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Human Digital Twin,
the Development and
Impact on Design
In the past decade, human digital twins (HDTs) attracted attention in both digital twin (DT)
applications and beyond. In this paper, we discuss the concept and the development of
HDTs, focusing on their architecture, key enabling technologies, and (potential) applica-
tions. Based on the literature, we identify personal data, model, and interface as three
key modules in the proposed HDT architecture, supported by a data lake of human data
and a model and interface library. Regarding the key enabling technologies that support
the HDT functions, we envision that the internet of things (IoT) infrastructure, data security,
wearables, human modeling, explainable artificial intelligence (AI) , minimum viable
sensing, and data visualization are closely associated with the development of HDTs.
Finally, we investigate current applications of HDTs, with a particular emphasis on the
opportunities that arise from leveraging HDTs in the field of personalized product design.
[DOI: 10.1115/1.4063132]

Keywords: engineering informatics, human computer interfaces/interactions, information
management, multiscale modeling and simulation

1 Introduction
The idea of the digital twin (DT) was born at NASA in the 1960s

as a “living model” of the Apollo mission [1]. A visual representa-
tion of the concept was proposed by Michael Grieves in 2002 [2]
and has evolved over time [3]. Over the past few decades, it has gar-
nered considerable attention with the widespread availability of the
internet of things (IoT) infrastructure and advancements in physics,
electronics, mathematical modeling, and computing.
Though there are various definitions of the DT, a meaningful and

updatable temporal model, which represents a digital replica of the
physical object, along with the associated enabling technologies
always form the key elements of a DT. Wright and Davidson [4]
have emphasized that a DT model possess the following attributes:
(1) “sufficiently physics-based that updating parameters within the
model based on measurement data is a meaningful thing to do,” (2)
“sufficiently accurate that the updated parameter values will be
useful for the application of interest,” and (3) “sufficiently quick
to run those decisions about the application can be made within
the required timescale.” Regarding the data flow between the phys-
ical and digital components, Fuller et al. [5] introduced the terms
“digital model,” “digital shadow,” and “digital twin” to address
the real-time attribute of the DT.
In the past decades, DT applications have been reported in differ-

ent fields, e.g., smart city [6,7] and Industry 4.0 [8,9], mainly due to
their strong ability in providing the up-to-date status of the object
and meaningful predictions as the famous quote “I don’t care
what anything was designed to do. I care about what it can do”
by the chief flight director Gene Kranz of NASA during the

Apollo 13 mission. Advantages of using DTs, e.g., improved effi-
ciency [10], reduced (operational) cost [11], facilitated more sus-
tainable processes [12], and enabled predictive maintenance [13],
were frequently reported by researchers and practitioners.
Human factors play an important role in complex DT applica-

tions, as humans are always part of the system, acting as designers,
supervisors, operators, and/or users. However, the unique character-
istics of humans were not fully addressed and embedded in the
concept of the DT. For instance, humans often facilitate the
sensing and actuation functions of the digital model and digital
shadow, even implicitly supervising the digital twin applications
[5]. However, the physical, mental, and social abilities of humans
in the process were not always discussed, e.g., occupational
fatigue may lower the performance of the workers over time [14].
Researchers proposed different methods to address this issue.

Geselschap et al. [15] indicated that “DT was the key-enabler to
take people along in this development, explain and discuss the
risks.” However, they did not elaborate on how human factors
can be incorporated into DT applications. A digital human-in-the-
loop framework was proposed by Onan Demirel et al. [16] for
meeting sustainability objectives, where digital human models on
comfort, biomechanics, reach envelope, metabolic energy envelope,
etc. were embedded in the framework next to conventional DT ele-
ments, such as object models, prototypes, and structural analysis
tools. In the context of Industry 4.0, researchers also proposed the
Operator 4.0 concept to address the roles of people, e.g., on
human–robot cooperation [17] and on visual inputs of the operators
[18]. More recently, Nguyen [19] argued that human digital twins
(HDTs) should coexist with other DTs in the Metaverse for agent-
based modeling and simulation.
Though researchers made considerable progress in addressing the

needs of human factors in DT applications [20] and proposed the
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concept of HDT, there is little consensus on the framework of HDT,
the roles of HDT, nor the uses of HDT in different applications. In
this paper, based on a range of literature, we aim to clarify the
concept of HDT, propose an open architecture for HDT, outline
the relations between HDT and associated elements in the context
of usages, highlight key enabling technologies, and explore the
potentials of using HDT in design.
The structure of this paper is as follows: Sec. 2 discusses the

definitions and architecture of HDT. Section 3 focuses on the key
enabling technologies. Section 4 outlines various application areas
of HDT. Section 5 summarizes the limitations, followed by a short
conclusion in Sec. 6.

