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Abstract—We present a mapping algorithm to compute large-
scale magnetic field maps in indoor environments with approx-
imate Gaussian process (GP) regression. Mapping the spatial
variations in the ambient magnetic field can be used for lo-
calization algorithms in indoor areas. To compute such a map,
GP regression is a suitable tool because it provides predictions
of the magnetic field at new locations along with uncertainty
quantification. Because full GP regression has a complexity that
grows cubically with the number of data points, approximations
for GPs have been extensively studied. In this paper, we build on
the structured kernel interpolation (SKI) framework, speeding
up inference by exploiting efficient Krylov subspace methods.
More specifically, we incorporate SKI with derivatives (D-SKI)
into the scalar potential model for magnetic field modeling and
compute both predictive mean and covariance with a complexity
that is linear in the data points. In our simulations, we show that
our method achieves better accuracy than current state-of-the-
art methods on magnetic field maps with a growing mapping
area. In our large-scale experiments, we construct magnetic
field maps from up to 40000 three-dimensional magnetic field
measurements in less than two minutes on a standard laptop.

Index Terms—Gaussian process regression, magnetic field
maps, indoor localization, structured kernel interpolation.

I. INTRODUCTION

Indoor positioning and navigation in indoor environments
is an active and challenging field of research, see e.g. [1],
[2]. Since the global positioning system (GPS) does not work
properly indoors, existing technologies rely on e.g. WLAN [3]
or ultra-wideband [4]. In recent years, a novel and promising
approach uses the spatial anomalies of the ambient magnetic
field that is present indoors, see e.g. [5]–[11]. Probabilistic
algorithms for indoor localization with magnetic field mea-
surements use e.g. an extended Kalman filter [12] or a particle
filter [13] in combination with Gaussian process (GP) regres-
sion. The motivation to use GPs [14] is the fact that they can
be used to construct a magnetic field map from measurements
providing a mean and uncertainty information which are both
crucial for probabilistic localization algorithms. However, full
GP regression becomes intractable for a large number of data
points N , so existing approaches for magnetic field mapping
have downsampled the data [6], made maps only using data
close to a position of interest [15] or have approximated the
GP kernel in terms of a number of basis functions [16].
Each of these methods has downsides, which can impact the
accuracy of the map: The first two methods do not use all
the data and the latter relies on a sufficient number of basis
functions Mbf to achieve a good approximation of the kernel

Fig. 1: Magnitude of the magnetic field computed by con-
structing a map from 21 931 measurements, where darker
regions correspond to a higher magnitude. The red line is the
walking path, along which measurements are collected.

function [16]. Inspired by the fact that the literature about
approximate GPs offers numerous other approaches for large-
scale GPs that overcome the aforementioned limitations, in
this paper, we build on the SKI framework by [17] to construct
magnetic field maps. In the SKI framework, the measurements
are observed through Mind inducing variables, where the
inducing inputs are placed on a Cartesian grid. The structure
of the inducing inputs naturally enables Kronecker structure in
the corresponding kernel matrix, as well as structured kernel
interpolation (SKI), i.e. approximation of kernel matrices by
interpolation. Exploiting Kronecker algebra and the sparsity
of the interpolation matrices in Krylov subspace methods,
we can compute magnetic field maps in an efficient way.
This allows us to compute large-scale magnetic field maps
as illustrated in Fig. 1 that are computationally unfeasible for
full GP regression on a regular laptop. To construct the map,
we use magnetometer data in combination with positions and
orientations that are assumed to be known. Based on previous
work by e.g. [18], [19], we model the magnetic field with the
scalar potential model that allows for incorporating physical
knowledge into the GP prior. In this framework, we use SKI
with derivatives (D-SKI) [20] to compute the predictive means
with conjugate gradients. For the predictive variance, we adapt
the LanczOs Variance Estimates (LOVE) algorithm [21] to the
D-SKI framework. The associated computational complexity
is O((J + 2T )(3N +Mind(M

