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Abstract. A Dynamically Configurable Autonomous Vehicle (DCAV)
is a new class of autonomous vehicle concept using a separable design
of lower and upper parts—carriers and modules—to allow more flex-
ible operation. A fleet of DCAVs consists of a set of carriers and a
set of compatible modules. Different, possibly crowd-sourced, modules
can increase the number of use-cases for DCAVs, possibly leading to
disruptive changes in the transport sector. This study investigates the
use of DCAV system operating on an Autonomous Mobility-on-Demand
(AMoD) scenario, combining passenger and freight transport flows. The
novel problem is denoted as the Dynamically Configurable Autonomous
Vehicle Pickup and Delivery Problem (DCAVPDP). We propose a mixed-
integer linear programming (MILP) model aiming to minimize DCAV-
fleet size and distance traveled. We compare the performance of a DCAV
fleet to the performance of a typical single-purpose fleet (consisting of
dedicated passenger and freight vehicles). The numerical study, with 360
instances for each fleet type, considering four people-and-freight demand
distribution scenarios, the inclusion of ridesharing, module-and-carrier
(de)coupling locations, and different simulation horizon lengths, shows
that the proposed modular DCAV system can fulfill a mixed people-and-
freight demand using, on average, 18.77% fewer carriers than a regular
AMoD system comprised of single-purpose vehicles while increasing on-
duty fleet utilization by 4.82%.

Keywords: Dynamically Configurable Autonomous Vehicles · Shared
Autonomous Vehicles · Cargo Hitching · Combined Passenger and
Freight Transport · Ridesharing

1 Introduction

Dynamically Configurable Autonomous Vehicles (DCAVs) are a new class of
autonomous vehicles using a separable design concept consisting of drive and
transport units. The drive unit (also called the carrier, driveboard, or chassis)
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is a standardized platform housing self-driving equipment (e.g., sensors, motors,
battery). The transport unit (also referred to as module, capsule, pod, or body)
is a switchable add-on part that can be dynamically and autonomously out-
fitted onto drive units to accommodate any commodity type (see Fig. 1). Such
a modular nature of DCAVs increases operational flexibility, enabling various
use-cases: transport providers can assign diverse modules to carriers to fulfill
different demands.

Fig. 1. Example of a Dynamically Configurable Autonomous Vehicle (DCAV) system
[15]. The drive unit (carrier) can autonomously outfit diverse transport units (modules)
on the fly to service heterogeneous demands such as freight and mobility.

By separating drive and transport units, providers can increase the utilization
of self-driving carriers (presumably, the most expensive assets) while increasing
profits, adapting to changing demand profiles such as people and freight on the
operational level. Typically, vehicle acquisition is a long-term investment, which
makes deciding on adequate fleet size and mix a complex strategical decision
[2,7]. Therefore, relying on a DCAV fleet may also mitigate losses due to dras-
tic demand shifts. For example, the COVID outbreak led to a surge in delivery
services while social distancing decreased mobility, exposing the fragility of trans-
portation systems based on single-purpose vehicles [12]. Ultimately, investing in
additional freight modules to accommodate a higher freight demand is expected
to be considerably cheaper than investing in entirely new freight vehicles.

Combined people and freight transportation systems have been gaining atten-
tion in the literature [3,9]. For example, solution approaches have been designed
for settings where people and parcel share rides on taxis (see, e.g., [8]) and
compartmentalized autonomous vehicles (see e.g., [1,13]). However, there is no
study on optimizing the operations of a DCAV-based transportation system
that dynamically switches transport units to fulfill heterogeneous demand. Only
concept designs have been evaluated (see, e.g., [10,11,15]) and presented by com-
panies such as the Continental BEE [4], the Mercedes Benz Vision Urbanetic [5]
and the Toyota e-palette [14].
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This study presents a mixed-integer linear programming (MILP) formula-
tion for the Dynamically Configurable Autonomous Vehicle Pickup and Delivery
Problem (DCAVPDP) arising on a transport system that services both passen-
ger and freight demands. Our formulation extends the formulation by [6] for the
vehicle routing problem with trailers and transshipments (VRPTT) by adding
service level constraints as formulated in dial-a-ride problems (DARPs). Addi-
tionally, we consider the integration of passenger and freight transport, the use of
parking locations, and allowing multiple trips and ridesharing. The model seeks
to find an optimal routing solution that minimizes vehicle utilization in terms
of linear combination of the distance traveled by carriers and modules.