2 Human Digital Twin
2.1 Definitions. Literature study has indicated that the ideas of

HDT have been present since 2019, and researchers have attempted
to definite HDT based on the concept of DT, considering its unique
characteristics. Some of the definitions proposed are as follows:

• Interagency Modeling and Analysis Group in the National
Institutes of Health indicated that “A digital twin is a digital
replica of a living or non-living physical entity, such as a man-
ufacturing process, medical device, piece of medical equip-
ment, and even a person” [21];

• Barricelli et al. defined the HDT as “computer models of
humans tailored to any patient to allow researchers and clini-
cians to monitor the patient’s health, for providing and test
treatment protocols” [22,23];

• Toshima et al. indicated that an HDT is “A human model
that reproduces the individuality and characteristics of
humans” [24];

• Chmiel describes the HDT as the “digital representations of
humans as a very complex physical, biochemical, and electri-
cal creature” [25];

• Miller and Spatz defined the HDT as “an integrated model
which facilitates the description, prediction, or visualization
of one or more characteristics of a human or class of humans
as they perform within a real-world environment” [26].

These definitions highlight various perspectives of HDT. While
there may be variations in the details, the consensus is that HDT
represents a (temporal) digital replica of an individual, encompass-
ing his/her characteristics across different aspects and for various
tasks within different contexts. The characteristics of an HDT can
be summarized as

• Personal: HDT is personalized, tailored to each individual, and
reflects their unique characteristics.

• Private: HDT includes personal data and information, empha-
sizing the need for privacy and data protection.

• Multidimensional: HDT captures various aspects of an indi-
vidual, including physiological, physical, mental, and social
attributes.

• Updateable: HDT is dynamic and can be updated to reflect
changes in an individual’s characteristics over time.

• Context-dependent: at current stage, HDT’s use and applica-
bility depend on the specific context and tasks.

• Descriptive and predictive: HDT enables the description and
prediction of an individual’s characteristics, behavior, and per-
formance, although often with (significant) uncertainties.

• Mobile: The mobility of individuals in a specific context and
for a specific task is crucial in the development of an HDT.

• Uncertainty: HDT involves uncertainties due to data and
model limitations and variability.

• Robust: Despite the uncertainty in human modeling, HDT is
designed to be reliable and resilient, minimizing the risk of
failures or errors, and ensuring a meaningful representation
while prioritizing the safety of an individual.

• Interactible and integrable: HDT is capable of interacting with
other physical and digital objects, e.g., for visualization, and
can be integrated into a system.

2.2 Human Digital Twin Framework. In defining a frame-
work to support the implementation of HDT, Sparrow et al. indi-
cated that for workers operating in the context of Industry 4.0, an
HDT should address the communication, data aggregation, simula-
tion, and scheduling requirements that support the responsibility of
information provision, maintaining and managing a local schedule,
virtual execution, and controlling the resource [27]. Zibuschka et al.
considered an HDT with four units: virtual sensors, observations,
functional units, and derived knowledge [28]. Sahal et al. proposed
a personal digital twin concept on four aspects: (1) mental activities;
(2) physical activities; (3) social activities; and (4) biological scales,
with a focus on personalized healthcare [29]. Löcklin et al. consid-
ered that the unique ID, data of the represented individual or role,
and models are the key components of an HDT [30]. Based on
the DT concept, Lauer-Schmaltz et al. discussed a series of
add-ons for HDT, including behavior mechanisms such as trust
and motivation [31]. Nguyen also presented a list of psychology
theories for modeling human behaviors in HDT regarding cyber-
securities [19].
In summary, while the use of terminologies may vary in the lit-

erature due to different tasks and contexts, these elements can be
categorized into personal data, models, interfaces between the
HDT and the outside world, and data and existing models that
support them. Utilizing this knowledge, we propose the architecture
of the HDT framework with three modules: personal data, model,
and interface, supported by a data lake of human data, as well as
a library of models and interfaces as shown in Fig. 1.

2.2.1 Personal Data. Personal data module serves as a reposi-
tory for storing multimodal (temporal) personal data in HDT. Dif-
ferent from other applications, data in HDT are personal and
private, and is regulated by ethical principles and laws, e.g., by
General Data Protection Regulation (GDPR) in Europe. Each data
record encompasses the documentation of physiological, physical,
mental, and/or social aspects of the individual related to specific
properties. The data module features (nearly) static components,
housing data record such as the person’s identity in the social part
and his/her stature in the physical part [30]. Additionally, the data
module stores temporal data related to the specific task within the
designated context, capturing different timestamps to represent
the “history” and “current” status of the HDT. This includes
details such as the movement of (part of) the human body.
Within each data record, a “properties” section is embedded to

document the ID, context, task, and other pertinent details. For
example, when integrating the HDT with the DT of a robot manu-
facturing system, the recorded context within the HDT consists of
the specific robot manufacturing system itself.
The complexity of the human, the heterogeneous nature of the

data, and the limited data acquisition tools made it difficult to
capture the full spectrum of human data regarding both quality
and quantity. For instance, it might be a challenge for people to
report their comfort experience every minute through question-
naires [32]; on the other hand, 4D scans of human physical
shapes can achieve the speed of 30 frames per second (fps)
[33,34]. It is essential to note that in most cases, each category of
data only offers an “incomplete” representation, providing a
reduced-dimensional objective and/or subjective view of the
person at a particular moment specified by the context and tasks
described in the “properties.”

