

Delft University of Technology

Making a Network Orchard by Adding Leaves

van Iersel, Leo; Jones, Mark; Julien, Esther; Murakami, Yukihiro

DOI
10.4230/LIPIcs.WABI.2023.7
Publication date
2023
Document Version
Final published version
Published in
23rd International Workshop on Algorithms in Bioinformatics, WABI 2023

Citation (APA)
van Iersel, L., Jones, M., Julien, E., & Murakami, Y. (2023). Making a Network Orchard by Adding Leaves.
In D. Belazzougui, & A. Ouangraoua (Eds.), 23rd International Workshop on Algorithms in Bioinformatics,
WABI 2023 Article 7 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 273). Schloss Dagstuhl-
Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.WABI.2023.7
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4230/LIPIcs.WABI.2023.7
https://doi.org/10.4230/LIPIcs.WABI.2023.7

Making a Network Orchard by Adding Leaves
Leo van Iersel #

Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

Mark Jones #

Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

Esther Julien #

Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

Yukihiro Murakami1 #

Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

Abstract
Phylogenetic networks are used to represent the evolutionary history of species. Recently, the new
class of orchard networks was introduced, which were later shown to be interpretable as trees with
additional horizontal arcs. This makes the network class ideal for capturing evolutionary histories
that involve horizontal gene transfers. Here, we study the minimum number of additional leaves
needed to make a network orchard. We demonstrate that computing this proximity measure for a
given network is NP-hard and describe a tight upper bound. We also give an equivalent measure
based on vertex labellings to construct a mixed integer linear programming formulation. Our
experimental results, which include both real-world and synthetic data, illustrate the efficiency of
our implementation.

2012 ACM Subject Classification Mathematics of computing → Trees; Mathematics of computing →
Graph algorithms; Applied computing → Biological networks; Applied computing → Bioinformatics

Keywords and phrases Phylogenetics, Network, Orchard Networks, Proximity Measures, NP-
hardness

Digital Object Identifier 10.4230/LIPIcs.WABI.2023.7

Supplementary Material
Software (Source Code): https://github.com/estherjulien/OrchardProximity

archived at swh:1:dir:d80c03267ac6a1474c350655e337f1ae7de3f945

Funding Leo van Iersel: Research funded in part by Netherlands Organization for Scientific Research
(NWO) grants OCENW.KLEIN.125 and OCENW.GROOT.2019.015.
Mark Jones: Research funded by Netherlands Organization for Scientific Research (NWO) grant
OCENW.KLEIN.125.
Esther Julien: Research funded by Netherlands Organization for Scientific Research (NWO) grant
OCENW.GROOT.2019.015.

1 Introduction

Phylogenetic trees are used to represent the evolutionary history of species. While they
are effective for illustrating speciation events through vertical descent, they are insufficient
in representing more intricate evolutionary processes. Reticulate (net-like) events such as
hybridization and horizontal gene transfer (HGT) can give rise to signals that cannot be
represented on a single tree [9, 21]. In light of this, phylogenetic networks have gained
increasing attention due to their capability in elucidating reticulate evolutionary processes.

1 Corresponding author

© Leo van Iersel, Mark Jones, Esther Julien, and Yukihiro Murakami;
licensed under Creative Commons License CC-BY 4.0

23rd International Workshop on Algorithms in Bioinformatics (WABI 2023).
Editors: Djamal Belazzougui and Aïda Ouangraoua; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:L.J.J.vanIersel@tudelft.nl
https://orcid.org/0000-0001-7142-4706
mailto:M.E.L.Jones@tudelft.nl
mailto:E.A.T.Julien@tudelft.nl
https://orcid.org/0000-0002-7337-1086
mailto:Y.Murakami@tudelft.nl
https://orcid.org/0000-0003-1355-5884
https://doi.org/10.4230/LIPIcs.WABI.2023.7
https://github.com/estherjulien/OrchardProximity
https://archive.softwareheritage.org/swh:1:dir:d80c03267ac6a1474c350655e337f1ae7de3f945;origin=https://github.com/estherjulien/OrchardProximity;visit=swh:1:snp:47b7f25a54e92107d824811adcd379a8c23698c0;anchor=swh:1:rev:5f8c21f1aaaf2bb1d090d5a339de3b4e1abb1541
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Making a Network Orchard by Adding Leaves

AspTerreus

AspOryzae

AspFlavus

AspNiger

AspNigerCbs

AspNidulans

PenChrysogenumWisconsin

NeoFischeri

AspFumigatusA1163

AspFumigatusAf293

AspClavatus

unsampled taxon

Figure 1 A network on 11 different taxa (excluding unsampled taxon) of fungi including 5
reticulations, which is part of a larger network from [18]. The directed arcs in the figure are linking
arcs, which represent gene transfer highways. In order to make all linking arcs horizontal, we require
an additional leaf (unsampled taxon) to represent the evolutionary history. To see that the network
needs the leaf unsampled taxon in order to have only horizontal linking arcs, we refer the interested
reader to Appendix A.

Phylogenetic networks are often categorized into different classes based on their topological
features. These are often motivated computationally, but some classes are also defined based
on their biological relevance [16]. Classical examples of network classes involve the tree-child
networks [3] and the tree-based networks [8]. Roughly speaking, tree-child networks are
those where every vertex has passed on a gene via vertical descent to an extant species, and
tree-based networks are those obtainable from a tree by adding so-called linking arcs between
tree arcs. Recent developments have culminated in the introduction of orchard networks,
which lie – inclusion-wise – between the two aforementioned network classes [14, 4]. The class
has shown to be both algorithmically attractive and biologically relevant; they are defined as
networks that can be reduced to a single leaf by a series of so-called cherry-picking operations,
and they were shown to be networks that can be obtained by adding horizontal arcs to trees
(where the tree is drawn with the root at the top and arcs pointing downwards) [19]. Such
horizontal arcs can be used to model HGT events, making orchard networks especially apt
in representing evolutionary scenarios where every reticulate event is a horizontal transfer.
Orchard networks have also been characterized statically based on so-called cherry covers [20].

When considering a non-orchard network, a natural question arises: how many additional
leaves are required to transform the network into one that is orchard? From a biological
standpoint, this question can be interpreted as asking how many extinct species or unsampled
taxa need to be introduced into the network to yield a scenario where every reticulation
represents an HGT event. Given that HGT is the primary driver of reticulate evolution
in bacteria [10], this is an essential inquiry. We provide a network of a few fungi species
in Figure 1, which requires one additional leaf to make it orchard. Formally speaking, the
problem of computing this leaf addition measure is as follows.

LOR-Distance (Decision)
Input: A network N on a set of taxa X and a natural number k.
Decide: Can N be made orchard with at most k leaf additions?

In related research, the leaf addition measure has been investigated for other network
classes. It has been shown that tracking down the minimum leaf additions to make a network
tree-based can be done in polynomial time [7]. In the same paper, it was shown that the leaf
addition measure was equivalent to two other proximity measures, namely those based on
spanning trees and disjoint path partitions. The same question was posed for the unrooted

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:3

variant (where the arcs of the network are undirected), for which the problem turned out to
be NP-complete [5]. A total of eight proximity measures were introduced in this latter paper,
including those based on edge additions and rearrangement moves. Instead of considering leaf
additions, some manuscripts have even considered leaf deletions (in general, vertex deletions)
as proximity measures for the class of so-called edge-based networks [6]. Finally for orchard
networks, a recent bachelor’s thesis compared how the leaf addition proximity measure differs
in general to another proximity measure based on arc deletions [17].

In this paper, we show that the leaf addition proximity measure can be computed in
polynomial time for the class of tree-child networks, and we give a more efficient algorithm
for computing the measure for tree-based networks. We show that LOR-Distance is NP-
complete by a polynomial-time reduction from Degree-3 Vertex Cover. To model the
problem as a mixed integer linear program (MILP), we consider a reformulation of the leaf
addition measure in terms of vertex labellings. Orchard networks are known to be trees with
added horizontal arcs; roughly speaking, this means we can label the vertices of an orchard
network so that every vertex of indegree-2 has exactly one incoming arc whose end-vertices
have the same labels. The reformulated measure, called the vertical arcs proximity measure,
counts – over all possible vertex labellings (defined formally in Section 6.1) – the minimum
number of indegree-2 vertices with only non-horizontal incoming arcs. Our experimental
results are promising, as the real world cases are solved in a fraction of a second. Furthermore,
the model also scales well to larger synthetic data.