(1)
ind +M

(2)
ind +M

(3)
ind))), where

J and T are chosen based on the desired accuracy of the
conjugate gradient and Lanczos tridiagonalization algorithm,
respectively, and M

(d)
ind is the number of inducing inputs in the

dth dimension.
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II. PROBLEM FORMULATION

We are interested in constructing large-scale magnetic field
maps with GP regression. Similar to [19], [22], we assume the
magnetic field to be curl-free and model the magnetic field
measurements as the derivatives of a scalar potential φ on
which we put a GP prior. Given n = 1, . . . , N 3D positions
p at which magnetic field measurements have been collected,
the GP model is given by

φ(p) ∼ GP (0, κ(p,p′)) ,

yn = −∇φ(pn) + ϵn, ϵn ∼ N (0, σ2
yI3),

(1)

where yn ∈ R3 contains the x-, y- and z- component of the
magnetic field measurement, κ is the kernel function, and σ2

y

is the noise variance. We choose the kernel to be the squared
exponential kernel, as in related literature, see e.g. [6], [23]–
[26]. The squared exponential kernel is given by

κ(x,x′) = σ2
f exp

(
−∥x− x′∥2

2ℓ2

)
, (2)

where σ2
f and ℓ are the hyperparameters of the kernel, the

signal variance, and the length scale.
Although we measure the Earth’s magnetic field together

with anomalies, we choose to only model the anomalies,
because this model choice fits better into our approximation
scheme. When also considering the local magnetic field as e.g.
in [27], the kernel includes a linear term as well.

As the gradient operator is a linear operator given the
linearity of differentiation [28], the predictive distribution of
the three components of the magnetic field in a new location
p∗ can be expressed in terms of a mean and a variance of f∗
given by

E [f∗] = ∂2(K∗,f )
(
∂2(Kf ,f ) + σ2

yI3N
)−1

vec
(
Y⊤) ,

V [f∗] = ∂2(K∗,∗) −

∂2(K∗,f )
(
∂2(Kf ,f ) + σ2

yI3N
)−1

∂2(Kf ,∗),

(3)

where Y = [y⊤
1 y⊤

2 · · ·y⊤
N ] ∈ RN×3 are all magnetic field

measurements. The entries of ∂2(Kf ,f ), ∂2(K∗,f ) and
∂2(K∗,∗) are computed block-wise in terms of 3×3 blocks for
each pair of positions with ∇pκ(p,p

′)∇⊤
p′ , ∇pκ(p,p∗)∇⊤

p∗

and ∇p∗κ(p∗,p
′
∗)∇⊤

p′
∗
, respectively, where ∇ denotes the

gradient that is taken w.r.t. to the vector specified in the
subscript.

With (3) it is possible to predict the magnetic field in new
locations. In practice, however, this is only possible for a
small number of data points, since full GP regression generally
scales cubically with N . In this case it even scales cubically
with 3N , because of the 3 derivatives. In this paper, we build
on the SKI framework, described in the next section, to make
large-scale magnetic field maps in an efficient way.

III. SKI FRAMEWORK

The SKI framework is based on sparse approximations for
GP regression, using a set of Mind inducing inputs xu ∈ RD.
In the context of magnetic field modeling, the inducing inputs
are positions in R3. Based on the Nyström approximation [29]

of the kernel, the simplest formulation of the inducing input
approach is the subset of regressors (SoR), which can be
implemented similarly to the predictive distribution for full GP
regression using an approximation to the kernel function [30],
given by

κSoR(x,x
′) = κ(x,xu)K

−1
u,uκ(xu,x

′), (4)

where Ku,u denotes the covariance matrix of all the inducing
inputs. The approximated kernel function results in new kernel
matrices, which are then given by

Kf ,f = Kf ,uK
−1
u,uKu,f , (5a)

K∗,∗ = K∗,uK
−1
u,uKu,∗, (5b)

K∗,f = K∗,uK
−1
u,uKu,f . (5c)

In the SKI framework [17], the inducing inputs are placed
on a Cartesian grid, which is equispaced per dimension and
of size M

(1)
ind × M

(2)
ind × · · · × M

(D)
ind , for a total of Mind =∏D

d=1 M
(d)
ind inducing inputs.