Fig. 2. Example of a DCAV fleet operation throughout a typical day.

Figure 2 shows an operational example of a DCAV fleet using different mod-
ules throughout the day to fulfill passenger and freight requests. The carrier
starts at 7:15 at the depot and couples a passenger module to transport pas-
sengers during the morning rush hour. As long as the vehicle capacity is not
exceeded, the vehicle is allowed to make multiple pickups and have passengers
share the ride. When the latest passenger of the first trip is dropped off at 10:15
the vehicle gets called back to the depot. Next, the carrier switches its passen-
ger module for a freight module and starts servicing freight requests as demand
for passenger transport is low at the time. After picking up several packages
the vehicle returns to the depot once more at 14:30 to switch over to a pas-
senger module to transport passengers for the remainder of the afternoon. To
meet demand the carrier has made three separate trips to and from the depot,
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changing modules for each trip. Even though demand fluctuates throughout the
day, the carrier is being used to serve requests for either passengers or parcels,
resulting in high carrier utilization.

We benchmark the performance of the DCAV fleet (consisting of carriers and
passenger and freight modules) with a typical single-purpose fleet (consisting of
dedicated passenger and freight vehicles). We consider carriers and dedicated
vehicles of modular and single-purpose fleets have to start and end their route
at a central depot. Vehicles are not allowed to arrive early and wait at a pickup
location since requests are made on-demand, and there is little room for parking
in city centers. However, parking locations are available for vehicles to wait until
a pickup is requested; these locations can also be used for modular vehicles to
switch modules. In contrast, modules do not have to start or end their route
at the depot. They can also start and end their route from a parking location
and do not have to return to the same location as where they originated from.
We assume there is no limit to the number of times a module can be switched,
except occupied modules, which are not allowed to be switched.

2 Problem Description

This study considers a Dynamically Configurable Autonomous Vehicle Pickup
and Delivery Problem (DCAVPDP), which focuses on the daily operations of
an on-demand transportation provider that uses a DCAV fleet to pick up and
deliver requests of both passengers and parcels. We assume carriers are required
to start and end their route at a central depot and are not allowed to arrive early
and wait at a request location—there is little room for parking in an urban city
environment. However, parking locations are available for vehicles to wait until
a pickup is requested. These locations can also be used for modular vehicles to
switch modules. Modules do not have to start or end their route at the depot
and can be repeatedly switched when empty. Ridesharing is allowed between
requests of the same commodity, with detours limited by maximum extra ride
times.

Figure 3 highlights the difference between a modular and a single-purpose
fleet when servicing one passenger and one freight request. The single-purpose
fleet uses two dedicated vehicles traveling direct routes from the depot to the
pickup and delivery. In contrast, the DCAV fleet uses available parking locations
to gather modules closer to request locations and uses a single carrier to service
both requests. The carrier leaves the depot and travels to a parking location
where it couples a freight module to service the freight request. After reaching
the destination of the freight request, it drives to another parking location to
decouple the freight module and travel to the final available parking location to
couple a passenger module. The passenger module is used to service the passenger
request and returns together with the carrier to the depot.
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Fig. 3. Difference between single-purpose and modular DCAV fleets when servicing
the same passenger and freight request set.

3 Problem Formulation

The DCAVPDP is defined on a directed graph G = (V,A), consisting of vertices
V and arcs A, and requires synchronisation in time and space of the movement
of carriers and modules. We consider a grid service area where a total number
of nr requests is generated. The set of all vehicles is indicated by F , which is a
collection of all vehicles that are available to the model. The set of all vehicles is
further separated in the sets Fa, Fq, and Fm. All motorized vehicles in the model
are indicated by Fa, which is a combination of all passenger and freight vehicles
and the carriers. Fq is the set of all vehicles that have load-carrying capability,
which consists of the passenger and freight vehicles and the passenger and freight
modules. The final set regarding vehicles is Fm, which is a set of all modules in
the model. Where V k are all reachable vertices for vehicle k, V k

P is a set of all
reachable pickup vertices for vehicle k ∈ F .