The structure of the paper is as follows. In Section 2, we provide all necessary definitions
and characterizations of orchard networks and tree-based networks. In Section 3, we formally
introduce the leaf addition measure for the classes of tree-child, orchard, and tree-based
networks. In Section 4 we show that LOR-Distance is NP-complete (Theorem 17). In
Section 5, we give a sharp upper bound for the leaf addition proximity measure. In Section 6
we give a reformulation of the leaf addition measure to describe the MILP to solve LOR-
Distance, and in Section 6.3, experimental results are shown for the MILP, applied to real
and simulated networks. In Section 7, we give a brief discussion of our results and discuss
potential future research directions. We include proofs for select results in Appendix A.

2 Preliminaries

A binary directed phylogenetic network on a non-empty set X is a directed acyclic graph with
a single root of indegree-0 and outdegree-1;
tree vertices of indegree-1 and outdegree-2;
reticulations of indegree-2 and outdegree-1;
leaves of indegree-1 and outdegree-0, that are labelled bijectively by elements of X.

For the sake of brevity, we shall refer to binary directed phylogenetic networks simply
as networks. Throughout the paper, assume that N is a network on some non-empty set X

where |X| = n, unless stated otherwise. Networks without reticulations are called trees. Tree
vertices and reticulations may sometimes collectively be referred to as internal vertices.

The arc uv of a network is a root arc if u is the root of the network. An arc uv of a
network is a reticulation arc if v is a reticulation, and a tree arc otherwise. We say that
a vertex u is a parent of another vertex v if uv is an arc of the network; in such instances
we call v a child of u. Also, we say that u and v are the tail and the head of the arc uv,
respectively. In other words, we may rewrite arcs as uv = tail(uv) head(uv). The neighbours
of v refer to the set of vertices that are parents or children of v. We also say that vertices u

and v are siblings if they share a parent.

WABI 2023

7:4 Making a Network Orchard by Adding Leaves

a b c d a c d a c d a d d

(a, b) (c, a) (c, d) (a, d)N

Figure 2 An example of an orchard network N that is reduced by a sequence (a, b)(c, a)(c, d)(a, d).
The network N contains a cherry (a, b) and a reticulated cherry (c, d). Subsequent networks are
those obtained by a single cherry picking reduction from the previous network. For example, the
second network N(a, b) is obtained from N by removing the leaf b and cleaning up. Note that the
network is also tree-child.

In what follows, we shall define graph operations based on vertex and arc deletions. To
make sure resulting graphs remain networks, we follow-up every graph operation with a
cleaning up process. Formally, we clean up a network by applying the following until none is
applicable.

Suppress an indegree-1 outdegree-1 vertex (e.g., if uv and vw are arcs where v is an
indegree-1 outdegree-1 vertex, we suppress v by deleting the vertex v and adding an
arc uw).
Replace parallel arcs by a single arc (e.g., if uv is an arc twice in a network, delete one of
the arcs uv).

We observe that deleting a tree arc and cleaning up results in a graph containing two
indegree-0 vertices. On the other hand, deleting a reticulation arc and cleaning up results in
a network. Therefore, we shall use arc deletions to mean reticulation arc deletions.

2.1 Tree-Child Networks

A network is tree-child if every non-leaf vertex has a child that is a tree vertex or a leaf. We
call an internal vertex of a network an omnian if all of its children are reticulations [15]. It
follows from definition that a network is tree-child if and only if it contains no omnians.

2.2 Orchard Networks

To define orchard networks, we must first define cherries and reticulated cherries, as well
as operations to reduce them. See Figure 2 for the illustration of the following definitions.
Let N be a network. Two leaves x and y of N form a cherry if they are siblings. In such
a case, we say that N contains a cherry (x, y) or a cherry (y, x). Two leaves x and y of N

form a reticulated cherry if the parent px of x is a reticulation and the parent of y is also a
parent of px. In such a case, we say that N contains a reticulated cherry (x, y). Reducing
the cherry (x, y) from N is the process of deleting the leaf x and cleaning up. Reducing the
reticulated cherry (x, y) from N is the process of deleting the arc from the parent of y to the
parent of x and cleaning up. In both cases, we use N(x, y) to denote the resulting network.

A network N is orchard if there is a sequence S = (x1, y1)(x2, y2) . . . (xk, yk) such that NS

is a network on a single leaf yk. It has been shown that the order in which (reticulated)
cherries are reduced does not matter [4, 14]. Apart from this recursive definition, orchard
networks have been characterized based on cherry covers (arc decompositions) [20] and vertex
labellings [19]. We include both characterizations here.

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:5

Cherry covers (see [20] for more details). A cherry shape is a subgraph on three dis-
tinct vertices x, y, p with arcs px and py. The internal vertex of a cherry shape is p, and
the endpoints are x and y. A reticulated cherry shape is a subgraph on four distinct ver-
tices x, y, px, py with arcs pxx, pypx, pyy, such that px is a reticulation in the network. The
internal vertices of a reticulated cherry shape are px and py, and the endpoints are x and y.
The middle arc of a reticulated cherry shape is pypx. We will often refer to cherry shapes
and the reticulated cherry shapes by their arcs (e.g., we would denote the above cherry
shape {pxx, pyy} and the reticulated cherry shape {pxx, pypx, pyy}). We say that an arc uv

is covered by a cherry or reticulated cherry shape B if uv ∈ B. A cherry cover of a binary
network is a set P of cherry shapes and reticulated cherry shapes, such that each arc except
for the root arc is covered exactly once by P . In general, a network can have more than one
cherry cover.

We define the cherry cover auxiliary graph G = (V, A) of a cherry cover as follows. For
all shapes B ∈ P , we have vB ∈ V . A shape B ∈ P is directly above another shape C ∈ P

if B and C contain a same vertex v, such that v is an endpoint of B and an internal vertex
of C. Then, vBvC ∈ A (adapted from [20, Definition 2.13]). We say that a cherry cover is
cyclic if its auxiliary graph has a cycle. We call it acyclic otherwise. See Figure 3 for an
illustration of a cyclic and acyclic cherry cover.

R1

R2

C

ba

(a) Network N1.

C

R1

R2

(b) Cherry cover
aux. graph of N1.

R1

C1

C2

R3

ba

c

(c) Network N2.

C1

R1

C2

R3

(d) Cherry cover aux.
graph of N2.

Figure 3 A cherry cover example. (a) A network N1 on {a, b} with a cherry cover {C, R1, R2}.
(b) The (cyclic) auxiliary graph of N1 based on the cherry cover of (a). (c) The network N2 obtained
from N1 by adding a leaf c, with a cherry cover {C1, C2, R1, R3} (d) The (acyclic) auxiliary graph
of N2 based on the cherry cover of (d).

▶ Theorem 1 (Theorem 4.3 of [20]). A network N is orchard if and only it has an acyclic
cherry cover.

Non-Temporal Labellings. Let N be a network with vertex set V (N). A non-temporal
labelling2 of N is a labelling t : V (N) → R such that

for all arcs uv, t(u) ≤ t(v) and equality is allowed only if v is a reticulation;
for each internal vertex u, there is a child v of u such that t(u) < t(v);
for each reticulation r with parents u and v, at most one of t(u) = t(r) or t(v) = t(r)
holds.

2 This is named in contrast to temporal representations of [1]. There, it was required for the endpoints of
every reticulation arc to have the same label.

WABI 2023

7:6 Making a Network Orchard by Adding Leaves

Observe that every network (orchard or not) admits a non-temporal labelling by labelling
each vertex by its longest distance from the root (assuming each arc is of weight 1).

