
disruption [2], [3], [4]. In addition to studies that utilize the
onboard sensing capabilities of smartphones [3], [5], custom
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wearable sensing platforms such as Sociometric [6] and
Rhythm Badges [7] have been designed and developed spe-
cifically for organizational scenarios in mind. Such plat-
forms aim to augment traditional ID badges worn in
organizations with sensing capabilities, allowing large-
scale, longitudinal collection of individual and group
behavior. Even though in theory, such collection platforms
Pervasive sensing may also be a good candidate for captur-
ing interaction behavior and quality for ICE teams.

With respect to prior work using pervasive sensing in
organizational and other settings, we argue that representa-
tions of those social interactions were generally quite sim-
plistic and were based on basic aggregated measures such
as the frequency of the interactions, length of the interac-
tions, etc. [4], [5], [6], [8], [9]. However, findings from social
psychology showed that the quality of interactions is, at
least, as important as their frequency for a healthy social
environment [8]. In this paper, we address this short-
coming by explicitly focusing on the automatic estima-
tion of interaction quality in terms of multiple labels
(effectiveness, frustration, and satisfaction of the interac-
tion) provided by participants through experience sam-
pling methods. This capability is important if sensors are
to be useful for detecting interaction quality problems
and, potentially, triggering an intervention to maintain
group functioning.

One recurring issue in longitudinal studies is the case of
missing data [10]. It is common to have people dropping
out of the studies, faulty sensors, and even participants for-
getting to switch on and/or wear sensors for some intervals
of the data collection. In particular, non-monotone missing
data patterns, where data is missing for a subject in some
slices and present in the others, were known to present a
considerable modeling challenge. Such problems can be
mitigated to an extent in scenarios where representations
are aggregated either over a group or a long time interval.
However, for studies that focus on fine-grained analysis
and estimation, the challenge presented by missing data
cannot be ignored. In addition, varying lengths of interac-
tions also poses a challenge for the analysis and estimation,
especially when individual sensing mediums such as per-
sonal wearable sensors are used. A fixed-size representation
of an interaction should be extracted from the data of vary-
ing number of individuals. Traditionally, basic statistical
measures such as the mean, maximum, and minimum val-
ues of individual representations were used for this pur-
pose [4]. However, this might result in the loss of crucial
information for fine-grained analysis tasks.

Another challenge specific to our research focus is the
association of provided labels to the sensing data. Basically,
exact timestamps when a reported interaction started and
finished is not known and it should be estimated from the
sensor data. Due to the large body of work on interrupti-
bilty [11], we know that it is hard to obtain ambulatory
assessments that match the period of time for which an
event occurred. We are not aware of any works that have
tried to balance ambulatory assessments in such settings
while keeping ease of use for the subject. In an ideal setting,
we would ask participants to exhaustively report all interac-
tions they had and what the quality of that interaction was.
However, we have seen in the case of the collected data that

even with highly motivated participants who are willing to
be stuck in an isolated situation such as a simulated space
mission, compliance is still not complete. In this case, we
consider an easier approach for the participants where they
are asked only to report twice a day and only the last inter-
action that they had.

In this study, we propose a method to overcome the
aforementioned challenges. The primary contributions of
this paper are as follows: (i) most importantly, we estimate
the quality of social interactions a participant has through-
out a long-term mission rather than aggregate measures of
interactions across the time frame, (ii) we propose an heuris-
tic-based approach to identify the intervals of interactions
from Infrared and Bluetooth data, effectively providing a
solution to problem of associating relatively sparse labels to
continuous longitudinal sensor data, (iii) we employ learn-
able pooling layers that are mostly used in computer vision
(NetVLAD [12]) in a novel way to pool individual represen-
tations of interacting participants into a fixed-size represen-
tation of the interaction, providing flexibility of dealing
with interactions of varied sizes and making it possible to
analyze cases where data from one or more participants are
missing, (iv) we evaluate the use of Temporal Convolutional
Networks (TCNs) [13], a recent variation of Convolutional
Neural Networks (CNNs) which are proposed to model
audio data, to automatically extract informative representa-
tions from the raw sensor readings rather than using hand-
crafted features (v) we treat the estimation problem as a
multi-task learning one [14] where multiple interaction
quality labels provided by the participants (effective, frus-
trated and satisfied) are jointly estimated.

2 RELATED WORK

To our knowledge, there exists no prior work that specifi-
cally focuses on the automatic detection of interaction qual-
ity from wearable sensors in longitudinal scenarios. Hence,
we will be presenting, in no specific order, existing works
from the literature that are similar to our task in one or
more of the following categories: used sensing modalities
(wearables), types of analyzed scenarios (long-term), final
goals (estimation of social concepts), type of techniques
used for handling missing data, feature extraction (TCNs)
and, estimation (multi-task learning).

During the past two decades, wearable and mobile sen-
sors have been used to monitor and analyze various indi-
vidual and group related phenomena in the long term. One
of the first works in this direction was from Choudhory
et al. where sociometers, a former version of the sociometric
badges, were employed for approximately 21 days by a total
of 31 participants [15]. Using IR and audio from the badges,
authors have mined the interaction networks of users and
extracted information related to the group structures.
Olguin et al. then moved the focus to organizational scenar-
ios with a similar approach where wearable sensors are uti-
lized to measure the frequency of face-to-face interactions.
Together with several other information sources (e-mail,
surveys, etc.), they analyzed concepts such as the personal-
ity of the participants in terms of the ”Big Five” model [16]
and the cohesion of the teams [6]. Another study that evalu-
ated the use of sociometric badges in organizational
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scenarios is [17] where Lepri et al. proposed a corpus of digi-
tal data (sensor and phone and email logs) collected from 53
participants for six continuous weeks. This corpus also
included personal and situational data collected via surveys
and experience sampling, and focused on constructs such
as personality, affect and productivity. Rhythm, a platform
that combines wearable electronic badges (which are more
pervasive compared to those mentioned earlier) and online
applications for analyzing social interactions between
teams, divisions, and locations were introduced by Leder-
man et al. in 2018 [7]. In addition to an in-depth analysis of
short-term meetings, they also presented a use-case where
the platform is employed for analyzing connectivity pat-
terns during a three-day workshop.