Consequently, product kernels - here the squared exponen-
tial kernel is considered - decompose over the input dimen-
sions. Thus, Ku,u can be expressed as a Kronecker product
of D matrices [17], [31], given by

Ku,u =

D⊗
d=1

K(d)
u,u, (6)

where K
(d)
u,u is computed with a squared exponential kernel

having a scaled signal variance σ
2/D
f [31].

In addition, in the SKI framework, the cross-covariance
matrices Kf ,u and K∗,u are approximated using sparse in-
terpolation matrices, Wf ∈ RN×M and W∗ ∈ RN∗×M , such
that

Kf ,u ≈ WfKu,u and K∗,u ≈ W∗Ku,u. (7)

Each row of the interpolation matrices contains 4D interpola-
tion weights for cubic interpolation [32] which is suggested
in [17].

IV. LARGE-SCALE MAGNETIC FIELD MAPS

Our goal is to compute magnetic field maps in 3D using
magnetic field measurements as training data. In order to be
able to use large data sets, we exploit mathematical formula-
tions in the SKI framework adapted to magnetic field modeling
to compute predictive means and variances in an efficient way.
As the predictive distribution of the scalar potential model in
(3) is based on the derivatives of the magnetic scalar potential,
we approximate the elementwise computation ∂2(·) of the
kernel matrices with D-SKI [20]. Using D-SKI, ∂2(·) can be
simplified through differentiation of the interpolation scheme,
such that it is

∂2(Kf ,f ) ≈ (∂Wf )Ku,u (∂Wf )
⊤
, (8a)

∂2(K∗,f ) ≈ (∂W∗)Ku,u (∂Wf )
⊤
, (8b)

where ∂Wf ∈ R3N×Mind and ∂W∗ ∈ R3N∗×Mind . Note that
the first size of the interpolation matrices is multiplied by a
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factor of 3 compared to (7) due to the three components of the
magnetic field. As mentioned in the previous section, in SKI
a cubic interpolation is advised [17], while in D-SKI a quintic
interpolation scheme is used [20]. We use a cubic interpolation
scheme for D-SKI, since preliminary experiments show that
the approximation is sufficient for our application.

The predictive distribution in a new location p∗ ∈ R3 of
the scalar potential model for magnetic field modeling using
D-SKI is given by

E [f∗] = (∂W∗)Ku,u(∂Wf )
⊤A−1 vec

(
Y⊤) (9a)

V [f∗] = (∂W∗) Ku,u (∂W∗)
⊤ − (∂W∗) C (∂W∗)

⊤ (9b)

The matrices A and C only depend on the training data and
are defined as

A := (∂Wf )Ku,u (∂Wf )
⊤
+ σ2

y I3N , (10a)

C := Ku,u (∂Wf )
⊤
A−1 (∂Wf )Ku,u. (10b)

A naive computation of the predictive mean and variance
with (9a) and (9b) would require an inverse of a 3N × 3N
matrix. Inducing inputs on a grid and kernel interpolation,
however, enable efficient computations via Krylov subspace
methods. The key to efficient computation is not to construct
the matrices involved in (9a) and (9b) explicitly but to keep
them in terms of a factorized format of 3 smaller matrices,
one for each input dimension. Based on [20], we use precon-
ditioned conjugate gradient to find the solution α to the linear
system given by

A α = vec(Y⊤). (11)

While in D-SKI fast matrix-vector-multiplications (MVMs)
are computed via FFT, we compute them like in [17] via
Kronecker MVMs as described in [33]. In this way, the pre-
dictive mean of a 3D map is computed with a computational
complexity of

O

(
J

(
3N +Mind

3∑
d=1

M
(d)
ind

))
= Oind, (12)

where J is the number of iterations in the conjugate gradient.
To compute the predictive variance of the magnetic field map,
we build on the LanczOs Variance Estimates approach by [21],
which is based on the Lanczos tridiagonalization algorithm.
We use the LanczOs Variance Estimates within the D-SKI
framework to find a low-rank approximation for A given by