Under non-temporal labellings, we call an arc horizontal if its endpoints have the same
label; we call an arc vertical otherwise. By definition, only reticulation arcs can be horizontal.
We say that a non-temporal labelling is an HGT-consistent labelling if every reticulation is
incident to exactly one incoming horizontal arc. We recall the following key result.

▶ Theorem 2 (Theorem 1 of [19]). A network is orchard if and only if it admits an HGT-
consistent labelling.

2.3 Tree-Based Networks

A network N is tree-based with base tree T if it can be obtained from T in the following
steps.
1. Replace some arcs of T by paths, whose internal vertices we call attachment points; each

attachment point is of indegree-1 and outdegree-1.
2. Place arcs between attachment points, called linking arcs, so that the graph contains no

vertices of total degree greater than 3, and so that it remains acyclic.
3. Clean up.

The relation between the classes of tree-child, orchard, and tree-based networks can be
stated as follows.

▶ Lemma 3 ([14] and Corollary 1 of [19]). If a network is tree-child, then it is orchard. If a
network is orchard, then it is tree-based.

We include here a static characterization of tree-based networks based on an arc partition,
called maximum zig-zag trails [11, 23]. Let N be a network. A zig-zag trail of length k is a
sequence (a1, a2, . . . , ak) of arcs where k ≥ 1, where either tail(ai) = tail(ai+1) or head(ai) =
head(ai+1) holds for i ∈ [k − 1] = {1, 2, . . . , k − 1}. We call a zig-zag trail Z maximal if there
is no zig-zag trail that contains Z as a subsequence. Depending on the nature of tail(a1)
and tail(ak), we have four possible maximal zig-zag trails.

Crowns: k ≥ 4 is even and tail(a1) = tail(ak) or head(a1) = head(ak).
M-fences: k ≥ 2 is even, it is not a crown, and tail(ai) is a tree vertex for every i ∈ [k].
N-fences: k ≥ 1 is odd and tail(a1) or tail(ak), but not both, is a reticulation. By
reordering the arcs, assume henceforth that tail(a1) is a reticulation and tail(ak) a tree
vertex.
W-fences: k ≥ 2 is even and both tail(a1) and tail(ak) are reticulations.

We call a set S of maximal zig-zag trails a zig-zag decomposition of N if the elements of S

partition all arcs, except for the root arc, of N .

▶ Lemma 4 (adapted from Corollary 4.6 of [11]). Let N be a network. Then N is tree-based
if and only if it has no W-fences.

▶ Theorem 5 (adapted from Theorem 4.2 of [11]). Any network N has a unique zig-zag
decomposition.

▶ Theorem 6 (adapted from Theorem 3.3 of [20]). Let N be a network. Then N is tree-based
if and only if it has a cherry cover.

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:7

3 Leaf Addition Proximity Measure

Let N be a network on X. Adding a leaf x /∈ X to an arc e of N is the process of adding a
labelled vertex x, subdividing the arc e by a vertex w (if e = uv then we delete the arc uv,
add the vertex w, and add arcs uw and wv), and adding an arc wx. We denote the resulting
network by N + (e, x). When the arc e in the above is irrelevant or clear, we simply call this
process adding a leaf x to N , and denote the resulting network by N + x.

In this section, C will be used to denote a network class. In particular, we shall use T C, OR,
and T B to denote the classes of tree-child networks, orchard networks, and tree-based
networks, respectively. Let LC(N) denote the minimum number of leaf additions required to
make the network N a member of C. We first show that computing LT C(N) and LT B(N)
can be done in polynomial time.

▶ Lemma 7. Let N be a network. Then LT C(N) is equal to the number of omnians.
Moreover, N can be made tree-child by adding a leaf to exactly one outgoing arc of each
omnian.

▶ Lemma 8. Let N be a network. Then LT C(N) can be computed in O(|N |) time.

It has been shown already that LT B(N) can be computed in O(|N |3/2) time where |N | is
the number of vertices in N [7]. We show that this can in fact be computed in O(|N |) time.

▶ Lemma 9. Let N be a network. Then LT B(N) is equal to the number of W -fences.
Moreover, N is tree-based by adding a leaf to any arc in each W -fence in N .

▶ Lemma 10. Let N be a network. Then LT B(N) can be computed in O(|N |) time.

Interestingly, computing LOR(N) proves to be a difficult problem, although the leaf
addition proximity measure is easy to compute for its neighbouring network classes. We
prove the following in Section 4.

▶ Theorem 17. Let N be a network. Computing LOR(N) is NP-hard.

We also include the following theorem which states that when considering leaf addition
proximity measures for orchard networks, it suffices to consider leaf additions to reticulation
arcs. We shall henceforth assume that all leaf additions are on reticulation arcs.

▶ Theorem 11 (Theorem 4.1 of [17]). A network N is orchard if and only if the network
obtained by adding a leaf to a tree arc of N is orchard.

The rest of the paper will now focus on the problem of computing LOR(N).

4 Hardness Proof

In this section, we show that computing LOR(N) is NP-hard by reducing from degree-3
vertex cover.

Degree-3 Vertex Cover (Decision)
Input: A 3-regular graph G = (V, E) and a natural number k.
Decide: Does G have a vertex cover with at most k vertices?

LOR-Distance (Decision)
Input: A network N on a set of taxa X and a natural number k.
Decide: Can N be made orchard with at most k leaf additions?

WABI 2023

7:8 Making a Network Orchard by Adding Leaves

rv1 rv2 rv3 rv4 rv5 rv7

`v1

wv
1

rv6

rv0

ρv

mv
1

mv
2

mv
3

ρu

ρ

ρs
mv

4

ru1 ru2 ru3 ru4 ru5 ru7ru6

ru0`v2 `v3 `v4

`v5

wv
2 wv

3 wv
4 wv

5 wv
6 wv

7

`u5

`u1 `u2 `u3 `u4

wu
1 wu

2 wu
3 wu

4 wu
5 wu

6 wu
7

Figure 4 Sketch of the network NG for the case when G contains an edge uv.

We now describe the reduction from Degree-3 Vertex Cover to LOR-Distance. For a
graph G, let V (G) and E(G) be its vertex and edge sets, respectively. Given an instance (G, k)
of Degree-3 Vertex Cover, construct an instance (NG, k) of LOR-Distance as follows
(see Figure 4):
1. For each vertex v in V (G), construct a gadget Gad(v) as described below. In what follows,

vertices of the form ℓv
i are leaves, vertices rv

i are reticulations, and vertices wv
i , mv

i and
ρv are tree vertices.
The key structure in Gad(v) is an N-fence with 15 arcs, starting with the arc rv

0rv
1 ,

then followed by arcs of the form wv
i rv

i , wv
i rv

i+1 for each i ∈ [6], and finally the arcs
wv

7rv
7 , wv

7ℓv
5. This set of arcs, in bold type, is called the principal part of Gad(v). In

addition,the reticulations rv
1 , rv

2 , rv
3 , rv

4 have leaf children ℓv
1, ℓv

2, ℓv
3, ℓv

4 respectively.
Above the principal part of Gad(v), add a set of tree vertices mv

1, mv
2, mv

3, mv
4, ρv with

the following children: mv
1 has children rv

0 and wv
4 , mv

2 has children mv
1 and wv

5 , mv
3 has

children mv
2 and wv

6 , mv
4 has children mv

3 and rv
0 , and ρv has children mv

4 and wv
7 (see

Figure 4).
This completes the construction of Gad(v). Note that so far, the vertices wv

1 , wv
2 , wv

3 have
no incoming arcs, and rv

5 , rv
6 , rv

7 have no outgoing arcs. Such arcs will be added later to
connect different gadgets together.

2. Connect the vertices ρv from each Gad(v) as follows: take some ordering of the ver-
tices {v1, . . . , vg} of G. Add a vertex ρ and vertices si for i ∈ [g − 1]. Add arcs ρs1 and
also arcs from the set {sisi+1 : i ∈ [g −2]}, as well as arcs from the set {siρ

vi : i ∈ [g −1]},
and finally an arc sg−1ρvg .