Another promising direction for the long-term use of
wearable and mobile sensors is the monitoring of well-
being. There exists a large body of work that focuses on the
estimation of concepts related to well-being such as stress,
mood, and affective states. Various information sources
have been used for this purpose, ranging from physiological
signals such as skin conductance and heart rate [18] to
video [19] and digital traces [20]. The most relevant works
in the scope of this paper are the ones that employ some
type of information related to the participants’ interactions
over time, either sensed through mobile sensors [5], [9],
[21], [22] and/or mined from digital traces [20], [22], [23].
Perhaps out of these studies, the one closest to our task in
terms of methodology and setting is [23], where they pre-
dicted health, stress and, happiness of participants from
longitudinal sensor data with a multi-task learning formula-
tion [14]. They employed multi-task learning with two dif-
ferent setups, one for predicting these three metrics
simultaneously and one for personalization and showed
both approaches perform better than using a single-task
learning setup. The results of these studies have shown that
interactions play a crucial role in a person’s well-being.
However, to our knowledge, none of these studies have
tried to estimate the quality of individual interactions as we
do in this paper, but they rather relied on aggregations such
as the frequency of interactions. Moreover, interactions
were generally simplified into dyadic connections.

In the last five years, multiple researchers have shifted
their focus from corporate, hospital, and campus settings to
a more in-depth analysis of the group dynamics of small
teams in ICE (Isolated, Confined and Extreme) scenarios [1],
[2], [4], [24]. Such teams were shown to have inherently dif-
ferent dynamics than larger organizational settings [25].
Since providing outside intervention is challenging in ICE
scenarios, maintaining healthy interaction patterns between
team members is crucial. Perhaps [24] and [4] are the two
studies that are most similar to ours in terms of the setting,
used data sources, and the task of automatically estimating
interaction patterns in teams. Both studies used Sociometric
Badge data collected during a 4-month simulated space
exploration mission. Zhang et al. employed topic models to
mine interaction patterns from IR data [24] and a later paper
by the same authors focused on the automatic estimation of
individual affect and group cohesion using IR, acceleration,
and audio data [4]. Still, both works analyzed dyadic inter-
actions only, used simple aggregation, and did not try to
explicitly model the quality of interactions.

The majority of the works mentioned up until this point
relied on hand-crafted features for representing the concept
they are trying to estimate [4], [5], [9], [16], [20], [21]. With
the so-called deep learning revolution first sparked in the
computer vision domain, many researchers who utilize
wearable sensing data recently shifted their focus to neural
network models that can automatically extract representa-
tive features from raw sensor readings [22], [26], [27], [28],
[29]. The results of these studies have shown that learned
features consistently outperform hand-crafted ones for a
variety of tasks such as activity and speech recognition.
Temporal Convolutional Networks (TCNs) are a relatively
new neural network architecture designed for modeling
sequential data [13], [30]. TCNs are shown to outperform
competing methods such as recurrent neural network archi-
tectures like Long-Term Short Memory (LSTM) and Gated
Recurrent Units (GRU) [31], [32] in various sequence model-
ing tasks [33]. Especially, their competitive performance in
modeling acceleration [34], [35] and audio data [30] makes
them a great candidate for our task.

Missing data is a well-known challenge for field research.
The challenge is especially acute for longitudinal research
where multiple measurements for the same individuals or
phenomena are collected over a long time period [10], [36].
There could be various reasons for the absence of data such
as participants dropping out from the study, faults in the
measurement tools, and even people forgetting to use the
measurement tools. Thankfully, mechanisms of missing
data are theoretically well-studied. The types of missing
data can be grouped under three categories: missing
completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR) [36], [37]. Detailed
analysis of these concepts is out of the scope of this paper
(please refer to [37] for more information) but their conse-
quences are. Basically, statistical analysis in the case of
MCAR and MAR is expected to yield unbiased parameters
estimates whereas it can’t be guaranteed for MNAR cases.
So, in case of missing data, the underlying causes of the
absence need to be checked if it is possible as best practice
to make sure the estimates are unbiased.

Even though missing data is highly probable for large-
scale, real-life, longitudinal ambulatory assessment studies,
most of the mentioned works do not discuss the effects and
outcomes of missing data on the presented results. This is
mostly acceptable when the analysis is done on a day-level
or on even longer time periods since one can then argue
that a couple of hours of missing data is negligible in the
greater scheme. However, studies that focus on the fine-
grained analysis of events that happen throughout a long-
term data collection, like our scenario, do not have this pos-
sibility. Conceptually, ambulatory health monitoring has a
similar task to ours where short-term analysis of continuous
readings is crucial. Scientists working in this domain have
discussed the effects of missing data and proposed imputa-
tion based solutions [38], [39], [40], [41]. However, imputa-
tion is mostly applicable for either non-complex data or
short intervals of absence covered by present data. Montori
et al. discussed various solutions to the sparse data problem
in the context of mobile crowd sensing for Internet of
Things, such as compressive sensing, piggybacking and
edge deduplication [42]. Recently, reinforcement learning
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based approaches started to become popular, such as the
one presented in [43]. In this study, we propose a novel
scheme by utilizing learnable pooling layers, more specifi-
cally NetVLAD [12]. Basically, using a learnable pooling
layer makes it possible to utilize the data of remaining par-
ticipants in an interaction even though data from some are
missing. Moreover, it also allows mapping individual repre-
sentations to a fixed-size interaction representation in a
smarter way than simple statistical aggregation which was
the preferred methodology for former studies [24].

3 DATA

We use the dataset HI-SEAS (Mission 2) which was col-
lected during a simulated space mission over four months,
early 2014 [44]. Originally, there were 6 volunteers, 2 males
and 4 females, identified as white and each having at least a
bachelor’s degree. One participant, who retired early from
the study for personal reasons, is not included in our analy-
sis. During the mission, participants lived in a confined
structure that simulates an environment the crew would
inhabit during a short-duration space flight. This structure
is approximately 6 meters in diameter and has three stories
and is shown in Fig. 1a.

Each crew member has formal a role imitating a real-
world flight crew: a commander, medical officer, engineer,
science officer, architect, and a biologist. During the lifetime
of the mission, volunteers were tasked with performing
team-oriented objectives with some induced constraints
mimicking real ones that would be faced by a Mars flight
crew, such as an outside communication delay of 20minutes.
In addition to the assigned tasks, crew members also have
unstructured personal time, mostly in the evenings.

