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Abstract. Estimating uncertainty of machine learning models is essen-
tial to assess the quality of the predictions that these models provide.
However, there are several factors that influence the quality of uncer-
tainty estimates, one of which is the amount of model misspecification.
Model misspecification always exists as models are mere simplifications
or approximations to reality. The question arises whether the estimated
uncertainty under model misspecification is reliable or not. In this paper,
we argue that model misspecification should receive more attention, by
providing thought experiments and contextualizing these with relevant
literature.

Keywords: Uncertainty quantification · Model misspecification ·
Epistemic and Aleatoric uncertainty

1 Introduction

In fields such as biology, chemistry, engineering, and medicine [1–4], having an
accurate estimate of prediction uncertainty is of great importance to guarantee
safety and prevent unnecessary costs. In this regard, uncertainty quantification
(UQ) is a vital step in order to safely apply Machine Learning (ML) models to
real world situations involving risk. It is well-known, however, that these ML
models are generally poor at quantifying these uncertainties [5,6].

Generally, depending on the exact source, the type of uncertainty can be
categorized as being epistemic or aleatoric [7,8]. Epistemic uncertainty refers to
the uncertainty of the model and arises due to lack of data used to train the
model and lack of domain knowledge. This type of uncertainty is considered to
be reducible by an appropriate selection of the model and increasing data size.
On the contrary, aleatoric uncertainty is a consequence of the random nature of
data and is therefore considered to be irreducible [9].

Although total uncertainty (the combination of epistemic and aleatoric uncer-
tainty) can be estimated using different methods, some articles have focused
on the separate estimation of aleatoric uncertainty and epistemic uncertainty
[10–14]. Given the fact that only epistemic uncertainty is reducible, separation
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into the two types of uncertainty can help to guide model development [12].
For example, during active learning, Nguyen and colleagues [15] concluded that
quantifying epistemic uncertainty separately has the potential to provide useful
information to learners of the model and can potentially improve the perfor-
mance of the learning process.

Notwithstanding, due to model misspecification, a question remains whether
the estimated aleatoric and epistemic uncertainty are reliable or not [16,17].
Model misspecification exists when the best model differs from the truth and
the associated hypothesis space does not include the truth. It is important to
realize that model misspecification always exists without any exceptions [18].
As there is no uniquely prescribed way to deal with model misspecification, it
has been treated differently among researchers. Some do not mention it at all in
their papers [11,14], while others consider it to be part of epistemic uncertainty
[19]. These variable interpretations of model misspecification make it difficult to
compare the different estimated epistemic uncertainties.

In this paper, we argue that model misspecification should receive more atten-
tion. We start by defining model misspecification and propose three possible ways
to see model misspecification in relation to epistemic uncertainty. The paper
proceeds with a brief investigation of how model misspecification is recognized
among researchers and how they relate to our proposed views. In addition, we
assess the possible consequences of mistreating model misspecification qualita-
tively and conclude with a brief discussion.

2 Model Misspecification

H

p*

p*

p

H

Fig. 1. Model misspecification: The truth p∗ is not included in the hypothesis space H
(shaded blue area) due to model misspecification. (Color figure online)

2.1 Definition of Model Misspecification

Whether the ML-method is applied in a regression or classification setting, the
first step is to choose a model pθ parameterized by θ. Let H = {pθ : θ ∈ Θ}
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denote the hypothesis space defined by the chosen model class and the associated
parameters θ in the set Θ. We denote the truth p∗ and the best possible model
in H by p∗

H . Now, model misspecification exists when the best model p∗
H differs

from the truth p∗ and p∗ /∈ H. This is illustrated in Fig. 1.

2.2 Example of Model Misspecification: Regression

Let us consider a simple regression problem using a dataset of n observations
D = (xi, yi) with i = 1, ..., n and additive noise. Let us assume, in addition,
that the true additive noise follows a heavy-tailed distribution (see Fig. 2a). The
typical aim is to approximate the unknown underlying true data distribution
p∗(y|x) at a new test point x. Now, a typical model choice p̂n(y|x) is to assume
the additive noise to be Gaussian. This means that the assumption on the noise
distribution is misspecified. Since p∗(y|x) is not in the hypothesis space H due
to model misspecification (i.e., the assumed noise does not match the true one),
we will never be able to reach the true distribution p∗(y|x) even if we use an
infinite amount of data to train the model p̂∞(y|x) (See Fig. 2b).

x x

y
(a)
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Fig. 2. Model misspecification in a regression example: (a) the true data distribution
p∗(y|x) (blue line) at a test point x and the estimated data distribution p̂∞(y|x) (red
line) which is trained using an infinite amount of data at a test point x (b) p̂∞ will
never reach the truth p∗ – even when optimizing for a proper loss, due to model
misspecification. (Color figure online)

2.3 Contextualizing Model Misspecification

When looking at model misspecification, a key uncertainty we consider is epis-
temic uncertainty which is related to the model choice [18]. Figure 3 shows three
perspectives on model misspecification and its relation to epistemic uncertainty
for regression setting.