2.2.2 (Personal) Model. The model module within the HDT
framework encompasses three distinct types of (personal) models:
static, dynamic, and updateable models. Static models represent
fixed information about an individual in the context and time
frame of the usage scenario, such as a 3D shape of the subject.
On the other hand, dynamic models utilize “history” data and/or
Multiphysics principles to adapt and evolve over time, following
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specific time-dependent principles, rules, or functions. An example
would be using a personalized gait model to predict the leg posi-
tions of an individual [35]. Updateable models, often built upon
dynamic models, have the capability to modify their structures
and/or parameters based on both the “history” and “current”
inputs, encompassing time and extending beyond it. For instance,
a personalized long short-term memory (LSTM) model can be uti-
lized to predict human decisions based on inputs over time during
the use [36].
Depending on the application’s requirements, a model can be

either personal or populational. For instance, a personalized gait
model, as demonstrated by Millard and Mombaur [35], tends to
offer higher accuracy compared to a population model. However,
a population model can still be utilized within an HDT for gait pre-
diction, though with larger uncertainties.

2.2.3 Interface. The interface module serves as the bridge
between the HDT and the outside world, as shown in Fig. 2. It
encompasses two primary functions: data acquisition and data
sharing. Data acquisition tools are responsible for updating the
HDT’s “current” status by incorporating newly sensed information,
e.g., updating human postures based on real-time captured images
[37,38]. Meanwhile, the previous “current” status is utilized to
enrich the “history” of the HDT.

The interface module establishes connections between the HDT
and physical objects/services, and in most cases, their associated
DTs for acquiring specified context and environmental information.
For instance, Scheifele et al. proposed a real-time co-simulation for
virtual commissioning through a loosely coupled interface between
DTs [39]. Data sharing tools enable the HDT to interact with ser-
vices (e.g., visualization tools), DTs, other HDTs, and digital
objects (e.g., digital service, databases, Metaverse). For instance,
leveraging extended reality (XR) technology [40], information
from various HDTs can be synchronized and presented in the Meta-
verse, where human and virtual agents participate in co-creation
sessions [41,42].

2.2.4 Data Lake of Human Data. Objective and subjective
(population) data support the HDT, and the model and interface
library can be stored in the data lake of human data. Data stored
in the data lake can be open datasets, e.g., the CelebFaces Attributes
(CelebA) dataset of human faces [43]. Personal data stored in an
HDT can also be donated to the data lake via ethical approval
and anonymization. Data can be categorized based on different cri-
teria, e.g., human body shapes can be recorded in 3D/4D scans [44],
and heart rate variability, which is often used in studies where the
emotional stimulation is relatively strong [45,46], can be docu-
mented as time series data. Meanwhile, the subjective feeling of

Fig. 1 Architecture of an HDT

Fig. 2 Interactions between an HDT and other objects, with dashed lines indicating possible relations
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emotion can be recorded as time series data as well, but with asyn-
chronous timestamps.

2.2.5 Model and Interface Library. In an HDT, models are
often sourced or adapted from the model and interface library,
and if necessary, further personalized using personal data as
shown in Fig. 3. A simple example is to adapt a statistical shape
model (SSM) of human shapes to the 3D shape of an individual
by adjusting the coefficients of principal components to fit the
inputs [47]. For complex models such as deep learning models,
Schneider and Vlachos summarized three techniques: early
shaping, sample weighing, and transfer learning, which utilize col-
lected personal data in the HDT [48]. As an example, Saeedi et al.
applied transfer learning to create a personalized human activity
recognition (HAR) model using data obtained from inertia measure-
ment units [49].
While models play a crucial role in forecasting the future status of

the HDT, leveraging the stored historical and current data [50], it is
important to note that models are highly context and task-
dependent. Each model represents a partial truth within its
defined boundaries, often accompanied by (high) uncertainties.
Safety, which is one of the top concerns in different contexts,
should always be prioritized in developing models for an HDT,
taking into account these uncertainties.

3 Key Enabling Technologies
While HDT and DT share significant overlaps in terms of key

enabling technologies, HDT possesses unique challenges related
to sensing, modeling, and acting. For example, each individual’s
body shape is distinctive, and in addition to physics-based model-
ing, data-driven modeling techniques are widely used to capture
physiological, physical, mental, and social aspects of humans. In
this section, starting with the IoT architecture, we present our
vision of the key enabling technologies that facilitate the develop-
ment and utilization of HDT with the focus on personalization,
privacy, multimodality, context-dependency, mobility, robustness,
and uncertainty. Furthermore, we also highlight the opportunities
and potential barriers associated with it.