3. Next add arcs between the gadgets corresponding to adjacent vertices in G, in the
following way: for every pair of adjacent vertices u, v in G, add an arc connecting one
of the vertices ru

5 , ru
6 , ru

7 in Gad(u) to one of the vertices wv
1 , wv

2 , wv
3 in Gad(v) (and,

symmetrically, an arc connecting one of rv
5 , rv

6 , rv
7 to one of wu

1 , wu
2 , wu

3). The exact choice

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:9

of vertices connected by an arc does not matter, except that we should ensure each vertex
is used by such an arc exactly once. Formally: for each vertex v in G with neighbours
a, b, c, fix two (arbitrary) mappings πv : {a, b, c} → {1, 2, 3} and τv : {a, b, c} → {5, 6, 7}.
Then for each pair of adjacent vertices u, v in G, add an arc from ru

τu(v) to wv
πv(u) (and,

symmetrically, add an arc from rv
τv(u) to wu

πu(v)).
4. Finally, for each vertex v in G, label the vertices {ℓv

i : i ∈ [5]} in Gad(v) by ℓv
i .

Call the resulting graph NG; it is easy to see that NG is directed and acyclic with a single
root ρ. Therefore it is a network on the leaf-set {ℓv

i : i ∈ [5], v ∈ V (G)}. As the arcs of NG

are decomposed into M-fences and N-fences, we have the following observation.

▶ Observation 12. Let G be a 3-regular graph and let NG be the network obtained by the
reduction. Then NG is tree-based.

By Observation 12 and Theorem 6, we use freely from now on that NG has a cherry cover.
Before proving the main result, we require some notation and helper lemmas. Let N be a
network and let N̂i be an N-fence of N . In what follows, we shall write N̂i := (ai

1, ai
2, . . . , ai

ki
),

and we will let ci
2j−1 denote the child of head(ai

2j−1) for j ∈
[

ki−1
2

]
. The first lemma states

that although a tree-based network may have non-unique cherry covers, the reticulated cherry
shapes that cover arcs of N-fences are fixed.

▶ Lemma 13. Let N be a tree-based network, and let N̂1, N̂2, . . . , N̂n denote the N-fences
of N of length at least 3. Then every cherry cover of N contains the reticulated cherry
shapes {(head(ai

2j−1)ci
2j−1), ai

2j , ai
2j+1} for i ∈ [n] and j ∈

[
ki−1

2
]
.

Note that the principal part of a gadget Gad(v) for every v ∈ V (G) is an N-fence. Let
us denote the principal part of a gadget Gad(v) by (av

1, av
2, . . . , av

15) for all v ∈ V (G). By
Lemma 13, av

i for i = 2, . . . , 15 and v ∈ E(G) are covered in the same manner across all
possible cherry covers of NG. Let us denote the reticulated cherry shape that contains av

i

and av
i+1 by Rv

i/2 for even i ∈ [15]. Figures 5a and 5b show an example of the part of cherry
cover auxiliary graph containing Rv

i and Ru
i for i ∈ [7], for some edge uv in G. Note that

the cherry shapes form a cycle. The next lemma implies that in fact, such a cycle exists for
any edge uv in G.

▶ Lemma 14. Let N be a tree-based network and suppose that for two N-fences N̂u :=
(au

1 , au
2 , . . . , au

ku
) and N̂v := (av

1, av
2, . . . , av

kv
) of length at least 3, there exist directed paths in

N from head(au
h) to tail(av

i) and from head(av
j) to tail(au

k), for even h, i, j, k with k < h and
i < j. Then every cherry cover auxiliary graph of N contains a cycle.

In order to remove all possible cycles from a possible cherry cover, it is therefore necessary
to disrupt the principal part of either Gad(u) or Gad(v), for any edge uv in G.

▶ Lemma 15. Let G be a 3-regular graph and let NG be the network obtained by the reduction
above. Suppose that A is a set of arcs of NG, for which adding leaves to every arc in A

results in an orchard network. For every edge uv ∈ E(G), there exists an arc a ∈ A that is
an arc of the principal part of Gad(u) or Gad(v).

To complete the proof of the validity of the reduction, we show that in order to make NG

orchard by leaf additions, it is sufficient (and necessary) to add a leaf zv to an appropriate
arc of Gad(v) for every v in a vertex cover Vsol of G (see Figure 5c). The key idea is that
this splits the principal part of Gad(v) from an N-fence into an N-fence and an M-fence, and
this allows us to avoid the cycle in the cherry cover auxiliary graph (see Figure 5d).

WABI 2023

7:10 Making a Network Orchard by Adding Leaves

ℓv1

Rv
1 Rv

2 Rv
3 Rv

4 Rv
5

Rv
6

Rv
7

Ru
1 Ru

2 Ru
3 Ru

4 Ru
5 Ru

7

Ru
6

ℓv2 ℓv3 ℓv4

ℓv5

ℓu1 ℓu2 ℓu3 ℓu4

ℓu5

(a)

Rv
1

Rv
2

Rv
3

Ru
6

Rv
4

Rv
5 Rv

6

Rv
7

Ru
2

Ru
1

Ru
3

Ru
4

Ru
5

Ru
7

(b)

ℓv1

Rv
1 Rv

2 Rv
3 Cv Rv

5

Rv
6

Rv
7

Ru
1 Ru

2 Ru
3 Ru

4 Ru
5 Ru

7

Ru
6

zRv
4

ℓv2 ℓv3 ℓv4

ℓv5

ℓu1 ℓu2 ℓu3 ℓu4

ℓu5

(c)

Rv
1

Rv
2

Rv
3

Ru
6

Rv
4

Rv
5 Rv

6

Rv
7

Ru
2

Ru
1

Ru
3

Ru
4

Ru
5

Ru
7

Cv

(d)

Figure 5 Cherry cover of Gad(v) and Gad(u). In (a), the unique cherry cover of the principal
part of Gad(v) and Gad(u) is displayed, in (b), the cherry cover auxiliary graph of (a) is given. In
(c), the leaf z /∈ X is added to the principal part of Gad(v), and one possible cherry cover of the
same part of the network is given. And in (d), the cherry cover auxiliary graph of (c) is given.

▶ Lemma 16. Let G be a 3-regular graph and let NG be the network obtained by the reduction
described above. Then G has a minimum vertex cover of size k if and only if LOR(NG) = k.

▶ Theorem 17. Let N be a network. The decision problem LOR-Distance is NP-complete.
Computing LOR(N) is NP-hard.

Proof. Suppose we are given a set of arcs Asol of NG of size at most k. Upon adding leaves
to every arc in Asol, we may check that the resulting network is orchard in polynomial
time (see Section 6 of [14]). This implies that LOR-Distance is in NP. The reduction from
Degree-3 Vertex Cover to LOR-Distance outlined at the start of the section takes
polynomial time, since we add a constant number of vertices and arcs for every vertex in
the Degree-3 Vertex Cover instance. The NP-completeness of LOR-Distance follows
from the equivalence of the two problems shown by Lemma 16. The optimization problem of
LOR-Distance, i.e., the one of computing LOR(N) is therefore NP-hard. ◀

5 Upper Bound

In the previous section we showed that computing LOR(N) is NP-hard. Here, we provide
a sharp upper bound for LOR(N). We call a reticulation highest if it has no reticulation
ancestors.

▶ Lemma 18. Let N be a network. Suppose there is a highest reticulation r such that all
other reticulations have a leaf sibling. Then N is orchard.

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:11

a b

Figure 6 A network N on two leaves {a, b} with r(N) = 5 reticulations. Observe that LOR(N) =
r(N) − 1 = 4, since the highest reticulation cannot be reduced by cherry picking unless the
reticulations below it are first reduced. For each non-highest reticulation, we must add a leaf to one
of its incoming arcs to reduce it, which leads to LOR(N) = 4. Note that this construction can be
extended for any k reticulations.

Proof. We prove the lemma by induction on the number of reticulations k. For the base
case, observe that a network with one reticulation is tree-child since it has no omnians. A
tree-child network is orchard [14], and so this network must be orchard.