Volunteers wore Sociometric Badges (SS Badge) [6],
shown in Fig. 1b, while they are awake, excluding personal
times such as showering and exercising. They were also
expected to provide daily reports twice a day via experience
sampling method (ESM). Due to the fact that the team was
mostly autonomous after the missions start and not directly
supervised by the outside researchers, there were numerous
cases where the SS Badge or ESM data is missing.

3.1 Wearable Sensing Data

The SS Badges were worn around the neck and recorded the
following data types:

� Movement: The SS Badges have an onboard tri-axial
accelerometer with a sampling rate of 20 Hz. The
raw data is processed online and only the average
values over a pre-configured time resolution, 2 Hz in
our case, are logged. The logged data are the acceler-
ation in X, Y, Z dimensions, movement energy, and
consistency. The movement energy is the amplitude
of the acceleration computed over the three dimen-
sions. The movement consistency is the stability of
the movement energy, ranging between 0 (no
change) and 1 (maximum variance).

� Audio: The SS Badges have an onboard microphone
with a sampling rate of 8 kHz. Similar to the acceler-
ometer, the data is processed and only statistical
vocal features computed from 0.5-second windows
are logged. These vocal features are the average,
standard deviation, variance, minimum and maxi-
mum values of the amplitude of the audio signal.

� Infrared: The SS Badges have a forward-facing IR
receiver and transmitter. IDs of other badges that are
in the transmission range are logged with a time res-
olution of 1 s.

� Bluetooth: The badges periodically transmit their
unique ID via Bluetooth and scan for other badges’
broadcasts. Received Signal Strength Indicator
(RSSI) values, which act as a rough proxy for dis-
tance, received from other badges are logged every
30 seconds.

3.2 Survey Response Data

All members were requested to fill questionnaires about
their individual affective status, perceptions of team cohe-
siveness, and the quality of interactions they had with other
team members, twice a day. In this study, we focus on the
labels regarding the interactions. For more information
about other survey data that was collected but not used for
this study, please refer to [4]. In the questionnaire, partici-
pants were asked to give information about the last interac-
tion they had with the other team members. They first
provided the unique subject IDs of the team members that
were a part of this interaction. Then, they rated the follow-
ing statements using a 6-item scale:

� Please indicate your agreement with the following
statements about / your experiences with the
interaction:
– I was satisfied.
– I was frustrated.

� How effective was the interaction? (That is, did you
accomplish what was intended?)

Pearson’s correlation coefficient of effective-frustration,
effective-satisfaction and frustration-satisfaction are com-
puted to be �0:44; 0:63 and �0:55, respectively (p < 0:01).
These moderate negative and positive correlations show all
three constructs are conceptually different while being
related and have varying function with respect to our out-
come variables.

3.3 Dataset Statistics

As mentioned earlier, there are cases where no data exists
for a given ESM entry. Eliminating faulty ESM entries and

Fig. 1. (a) The structure participants resided. (b) A Sociometric (SS)
badge.
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cases with no wearable sensing data from any of the inter-
acting participants, 327 interactions remain. For more infor-
mation about how the actual starting and ending
timestamps of an interval are determined, please refer to
Section 4.1.

Distribution of the Labels. Fig. 2a shows the distribution of
effective, frustrated, and satisfied labels. As can be seen
from the figure, the distributions are highly imbalanced,
favoring higher ratings for effective and satisfied labels and
lower ratings for the frustrated labels. In order to reduce
this imbalance slightly, we treated the problem as a 3-class
classification task where labels 1 and 2 formed the low, 3
and 4 formed the medium, and 5 and 6 formed the high rat-
ing classes.

Distribution of the Length of the Interactions. Fig. 2b shows
the distribution of the lengths of the interaction in minutes.
Since the IR detections can be quite sparse and the Bluetooth
is sampled every 30 seconds, we empirically selected one
minute as the minimum length for a meaningful interaction.
This selection is done by observing interaction lengths in
our research group’s existing data sets. Thus, every interval
that is found to be less than one minute is extended to cover
an interval of one minute. The majority of the interactions
have a length between one to ten minutes, still, the distribu-
tion is quite varied, even showing interactions spanning up
to approximately 30 minutes.

Distribution of the Interactions Sizes. Fig. 3a shows the dis-
tribution of the number of participants in detected interac-
tions. The blue bars represent the number of participants
that are included in the ESM entries. The green bars, on the
other hand, shows the actual distribution for which we
have wearable sensing data. According to the ESM entries,

the majority of the interactions include all the group mem-
bers. However, for many interactions, data from a varying
number of participants are missing, showing a striking dif-
ference between subjective reports and those detected by
the wearables. This is an interesting result highlighting the
challenge of asking people to appraise episodic memories
and relating this to sensor data [45].

Missing Data. Fig. 3b shows how many participants’
wearable data are missing from the detected interactions.
The majority of the cases either have wearable sensing data
for all participants or data from one participant is missing.
In total, only �34% of the interactions have data for all the
participants that were included in the ESM entry.

4 METHODOLOGY

Fig. 4 visualizes the overall workflow of the proposed
method for interaction quality estimation. Here are the basic
steps of the method:

1) Identification of the relevant interaction interval per
rating from Bluetooth and IR data (Section 4.1)

2) End-to-end training and estimation (Section 4.2)
a) Extraction of acceleration and audio data from

the detected intervals for participants that are in
the interaction,

b) Extraction of individual representations for each
participant’s data with TCNs,

c) Pooling of individual representations with a
NetVLAD layer for obtaining a fixed-size repre-
sentation of the interaction,

d) Multi-task learning using the fixed-length repre-
sentation for predicting effectiveness, frustration,
and satisfaction labels.

4.1 Identification of the Relevant Interaction
Interval Per Rating

In addition to the information presented in Section 3.2, each
ESM entry also includes the timestamps for the time the
participant started and finished inputting that entry. The
task here is to use the information in the ESM entry to detect
the actual interval where the interaction depicted in the
entry happened. This is a challenging task and most former
works circumvented this step by not detecting precise

Fig. 2. (a) Label distributions (b) Interaction length distributions.