3.1 Internet of Things Infrastructure. The IoT infrastructure
serves as the foundation for sensing and actuating in the context of
human digital twin applications. However, the (near) real-time
requirements of sensing multimodality data of (moving) humans
in asynchronous timestamps present challenges for sensing,
storage capacity, computing power, and bandwidth limitations.
For example, transmitting 4 K 60 Hz video for HAR can require a
high bandwidth of up to 32 Gbps, and multiple cameras are needed
as the subject is often moving. HDT designers and engineers need to
adopt a holistic view of the system and carefully allocate the neces-
sary data, models, and interfaces to different parts of the IoT infra-
structure, e.g., using the edge, fog, and cloud architecture [51].
Example applications indicated that real-time response data and
models can be deployed at the edge and fog, while background
tasks like continual learning of user behaviors can be handled at
the cloud side [52]. Researchers have also invested significant
efforts in downsizing advanced machine learning models for their
utilization in edge computing [53]. Furthermore, the HDT should

have the ability to tolerate possible loss of real-time data or compen-
sate for it by utilizing data from other modalities, ensuring a more
robust and safe performance of the HDT.

3.2 Data Security. Data security is one of the top concerns in
developing and using HDT, encompassing ethical considerations on
privacy, regulatory compliance, and business requirements. Techni-
cally, principles and implementations of HDT data security are not
different from security and privacy research in general [54]. A
promising technology is using blockchain, which improves security
utilizing computing capacity, bandwidth, and storage resources.
The major advantages that blockchain has brought to security can
be summarized as tamper-proofing, disaster recovery, and privacy
protection [55]. Götz et al. [56] explored the usage of blockchain
technology in DT regarding the applicability, interoperability, and
integrability. Liu et al. [57] also introduced blockchain into the
internet of vehicles to improve the accuracy and efficiency of
access control. An example of using blockchain in medical HDT
applications is the decentralized epidemic alerting system proposed
by Sahal et al. [58]. However, the immutability and transparency of
the personal data documented by the blockchain in the HDT might
lead to ethical issues [59], as Articles 17 and 19 of GDPR [60]
assure the “right to be forgotten” of personal data of individuals.
New flexible security protocols tailored to the requirements of the
HDT might be helpful regarding users’ sensitive information.

3.3 Wearables. Sensors deployed in the environment, such as
cameras and microphones, facilitated by HAR and speech recogni-
tion algorithms [61], have often been used to sense humans in rel-
atively fixed environments. However, wearables carried by
individuals offer a more flexible manner for updating personal
data in the HDT. In the past decade, the prevalence of wearable
devices and services has enabled the potential for wide uses of
the HDT. It was reported that till 2022, there will be up to 1.1
billion connected wearable devices worldwide [62]. This is espe-
cially true with the development of the pandemic [63].
Wearables can provide essential information for the HDT via the

data acquisition interface, e.g., human activities can be recognized
based on data collected by wearables [64], human heart rates can
be monitored by a wrist watch [65], and hand gestures can be rec-
ognized by a smart glove [66]. Professional wearables are often
used in HAR, e.g., Skals et al. [67] using Xsens [68] in the study
of physical demands of work in material handling in supermarkets.
Though accurate, the cost of these wearables is high, the size and/or
the weight are large, and professional training is often needed.
Consumer-level wearables did encourage users to participate in

physical activities [69]. On the other side, there is skepticism
about the quality of the data and the effectiveness of some human
activity tracking applications [70]. For instance, in a study using
electronic assistive technology to prevent falls for solo-living
adults, researchers found little evidence of the effectiveness [71],
which is affirmed by Montero-Odasso et al. [72]. Besides, the wear-
ability of body-worn devices and technologies is often a concern in
the use of wearables [73]. Wearables that prioritize technical
requirements over usability often result in an unsatisfactory user
experience, leading to low customer loyalty [74]. More work is
needed for wearable developers to develop comfort wearables that
are able to provide reliable and meaningful information, to
support the functions of HDT for the user as well as the stakeholders
[75] with clear evidence.

3.4 Human Modeling. Modeling humans is a highly complex
task. Despite the abundance of prior knowledge about humans, they
are inherently dynamic, and their feelings and behaviors exhibit
various levels of uncertainty in different contexts. These complex-
ities present significant challenges when constructing context-
sensitive temporal models of humans, especially for individuals.
The literature indicates that our current understanding of humans

Fig. 3 Personalizing a model using personal data, with dashed
lines indicating possible relations