A ≈ QTTTQ
⊤
T , (13)

where QT ∈ R3N×T contains T orthonormal vectors corre-
sponding to the first T leading eigenvalues and TT ∈ RT×T

has a tridiagonal structure [34]. Once an approximation of A
is found, C from (10b) can be computed as

C = Ku,u(∂Wf )
⊤A−1(∂Wf )Ku,u

≈ Ku,u(∂Wf )
⊤QTT

−1
T Q⊤

T (∂Wf )Ku,u.
(14)

As described in [21], we again exploit Kronecker algebra
to compute the MVMs in (14) efficiently. The computa-
tion of C has an associated computational complexity of

O(2T (3N +Mind(M
(1)
ind +M

(2)
ind +M

(3)
ind ))) for magnetic field

modeling [21]. In numerical implementations, the complexity
is higher due to the full reorthogonalization required for the
Lanczos tridiagonalization algorithm, scaling linearly with the
number of training points N and Lanczos iterations T .

Alternatively, the predictive variance could also be com-
puted using conjugate gradient. However, computing C by
solving a linear system to find A−1(∂Wf )Ku,u needs to be
done for each column of (∂Wf )Ku,u sequentially, which is
not particularly efficient. In [35], the variance is stochastically
estimated by drawing samples from the predictive distribu-
tions [36]. While this approach can reduce the computational
complexity associated with the computation of the predictive
variances, it introduces significant accuracy losses.

Once α and C are computed, predictions in new locations
can be computed with (9a) and (9b) again by exploiting Kro-
necker algebra and the structure of the interpolation matrices.

V. EXPERIMENTS

In our experiments, we first compare our method to ex-
isting ones in simulations with synthetic data, then show
our method’s scalability with large-scale magnetometer data
collected with a motion capture suit. All computations are
done on a 2016 HP ZBook Studio G3 laptop (Intel Core i7 @
2.60 GHz, 8GB RAM).

A. Accuracy analysis for growing mapping area

In the first simulation, we compare the accuracy of magnetic
field maps computed with our and existing methods. For this,
we create a synthetic data set of 6000 data points, representing
a magnetic field map. Each input is a random 3D vector lying
in a box confined by [−20, 20] × [−20, 20] × [0.01, 0.01]
and the corresponding output is sampled from a GP prior with
a curl-free kernel with hyperparameters, length scale, signal
variance, and noise variance, [ℓ, σ2

f , σ
2
y] = [2, 1, 0.01] which

is equivalent to drawing samples from model (1) [27].
We compute two maps with different sizes: area 1 of size

20×20 and area 2 of size 40×40. For area 1, a subset of the
6000 data points is used, laying in the white square shown in
Fig. 2, and for area 2, all data is used. We divide the data points
in each area into 80% training data and 20% testing data. With
the testing data, we compute root mean square errors (RMSEs)
as a metric for accuracy.

We compare our method to a GP where we downsample
the data, as well as to the basis function approach by [16],
showing how the area size impacts the accuracy of the map
for different Mind, Ndwn and Mbf in the respective methods.
Since the domain on which basis functions are computed needs
to be a bit bigger than the mapping area [16], we add twice
the length scale in each dimension.

To be able to compare all methods, we compute the
computational complexity of our method Oind as defined in
(12), and impose this complexity as the computational budget
for the other methods. The complexity of the approach of
downsampling the data is equal to the cubic complexity of full
GP. The complexity of the basis function approach is linear
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Fig. 2: Synthetic data with white and black squares denoting
area 1 of size 20× 20 (N ≈ 1526) and area 2 of size 40× 40
(N = 6000). The scattered dots are data points and the color
corresponds to the magnitude of the magnetic field.

in the number of data points and quadratic in the number of
basis functions. By equating the complexities

Oind = O(M2
bf3N) = O(N3

dwn), (15)

and solving for Mbf and Ndwn, those numbers can be used in
the corresponding methods.