The set of traversable arcs Ak is further specified in the following sets: Am
C ,

Ak
PD, and Ak

W. The set Am
C describes all traversable arcs module m ∈ Fm can

travel along when being coupled to carrier c ∈ C, since modules are not capa-
ble of traveling between real-world locations without the assistance of a carrier.
However, modules are allowed to travel to couple vertices on their own to allow
for the distribution of modules across all parking locations. The number of park-
ing locations in the model is specified by np and f and 0 correspond to the
start and final vertex respectively. This ensures a module can be coupled at all
available parking locations on the grid after being decoupled from a carrier. Ak

PD



386 J. J. A. Kortekaas et al.

Table 1. Sets, parameters, and variables of the DCAVPDP and dedicated people and
freight integrated problem.

Sets

C, Mp, Mf Carriers and passenger and freight modules (modular fleet)
Kp, Kf Passenger and freight vehicles (dedicated fleet)
F = Kp ∪ Kf ∪ C ∪ Mp ∪ Mf . Set of all vehicles (fleet)
Fa = Kp ∪ Kf ∪ C. Set of powered vehicles (autonomous)
Fq = Kp ∪ Kf ∪ Mp ∪ Mf . Set of vehicles with load carrying capability
Fm = Mp ∪ Mf . Set of all modules
V k Set of all reachable vertices for vehicle k ∈ F

V k
P Set of all reachable pickup vertices for vehicle k ∈ F

VP =
⋃

k∈F V k
p

V k
park Set of all vertices where vehicle k is allowed to wait

Ak Set of all traversable arcs for vehicle k ∈ F

Am
C Set of arcs module m ∈ Fm can only traverse while spatially synchronised with a

compatible carrier c ∈ C

Ak
PD Set of traversable arcs between request pairs for vehicle k ∈ F

Ak
W Set of arcs for vehicle k ∈ F where waiting is not allowed at the arrival vertex

Parameters

Vehicles

nk Number of available vehicles with load carrying capability
nc Number of available carriers
Qk Capacity of vehicle k ∈ F

vk Speed of vehicle k ∈ F

Requests

nr Number of requests
qi Demand of request at vertex i ∈ VP

ei Earliest pick up time of request at vertex i ∈ VP

δi Maximum waiting time of request at vertex i ∈ VP

Δi Maximum extra ride time of request at vertex i ∈ VP

Model

0 Start vertex for all vehicles
f Final vertex for all vehicles
np Number of parking locations
si Service time at vertex i ∈ V

di,j Travel distance from vertex i to vertex j

ti,j Travel time from vertex i to vertex j

wm Weight of module travel distances
wrejection Requests rejection penalty
S Simulation start time
H Simulation horizon

Variables

xk
i,j (Binary) 1 if vehicle k traverses arc (i, j), 0 otherwise

τk
i Arrival time of vehicle k at vertex i

ωk
i Load of vehicle k after vertex i

rki Ride time of request i on vehicle k
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is a set of traversable arcs for vehicle k ∈ F that are composed of a pickup and
delivery pair. Finally, Ak

W is a set of traversable arcs for vehicle k ∈ F on which
arriving early is not allowed since vehicles are not allowed to wait at request
locations.

The total number of requests in the model is specified by nr. Each request
has a pickup vertex i ∈ VP, which has a demand size of qi. The corresponding
delivery vertex has a demand size of −qi, effectively emptying the vehicle again.
The pickup time window of request i is determined by the earliest pickup time
ei of the request and its maximum waiting time δi. The earliest pickup times of
requests are being generated during simulation horizon H, starting from simula-
tion start time S. Requests do not have a set delivery time window, instead, each
request has a maximum extra ride time Δi. The destination of a request has to
be reached within the sum of the travel time and the maximum extra ride time.
Additionally each vertex i ∈ V has a service duration of si seconds. nk specifies
the number of available vehicles in the model that have a load-carrying capa-
bility (passenger and freight vehicles as well as passenger and freight modules),
while nc specifies the number of carriers available to the model. All vehicles have
a set capacity of Qk and an average speed of vk. Table 1 shows an overview of
all sets and parameters used in the mixed-integer linear programming model.