Fig. 3. (a) Distributions of group sizes (b) Missing data statistics.
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interactions but rather treating all pings from Bluetooth and
IR, which mostly accounts for co-location, as interactions [4].
Since there is no ground truth for the actual starting and
ending times of the interactions depicted in the entries, a
supervised approach is not possible. Thus, we used a heu-
ristic approach which is built on the following premises:

� Interaction should be on the same day as the ESM
entry.

� People in the interaction, detected using the Blue-
tooth and IR readings from the wearables, should
match the people reported in the ESM entry as much
as possible. At least one of the participants reported
should be in the detected interval. If no interval is
found satisfying this requirement on the day of the
report, the ESM entry is not used.

� Since the participants are asked to report on their last
interaction, intervals that are closer to the ESM
entries reporting times are favored.

� Longer intervals are favored.
The interaction interval detection procedure has the fol-

lowing steps:

1) Bluetooth and IR data of the participant who input
the entry are processed to obtain streams. IR data
directly includes the IDs of badges that are in close
proximity whereas Bluetooth data has the RSSI val-
ues of other badges. Consulting the literature, we
found -75 to be a good cutoff value for co-loca-
tion [46]. This way, we end up with similar streams
for both IR and Bluetooth, each having the time-
stamps and IDs of badges that are found to be in
close proximity.

2) Since both IR and Bluetooth entries were found to be
quite sparse, we group entries that are temporally
close to each other using a predefined threshold t1 to
form an interval.

3) Three fitness values are calculated for each interval
as:

� How well the participant IDs detected in the interval
matches the report: f1 ¼ 2 � precision � recall=
ðprecisionþ recallÞ where precision ¼ TP=
ðTP þ FP Þ and recall ¼ TP=ðTP þ FNÞ. TP; FP
and FN corresponds respectively to number of
participants that are both in the interval and the
ESM entry, the number of participants that are in
the interval but not in the ESM entry, and the
number of participants that are not in the interval
but are in the ESM entry.

� The recency of the interval to the ESM entry: f2 ¼
1� ððts1 � ts2Þ=86400Þ where ts1 and ts2 are the
timestamps for the ESM entry and the ending of
the found interval. 86400 is the total number of
seconds in a day which used for normalizing f2
between 0 and 1, in correspondence with f1.

� The identified interval length: f3 ¼ ðtsend � tsstartÞ=
86400 where tsend and tsstart are the timestamps
for the end and the start times of the found
interval.

4) These three fitness values are averaged to obtain a
final fitness value for the interval: ffinal ¼ ðf1 þ f2 þ
f3Þ=3

5) Intervals with the highest ffinal value are selected
from the Bluetooth and IR data. If the selected inter-
vals from both modalities agree (temporally close to
each other than a predefined t2), intervals are fused
to obtain the final interval. If not, the interval with
the highest ffinal value is selected to be the final
selected interval.

This procedure is heavily inspired by the one proposed
in [45]. Basically, we added a third fitness value based on
the length of the discovered interactions since we saw that
the majority of interaction intervals detected by the method
of [45] was too short and can be easily a false positive. With
the addition of the third fitness value we were able to iden-
tify intervals where partners are continuously detected for a
longer amounts of time, resulting in more robust detections.

Fig. 4. Simplified workflow of the proposed method (TCN visualizations are taken from [30]).
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Moreover, we included the Bluetooth readings in the meth-
odology in addition to IR used in [45].

Empirically, we found the best values for t1 and t2 to be
two and five minutes. Since the entries can be still quite
sparse, any detected interval shorter than one minutes is
extended on both sides to cover a minute. This procedure
results in the identification of 327 interaction intervals with
their matching ESM data.

4.2 End-to-End Training and Estimation

After the intervals are found, acceleration and audio data
recorded during these intervals, for the participants that
were tagged to be in that interaction, are extracted to form
the dataset for our automatic estimation experiments. The
data are fed into an end-to-end neural network architecture
with three distinct components which will be discussed in
the following subsections.

4.2.1 Temporal Convolutional Networks

We use Temporal Convolutional Networks to model the
accelerometer and audio data of participants in an interac-
tion. In other words, we automatically extract descriptive
representations rather than using hand-crafted features.
TCNs are selected for this task since multiple previous stud-
ies showed that they consistently outperform competing
approaches such as recurrent neural network architectures
(LSTMs) and hand-crafted features in modeling accelerome-
ter [34], [35] and audio data [30]. TCNs are built on two
ideas: causal and dilated convolutions which are visualized
in Figs. 5a and 5b. Stacked causal convolutions allow the
processing of sequential data while making sure the order-
ing of the data is not violated during modeling, e.g
pðxtþ1jx1; . . .; xtÞ, prediction at timestep t, is only dependent
on the previous timesteps [30]. However, causal convolu-
tions require many layers for modeling long sequences as it
can be seen from Fig. 5a, where the model with three layers
has a receptive field of 5 [30]. This shortcoming is mitigated
with the use of dilated convolutions where input values to
convolve are skipped with a predefined step. The model

visualized in Fig. 5b has an effective receptive field of 16
with the same number of layers. With carefully selected fil-
ter size, the number of layers, and dilation, it is possible to
model sequences of arbitrary sizes.

The interactions in our dataset have varied lengths, as
shown in Fig. 2b. Thus, we selected the appropriate number
of layers, kernel and dilation size to make sure we have a
large enough receptive field to cover even the longest
sequences. In order to allow batching while training and
testing, each sequence is padded to the longest sequence in
a batch. Real lengths of the sequences are stored and the
TCNs output at the corresponding timestep is selected as
the output. In our setup, we have two important design
choices. First, we use the late fusion of the two modalities.
Thus, we use separate TCNs for modeling the accelerometer
and audio data. This choice was based on a previous study
that showed the learnable pooling layer, NetVLAD, per-
forms better when separate layers are used for separate
modalities [47]. Second, we distinguish between the data of
the specific participant who logged the ESM entry and the
other participants reported to be present in the interaction.
This choice is based on the fact that multiple participants
can report on the same interaction while having different
experiences of it. This ego-centric perspective is also in
keeping with other prior analyses of this data [45].