For each of the two area sizes, we have six different
settings, where we vary the number of inducing inputs, i.e.,
M

(1)
ind = M

(2)
ind = [10, 20, 40, 80, 100, 200] and M

(3)
ind = 5.

The number of iterations in the conjugate gradient, J , is based
on the tolerance for accuracy. Table I summarizes all settings
used in the simulations. The first two rows are the total number
of inducing inputs Mind and the other rows are the number of
basis functions and downsampled data points that result from
the imposed computational budget Oind. We run the simulation
100 times, where each time new data is sampled. An example
of the data is illustrated in Fig. 2.

Fig. 3 shows the RMSEs on the testing data computed with
the three methods for area 1 (solid line) and area 2 (dash-dotted
line). The mean and standard deviation of the RMSE from 100
runs are plotted. The horizontal axis denotes the 6 different
settings as described in Table I. The mean RMSE of the full
GP is given for area 2 as a reference (dashed black line), for
area 1 the RMSE is very similar and therefore not shown.
The figure shows that for each method, the RMSEs are larger
for the 40 × 40 area than for the 20 × 20 area. This implies
that a larger Mind, Ndwn, and Mbf are required for a larger
area to achieve low RMSE. Also, all methods converge to the
RMSE of the full GP in the limit. Comparing our methods to
the other two, for both areas our method has lower RMSEs.
In addition, the difference in RMSEs between our methods
and the other methods is more significant for the larger area.
The main takeaway of this simulation is that our method has
better accuracy than the other methods when the computational
budget Oind is imposed for all methods. It follows that the
computational cost to compute a map of a specified accuracy

is lower for our approach compared to the others. Especially
when computing large-scale maps, this becomes important:
Since the number of basis functions needed to approximate the
kernel function sufficiently is known to scale with the domain
size [16], a trade-off between accuracy and computational
cost needs to be made. A similar trade-off is necessary for
downsampling the data, because more data points are required
for larger areas.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Settings
R

M
SE

our method
basis functions
downsampled

full GP

Fig. 3: RMSE for area 1 (solid line) and 2 (dash-dotted line).
For reference, the RMSE of full GP is given for area 2 only,
because the other value is very similar. The horizontal axis
are the six different settings described in Table I. Mean and
standard deviation are plotted for 100 runs of the simulation.

B. Analysis of maps with divided mapping area

As mentioned in the previous section, the basis function
approach requires a large number of basis functions for grow-
ing mapping areas. To lower the computational complexity, an
alternative approach for computing large-scale maps with basis
functions is dividing the area into smaller areas for each of
which a GP approximation with basis functions is made [18].
To train each smaller map, not only training data from the
mapping area is used, but also training data in close proximity
to that area. In a second simulation, we show that this strategy
may result in inconsistencies at boundaries. We use synthetic
data sampled from a GP prior with a curl-free kernel and with
hyperparameters [ℓ, σ2

f , σ2
y] = [5, 1, 0.01], divide the data

into four regions and downsample the data by different factors
in every region, as shown in Fig. 4 (a). The reason for it is to
analyze how the amount of data points in a neighboring area
influences the inconsistencies at the boundaries. For training
each map, we use data points in each area as well as data
from an overlap of size 0ℓ, 0.1ℓ, 0.3ℓ to the neighboring areas.
The domain on which we compute basis functions is then the
size of the mapping area plus the overlap plus twice the length
scale. The result of the reconstruction is shown in Fig. 4 (c)-
(e). The figure shows that for no overlap, there are visible
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Setting 1 2 3 4 5 6

Mind
Area 1 500 2K 8K 32K 50K 200K
Area 2 500 2K 8K 32K 50K 200K

Mbf
Area 1 35 - 36 97 - 98 262 - 266 726 - 738 1012 - 1027 2843 - 2887
Area 2 15 - 16 57 - 58 152 - 153 420 - 422 584 - 587 1635 - 1646

Ndwn
Area 1 55 - 56 107 - 108 208 - 210 411 - 415 512 - 518 1020 - 1030
Area 2 49 - 50 120 - 121 231 - 232 455 - 457 567 - 569 1126 - 1131

TABLE I: Mind, Mbf and Ndwn used in the 6 settings of the simulation. The first and second rows for basis function approach
and downsampled data are the values for the area 1 and 2, respectively. Value ranges for 100 simulations.