The formulation of the MILP is as follows:

Minimize:
∑

k∈Fa

∑

(i,j)∈Ak

xk
i,jdi,j + wm

∑

k∈Fm

∑

(i,j)∈Ak

xk
i,jdi,j

−
∑

k∈Fa

xk
0,f +

∑

i∈VP

(1 −
∑

k∈Fq

∑

(i,j)∈Ak

xk
i,j) ∗ wrejection (1)

Subject to:
∑

k∈Fq

∑

(i,j)∈Ak

xk
i,j ≤ 1 ∀i ∈ VP (2)

∑

(i,h)∈Ak

xk
i,h −

∑

(h,j)∈Ak

xk
h,j = 0 ∀(i, j) ∈ Ak

PD, ∀k ∈ Fq (3)

∑

0,j∈Ak

xk
0,j = 1 ∀k ∈ F (4)

∑

i,f∈Ak

xk
i,f = 1 ∀k ∈ F (5)

∑

(h,i)∈Ak

xk
h,i −

∑

(i,j)∈Ak

xk
i,j = 0 ∀i ∈ V k\{0, f}, ∀k ∈ F (6)

xm
i,j −

∑

k∈C

xk
i,j = 0 ∀(i, j) ∈ Am

C , ∀m ∈ Fm (7)
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xk
i,j = 1 ⇒ τm

j ≤ τk
j ∀(i, j) ∈ Am

C , ∀k ∈ C, ∀m ∈ Fm (8)

xm
i,j = 1 ⇒ τk

j ≤ τm
j ∀(i, j) ∈ Am

C , ∀k ∈ C, ∀m ∈ Fm (9)

τk
j ≥ (τk

i + si + ti,j)xk
i,j ∀(i, j) ∈ Ak, ∀k ∈ F (10)

ei ≤ τk
i ≤ ei + δi ∀i ∈ V k

P , ∀k ∈ F (11)

τk
j ≥ τk

i ∀(i, j) ∈ Ak
PD, ∀k ∈ Fq (12)

xk
i,j = 1 ⇒ τk

j − τk
i ≤ ti,j + si ∀(i, j) ∈ Ak

W, ∀k ∈ F (13)

rki ≥ τk
j − τk

i ∀(i, j) ∈ Ak
PD, ∀k ∈ Fq (14)

ti,j ≤ rki ≤ ti,j + Δi ∀(i, j) ∈ Ak
PD, ∀k ∈ Fq (15)

ωk
j ≥ ωk

i + qix
k
i,j ∀(i, j) ∈ Ak, ∀k ∈ Fq (16)

max(0, qi) ≤ ωk
i ≤ Qk ∀i ∈ V k, ∀k ∈ Fq (17)

ωk
i ≤ 0 ∀i ∈ V k

park, k ∈ F (18)

xk
i,j ∈ {0, 1} ∀i, j ∈ Ak, ∀k ∈ F (19)

τk
i ∈ N ∀i ∈ V k (20)

ωk
i ∈ N ∀i ∈ V k (21)

rki ∈ N ∀i ∈ VP (22)

The objective function (1) aims to minimize the travel distance of all motor-
ized vehicles, as well as the total number of motorized vehicles used to find an
optimal solution. Secondly, the travel distance of modules is also minimized,
however, it is deemed less important and is offset by a factor of wm. To allow
the model to reject requests a penalty of wrejection is added if a pickup vertex
is not visited. Constraints (2) to (6) are the general routing constraints, and
(7) to (9) are spatial and temporal synchronisation constraints to couple the
movement of carriers and modules. The time window constraints are described
by constraints (10) to (13) and subsequently constraints (14) and (15) are the
ride time constraints. Finally, constraints (16) to (18) are the vehicle load con-
straints. Equations (19) to (22) describe the decision variables in the model.
Constraint (2) ensures that every request’s pickup vertex is visited by at most
one vehicle, however, every vertex does not need to be visited. A vehicle that
has visited the pickup vertex of a request must also travel to the request’s des-
tination vertex, which is ensured by (3). Constraints (4) and (5) guarantee that
every vehicle starts it’s route at the start vertex and ends at the final vertex
respectively. To preserve flow conservation, constraint (6) enforces every vehicle
to leave the same vertex it has entered. Constraint (7) is a spatial synchronisation
constraint to ensure modules are only able to traverse arcs between two different
real-world locations (Am