060819-4 / Vol. 23, DECEMBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/6/060819/7036611/jcise_23_6_060819.pdf by Bibliotheek Tu D
elft user on 06 O

ctober 2023



only scratches the surface. Typically, a model can only capture
certain aspects of the intricate nature of humanity from a specific
perspective, usually within a particular context and for a specific
task, while still having substantial uncertainties. For instance, a
3D scan of a human hand can achieve a mean absolute error of
0.62 mm [76]. However, when predicting changes in comfort
feeling, researchers reported 11% and 21% errors in comfort and
discomfort prediction, respectively [77].
Physiological models for HDT have attracted much attention in

the past decades. A series of models were created at the cell
level, e.g., cancer [78,79], the organ level, e.g., the heart [80,81]
and the liver [82], and the system level, e.g., the musculoskeletal
system [83,84]. For different interventions, surgeons also benefited
from the use of the (H)DT in training or in operation [85]. As part of
the revolution in the healthcare industry, the use of the HDT enables
personalized medicine [86], i.e., individuals are able to make per-
sonalized health and wellbeing management (including prevention)
with clinicians and/or AI models [75]. For clinicians, HDTs also
enable them to deliver more personalized, intelligent, and proactive
prevention, cure, and care [29].
While the inside structures and the contour of humans, e.g., the

musculoskeletal system of a subject, can be revealed by different
types of medical images, e.g., ultrasound and magnetic resonance
imaging [87], the cost is high, and the procedure is often time-
consuming. And some medical imaging methods are intrusive for
humans as well, e.g., computed tomography. A more accessible
method of acquiring physical shapes of humans is 3D/4D scanning.
Recent developments in technology made it possible to track human
body deformation in real-time using different sensors, e.g., Azure
Kinect [88]. However, the cost of 3D/4D scanning is still high,
and post-processing is often needed to make the scanned data
useful. SSMs have been widely used in the past decades to approach
the physical shape of humans [47] based on acquired anthropomet-
ric measures, e.g., the stature. An example of the 3D human SSM is
the DINED database [44]. For 4D shapes of humans, rigging a skel-
eton (with fixed degree-of-freedoms) in a 3D human shape (avatar)
and deforming it accordingly are widely adopted techniques in ani-
mations [89], though the authenticity of the deformation strongly
depends on the requirements of the applications. For instance, an
error in several millimeters might be acceptable for visualizing
the shape of a virtual human agent in the Metaverse [90], but it
might lead to fitting problems for a personalized splint [47,91].
Recent development of 4D scanning technique enables more
precise data capture of 4D shapes where the skinned multi-person
linear (SMPL) model is a typical example [92]. However, accuracy
on details with different populations still can be improved.
Mental models are essential for many HDT applications, e.g., in

the manufacturing context where human emotion might influence
the effectiveness and efficiency of the work [93]. Nguyen [19] indi-
cated that many qualitative mental models can be beneficial for the
development of the HDT; however, developing a quantitative
mental model is often a challenge [94]. Researchers have explored
the possibility of using objective measures to interpret human
mental states, e.g., using electroencephalogram [95] and using
facial features [96]. Existing quantitative models on mental
models mainly focus on cognition and behaviors [97], where data-
driven methods, e.g., deep learning, were widely adopted in model-
ing. For instance, recent developments in large language model
demonstrate the feasibility and the potential in modeling cognition
of humans [98]. Meanwhile, though the conceptual frameworks of
personalized cognitive models were proposed [99], collecting big
amounts of data for quantifying individual models is still a chal-
lenge [99]. Researchers suggested combining data-driven and
theory-based approaches to reduce the complexity, both in the con-
struction and in the use of the model [99,100].
Social-behavioral models are associated with mental and physical

models of humans. Similar to the mental models, though a large
amount of qualitative models were available [101], quantifying
those models is still in progress. For instance, Tyshchuk and
Wallace modeled three human behaviors in social media: (1)

obtain and propagate the warning, (2) seek additional information/
confirmation, and (3) take the prescribed action [102]. Recently,
development in deep learning offers opportunities in modeling
groups as well as personal social behaviors, e.g., Phan et al. devel-
oped their explainable human behavior prediction models with 33
inputs in the context of health social networks [103]. Meanwhile,
social media, e.g., LinkedIn [104], feeds massive amounts of data
in building an effective social networking model, e.g., researchers
found that people who have weak ties help most in finding a job
[105]; Luceri et al. developed a model to predict the influence of
social network activities on real-life human behaviors with >80%
accuracy [106].
With the underlying that each human model is a partial truth

within its defined boundaries, often accompanied by different
levels of uncertainties, human beings are 99.9% identical in their
genetic makeup [107], which indicates that there is a considerable
degree of overlap regarding physiological, physical, mental, and
social aspects of humans. In constructing human models, research-
ers often use population models built on ethnicity groups [108], age,
educational background, anthropometric measurements, etc. as an
intermediate step between general human models and personalized
models [109]. Meanwhile, besides physics principles [4], data-
driven approaches, e.g., deep learning, are frequently employed to
model various aspects of humans due to their ability to capture
unknown principles, complex patterns, and relationships. Conse-
quently, large datasets encompassing different facets of humans,
e.g., AffectNet [110], are essential in the future of human modeling.