Suppose now that we have proven the lemma for all networks with fewer than k reticula-
tions, where k > 1. Let N be a network with reticulation set R where |R| = k, and suppose
there exists a highest reticulation r in N such that all other reticulations have a leaf sibling.
Let r denote the highest reticulation as specified in the statement of the lemma. Choose a
lowest reticulation r′ ∈ R \ {r}. By assumption, r′ has a leaf sibling c. Every vertex below r′

must be tree vertices and leaves. Reduce cherries until the child x of r′ is a leaf. Then (x, c)
is a reticulated cherry; the network N ′ obtained by reducing this reticulated cherry has k − 1
reticulations and has a highest reticulation r such that all other reticulations have a leaf
sibling. By induction hypothesis, N ′ must be orchard. Since a sequence of cherry reductions
can be applied to N to obtain N ′, the network N must also be orchard. ◀

▶ Theorem 19. Let N be a network, and let r(N) denote the number of reticulations.
Then LOR(N) = 0 if N is a tree, and otherwise, LOR(N) ≤ r(N) − 1, where the bound is
sharp.

Proof. If N is a tree, then it is orchard, and so LOR(N) = 0. So suppose r(N) > 0. Let
r be a highest reticulation of N , and for every other reticulation, arbitrarily choose one
incoming reticulation arc. Add a leaf to each of these reticulation arcs. By Lemma 18, the
resulting network must be orchard. We have added a leaf for all but one reticulation in N .
It follows that LOR(N) ≤ r(N) − 1. The network in Figure 6 shows that this upper bound
is sharp. ◀

6 MILP Formulation

To model the problem of computing the leaf addition proximity measure as a MILP, we
reformulate the measure in terms of non-temporal labellings.

WABI 2023

7:12 Making a Network Orchard by Adding Leaves

6.1 Vertical Arcs into Reticulations
By Theorem 2, every orchard network can be viewed as a network with a base tree where
each of the linking arcs are horizontal. Recall that in terms of non-temporal labellings,
this means that there exists a labelling wherein every reticulation has exactly one incoming
reticulation arc that is horizontal. Following this definition, we introduce a second orchard
proximity measure. Given a non-temporal labelling for a network N , let us use inrets to refer
to reticulations of N with only vertical incoming arcs. Let VOR(N) denote the minimum
number of inrets over all possible non-temporal labellings.

▶ Observation 20. Let N be a network. A network admits an HGT-consistent labelling if
and only if VOR(N) = 0. In other words, a network is orchard if and only if VOR(N) = 0.

In particular, we show a stronger result that equates the two proximity measures.

▶ Lemma 21. Let N be a network. Then LOR(N) = VOR(N).

Proof. Suppose first that we have a network N with some non-temporal labelling t : V (N) →
R which gives rise to h inrets. For every inret r with parents u and v, we add a leaf x to the
arc ur (this addition is done without loss of generality; the argument also follows by adding
the leaf to vr). Since r is an inret, we must have t(u) < t(r) and t(v) < t(r). Letting px

denote the parent of x, we label t(px) := t(r) and t(x) := t(px) + 1. This ensures that the
extension of the map t that includes x and px is a non-temporal labelling for N + x. Observe
that r is no longer an inret in N +x, since the arc pxr is horizontal. Therefore, a leaf addition
to an incoming arc of an inret can reduce the number of inrets by exactly one. By repeating
this procedure for every inret, it follows that LOR(N) ≤ VOR(N).

To show the other direction, suppose we can add ℓ leaves to N to make it orchard. By
Theorem 11, we may assume all such leaves are added to reticulation arcs in the set {e1, . . . , eℓ}.
The resulting network N ′ has an HGT-consistent labelling t : V (N ′) → R by Theorem 2.

We claim that the labelling t|V (N) restricted to N is a non-temporal labelling, and that
under t|V (N), the number of inrets is at most ℓ. Suppose that a leaf xi was added to the
reticulation arc ei = uiri. Let pi denote the parent of xi in the network N ′. By definition
of HGT-consistent labellings, we must have that t(ui) < t(ri), since uipiri is a path in N ′.
Therefore, restricting the labelling to the network obtained from N ′ by removing the leaf xi

is non-temporal. Furthermore, if vi is the parent of ri that is not ui, we have that one
of viri or piri must be horizontal in N ′. If viri was horizontal, then ri still has a horizontal
incoming arc upon removing xi, and the number of inrets does not change. On the other
hand, if piri was horizontal, then viri must have been a vertical arc. Upon deleting xi, the
reticulation ri becomes an inret as its other incoming arc uiri is also vertical. Since leaf
deletions are local operations, deleting a leaf increases the number of inrets by at most one.
By repeating this for each reticulation arc ei for i ∈ [ℓ], it follows that N contains at most ℓ

inrets, and therefore VOR(N) ≤ LOR(N). ◀

6.2 MILP Formulation
By Lemma 21 we have that LOR(N) = VOR(N). In this section, we introduce a MILP
formulation to obtain VOR(N), and therefore also LOR(N). This is done by searching for a
non-temporal labelling of networks in which the number of vertical arcs is minimized.

Let N be a given network with vertex set V and arc set A. Let R denote the set of
reticulations of N . We define the decision variable lv to be the non-temporal label of the
vertex v ∈ V . A tree arc and a vertical linking arc uv have the property that lu < lv. We

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:13

define xa to be one if arc a ∈ A is vertical and zero otherwise. We define hv to be one if
v ∈ R is a reticulation with only incoming vertical arcs and zero otherwise. Let v ∈ V be a
vertex of N . In what follows, let Pv ⊂ V be the set of parent nodes of v, Cv ⊂ V the set
of children nodes of v, and X the set of leaves. Let ρ be the root of N . Then, the MILP
formulation is as follows:

min
x,h,l

∑
v∈R

hv

s.t.
∑

u∈Pv

xuv − 1 ≤ hv ∀v ∈ R (1)

∑
v∈Cu

xuv ≥ 1 ∀u ∈ V \ X (2)

∑
u∈Pv

xuv ≥ 1 ∀v ∈ V \ {ρ} (3)

lu ≤ lv ∀uv ∈ A (4)
lu ≤ lv − 1 ∀v ∈ V \ R, ∀u ∈ Pv (5)
lu ≤ lv − 1 + |V |(1 − xuv) ∀v ∈ R, ∀u ∈ Pv (6)
lu ≥ lv − |V |xuv ∀v ∈ R, ∀u ∈ Pv (7)
xa ∈ {0, 1} ∀a ∈ A

hv ∈ {0, 1} ∀v ∈ R

lv ∈ R+ ∀v ∈ V

With constraint (1), hv becomes one if all incoming arcs of reticulation v are vertical.
With (2) we have that all vertices must have at least one outgoing vertical arc. Then, (3)
guarantees that each reticulation has at least one incoming vertical arc. Constraint (4)
creates the non-temporal labelling in the network, where with (5) the label of u is strictly
smaller than that of v if v is not a reticulation. Then, (6) sets xuv to one if uv is vertical, for
all reticulation vertices v. Finally, with (7) the labels of u and v become equal if xuv is zero.

6.3 Experimental Results
In this section, we apply the MILP described in the previous section to a set of real binary
networks and to simulated networks, in order to assess the practical running time. The
code for these experiments is written in Python and is available at https://github.com/
estherjulien/OrchardProximity. All experiments ran on an Intel Core i7 CPU @ 1.8 GHz
with 16 GB RAM. For solving the MILP problems, we use the open-source solver SCIP [2].