C ) while being coupled with a carrier. Constraints (8)
and (9) are temporal synchronisation constraints that impose identical arrival
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times of coupled carriers and modules. The arrival time of vehicles is defined by
constraint (10). Constraint (11) ensures that a request is picked up after their
earliest pick-up time and within their maximum waiting time. A vehicle should
arrive at the destination vertex of a request pair after the pickup vertex has been
visited, which is guaranteed by (12). Vehicles are not allowed to arrive early and
wait at request pickup locations, constraint (13) ensures that for the set of arcs
on which waiting is not allowed (Ak

W) vehicles won’t arrive before the earliest
pickup time. Constraint (14) defines the ride time of a request, and (15) makes
sure the maximum extra ride time of a request is not exceeded. Constraint (16)
defines the vehicle load and (17) enforces the load of a vehicle not to exceed the
maximum capacity of the vehicle. Constraint (18) guarantees that vehicles are
empty when arriving at parking or decoupling vertices, to ensure no occupied
vehicles or modules are parked or decoupled. Finally, constraints (19) to (22)
define the model’s decision variables, which are the traversed arcs, arrival time,
vehicle load and ride time variables respectively.

4 Numerical Study

In this section, the configuration of the MILP for the different instances will be
discussed, as well as the generation of the passenger and freight request data.
Next, the general parameters of the model will be given, followed by a discussion
of key performance indicators of the transport systems.

4.1 Instance Design

We test the model on two fleet configurations (viz., single-purpose and DCAV
fleets) using the same request data. We consider four different demand scenarios
throughout the simulation horizon H:

– Balanced scenario (BLS): Both request types are uniformly distributed
over the horizon.

– Passenger peak scenario (PPS): Passenger requests are generated during
the first half of the horizon, while freight requests are uniformly distributed
throughout the whole horizon.

– Freight peak scenario (FPS): Freight requests appear only during the
second half of the simulation horizon, while passenger requests are uniformly
distributed.

– Complementary scenario (COS): Passenger requests appear during the
first half of the horizon and freight requests during the second half.

Besides, we test the effect of allowing ridesharing (same commodity requests
can share a ride) and vary the number of parking locations np (0, 1, or
3), where carriers can park and switch modules during their route. We also
determine 15 value combinations for simulation horizon H ∈ {1, 8}, the total
fleet size nk ∈ {2, 4, 6}, and the number of requests nr ∈ {4, 8, 12, 16, 24}.
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Values nk and nr are divided equally between passenger and freight vehicles
and requests, respectively. Additionally, for each module in the model, there is a
carrier available to be used, thus, the number of carriers nc is equal to the number
of vehicles nk. In the worst-case scenario, the DCAV fleet could behave similarly
to the single-purpose fleet by assigning a module to each carrier and having the
same routes as the single-purpose vehicles. The parameter groups (H,nk, nn)
are as follows: (1, 2, 4), (1, 2, 8), (1, 2, 12), (1, 4, 4), (1, 4, 8), (1, 4, 12), (1, 6, 4),
(1, 6, 8), (1, 6, 12), (8, 2, 12), (8, 2, 16), (8, 2, 24), (8, 4, 12), (8, 4, 16), (8, 4, 24).

An overview of the 720 instances generated can be found in Fig. 4.

Fig. 4. Instances for the DCAVPDP and the benchmark single-purpose problem (ded-
icated vehicles for each commodity).

4.2 Model Parameters

The values of general parameters are shared by all instances. The grid on which
the requests are being generated is 2, 000 by 2, 000 meters, with a distance
between nodes of 100 m. The depot is located at (600m, 600m), and the three
available parking locations are located at (600m, 1400m), (1400m, 600m), and
(1400m, 1400m). When only one parking location is accessible for the fleet, it
is located at (1400m, 1400m).