(a) data (b) our method (c) no overlap (d) 0.1ℓ overlap (e) 0.3ℓ overlap

Fig. 4: Magnetic field data (a). Predictions with our method for the whole area (b). Predictions with basis functions in smaller
areas separately using an overlap of 0, 0.1ℓ, and 0.3ℓ for the training data, respectively (c)-(e).

inconsistencies in the mean on the magnetic field prediction.
For 0.1ℓ and 0.3ℓ, the inconsistencies are smaller but still
present. In addition, the inconsistencies are more visible at
the boundaries of areas with fewer data. As a comparison, a
map reconstructed with our method is shown in Fig. 4 (b),
where the mapping area is not divided.

C. Large-scale map in university building

For our experiments, we use data collected with a motion
capture suit (Xsens MVN Link [37]). The suit contains 17
inertial measurement units (IMUs) equipped with magne-
tometers tightly attached to segments all over the body. The
IMUs provide accelerometer, gyroscope, and magnetometer
data with position and orientation data in the navigation frame
at a maximum sample rate of 240Hz. The magnetometers
have been calibrated using software available with the suit,
such that after calibration the norm of the undisturbed Earth’s
magnetic field is 1 [38]. In a pre-processing step, the data
is first rotated to the global frame defined by the magnetic
North pole, and second, the mean is subtracted from the x-,
y-, and z-component, since we only model the anomalies of
the magnetic field. We use the data collected from one IMU
that is located at the pelvis. In the first large-scale experiment,
the magnetic field of one of the university hallway wings at
the TU Delft is computed based on N = 21 931 magnetic
field measurements. The area of interest for this experiment
is a rectangle bounded by [−34m, 34m]× [−5.25m, 5.25m]
located at a height of approximately 1m. The magnetic field
is estimated with our method using an inducing point grid of
size 400× 40× 4, for a total of 64 000 inducing points. The

number of inducing points per dimension is chosen such that
several inducing points are present per characteristic length
scale. The hyperparameters are trained on a subset of the data
by minimizing the log marginal likelihood with the curl-free
kernel, resulting in ℓ = 0.5m, σf = 0.2 and σy = 0.01.
Fig. 1 shows the magnitude of the magnetic field predictions,
computed from the three components. Darker regions in the
figure correspond to a higher magnitude of the magnetic field.
Since there are metallic lockers located in the hallway, we
expected a strong magnetic anomaly, which is visible in the
figure. Fig. 5 shows a smaller section of the magnetic field
map, in terms of its magnitude, as well as its x-, y- and z-
component. The magnetic disturbance caused by the lockers
is mostly visible in the z-components, as shown in the upper
right part of Fig. 5 (d). The transparency in the figure indicates
the certainty of the map.

Regarding computational time, computing the map with
21 931 measurements took approximately 1min for training
and 18 s for testing. In a second experiment with 41 383 data
points, the training took approximately 97 s for training and
18 s for testing. While with full GP the map would not be
feasible to compute on our laptop, our method scales very
well: The computing time approximately only doubling when
doubling the data points, thus is approximately linear in N .

VI. CONCLUSION

In this paper, we described an algorithm to efficiently
compute large-scale magnetic field maps using approximate
Gaussian process regression. We used inducing inputs on a
grid and structured kernel interpolation with derivative to
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(a) Magnitude (b) x-component (c) y-component (d) z-component

Fig. 5: Magnetic field maps for a smaller region of map in Fig. 1, located on the left part of the hallway. In the z-components,
the lockers are strongly visible, indicating that the metal in the lockers mainly disturbs the magnetic field in that direction.
Transparency indicates the certainty of the prediction.