In summary, four TCNs are trained: two for the accelera-
tion and the audio data of the participant who logged in the
ESM entry; and two for the acceleration and the audio data
of the remaining participants in the interaction. Each partic-
ipant’s data is fed into the corresponding TCN and the
resulting representations are then fed into the next NetV-
LAD layers for pooling. So for an N person interaction, a
2�N �D representation is obtained where D is the dimen-
sion of the representation. The procedure can be also
thought of as each participant having their own TCNs but
the TCNs for the participants other than the participant
who logged the ESM entry share weights.

We compare the performance of TCNs to hand-crafted
features [4] and Long Short-Term Memory (LSTM) net-
works [31] in our experiments. The first comparison serves
to show the advantages of automatic extraction of represen-
tations over the explicit design of them. Second comparison
is to show how TCNs compare to another widely used auto-
matic feature extraction method. Implementation details
and results of these comparisons are presented in Sec-
tions 5.2.1 and 5.2.4.

4.2.2 Learnable Pooling (NetVLAD)

Traditional pooling that is widely used in Convolutional
Neural Networks can be described as a technique for down
sampling feature maps. A pooling layer computes one value
for describing a N �N patch of the feature map, either by
taking the average or maximum value in the patch. In this
paper, we propose to use this process for pooling the repre-
sentations of different participants wearable sensing data
extracted with TCNs. For example, an average pooling pro-
cedure will then compute the average value for the each
dimension of the extracted representations from individual
participants. Computationally, this procedure is same with
mean aggregation of feature values.

Fig. 5. (a) A stack of causal convolutions, from [30]. (b) A stack of dilated
causal convolutions, from [30].
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The advantage of pooling is that it makes it possible to
obtain a fixed-size representation of an interaction regard-
less of the number of the participants inside that interaction.
Since any number of representations can be aggregated this
way, it does not matter if some of the participants’ data are
missing. The remaining participant’s data can still be used
to obtain a representation for the interaction.

Recently, a smarter procedure for pooling is proposed.
Rather than taking the average or maximum value, authors
of [12] proposed to learn this computation,. Their method
named NetVLAD is based on Vector of Locally Aggregated
Descriptors (VLAD), a widely used descriptor pooling
method in image retrieval and classification which stores
the difference vector between a descriptor and its corre-
sponding cluster center [48]. Originally, it has one parame-
ter K which denotes the number of clusters. Given N
D-dimensional descriptors, it returns a representation V
which is K �D-dimensional. With descriptors as xxii and ck
as cluster centers, the ðj; kÞ element of V is computed as

V ðj; kÞ ¼
XN

i¼1

akðxxiiÞðxiðjÞ � ckðjÞÞ (1)

where xiðjÞ and ckðjÞ are the jth dimension of the ith
descriptor and kth cluster center [12]. The matrix V is first
L2-normalized column-wise and then transformed into a
vector to obtain the final representation. This representation
is also L2-normalized. The problem with this formulation is
that it is not differentiable with respect to all parameters
and the input, hence it can not be used as a neural network
layer that is trained with backpropagation. The discontinu-
ity of VLAD is caused by the hard assignments of descrip-
tors to the cluster centers. In order to make VLAD
differentiable, authors of [12] proposed to replace hard
assignment to a single cluster with soft assignments to mul-
tiple clusters as follows:

akðxxiiÞ ¼ e�ajjxxii�ckjj2
P

k0 e
�ajjxxii�ck0 jj2

; (2)

which can be rewritten as

akðxxiiÞ ¼ eww
T
k
xxiþbk

P
k0 e

wwT
k0xxiþbk0

(3)

by expanding the squares. The vector wk ¼ 2acckk and the sca-
lar bk ¼ �ajjcckkjj2. a is a parameter that decays the soft
assignment with increasing distance to the cluster center.
Replacing this into Equation (1), the final form of NetVLAD
is then obtained as

V ðj; kÞ ¼
XN

i¼1

eww
T
k
xxiþbk

P
k0 e

wwT
k0xxiþbk0

ðxiðjÞ � ckðjÞÞ; (4)

where wwkk, bk and cckk are all trainable parameters for each
cluster k [12].

Based on NetVLADs prior success on various tasks [47],
[48], we decided to use it in our architecture. To see NetV-
LADs advantages over simple aggregation, we compare its
performance to average pooling in Section 5.2.2. Based on

the former findings presented in [47], we utilize two NetV-
LAD layers: one for the TCN representations from the accel-
erometer data; and one for the TCN representations from
the audio data. In this step, the representations of the partic-
ipant who logged the ESM entry are pooled together with
the representations of remaining participants. For an inter-
action with N participants, the TCNs will return a 2�N �
D representation which will be transformed into a 2� ðD�
KÞ representation by the NetVLAD layers. Inspired by the
implementation by [47], we also added a fully connected
layer to the output of the NetVLAD layer which allows to
control the dimension of the output, transforming the ðD�
KÞ dimensional representations into a selected new dimen-
sion of Dnew. Thus, the final output of the pooling step is
two vectors, representing the interaction extracted from the
accelerometer and the audio data, each with a dimension of
Dnew.

4.2.3 Multi-Task Learning

The proposed architecture for MTL is quite similar to one
presented in [23]. Two output vectors from the previous
step are concatenated to form a ð2xDnewÞ vector which is
then fed into three different branches of fully-connected
layers, each corresponding to the one of the labels the net-
work will predict: effective, frustration, and satisfaction.
With this multi-task learning setup, the representations
extracted from the TCNs and the the parameters for pooling
will be learned jointly for all three labels. Separate branches
of fully-connected layers after the pooling will be trained
specifically for the corresponding label. After the forward
pass, the loss for each label is calculated separately and then
summed and backpropogated. To evaluate the contribution
of the MTL setup, we compare it to a single-task learning
setup in Section 5.2.3.