The locations of all request pickup and delivery locations are uniformly dis-
tributed over the rest of the nodes of the grid. Each request demands the trans-
portation of one passenger or parcel (i.e., request size qi = 1). Passenger and
freight requests have different values for maximum waiting time δi, extra ride
time Δi, and service duration si. All distances are calculated using the Man-
hattan distance formula and travel times are calculated using an average vehicle
speed vk = 5 m/s. To ensure vehicles will be able to reach the first request on
time, we set the simulation start time S = 900 s since the longest possible travel
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time between opposing corners of the grid is 800 s. Passenger and freight vehicles
and modules have a capacity Qk = 2 for both the single-purpose and the DCAV
fleet, respectively. Typically, passengers are more sensitive to waiting times and
extra ride times, this is reflected in the model by giving more strict values to
passenger requests. The maximum waiting time δi for passenger requests is 300
s and the maximum extra ride time Δi is 900 s. For freight requests, δi = 900
s and Δi = 1800 s. Regarding the service duration si, we assume a vehicle has
to wait 120 s when servicing passengers and 300 s when picking up a parcel.
Besides, we consider the modular DCAV fleet has an additional service duration
si = 120 s to switch (i.e., couple or decouple) modules. Finally, rejecting requests
incurs a penalty wpenalty = 105 and the traveling of modules is weighted down
using wm = 10−3.

4.3 Performance Metrics

Our numerical study aims to assess whether a fleet of DCAVs improves vehicle
utilization and occupancy while maintaining an equivalent service quality com-
pared to a traditional single-purpose fleet. In order to highlight the differences
between these two fleets, we consider the following fleet management perfor-
mance metrics:

– Utilization rate (on-duty): The time a vehicle is being actively used to
service requests (i.e., traveling to pick up and deliver, service times at request
locations), divided by the total simulation run time.

– Utilization rate (total): Total time vehicles spent traveling divided by the
total simulation run time. For the DCAV fleet, this time includes trips to
parking locations to (de)couple modules and module replacement times.

– Occupancy rate: The fraction of the utilization time that vehicles are trav-
eling loaded, taking into account their occupation ratio.

– Service quality: The service rate, the average pickup time of requests, and
the average ride time of requests.

– Fleet size: Total number of autonomous vehicles (dedicated AVs or carriers).
– Fleet capacity: Total number of people-and-freight transportation upper

parts. In the dedicated fleet, fleet capacity equals fleet size.
– Distance traveled: Total distance traveled by the whole fleet.

4.4 Computational Settings

The numerical study has been performed on an AMD Ryzen 5 3600 4Ghz CPU
with access to 32GB of RAM. Python version 3.8.8 and commercial solver Gurobi
Optimizer 9.1.2 were used to implement the DCAVPDP. All instances were run
to optimality.
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5 Results and Discussion

Table 2 shows the relative performance of the DCAV fleet compared to the single-
purpose fleet. The first column features key fleet management performance indi-
cators and the subsequent column “Avg. Diff.” shows the overall average per-
formance difference for all instances for both fleets. The columns “BLS”, “PPS”,
“FPS”, and “COS” show the performance difference for the corresponding scenar-
ios. The last column shows the number of instances in which better results were
achieved using the DCAV fleet. The on-duty utilization rate shows an increase
of 4.82% for all scenarios with 241 instances resulting in better values for the
DCAV fleet. Most of the performance gain is made in the complementary scenario
(COS), where carriers can service both demand types consecutively. The occu-
pancy rate of vehicles is slightly lower for all scenarios, which can be attributed
to the increased use of modules and the difference in extra ride times and travel
distance when compared to the single-purpose fleet. In 329 instances the per-
centage of requests served is similar or better than the single-purpose fleet. This
difference might be caused by the coupling and decoupling delays of the DCAV
fleet, costing additional time and resulting in time windows of requests not being
met. Serving fewer requests can also contribute to the −1.30% average decrease
in vehicle occupancy. The DCAV fleet show a decrease in the average waiting
times of requests, except for the complimentary scenario. The latter can again
be attributed to the couple and decouple times of the DCAV fleet, having to
switch modules when the generated requests change from passenger to freight
requests. Lower waiting times for the other scenarios can be explained by the
7.58% increased use of load-carrying vehicles by the DCAV fleet. When time win-
dows allow, the DCAV fleet uses more modules to be able to handle requests of a
similar type more quicker. The complementary scenario (COS) therefore shows
a much smaller increase in the number of load-carrying vehicles. The DCAV
average fleet size is 18.77% lower, with the complementary scenario (COS) fea-
turing the largest drop—42.60% DCAV are needed. This lower total fleet size is
reflected in the total vehicle utilization: the active carriers are used 23.75% more
than the active single-purpose AVs.