3.5 Explainable AI. Besides presenting the status of a specific
human in a context regarding specific tasks, a key function of the
HDT is to make meaningful predictions about the person regarding
a list of requirements, e.g., safety, physical, mental, and/or social
status.
As summarized in Sec. 3.4, data-driven methods have attracted

much attention in the past decade, and artificial intelligence (AI)
models have been built for predicting human physiological [111],
physical [64,112], mental [113], and social activities [114].
However, building and updating the model have different require-
ments. For instance, in the use of a data-driven approach to build
an SSM of the human hand [115], a large amount of (3D) data
might be needed to construct a model. But in the use of the model,
only a few inputs are needed to update the model. Currently, many
data-driven models are black-box models and even the creator(s) of
the model do not fully understand how different inputs (parameters)
are being combined to make reasonable predictions [116].
Explainable AI (XAI) focuses on explaining the model to dis-

cover, justify, improve, and control the model [117]. For instance,
Lundberg and Lee proposed the SHAP (SHapley Additive exPlana-
tions) method, which utilized a game theoretic approach to explain
the output of any machine learning model [118,119]. In detail,
model agnostic methods, e.g., permutation importance in Eli5
[120], and model-specific methods, e.g., deep visualization
toolbox [121], are often used in XAI. XAI not only helps research-
ers to gain a deeper understanding of the model and its inputs but
also helps them highlight the important factor(s) of the models/
inputs [122]. Those highlights might further simplify the (personal-
ized) model by reducing the needed computing power and sensor
inputs, which will further minimize ethical concerns in acquiring
human data as well.

3.6 Data Visualization and Extended Reality. Visualizing
the data of human(s) of an HDT, together with the physical/
digital objects around them in a context, can help the user to recog-
nize possible trends/patterns, infer possible causes and effects, rec-
ognize possible (cor)relations among different data sets, identify
potential outliers/problems, and eventually, trigger possible sense-
making process of the user for different purposes [123,124].
Data and model(s) in an HDT can be visualized in different ways,

and researchers developed many data visualization tools to support

Journal of Computing and Information Science in Engineering DECEMBER 2023, Vol. 23 / 060819-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/6/060819/7036611/jcise_23_6_060819.pdf by Bibliotheek Tu D
elft user on 06 O

ctober 2023



such activities, e.g., scientific, information, and analytic visualiza-
tion tools [125]. An example is that Austin et al. [126] used six
data visualization tools to identify patterns in whole-person health
for adults. A promising development is the use of virtual reality/
augmented reality/mixed reality (VR/AR/MR, or XR) tools,
which allow the user to not only visualize data in an intuitive
manner but also interact with other (H)DTs for different purposes
[127], e.g., co-creation [128] and co-simulation [129]. An
example is that Aivaliotis et al. proposed an AR suite integrated
with the DT of the shop floor, for developing human–robot interac-
tion using Microsoft® HoloLens® [130]. Geng et al. also created a
modular DT system that integrates VR/AR for remote control and
virtual machining [131].
Though researchers and engineers paid considerable effort in

developing data visualization tools and methods, there are still
some concerns [125], e.g., for the interface of the HDT, currently,
data sharing protocols are often ad hoc [129]. Generalized protocols
might help the development of HDT in the future. Researchers also
acknowledge that presenting a huge amount of multimodality data
of the (H)DT in a comfortable and meaningful manner remains a
challenge [132]. For instance, VR sickness occurs in many people
[133], and the causes might be associated with content, locomotion,
and exposure time [134]. All of these pose challenges to the effec-
tiveness and efficiency of presenting the data from (H)DTs [135].

3.7 Minimum Viable Sensing. For the development of the
HDT, we propose the concept of minimum viable sensing (MVS)
based on the concept of minimum viable products [136],
however, with different intentions. MVS of an HDT indicates that
the sensed and stored data shall be “just enough” for the purpose
of the HDT, e.g., predicting the level of comfort of a passenger.
MVS asks HDT designers to have a holistic view of the purpose
of the HDT, the requirements, the usage scenarios, the available
IoT infrastructure, the model, the people, and the ethical concerns
for a balance of technology and humanities.
MVS for an HDT can be determined by first exploring the person,

the context, and the task of the HDT, and further optimized through
the use of XAI and/or other tools. For instance, questions such as
“What are the usage scenarios that the HDT be deployed?” “What
is the acceptable accuracy?” “What are the available sensing
methods?” and “What are the least intrusive ways of deploying
wearables on the users?” can help HDT designers to explore multi-
ple possibilities for sensing the required inputs. Meanwhile, design-
ers can start from existing HDT models, or construct a brute-force
attack model and then optimize the model with XAI tools. For
instance, among 53 2D dimensions of the hand, Yang et al. found
that 21 of them have >1% contributions to 3D shapes, and 16 of
these 21 have lower measurement variations [122]. Using these
16 dimensions, they can approach 3D shapes with certain accuracy.
It is worth mentioning that technically, MVS does not mean a trade-
off between accuracy and less amount of data. In fact, in many
cases, the accuracy is improved by removing some inputs with
large measurement variations [116,122].
The advantages of using MVS are twofold. From a humanities

perspective, less data mean fewer ethical concerns in compliance
with the GDPR [137], and it is easier to configure wearables (if
any) in an ergonomic manner for the user [138]. Technically, less
data translates to the use of fewer hardware and software resources
on sensors, bandwidth, storage, and computing power, all of which
contribute to a more effective and efficient system. However, to
achieve MVS, HDT designers need to have a holistic view of the
system, pay extra attention to both humanities and technology,
and utilize tools such as XAI to generate more insights into the
effects of the sensed data.