5 RESULTS AND DISCUSSION

5.1 Experiment Setup

We used a slightly modified 5-Fold cross-validation scheme
to evaluate the performance of our proposed approach. In
this scheme, 60%, 20% and 20% of the intervals are used as
the training, validation and test sets. This split is repeated 5
times, ensuring that all of the intervals were part of the test
set in one of the splits. Since we are trying to estimate multi-
ple labels, the folds are stratified using iterative stratifica-
tion [49]. This procedure ensures that the class distributions
are similar in the training, validation and test sets. This
cross-validation scheme does not guarantee a person-inde-
pendent approach since data from the same subject (but not
the same interaction) can be both in training and test sets.
We believe there is an intrinsic person-dependent aspect
since different participants can have different labels for the
same meeting and all data is intrinsically associated as a
pair or group in the team. Moreover, this setup allows us to
utilize and evaluate for interacting groups of all sizes in con-
trast to a pure person-independent setup where groups of
four and five would need to be excluded completely. The
most apparent real-life implication of the current setup is
that it does not guarantee generalization to new subjects
out-of-the-box. Since the method is proposed for longitudi-
nal scenarios, an onboarding process at the start where data
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from a newcomer is gradually added to the training data
should help in circumventing this issue. Because of the class
imbalance, we used weighted cross entropy loss and
selected Receiver Operating Characteristics-Area Under
Curve (ROC-AUC) as the evaluation metric. The loss is
weighted with respect to the inverse-frequency of the labels
in the training set. To extend ROC-AUC to the multi-class
case, a One-vs-One scheme is used where every unique
pairwise combination of classes are compared and the
resulting metrics are averaged.

For selecting the hyperparameters of the model, we used
Bayesian optimization [50]. Hyperparameter values that
performed best on the validation sets for the majority of the
folds selected for training the final models and obtaining
the performances on the test sets. Selected values for the
hyperparameters are presented throughout the rest of this
paragraph. Adam with a weight decay parameter of 0.03 is
used as the optimizer [51]. For more regularization, dropout
with a probability of 0.3 is also used for the TCNs and fully-
connected layers. Best performing number of hidden units
are found to be as 64 and 64 for the TCNs and the NetVLAD
layers. The kernel size and the number of layers for TCNs
were 10 and 8. With this setup, The receptive field of the
TCNs were able to approximately cover even the longest
sequences. For the NetVLAD layers, best performing value
for the number of clusters K is found to be 3. We had one
fully-connected layer for each branch with 64 hidden units
and the output layers mapped these 64 dimensional vectors
to the predicted label. The transformation of data through a
forward pass, for one branch of the fully-connected layers,
are as follows: 2�N � S � 5 ! 2�N � 64 ! ð2� 64Þ ¼
128 ! 64 ! 1 where N is the number of participants in the
interaction and S is the length of the sequence. Each model
was trained for 25 epochs and the model performed best on
the validation set is used to evaluate the performance on the
test set.

5.2 Results

Fig. 6 shows the performances obtained with the proposed
method and several competing approaches mentioned in
the methodology section. Visualized values are the mean

ROC-AUC scores for the 5 folds and the error bars corre-
spond to � standard deviation. Our proposed architecture
managed to outperform all the other approaches and pro-
vided an average (of the performances for the three labels)
ROC-AUC score of 0.64. Since we are using ROC-AUC
scores as the evaluation metric, the random baseline, the
performance obtained by a dummy classifier that will clas-
sify each sample into the majority class, is 0.5 for each task.
In order to check the significance of our results, we applied
paired one-tailed t-tests to the distributions formed by the
average ROC-AUC scores of each fold, obtained by the pro-
posed method and the other setups. The proposed method
is shown to perform significantly better than all other meth-
ods (p < 0:05 for LSTM, average pooling and single-task
learning, and p < 0:01 for handcrafted features). We also
checked the significance for each label separately and
results of this analysis are shared in the following subsec-
tions. The p-values for these separate analyses are corrected
using Benjamini-Hochberg False Discovery Rate [52] since
multiple tests are conducted for each comparison between
our method and a competing one. In summary, our method
was not significantly better than all the other setups for all
labels but the first test conducted on the means proved that
it is significantly better than others when the overall perfor-
mance is considered. Detailed explanations of each compet-
ing method and their comparison to our approach are
presented in the following subsections.

5.2.1 Comparison to Feature Engineering

As mentioned in the methodology section, we used the
hand-crafted features presented in [4] for comparing our
automatic representation extraction routine to feature engi-
neering. These features are, per person, are as follows:

� Total number of IR pings, grouped under the IDs of
participants

� Mean and standard deviations of movement energy
and consistency

� Mean and standard deviations of the audio ampli-
tude and standard deviation

� Mirroring and influence features computed per dyad
in the interaction:

Fig. 6. Visualization of ROC-AUC scores for the proposed method and various competing approaches. Mean score of 5-folds are presented with �
standard deviation).
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– Pearson correlations of movement energies and
consistencies

– Pearson correlations of audio amplitudes and
standard deviations

– Cross-correlations of movement energies and
consistencies

– Cross-correlations of audio amplitudes and stan-
dard deviations

As proposed in [4], mirroring and influence features are
computed using sliding windows of one minute, covering
the entire interaction. These individual features are then
aggregated to the interaction level by computing the mini-
mum, maximum, mean, median, and standard deviations of
the features. After the features per interaction are computed,
we used the same branching MTL architecture we explained
in Section 4.2.3, for a fair comparison to our approach.

As it can be seen from Fig. 6, hand-crafted features per-
formed the worst and the proposed method significantly
outperformed them for each label (p < 0:05 for effective
and satisfied and p < 0:01 for frustrated). For frustrated
labels, it even fails to perform better than a random baseline.
On one hand, such results are expected since the analyses
of [4] and this paper differ significantly in terms of the time
resolution. In [4], the estimation of team cohesion and indi-
vidual affect were done on a daily level, while our experi-
ments included intervals as short as 1 minutes. Statistical
features proposed in [4], such as the mean and the standard
deviations of sensor readings might manage to capture a
general trend happening throughout a day but might fail to
be informative for shorter time intervals. However, we
would have expected mirroring and influence features to be
relatively representative of interaction quality, considering
the existing literature on this topic. It could be possible that
the proposed methodology for extracting these features
in [4] is not optimal for representing aspects of a more fine-
grained phenomenon such as interaction quality.

5.2.2 Comparison to Average Pooling

To analyze the effects of using a learnable pooling layer, we
compared our results to an architecture where the NetV-
LAD layers are replaced by average pooling layers. All the
other settings were kept exactly the same. NetVLAD’s con-
tribution to the performance can be easily seen. For all
labels, the architecture with NetVLAD layers performed
better on average than the one with average pooling layers
(significant for the frustrated label with p < 0:05Þ. Even
though the performance obtained with average pooling for
the effective and satisfied labels are comparable to remain-
ing methods, it failed to provide a performance better than
a random baseline for the frustrated labels. However, rela-
tively lower performance scores for frustrated labels are
observed for all approaches, suggesting that the estimation
of this label is harder than the others. Frustration, which has
a negative valence, might be harder to observe from mani-
fested behavior compared to the other two labels that have
a more positive valence.