The average fleet size and total travel distance across scenarios can be seen
in Fig. 5. Comparing the number of vehicles shown in the first graph we see that
the modular fleet uses more modules of each type while using fewer carriers on
average. Due to the coupling and decoupling time, the number of modules might
be higher than the equivalent single-purpose vehicles, however, the difference is
mostly caused by an increase in the use of passenger modules. Another explana-
tion could be that the modular fleet enables the use of more passenger modules
when carriers are available to more quickly serve passenger requests since the
model is not minimizing the number of modules used. The difference in total
modules used and the number of carriers used does show that the modular sys-
tem makes use of its flexibility. The lower average travel distance of the modules
can be explained by the use of parking locations since modules are being coupled
closer to request locations.
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Fig. 5. Average fleet size and distance traveled for all fleet types across the four demand
distribution scenarios.

Table 2. Performance difference of the modular DCAV fleet compared to the single-
purpose fleet. The final column shows the number of ran instances that show better
performance for the DCAV fleet.

Performance Indicator Avg. Diff BLS PPS FPS COS #DCAV best

Utilization rate (on-duty) 4.82% −4.80% 3.82% −1.14% 24.36% 241/360
Utilization rate (total) 23.75% 2.90% 16.82% 7.78% 74.71% 326/360
Occupancy rate −1.30% −1.49% −0.47% −2.35% −0.97% 240/360
Service rate −0.08% −0.15% 0.00% −0.15% 0.00% 329/360
Avg. pickup time −9.70% −22.23% −10.27% −8.17% 3.28% 219/360
Avg. ride times −4.57% −9.73% −1.72% −8.15% −1.51% 330/360
Fleet capacity 7.58% 13.6% 5.75% 9.74% 1.81% 266/360
Fleet size −18.77% −4.80% −17.62% −8.24% −42.60% 346/360
Distance traveled −1.52% −1.27% −1.32% −1.21% −2.38% 218/360

6 Conclusion

This study has presented a MILP formulation for the Dynamically Configurable
Autonomous Vehicle Pickup and Delivery Problem (DCAVPDP). The model pro-
vides the first quantitative method investigating the benefits of a DCAV-based
transport system, which leverages automation and a novel automotive modu-
lar design concept to service multiple demand types by dynamically configuring
vehicle upper compartments. We compare the performance of a single-purpose
fleet consisting of dedicated passenger and freight vehicles and a DCAV fleet con-
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sisting of motorized autonomous carriers and switchable passenger- and freight-
tailored compartments to service a mixed pickup and delivery heterogeneous
demand comprised of passenger and freight requests considering various scenar-
ios. Since autonomous carriers are expected to be the most expensive component
of a DCAVPDP system, we have aimed at achieving high utilization rates for
these assets. In total, 360 different instances were run for each fleet configura-
tion. The average performance of all tested mixed-demand scenarios shows an
improvement in average modular fleet utilization (carriers coupled to modules)
in relation to average single-purpose mixed fleet utilization up to 24.36% when
there is a distinct separation between demand types throughout the operation
horizon (complementary scenario). The proposed model can be adapted to sup-
port more compartment types with varying capacities and features, giving rise
to a highly customizable transportation service. Future research will focus on
developing a dynamic problem formulation, the adoption of crowd-sourced het-
erogeneous lower and upper parts, and the repositioning of carriers and modules
throughout parking locations anticipating future demand.
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