The real data set consists of different binary networks found in a number of papers,
collected on http://phylnet.univ-mlv.fr/recophync/networkDraw.php. These networks
have a leaf set of size up to 39 and a number of reticulations up to 9, with one outlier that
has 32 reticulations. All the binary instances completed within one second (at most 0.072
seconds). Based on the results, we observe that only two out of the 22 binary networks
have a value of LOR(N) > 0, thus, that only two are non-orchard. The most interesting of
these is the network from [18] since its reticulations represent HGT highways. Even though
each highway represents many gene transfers, it is still natural to expect these highways
to be horizontal. However, our experimental results show that this network is not orchard
(see Appendix A for mathematical arguments) and that its LOR distance is 1. The most
interesting part of this network is redrawn in Figure 1, where we also indicate a way to draw

WABI 2023

https://github.com/estherjulien/OrchardProximity
https://github.com/estherjulien/OrchardProximity
http://phylnet.univ-mlv.fr/recophync/networkDraw.php

7:14 Making a Network Orchard by Adding Leaves

5 10 20 30 40 50 100 200
Number of reticulations in N

0

500

1000

1500

2000

2500

3000

3500
R

un
tim

e
(s

)

5 10 20 30 40 50 100 200
Number of reticulations in N

0

10

20

30

40

50

60

L O
R
(N

)

(a)

R Compl. (%)

5 100.0
10 99.2
20 98.8
30 98.0
40 97.2
50 97.6
100 75.6
200 61.6

(b)

Figure 7 Results of simulated networks. (a) Box plots for the runtime results (blue plot) and the
LOR(N) solutions (red plot) per number of reticulations of simulated networks N . The box plots
are drawn with respect to the median of the runtime and the leaf addition score. (b) A table with
the percentage of instances that were solved within the one-hour time limit. In the plots of (a), we
also included instances that did not complete within the one-hour time limit. For these instances,
we set their runtime to one hour.

it as a tree with horizontal linking arcs, after adding a single leaf. This added leaf represents
a hypothesised missing taxon. In general, the LOR(N) value gives a lower bound on the
number of missing taxa that needs to be added to a network to make it HGT-consistent.

The simulated data is generated using the birth-hybridization network generator of [22],
which can generate all binary network topologies [13]. Hence, even though it uses a model
with hybridization to construct networks, it can also generate, for example, networks where
reticulations represent HGT. This generator has two user-defined parameters: λ, which
regulates the speciation rate, and ν, which regulates the hybridization rate. Following [13]
we set λ = 1 and we sampled ν ∈ [0.0001, 0.4] uniformly at random. We generated
an instance group of size 50 for each pair of values (L, R), with the number of leaves
L ∈ {20, 50, 100, 150, 200} and the number of reticulations R ∈ {5, 10, 20, 30, 40, 50, 100, 200}.
In our implementation, we only defined variables xa for incoming reticulation arcs. Therefore,
the number of binary variables only depends on the number of reticulations in the network.
In Figure 7a, the runtime and LOR(N) value results for the simulated instances are shown
against the reticulation number of the networks. The time limit was set to one hour. We can
observe from these results that for networks with up to 50 reticulations, almost all instances
are solved to optimality within a second. Then for R = 100, 200 the runtime increases,
mainly because only 75.6% and 61.6% of the instances could be solved within the time limit,
respectively (see Figure 7b). The completed instances are often still solved within reasonable
time.

7 Discussion

In this paper we investigated the minimum number of leaf additions needed to make a network
orchard, as a way to measure the extent to which a network deviates from being orchard. We
showed that computing this measure is NP-hard (Theorem 17), and give a sharp upper bound
by the number of reticulations minus one (Theorem 19). The measure was reformulated to

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:15

one in terms of minimizing the number of inrets over all possible non-temporal labellings. In
Section 6 we use this reformulation to model the problem of computing the leaf addition
measure as a MILP. Experimental results show that real-world data instances were solved
within a second and the formulation worked well also over synthetic instances, being able to
solve almost all instances up to 50 reticulations and 200 leaves within one second. For bigger
instances the runtime however increased.

In this paper we have simulated networks using the network generator of [22] in order
to analyse the running time of our MILP. Alternatively, one could simulate networks by
generating orchard networks and deleting leaves from them. Since the leaf addition score
is finite for any network by Theorem 19, it is possible to obtain any network by using this
method. The leaf addition score gives a lower bound on the number of leaves that must be
added to make the network orchard. The actual number of missing leaves could be larger,
but this value cannot be estimated from the leaf-deleted network.

Of interest is how these results can potentially be used in practice. As mentioned in
Section 1, one can consider a scenario in which it is suspected a priori that species under
consideration evolve under a network in which all reticulate events are horizontal. An example
of such scenarios can be seen for horizontal gene transfers, for instance when one considers
the evolutionary history of species in bacteria [10] and fungi [18]. If a produced network does
not admit an HGT-consistent labelling, there can in general be many reasons. For one, the
output network may not be accurate. It is also possible that certain species have gone extinct,
or that undersampling is present in the taxon set. In these latter two potential causes, our
method gives a way of quantifying the minimum number of taxa that may have gone extinct
/ been undersampled. Moreover, it can be used to find all optimal corresponding orchard
networks with added leaves. This could, for example, be used to try to identify the missing
taxa.

Our NP-hardness result is interesting when comparing it to the computational complexity
of the corresponding problem for different network classes. The problem of finding the
minimum number of leaves to add to make a network tree-based can be solved in polynomial
time [7] (Lemma 10) and we showed that the same is true for the class of tree-child networks
(Lemma 8). Interestingly, the class of tree-child networks is contained in the class of orchard
networks [14] which is in turn contained in the class of tree-based networks [12]. The reason
for such an NP-hardness sandwich can perhaps be attributed to the lack of forbidden shapes.
Leaf additions to obtain tree-child or tree-based networks target certain forbidden shapes in
the network. In the case of tree-child networks, we add a leaf to exactly one outgoing arc
of each omnian; for tree-based networks, we add a leaf to exactly one arc of each W-fence.
The problem of finding a characterization of orchard networks in terms of (local) forbidden
shapes has been elusive thus far [14] - perhaps the NP-hardness result for the orchard variant
of the problem indicates that finding such a characterization for orchard networks may not
be possible.

One can also consider the leaf addition problem for non-binary networks. Non-binary
networks generalize the networks considered in this paper by allowing vertices to have varying
indegrees and outdegrees. This generalized problem remains NP-complete since the binary
version is a specific case. It could be interesting to try to find an MILP formulation for the
nonbinary version.

Another natural research direction is to consider different proximity measures. One that
may be of particular interest is a proximity measure based on arc deletions. That is, what is
the minimum number of reticulate arc deletions needed to make a network orchard? Susanna
showed that this measure is incomparable to the leaf addition proximity measure [17], yet it
is not known if it is also NP-hard to compute.

WABI 2023

7:16 Making a Network Orchard by Adding Leaves

References
1 Mihaela Baroni, Charles Semple, and Mike Steel. Hybrids in real time. Systematic biology,

55(1):46–56, 2006.
2 Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz,

Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Le-
ona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny,
Rolf van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Mat-
ter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein,
Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vi-
gerske, Fabian Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. The
SCIP Optimization Suite 8.0. Technical report, Optimization Online, December 2021. URL:
http://www.optimization-online.org/DB_HTML/2021/12/8728.html.

3 Gabriel Cardona, Francesc Rosselló, and Gabriel Valiente. Comparison of tree-child phylo-
genetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
6(4):552–569, 2008.

4 Péter L Erdős, Charles Semple, and Mike Steel. A class of phylogenetic networks reconstructable
from ancestral profiles. Mathematical biosciences, 313:33–40, 2019.

5 Mareike Fischer and Andrew Francis. How tree-based is my network? Proximity measures for
unrooted phylogenetic networks. Discrete Applied Mathematics, 283:98–114, 2020.

6 Mareike Fischer, Tom Niklas Hamann, and Kristina Wicke. How far is my network from being
edge-based? Proximity measures for edge-basedness of unrooted phylogenetic networks. arXiv
preprint, 2022. arXiv:2207.01370.

7 Andrew Francis, Charles Semple, and Mike Steel. New characterisations of tree-based networks
and proximity measures. Advances in Applied Mathematics, 93:93–107, 2018.

8 Andrew R Francis and Mike Steel. Which phylogenetic networks are merely trees with
additional arcs? Systematic biology, 64(5):768–777, 2015.