5.2.3 Comparison to Single-Task Learning

In order to understand the contribution of using an MTL
setup, we compared our method to single-task learning

(STL). Instead of training one model that outputs three
labels, we trained three models separately, each with one of
the labels. All the other settings were kept exactly the same.

Even though the difference is quite marginal, STL still
obtained the best overall performance after our proposed
approach. Interestingly, it is the only other approach that
managed to obtain a performance better than the random
baseline for the frustrated labels and the proposed method
was significantly better than STL for the effective (p < 0:05)
and frustrated (p < 0:1) labels. This further shows the con-
tributions of the TCN and NetVLAD layers. However, we
can see that the differences between the proposed method
and STL are quite marginal (0.03) for the frustrated labels,
compared to other ones. This might show that the represen-
tations jointly learned with other labels might not be as dis-
criminative for estimating frustration. The differences in
label distributions and the opposite valence associated with
frustration also support this claim.

5.2.4 Comparison to RNNs

As formerly mentioned, recurrent neural networks were the
norm for modeling sequential data for quite a long time [53],
[54]. Some of the most successful RNN variants are the Long
Short-Term Memory (LSTM) networks. For a better analysis
of utilizing TCNs for extracting meaningful representations
from raw data, we replaced the TCNs in our architecture
with one-layer LSTMs. The experiment setup was kept
exactly the same other than these replacements.

The model with TCNs outperformed the one with LSTMs
on average for all the three labels (significantly for frus-
trated and satisfied labels with p < 0:1). LSTMs are known
to be notoriously hard to train and data-hungry [55] which
might be an explanation for these results. Since our dataset
was relatively on the smaller side, LSTMs might have failed
to learn meaningful representation. However, this already
shows an advantage of TCNs where less data is required for
convergence. TCNs better performance compared to LSTMs
was also compatible with the previous findings reported
in [33]. On average, LSTMs still outperformed handcrafted
features, further supporting the decision to automatically
learn representations rather than explicitly designing them.

5.2.5 Missing Data Versus Performance

Fig. 7 shows how the performance varies with respect to
missing data for all the three labels. To compute these statis-
tics, we have kept track of predictions in each fold and if
any participants data is missing for that interaction. Then,
ROC-AUC scores were computed for four different subsets:

Fig. 7. ROC-AUC scores with respect to absence of data.
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interactions with data from all participants present and
interactions missing data from one, two and three partici-
pants. As it can be seen, for most cases the performance
drops with the increasing missing data. Interactions with
missing data from three participants (and also two partici-
pants for the satisfied labels) have samples from only two
classes in the subsets (medium and high for the effective
and satisfied and low and medium for the frustrated), rather
than three. Moreover, the subset of missing data from three
participants has only 13 samples in the test set. These char-
acteristics make the performances for this subset to be more
volatile and can explain the unexpected increase in the per-
formance for effective (compared to missing data from two
participants) and satisfied (compared to all). As expected,
the estimation of quality of interactions is more challenging
if the data for some participants are missing. Considering
the overall performances presented in Fig. 6, we can argue
that our proposed architecture is more robust to absence of
data. More importantly, pooling approach makes it possible
to analyze cases where some data is missing, rather than
completely omitting that sample from the analysis.

While calculating these statistics, models trained on the
whole training set with all cases of interactions with respect
to missing data are used. Further analysis can be done by
training models on subsets with specific missing data pat-
terns only. However, since some cases only have limited
number of samples, models trained on them failed to con-
verge. More data with diverse missing data patterns are
required for such further analysis.

5.3 Discussion

5.3.1 Ambulatory Assessment of Interactions in

Realistic and Longitudinal Scenarios

As we highlighted at the beginning of this paper, unobtru-
sive sensors appear to be good potential candidates for real
or near real-time time automated assessment of group inter-
action quality. Such a capability is particularly important
for future long duration space missions, which are the ulti-
mate ICE experience. We know that group social cohesion
begins to destabilize and breakdown over durations as short
as 5 to 7 months [56]. For long duration missions in the
neighborhood of 3 years, active crew support will be
needed. An ability to detect that destabilization early and
then to trigger interventions to provide psycho-social sup-
port would be critical for maintaining crew effectiveness for
these challenging space exploration missions of the future.
Moreover, such a capability would also have utility for sup-
porting ICE missions on Earth such as polar science and
deep-sea exploration.

Our results in this paper represent a proof of concept of
fine-grained analysis of the quality of interactions happen-
ing in a real-life ICE scenario. Even though there exist prior
works that focused on the detection of interactions in-the-
wild with relatively uncontrolled data collection proce-
dures [57], [58], no fine-grained analysis related to the
quality of detected interactions were formerly presented.
Interactions inherently have rich and valuable information
about many different concepts relating to social behavior.
With this study, we showed that a more in-depth analysis
of interactions is possible, even with sensor limitations,

imperfect data, and label information collected in uncon-
trolled and realistic settings. We also explicitly presented
various challenges such settings bring and discussed vari-
ous solutions for circumventing them. We believe that these
challenges, such as the missing data and the requirement
for the precise identification of short-term events in longitu-
dinal data, are common problems experienced by all
researchers working in this domain. This can be also seen
from the recent studies which explicitly focused on tackling
challenges introduced by missing data in mobile crowd-
sensing [42]. With the development of approaches that can
handle these challenges better, even a finer-grained analysis
will be possible, providing a much deeper understanding of
the concepts that are being analyzed. We see finer-grained
analysis of longitudinal data is to be the frontier for this
domain and hope this paper can inspire researchers to
move into this direction more.