4 Applications of Using Human Digital Twin
The content of HDT is not new, and knowledge of different

aspects of humans is available. However, the concept of HDT

offers an overarching architecture and addresses the importance
of time effects, i.e., the information of a human is dynamic, and
the model can be continually updated over time. Among different
applications of HDT, an extensive literature search did not find a
“full” HDT. In most cases, only certain aspects of human attributes
are used in a particular context for specific purposes. In the follow-
ing, we highlight some HDT applications in different fields.
Personalized medicine: In this area, researchers have developed

different models on physiological and physical aspects of humans
to understand the in situ scenarios of patients for better interventions
as summarized in Sec. 3.5. Besides curing, preventive healthcare
with wearables also attracted much attention due to many benefits
it brings, e.g., longer life span, a better quality of life, and
reduced risks in rehabilitation [139]. Meanwhile, HDTs with wear-
ables can be used to support different types of rehabilitation, e.g.,
sports and cognitive rehabilitation, and provide rehabilitation aids
for individuals with disabilities [140]. For instance, Wu and Luo
indicated that wearables can monitor physical activities, mental
status, etc., and the sensed data can be used to update an HDT for
providing suggestions based on in situ data [141].
Smart cities: While researchers and designers focus on building a

best-in-class customer experience in smart cities, sensing the
dynamic information of city users is the basis for optimally manag-
ing the city. For instance, Saeed et al. explored city DT concepts and
highlighted the importance of users and their experience in the city
of the future [6]. Lee et al. recognized that city user interfaces are
crucial enablers for ubiquitous interaction with immersive
systems in smart cities [142]. Psyllidis et al. developed a dynamic
walk path model for crowd management during the pandemic to
ensure social distancing [143]. Villanueva et al. utilized real-time
citizen information from social networks and smartphone applica-
tions, i.e., HDTs of individuals, to enhance the situation awareness
of civil servants regarding crowded events [144].
Manufacturing: The European Commission recently published a

white paper on Industry 5.0, emphasizing the importance of a sus-
tainable, human-centric, and resilient industry [145]. While specific
details are still being discussed [146,147], it is evident that a human-
centric approach [148] and value-driven technology [149] are
essential. Recognizing the value of humans in different contexts
is crucial for optimizing their performance [150]. For instance,
Mourtzis et al. explored the roles, functions, and needs of human
operators in future factories utilizing MR tools [151]. Among differ-
ent activities of humans, human–machine interactions (HMIs)
[152,153] and especially human–robot interactions [154–157]
attracted much attention. Though different types of models in
HDT are needed in modeling the in situ scenarios, cognitive and
physical models that accurately and reliably capture the relevant
contexts and tasks are of utmost importance.
Sports: HDTs were used in monitoring real-time activities and

offering advice based on users’ personal conditions. For instance,
Fister et al. applied a LSTM-based cognitive model to leverage in
situ sensor information for training cycling athletes [158]. Barricelli
et al. created an HDT that mirrored the athletes’ conditions and
behaviors, allowing for the prediction of corresponding suggestions
[23].
Mobility: Travel is not rational, but it is in our genes [159]. HDT

was used in many mobility applications. For instance, in the scenar-
ios of driving, Wang et al. developed a mobility digital twin system
consisting of HDTs, DT of vehicles, and a DT of traffic [160] where
for the HDTs, all stakeholders involved in the transportation
system, e.g., drivers, passengers, including their behaviors, are
modeled. A key advantage of using HDTs in mobility is personal-
ization, e.g., Anda et al. proposed the DT travelers, which utilized a
two-step framework to synthesize individual travel demands based
on data collected from their mobile phones [161].
Metaverse: Human and human-like virtual agents are integral

components that enhance the immersive experience and enable
rich interactions in the Metaverse. Nguyen emphasized the coexis-
tence of HDTs alongside other DTs in the Metaverse, enabling
agent-based modeling and simulation [19]. Moreover, Abraham
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et al. asserted that DTs and HDTs are the foundation of the Meta-
verse [162]. Oh et al. highlighted the significant impact of incorpo-
rating realistic human shapes from HDTs in generating greater
enjoyment and social influence, particularly in neutral and positive
contexts [163]. This aspect holds immense potential for various
Metaverse applications, including marketing, education, tourism,
and healthcare [164].
Design: “Knowing the user” is a fundamental principle in human-