The first two scenarios (Fig. 3a and Fig. 3b) illustrate the most common per-
spective where model misspecification is ignored. Ignoring it could be acceptable
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if the hypothesis space was sufficiently large and, therefore, model misspecifica-
tion does not exist in principle (Fig. 3a). Even though most practitioners disre-
gard model misspecification as illustrated in this Fig. 3a, in reality this is rarely
the case. The most common circumstance in the literature is shown in Fig. 3b,
where model misspecification exists despite being unintentionally ignored. As
a result, for both scenarios, epistemic uncertainty does not contain model mis-
specification. In the third scenario (Fig. 3c), model misspecification is explicitly
included as part of epistemic uncertainty. In this case, epistemic uncertainty
consists of two parts: model misspecification (green line in Fig. 3c) and approxi-
mation uncertainty (blue line in Fig. 3c) as Hüllermeier and Waegeman [9] define
it. In this scenario, model misspecification directly influences epistemic uncer-
tainty estimates [20].
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Fig. 3. Three views on model misspecification when a model class is assumed: In (a) and
(b), model misspecification is ignored and epistemic uncertainty (blue line) is defined
as a difference between p̂∞(y|x) and p̂n. In (c), model misspecification is treated as a
part of epistemic uncertainty (green line). (Color figure online)

3 Effect of Model Misspecification on Uncertainty
Estimates

We cover, in brief, the connection between model misspecification and epistemic
uncertainty in different ML-methods and discuss possible consequences of model
misspecification on uncertainty estimation and decision making. Although we
mainly focus on neural network models in this section, the same principle applies
to other methods as long as these models that require any distributional assump-
tions.

3.1 Model Misspecification and Uncertainty Estimates

Bayesian ML-methods are widely used for UQ [21]. Specifically, Bayesian neu-
ral networks (BNNs) are receiving a lot of attention due to their potential to
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model both epistemic and aleatoric uncertainty [10,11,14,22]. The definition
of uncertainty varies among researchers and BNN articles rarely include the
effect of model misspecification. For instance, Gustafsson and colleagues [14]
explain that epistemic uncertainty is uncertainty in the deep neural network
model parameters, which ignores the fact that the model is not necessarily cor-
rectly specified. This definition of epistemic uncertainty is very common in the
literature [9,10,23,24].

Without loss of generality, consider once again the regression setting from
Subsect. 2.2. In BNNs, the total uncertainty is modelled by the posterior p(θ|D),
where D symbolizes data. At test time, predictions are made via the posterior
predictive distribution (PPD):

p(y| x,D) =
∫

p(y| x, θ)p(θ|D)dθ. (1)

In [14], both epistemic and aleatoric uncertainties are obtained assuming a
Gaussian distribution with mean μ̂ and variance σ̂2 on PPD:

p(y| x,D) ≈ N(y; μ̂(x), σ̂2(x)). (2)

It is safe to say that no true distribution is exactly Gaussian. The possible effects
on UQ of such assumption are neither quantified nor discussed in this work;
not as part of epistemic uncertainty itself, nor as a separate uncertainty. In the
literature, the (implicit) assumption of a PPD with a Gaussian distribution seems
to be made more generally when creating Bayesian ML-models [9,10,23,24].

Another popular approach for UQ is the use of ensemble methods, such as
Monte Carlo dropout (MC-dropout) [24], where predictive uncertainty is esti-
mated using Dropout [24] at test time, and Deep ensembles [5] which rely on
retraining the same network many times with different weight initializations.
Both methods can be considered a simple alternative to Bayesian methods. It
is known that ensemble methods can provide an estimation of the (epistemic)
uncertainty of a prediction [9], meaning that the variance of the predictions can
be used to estimate epistemic uncertainty. By increasing the number of ensemble
members, improved estimation of epistemic uncertainty is possible [9,25,26].

Liu and colleagues pointed out two issues when performing uncertainty esti-
mation (both epistemic and aleatoric) using ensemble methods [27]. Similar to
Bayesian methods, currently existing ensemble methods typically assume that
the ground-truth data distribution p(y|x) follows a Gaussian distribution [5].
Furthermore, ensemble methods perform uncertainty estimation using base mod-
els of the same class, meaning in the same hypothesis space H [5]. The conse-
quence is that the creation of these models (that are all potentially misspecified)
might result in a hypothesis space that still does not include the true distribu-
tion. Therefore epistemic uncertainty estimates from ensemble methods do not
include model misspecification.
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3.2 Consequences of Ignoring Model Misspecification

The central question that remains is what are the consequences of not taking
model misspecification into account?