9 Benjamin E Goulet, Federico Roda, and Robin Hopkins. Hybridization in plants: old ideas,
new techniques. Plant physiology, 173(1):65–78, 2017.

10 Carlton Gyles and Patrick Boerlin. Horizontally transferred genetic elements and their role in
pathogenesis of bacterial disease. Veterinary pathology, 51(2):328–340, 2014.

11 Momoko Hayamizu. A structure theorem for rooted binary phylogenetic networks and its
implications for tree-based networks. SIAM Journal on Discrete Mathematics, 35(4):2490–2516,
2021.

12 Katharina T Huber, Leo van Iersel, Remie Janssen, Mark Jones, Vincent Moulton, Yukihiro
Murakami, and Charles Semple. Orienting undirected phylogenetic networks. arXiv preprint,
2019. arXiv:1906.07430.

13 Remie Janssen and Pengyu Liu. Comparing the topology of phylogenetic network generators.
Journal of Bioinformatics and Computational Biology, 19(06):2140012, 2021.

14 Remie Janssen and Yukihiro Murakami. On cherry-picking and network containment. Theor-
etical Computer Science, 856:121–150, 2021.

15 Laura Jetten and Leo van Iersel. Nonbinary tree-based phylogenetic networks. IEEE/ACM
transactions on computational biology and bioinformatics, 15(1):205–217, 2016.

16 Fabio Pardi and Celine Scornavacca. Reconstructible phylogenetic networks: do not distinguish
the indistinguishable. PLoS computational biology, 11(4):e1004135, 2015.

17 Merel Susanna. Making phylogenetic networks orchard: Algorithms to determine if a
phylogenetic network is orchard and to transform non-orchard to orchard networks. Bach-
elor’s thesis, Delft University of Technology, 2022. http://resolver.tudelft.nl/uuid:
724ac2af-e569-4586-b367-288fef890252.

18 Gergely J Szöllősi, Adrián Arellano Davín, Eric Tannier, Vincent Daubin, and Bastien Boussau.
Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Philosophical
Transactions of the Royal Society B: Biological Sciences, 370(1678):20140335, 2015.

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://arxiv.org/abs/2207.01370
https://arxiv.org/abs/1906.07430
http://resolver.tudelft.nl/uuid:724ac2af-e569-4586-b367-288fef890252
http://resolver.tudelft.nl/uuid:724ac2af-e569-4586-b367-288fef890252

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:17

19 Leo van Iersel, Remie Janssen, Mark Jones, and Yukihiro Murakami. Orchard networks are
trees with additional horizontal arcs. Bulletin of Mathematical Biology, 84(8):1–21, 2022.

20 Leo van Iersel, Remie Janssen, Mark Jones, Yukihiro Murakami, and Norbert Zeh. A unifying
characterization of tree-based networks and orchard networks using cherry covers. Advances
in Applied Mathematics, 129:102222, 2021.

21 David A Wickell and Fay-Wei Li. On the evolutionary significance of horizontal gene transfers
in plants. New Phytologist, 225(1):113–117, 2020.

22 Chi Zhang, Huw A Ogilvie, Alexei J Drummond, and Tanja Stadler. Bayesian inference of
species networks from multilocus sequence data. Molecular biology and evolution, 35(2):504–517,
2018.

23 Louxin Zhang. On tree-based phylogenetic networks. Journal of Computational Biology,
23(7):553–565, 2016.

A Appendix

AspTerreus

AspOryzae

AspFlavus

AspNiger

AspNigerCbs

AspNidulans

PenChrysogenumWisconsin

NeoFischeri

AspFumigatusA1163

AspFumigatusAf293

AspClavatus

Figure 8 The network of Figure 1 without the added leaf. Observe that there exists no HGT-
consistent labelling for the network, by the arguments provided in Remark 22.

▶ Remark 22. We first elaborate on why we need an added leaf (unsampled taxon) in the
network of Figure 1 to ensure that the network admits an HGT-consistent labelling. We
know that a network has an HGT-consistent labelling if and only if it is orchard (Theorem 2).
Let N be the network without unsampled taxon (see Figure 8). We will show that N is
not orchard. To see this, note that the order in which cherries and reticulated cherries are
reduced does not matter [14]. This means that if N were orchard, then there would exist a
cherry picking sequence starting with

(AspNidulans, P enChrysogenumW isconsin)(P enChrysogenumW isconsin, AspNidulans).

After reducing these cherries, the distance between the leaf AspNidulans and any other leaf
remains of distance at least 4, regardless of other reductions that take place in the network.
This shows that the network cannot be orchard, and therefore the network cannot have an
HGT-consistent labelling.

▶ Lemma 7. Let N be a network. Then LT C(N) is equal to the number of omnians.
Moreover, N can be made tree-child by adding a leaf to exactly one outgoing arc of each
omnian.

Proof. By definition, a network is tree-child if and only if it contains no omnians. We show
that every leaf addition can result in a network with one omnian fewer than that of the
original network. Let uv be an arc where u is an omnian. Add a leaf x to uv. In the

WABI 2023

7:18 Making a Network Orchard by Adding Leaves

resulting network, u has a child (the parent of x) that is a tree vertex, and it is no longer
an omnian. The newly added tree vertex has a leaf child x; the parent-child combinations
remain unchanged for the rest of the network, so at most one omnian (in this case u) can
be removed per leaf addition. It follows that LT C(N) is at least the number of omnians
in N . By targeting arcs with omnian tails, we can remove at least one omnian per every
leaf addition, so that LT C(N) is at most the number of omnians in N . Therefore, LT C(N) is
exactly the number of omnians in N . ◀

▶ Lemma 8. Let N be a network. Then LT C(N) can be computed in O(|N |) time.

Proof. We first show that the number of omnians of N can be computed in O(|N |) time, by
checking, for each vertex, the indegrees of its children. A vertex is an omnian if and only
if all of its children are of indegree-2. Since the degree of every vertex is at most 3, each
search within the for loop takes constant time. The for loop iterates over the vertex set
which is of size O(N). By Lemma 7, since LT C(N) is the number of omnians in N , we can
compute LT C(N) in O(|N |) time. ◀

It has been shown already that LT B(N) can be computed in O(|N |3/2) time where |N | is
the number of vertices in N [7]. We show that this can in fact be computed in O(|N |) time.

▶ Lemma 9. Let N be a network. Then LT B(N) is equal to the number of W -fences.
Moreover, N can be made tree-based by adding a leaf to any arc in each W -fence in N .

Proof. By Lemma 4, a network is tree-based if and only if it contains no W-fences. We
show that every leaf addition can result in a network with one W-fence fewer than that
of the original network. Suppose that N contains at least one W-fence. Otherwise we
may conclude that the network is tree-based by Lemma 4. Let (a1, a2, . . . , ak) be a W-
fence in N where ai = uivi for i ∈ [k], and add a leaf x to a1; let px be the tree vertex
parent of x. In the resulting network, the arcs in {u1px, pxv1, pxx, a2, a3, a4, . . . , ak} are
decomposed into their unique maximal zig-zag trails (Theorem 5) as two N-fences (u1px)
and (ak, ak−1, . . . , a3, a2, pxv1, pxx). All other arcs remain in the same maximal zig-zag trails
as that of N . Therefore the number of W-fences has gone down by exactly one. This can be
repeated for all W-fences in the network; it follows that LT B(N) is the number of W-fences
in N .

A quick check shows that adding a leaf to any arc in the W-fence decomposes the W-fence
into two N-fences. ◀

▶ Lemma 10. Let N be a network. Then LT B(N) can be computed in O(|N |) time.

Proof. Finding the maximal zig-zag decomposition takes O(|N |) time (Proposition 5.1 of [11]).
Counting the number of W -fences in the decomposition gives LT B(N) by Lemma 9. ◀

▶ Observation 12. Let G be a 3-regular graph and let NG be the network obtained by the
reduction. Then NG is tree-based.