centered design [165]. HDTs encompass a comprehensive range of
physiological, physical, psychological, and social information
about the user, allowing for real-time updates and seamless integra-
tion with other digital objects. Personal, real-time, prediction, and
automation are the added values of using HDT in designing prod-
ucts, services, and systems [166].
At the product level, HDT offers personalized information to

facilitate the design. For example, in the realm of footwear
design, Rout et al. [167] utilized 3D scans of a person to create

customized shoe lasts. Personalized braces and splints have also
emerged in the market, to cater to specific user needs [91]. In
service design, personalized marketing strategies have been devel-
oped to enhance user experience [168]. However, it is crucial for
designers to navigate ethical boundaries and strike a balance
between various considerations [169,170]. At the system level,
the design of smart cities serves as a notable example, as summa-
rized before. HDTs are also employed in the context of Industry
4.0 for the HMI design [171]. In these scenarios, different users,
such as operators and supervisors, and machines, such as robots,
must function both independently and synergistically to achieve
optimal outcomes.
Moreover, HDT also enables new design tools and triggers new

design processes. For instance, remote presence and collaboration
have brought forth novel forms of customer experience and value
co-creation [42]. This is especially true in Metaverse where
HDT(s) can act as virtual agents on behalf of human agents when

Fig. 4 Use HDT in personalized product design: (a) a statistical shapemodel of hand, cour-
tesy of Ref. [47], (b) the most important 2D dimensions regarding the 3D hand shape,
dimension 2, 3, 4, 7, 8, 9, 10, 11, 12, 14, 20, 22, 33, 39, 41 and 43 have low measurement var-
iances, courtesy of Ref. [122], and (c) three hand splints designed based on three HDTs,
courtesy of Ref. [47]
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they are inactive. In other words, HDTs can autonomously simulate
human actions, contributing to automated interactions even in the
absence of the actual human [172].
Case study—personalized product design: Personalized products

refer to products that are specifically designed and manufactured to
meet the unique needs and preferences of individual customers.
This includes catering to functional requirements as well as esthetic
preferences [146]. Among different types of personalization,
personalization-in-fit addresses the presence of the personalized
forms regarding the interactions between the product and the con-
sumer, the environment and/or other products that are used by the
consumer.
In the design of personalization-in-fit products [173], the HDT of

the user, which contains information regarding their body shapes, is
often used. The creation of the HDT involves building a model of
(part of) the user’s body shape. This can be done by directly utiliz-
ing body shape data acquired from 3D scans [9] or by adapting a
few parameters of a human body SSM in the model library [10].
Figure 4(a) shows a SSM of the human hand that was developed
and stored in the model library. In Fig. 4(b), researchers utilized
XAI tools to highlight the most important 2D dimensions for
minimum viable sensing. In the figure, each 2D dimension has
more than 1% dominance value regarding 3D shapes. However,
dimension 2, 3, 4, 7, 8, 9, 10, 11, 12, 14, 20, 22, 33, 39, 41 and
43 have low variances in data acquisition and therefore were
recommended for data acquisition in building a personalized
human hand model. In Fig. 4(c), three personalized hand splints
were designed for three different hands using the information of
three HDTs, respectively.

5 Limitations
While this paper focuses on the technical aspects involved in the

development and utilization of HDTs, it is important to acknowl-
edge that many other aspects, e.g., ethics and regulations, are
crucial for future research and applications on HDT. For instance,
the rapid development of data collection methods and AI [174]
often lead to new knowledge and insights into existing data,
which can potentially give rise to new ethical issues. Further explo-
ration and discussion of these aspects are strongly recommended.
While there is abundant literature on each key enabling technology,
the use of these technologies in HDT is highly context and task-
dependent. Space limitations prevent in-depth discussions of
details, particularly regarding the complexity, accuracy, robustness,
and uncertainty involved in human modeling. Further research and
analysis are necessary to investigate these aspects.

6 Conclusion
The number of research works in the field of HDT has signifi-

cantly increased over the past decade, yet there is still much
ground to cover. This paper explores the framework of HDT, its
key enabling technology and potential applications. While we
propose that the personal data, model, and interface are the three
key modules in building an HDT, we also envision IoT infrastruc-
ture, data security, wearables, human modeling, XAI, data visuali-
zation and XR, and minimum viable sensing as key enabling
technologies with the focus on unique attributes of HDT, i.e., per-
sonal, private, multidimensional, updateable, context-dependent,
descriptive and predictive, mobile, robust, uncertainty, and interac-
tible and integrable.
While this paper provides a glimpse into the field, current appli-

cations have indicated that using HDT could offer a multitude of
new (design) opportunities in areas such as personalization, real-
time interactions, predictive modeling, and automation. Further
exploration and research are needed to fully realize the potential
of HDT in these domains.
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