If we do not include model misspecification into epistemic uncertainty, we can
only trust the estimated epistemic uncertainty when the model is correctly speci-
fied. As a result, we may significantly underestimate total uncertainty, which can
be problematic in risk-involving tasks. Therefore, ignoring model misspecification
usually leads to the scenario in Fig. 3b which can overestimate or underestimate
the total uncertainty [16]. Specifically for Bayesian methods, when the distri-
butional assumption on PPD is not correctly specified, the probability of the
true distribution lying outside hypothesis space increases [16,28–32]. The conse-
quences of ignoring model misspecification in real-world tasks are illustrated in
Fig. 4, which is based on an example from [16].

Fig. 4. A real-world example of model misspecification: In a decision making process
at a split road, assuming a Gaussian distribution on the output distribution (red line)
can cause a serious accident (Color figure online)

In Fig. 4, a lane splits in two directions, i.e., we have two outputs. In order
to capture the multimodality, our output distribution has to follow a bi-modal
distribution. However, by assuming a Gaussian distribution on the output dis-
tribution instead, the model predicts the mean of the two possible outcomes and
the car goes in between lanes [33]. Although this can lead to a fatal accident,
this possibility cannot be captured by estimating epistemic uncertainty with
such model.
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4 Discussion

In this paper, we highlighted the importance of considering model misspecifi-
cation when performing UQ. Reviewing the literature, it should be noted that
model misspecification is often not explicitly described or strong assumptions are
imposed on the underlying data distributions. This can lead, in turn, to models
that provide unreliable uncertainty estimates. These findings raise an impor-
tant question: how should we handle model misspecification? As for the defi-
nition of different uncertainty types (i.e., aleatoric and epistemic uncertainty),
the question remains whether epistemic uncertainty should contain model mis-
specification or not. These issues are discussed in the following Subsect. 4.1 and
Subsect. 4.2.

4.1 How to Handle Model Misspecification

It is not possible to entirely avoid model misspecification when modeling real-
world phenomena, mainly due to the imposed model assumptions. This means
that we have to consider the impact of model misspecification and to explore
ways to deal with it in various scenarios.

In principle, model misspecification can be reduced by expanding the initial
hypothesis space H1 (i.e., changing the associated model) (Fig. 5a). As a result,
the impact of model misspecification can be reduced subsequently. Expanding
the hypothesis space can be done, for instance, by easing the imposed assump-
tions. In the most favorable situation, the expanded hypothesis space H3 includes
the truth p∗. However, there is a possibility that we increase model misspecifi-
cation when changing hypothesis space (Fig. 5b). As a result, we would never be
able to reach the p∗ in H3. This situation can be avoided by assigning a hierar-
chy to the expanded hypotheses spaces as follows, H1 ⊂ H2 ⊂ H3. Under this
assumption, structural risk minimization (SRM) [34], which is strongly univer-
sally consistent [35], can be arbitrary close to the p∗ in H3. SRM uses the size
of hypothesis space as a variable and tries to minimize the guaranteed risk over
each hypothesis space [36,37]. This can reduce model misspecification.

Therefore, in either way (Fig. 5a or Fig. 5b), the impact of model misspecifi-
cation can be minimized. This fact is important since it is not always clear if we
change our hypothesis space inclusively (Fig. 5a) or exclusively (Fig. 5b).

Additionally, it is theoretically possible to reduce model misspecification com-
pletely according to the universal approximation theorem [38,39]. The theorem
guarantees a neural network to represent any function (e.g., input-output rela-
tionship in regression) generically on its associated function space [40]. However,
the theorem cannot be applicable to most practical situations due to the follow-
ing reasons. Firstly, the theorem does not guarantee the network to learn the
model [41]. Therefore, the chosen network can overfit to the training data, result-
ing in a poor generalization. Secondly, the network can require an exponential
number of hidden units, which are often not desirable in practical situations [41].
These concerns lead us to the next question; What are the consequences when
we attempt to reduce model misspecification during UQ?
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Fig. 5. Reducing model misspecification: By changing the initial hypothesis space H1,
model misspecification is either (a) reduced by including the truth p∗ in the new hypoth-
esis space H3 or (b) increased.

In order to consider the question, let us go back to the scenario where
model misspecification is considered to be part of epistemic uncertainty (Fig. 3c).
Lahlou and colleagues [19] state that model misspecification can be considered as
a form of bias while approximation uncertainty can be a form of variance. With
the use of this concept, we can think about a bias-variance tradeoff with respect
to the size of hypothesis space, which is illustrated in Fig. 6. Although bias-
variance decomposition has been studied for a long time, to our best knowledge,
no paper has considered this bias-variance trade-off with respect to uncertainty
quantification. It is important to emphasize the following points: 1) by consid-
ering this bias-variance trade-off, we cannot guarantee to choose the model with
the lowest total error in contrast to the original concept (i.e. the model class
with the lowest total uncertainty does not necessarily provide the lowest total
error.), 2) increasing the size of the hypothesis space does not make the model
more complex (instead, it would be less complex with fewer assumptions).