Proof. It is easy to check that the arcs of NG are decomposed into M-fences and N-fences
(the principal part of each gadget Gad(v) is an N-fence; each arc leaving the principal part
of a gadget Gad(v) is an N-fence of length 1; the remaining arcs decompose into M-fences of
length 2). By Lemma 4, NG must be tree-based. ◀

▶ Lemma 13. Let N be a tree-based network, and let N̂1, N̂2, . . . , N̂n denote the N-fences
of N of length at least 3. Then every cherry cover of N contains the reticulated cherry
shapes {(head(ai

2j−1)ci
2j−1), ai

2j , ai
2j+1} for i ∈ [n] and j ∈

[
ki−1

2
]
.

L. van Iersel, M. Jones, E. Julien, and Y. Murakami 7:19

Proof. Let N̂i = (ai
1, ai

2, . . . , ai
ki

) be an N-fence of length ki ≥ 3. Observe that in every
cherry cover, exactly one incoming arc of every reticulation is covered by a reticulated cherry
shape as a middle arc (since the network is binary; for non-binary networks, this is not true in
general [20]). Since head(ai

1) is a reticulation, one of ai
1 or ai

2 must be in a reticulated cherry
shape as a middle arc. But tail(ai

1) is a reticulation; therefore, ai
2 must be in a middle arc of

a reticulated cherry shape. The other two arcs of the same reticulated cherry shapes are then
fixed to be head(ai

1)ci
1 and ai

3. Repeating this argument for the reticulations head(ai
2j+1)

for j ∈
[

ki−1
2

]
gives the required claim for the N-fence N̂i; further repeating this argument

for every N-fence gives the required claim. ◀

▶ Lemma 14. Let N be a tree-based network and suppose that for two N-fences N̂u :=
(au

1 , au
2 , . . . , au

ku
) and N̂v := (av

1, av
2, . . . , av

kv
) of length at least 3, there exist directed paths in

N from head(au
h) to tail(av

i) and from head(av
j) to tail(au

k), for even h, i, j, k with k < h and
i < j. Then every cherry cover auxiliary graph of N contains a cycle.

Proof. Let us again denote the reticulated cherry shape that contains au
h and au

h+1 by Ru
h/2,

and similarly for Rv
i/2, Rv

j/2,and Ru
k/2. By Lemma 13, all of Ru

h/2, Rv
i/2, Rv

j/2, Ru
k/2 appear

in the cherry cover auxiliary graph. Moreover Ru
k/2 is above Ru

h/2, and Rv
i/2 is above Rv

j/2.
Now observe that for any consecutive arcs on the path from head(au

h) to tail(av
i), either they

are part of the same reticulated cherry shape in the cherry cover, or they are part of different
cherry shapes with one cherry shape directly above the other. This implies that there is
a path from Ru

h/2 to Rv
i/2 in the cherry cover auxiliary graph. A similar argument shows

that there is a path from Rv
j/2 to Ru

k/2. But then we have that Ru
h/2 is above Rv

i/2, which is
above Rv

j/2, which is above Ru
k/2, which is above Ru

h/2 and we have a cycle. ◀

▶ Lemma 15. Let G be a 3-regular graph and let NG be the network obtained by the
reduction above. Suppose that A is a set of arcs of NG, for which adding leaves to every arc
in A results in an orchard network. For every edge uv ∈ E(G), there exists an arc a ∈ A

that is an arc of the principal part of Gad(u) or Gad(v).

Proof. We prove this lemma by contraposition. Let us assume that there is an edge uv ∈
E(G), such that no arcs of the principal part of Gad(u) or Gad(v) are in A. We shall show
that the network obtained by adding leaves to all a ∈ A in NG – which we denote NG + A –
is not orchard.

From Theorem 1 we know that NG is orchard if and only if NG has an acyclic cherry
cover. We show here that NG + A will not have an acyclic cherry cover, thereby showing
that NG + A is not orchard.

As no arcs were added to the principal part of Gad(u) or Gad(v), these principal parts
remain N-fences in NG + A. Furthermore by construction N has an arc from some head(av

h)
to tail(au

i) for even h ≥ 10 and even i ≤ 6, and so NG + A has a path from head(av
h)

to tail(au
i). Similarly NG + A has a path from head(au

j) to tail(av
k) for some even j ≥ 10

and h ≤ 6. Then Lemma 14 implies that the auxiliary graph of any cherry cover of NG + A

contains a cycle. By Theorem 1, we have that NG + A is not orchard. ◀

▶ Lemma 16. Let G be a 3-regular graph and let NG be the network obtained by the reduction
described above. Then G has a minimum vertex cover of size k if and only if LOR(NG) = k.

Proof. Suppose first that Vsol is a vertex cover of G with at most k vertices. We shall show
that adding a leaf to an arc of the principal part of each Gad(v) for v ∈ Vsol makes NG

orchard. This will show that the minimum vertex cover of G is at least LOR(NG). In the
remainder of this proof, we will refer to vertices and arcs of NG as introduced above in the
reduction.

WABI 2023

7:20 Making a Network Orchard by Adding Leaves

For every v ∈ Vsol, we add a leaf zv to the arc wv
4rv

4 of Gad(v) (see Figure 5c). Let qv

be the parent of zv. The key idea is that this splits the principal part of Gad(v) from an
N-fence into an N-fence and an M-fence, and this allows us to avoid the cycle in the cherry
cover auxiliary graph (see Figure 5d).

Let us call the new network M . To formally show that M is orchard, we give an
HGT-consistent labelling t : V (M) → R.

Begin by setting t(ρ) = 0, and for any vertex in s1, . . . , sg−1 or ρv, mv
4, . . . , mv

2 for any
v in V (G), let this vertex have label equal to the label of its parent plus 1. Let h be the
maximum value assigned to a vertex so far, and now adjust t by subtracting (h + 1) from
each label. Thus, we may now assume that all vertices in ρ, s1, . . . , sg−1 or mv

4, . . . , mv
2 for

any v in V (G) have label ≤ −1. Now set t(mv
1) = 0 and t(rv

0) = 0, for each v in V (G).
It is easy to see that so far t satisfies the properties of an HGT-consistent labelling. It

remains to label the vertices in the principal part of each gadget Gad(v), and the leaves of
each gadget, and the new vertices qv and zv for v ∈ Vsol. We do this as follows.

For v ∈ Vsol, set t(rv
1) = t(wv

1) = 12, t(rv
2) = t(wv

2) = 13, t(rv
3) = t(wv

3) = 14, and t(rv
4) =

t(qv) = 15. Set t(wv
4) = 1, t(rv

5) = t(wv
5) = 2, t(rv

6) = t(wv
6) = 3, and t(rv

7) = t(wv
7) = 4.

For v /∈ Vsol, set t(rv
1) = t(wv

1) = 5, and t(rv
i) = t(wv

i) = i + 4 for every i up to
t(rv

7) = t(wi
7) = 11.

Finally, for each leaf ℓ with parent p set t(ℓ) = t(p) + 1.
It remains to observe that t is a non-temporal labelling of M and for every reticulation r

in M , r has exactly one parent p with t(p) = t(r). Thus t is an HGT-consistent labelling of
M , and it follows from Theorem 2 that M is orchard.

Suppose now that we have a set of arcs Asol of NG of size at most k, such that adding
leaves to the arcs in Asol makes NG orchard. By Lemma 15, for every edge uv ∈ E(G), there
exists an arc a ∈ Asol that is an arc of the principal part of Gad(u) or Gad(v). It follows
immediately that the set {v ∈ V (G) : Asol contains an arc of the principal part of Gad(v)}
is a vertex cover of G. Since this is true for any such set of arcs Asol, it follows that if there is
such an Asol of size at most k, then there must exist a vertex cover of G of size at most k. ◀

	1 Introduction
	2 Preliminaries
	2.1 Tree-Child Networks
	2.2 Orchard Networks
	2.3 Tree-Based Networks

	3 Leaf Addition Proximity Measure
	4 Hardness Proof
	5 Upper Bound
	6 MILP Formulation
	6.1 Vertical Arcs into Reticulations
	6.2 MILP Formulation
	6.3 Experimental Results

	7 Discussion
	A Appendix