5.3.2 Performance of Interaction Interval Detection

One of the biggest limitations of our experiments is the pro-
cess of finding the interaction intervals. As mentioned, there
were no ground truth for the actual starting and ending
times for the interactions logged in the ESM data. This forced
us to employ a heuristic approach with aggressive parame-
ters, which is explained in the Section 4.1. Since there was no
ground truth, it was not possible to evaluate the performance
of this step and how it affects the performance of the interac-
tion quality estimation. However, it is heartening to see that
there were learnable patterns of behavior for the effective
and satisfaction task which suggest that fairly reasonable
intervals were chosen. We acknowledge that there are many
settings where one cannot properly evaluate the intermedi-
ate measures being used. This also echoes the age old prob-
lem of objectively evaluating the quality of synchrony
measures when trying to estimate aspects of conversation
quality. Our results suggest here that the hand crafted fea-
tures were perhaps only a limited set of possible coordina-
tion features that could be better learned by the TCNs.

If there was ground truth, even for a subset of the data-
set, a more robust learning-based approach can be
employed for the detection of the interactions. Recent stud-
ies have shown that dynamics of interactions, which accel-
erometer readings can act as a proxy for, have valuable
information for detecting conversing partners, in addition
to the proxemics (which IR and Bluetooth readings acts as a
proxy for in the scope of this work) [59], [60]. Having
ground truth would allow to utilize all the important infor-
mation recorded by the wearable sensors.

Of course, obtaining exact starting and ending points of
interaction intervals is a quite challenging task. Asking par-
ticipants to report this information would most probably
not result in perfect ground truth considering the missing
data problem discussed throughout this paper. More impor-
tantly, such a procedure most probably will interfere with
the ecological validity of the dataset and cause more burden
on the participants since they will need to report many
times during the day. However, the procedure for collecting
information about interactions can be still enhanced. A pos-
sible option is to utilize techniques from the latest interrupt-
ibility literature together with the rough detections from
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sensors, asking participants to confirm existence of an inter-
action when they are found to be available for reporting.
Another option is to utilize different sensors such as cam-
eras to obtain more information about interactions until suf-
ficient samples are collected for training a supervised
interaction detector.

5.3.3 Learnable Pooling Layers

In this study, we proposed to use a learnable pooling layer,
NetVLAD specifically, to aggregate the individual represen-
tations of participants into a fixed-size representation of an
interaction. The focus was on empirically showing the value
of the idea of using learnable pooling for aggregation. The
choice of the specific learnable pooling layer as NetVLAD
was based on former empirical results where it was shown
to outperform other learnable pooling methods [47]. Such
other methods include slight modifications to the NetVLAD
(NetRVLAD) and implementations of other well-known
descriptors such as the bag-of-words (Soft-DBoW) and the
Fisher Vectors (NetFV) [47]. Conceptually, NetVLAD layers
in our proposed architecture can be replaced by any of these
methods. However, more experimentation with more data
is needed for a conclusive statement on which implementa-
tion should be preferred.

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this paper, we presented our approach for estimating the
quality of interactions between group members in a longitu-
dinal simulated space mission from wearable sensing data.
During the four month mission, participants wore Sociomet-
ric Badges which recorded movement (accelerometer),
sound (microphone) and proximity (Infrared and Bluetooth)
information. They also filled in daily reports about the inter-
actions they had with other group members. These reports
included the following information: who the interaction was
with, and whether the level of effectiveness, frustration, and
satisfaction with the interaction. The task of this paper was
to automatically estimate these three labels (effective, frus-
trated, and satisfied) from thewearable sensing data.

We employed an heuristic approach to detect the interac-
tion intervals; the timestamps for the starting and ending
times of the interaction; from the IR and Bluetooth data. We
proposed a neural network architecture composed by Tem-
poral Convolutional Networks (TCNs) and learnable pool-
ing layers. TCNs were used to process sequential data for
automatically extracting discriminative representations
from the individual accelerometer and audio streams.
Learnable pooling layers, NetVLAD, were then used to
aggregate these individual representations into a fixed-size
representation of the interaction. This pooling step provides
the flexibility of working with interactions of varied sizes.
Also, it allows to tackle the well-known problem of missing
data in field studies, by allowing the utilization of remain-
ing data from interactions where some participants data are
missing. Finally, we proposed to estimate the three labels
jointly with a multi-task learning setup. Representations
extracted by TCNs and the parameters of NetVLAD layers
were learned jointly, allowing to exploit the similarities
between the tasks.

Our proposed approach significantly outperformed vari-
ous competitors and provided an average ROC-AUC score
of 00:64. To better understand each components contribution
to the performance, we presented ablation studies where
parts of the network are replaced with a competitive
approach, such as replacing NetVLAD layers with average
pooling layers and replacing TCNs with LSTMs. We also
analyzed how missing data affects the performance and
shown that there is a negative correlation between the num-
ber of participants with missing data and performance.

6.2 Future Work

One of the biggest limitations of our experiments is the inter-
action interval detection. Currently, it is based on heuristics
and was not evaluated due to the lack of ground truth. With
ground truth, a learning based detector can be trained on
multiple modalities, allowing more precise detections of
when interactions occur. Having more precise starting and
ending times for interactions is expected to result in superior
quality estimation. Learning and evaluating on a low fre-
quencymodel based on the prior work [59], [60], extended to
both audio and accelerometer data could be a promising ave-
nue to partially evaluate the efficacy of such an approach.

Another interesting direction to investigate is evaluating
the performance of learnable pooling methods other than
NetVLAD. Even though NetVLAD was empirically shown
to be superior to others in former work [47], these evalua-
tions were made for a significantly different task. Further
investigation in this direction might even result in a new
pooling approach, specifically designed for the task of pool-
ing individual representations into a fixed-length one repre-
senting the interaction itself.

We believe that more data and further experimentation is
needed to fully analyze the effects of missing data on perfor-
mance. Unfortunately, for this dataset, the absence of data
was such that more elaborate analysis was not possible.
With more data with varying absence patterns, it would be
possible to train estimation models on specific subsets with
specific missing data statistics, allowing further analysis.

In this study, we have focused on estimating the quality
of interactions. To keep the scope of this paper focused, we
have not included any experiments that present the use of
interaction quality information. Being able to automatically
quantify the quality of interactions a person having
throughout their life creates many new possibilities. As
mentioned earlier, many existing works that aim to estimate
concepts such as affect, stress, productivity, team and social
cohesion used some simplistic notion of interactions in their
methodology, but to our knowledge, none had access to
information regarding the quality of interactions. Consider-
ing the diverse literature in social sciences that show the
connection between interaction quality and various social
concepts [8], [61], [62], we are excited about future work
that will build on the findings of this paper.
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