In Fig. 6, we can see the effect of model misspecification in relation to total
uncertainty. Assume that we have an infinite amount of data, then every hypoth-
esis space shares the same amount of aleatoric uncertainty (red shaded area in
Fig. 6). Depending on the model choice, the size of hypothesis space can vary. If
we choose the initial hypothesis space H1, there is a high possibility that p∗ is
not included in the hypothesis space, potentially increasing model misspecifica-
tion and therefore bias of the model. On the contrary, if we choose an expanded
hypothesis space H3, model misspecification can be decreased due to the fact
there is a higher possibility that p∗ lies in H3. However, at the same time,
it will be harder to find an optimal model in an expanded hypothesis space.
Therefore, the variance which represents approximation uncertainty increases
when hypothesis space expands. This means that there is trade-off between bias
(model misspecification) and variance (approximation error). In this example,
hypothesis space H2 has an optimal size. In this case, H2 results in the best
trade-off between model misspecification and its size. Using this concept, we can
choose the best possible model and the associated hypothesis space, even if we
do not know p∗.
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U
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(approximation error)
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(model misspecification)

H1 H2 H3

Total uncertainty

Aleatoric uncertainty

Fig. 6. Intuition for bias (model misspecification) variance (approximation error) trade-
off with respect to the size of hypothesis space. Red shaded area represents aleatoric
uncertainty. (Color figure online)

However, whether the approximation error and model misspecification can
be estimated in practical scenarios is not entirely clear yet. This means that how
to handle model misspecification still remains an open question.

4.2 Conflicting Views on Uncertainty Definitions

There are conflicting views and significant terminology diversity about the dif-
ferent types of uncertainty in the literature. In particular, model misspecifica-
tion has been included as part of epistemic uncertainty by some authors while
others do not [27,28]. This is problematic since it prevents a direct compari-
son regarding the performance of different methods. A uniform view on how to
treat model misspecification (either being part of epistemic uncertainty or as a
separate uncertainty type) should be made to make such comparison possible.
Furthermore, it is not very clear which type of uncertainty is estimated in some
situations. For example, Valdenegro-Toro and colleagues [30] claim that there
is a clear connection between epistemic and aleatoric uncertainty. This would
mean that underestimating or overestimating epistemic uncertainty can have an
effect on the quality of aleatoric uncertainty. Therefore, a true possibility for
such a separation can be doubted in this case. Additionally, there is another
issue related to the definition of uncertainty, which is inconsistent naming of
uncertainties. This variability in naming of epistemic uncertainty is illustrated
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in Fig. 7. Note that this figure does not reflect an exhaustive literature search,
so there is even more diversity in terminology than what is illustrated there.

H
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p∞
^

pn
^

H
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^
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^

(a) (b)

Model uncertainty
[Mobiny et al. 2021, Skafte et al. 2019]
Knowledge uncertainty 
[Abdar et al. 2021]
Systematic uncertainty
[Shaker et al. 2021]

Approximation uncertainty 
[Hüllermeier et al. 2021, Cervera et al. 2021]
Model uncertainty
[Malinin et al. 2018]
Parametric uncertainty
[Liu et al. 2019]

Model uncertainty
[Hüllermeier et al. 2021, Cervera et al. 2021]
Distributional uncertainty 
[Malinin et al. 2018]
Structural uncertainty
[Liu et al. 2019]

Fig. 7. Example of variability in naming of epistemic uncertainty: (a) Model mis-
specification is ignored. (b) Model misspecification is considered as part of epistemic
uncertainty (a green line). Model uncertainty represents different concepts depending
on literature. (Color figure online)

Epistemic uncertainty is called as, for instance, model uncertainty [23,42],
knowledge uncertainty [8], systematic uncertainty [43] (Fig. 7a). In other work,
model uncertainty is considered to be part of epistemic uncertainty (Fig. 7b), rep-
resenting model misspecification [9,16]. Malinin and colleagues [44] call model
misspecification as distributional uncertainty. This inconsistency can be confus-
ing and leading to wrong interpretation of published work.

5 Conclusion

There are a number of concerns when it comes to model misspecification in rela-
tion to uncertainty estimation that can considerably influence the accuracy by
which uncertainty estimation can be performed. No general definition of both
epistemic and aleatoric uncertainty currently exists. Additionally, researchers
treat model misspecification differently. Since model misspecification influences
the reliability of uncertainty estimates, we would argue that model misspecifi-
cation, and the ways to measure and control it, should receive more attention
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in the current UQ research. Furthermore, we propose directions for future work
to minimize model misspecification, for instance, by looking into bias-variance
trade-offs.
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