compute the predictive mean and an algorithm based on
Lanczos tridiagonalization to compute variance estimates. We
compared our method to existing methods in simulations and
showed its scalability in large-scale experiments. There are
multiple directions for future work. The kernel in the scalar
potential model can be complemented by a linear kernel as
in [19], [22] in order to also model the underlying Earth’s
magnetic field. The linear kernel, however, is not a product
kernel and can thus not be decomposed as a Kronecker
product. When using the equivalent curl-free model instead,
the kernel consists of a constant term and a curl-free kernel
[27], where the constant term can again be decomposed as a
Kronecker product. In this way, a model considering both the
Earth’s magnetic field and the spatial anomalies can be used
in the D-SKI framework. In addition, the presented method
can be extended to online mapping to enable its use in e.g.
simultaneous localization and mapping (SLAM) algorithms.
The SKI framework for online GPs has been described in [39]
and can be adapted to magnetic field mapping.

ACKNOWLEDGMENT

This publication is part of the project “Sensor Fusion For
Indoor Localisation Using The Magnetic Field” with project
number 18213 of the research program Veni which is (partly)
financed by the Dutch Research Council (NWO).

We would like to thank Fabian Girrbach from Movella Tech-
nologies for post-processing data collected with the motion
capture suit.

REFERENCES

[1] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization
systems and technologies,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 3, pp. 2568–2599, 2019.

[2] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen,
R. Raulefs, and E. Aboutanios, “Recent advances in indoor localization:
A survey on theoretical approaches and applications,” IEEE Communi-
cations Surveys & Tutorials, vol. 19, no. 2, pp. 1327–1346, 2016.

[3] S. He and S.-H. G. Chan, “Wi-fi fingerprint-based indoor positioning:
Recent advances and comparisons,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 466–490, 2015.

[4] A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami,
M. A. Al-Ammar, and H. S. Al-Khalifa, “Ultra wideband indoor posi-
tioning technologies: Analysis and recent advances,” Sensors, vol. 16,
no. 5, p. 707, 2016.

[5] J. Haverinen and A. Kemppainen, “Global indoor self-localization based
on the ambient magnetic field,” Robotics and Autonomous Systems,
vol. 57, no. 10, pp. 1028–1035, 2009.

[6] I. Vallivaara, J. Haverinen, A. Kemppainen, and J. Röning, “Simulta-
neous localization and mapping using ambient magnetic field,” in 2010
IEEE Conference on Multisensor Fusion and Integration. IEEE, 2010,
pp. 14–19.

[7] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wise-
man, “Indoor location sensing using geo-magnetism,” in Proceedings of
the 9th international conference on Mobile systems, applications, and
services, 2011, pp. 141–154.

[8] P. Robertson, M. Frassl, M. Angermann, M. Doniec, B. J. Julian,
M. G. Puyol, M. Khider, M. Lichtenstern, and L. Bruno, “Simultaneous
localization and mapping for pedestrians using distortions of the local
magnetic field intensity in large indoor environments,” in International
conference on indoor positioning and indoor navigation. IEEE, 2013,
pp. 1–10.

[9] G. Berkovich, D. Churikov, J. Georgy, and C. Goodall, “Coursa venue:
Indoor navigation platform using fusion of inertial sensors with magnetic
and radio fingerprinting,” in 2019 22th International Conference on
Information Fusion (FUSION). IEEE, 2019, pp. 1–6.

[10] S.-E. Kim, Y. Kim, J. Yoon, and E. S. Kim, “Indoor positioning system
using geomagnetic anomalies for smartphones,” in 2012 International
conference on indoor positioning and indoor navigation (IPIN). IEEE,
2012, pp. 1–5.

[11] J. Torres-Sospedra, D. Rambla, R. Montoliu, O. Belmonte, and J. Huerta,
“Ujiindoorloc-mag: A new database for magnetic field-based localization
problems,” in 2015 International conference on indoor positioning and
indoor navigation (IPIN). IEEE, 2015, pp. 1–10.

[12] F. Viset, R. Helmons, and M. Kok, “An extended Kalman filter for
magnetic field SLAM using Gaussian process regression,” Sensors,
vol. 22, no. 8, p. 2833, 2022.
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[28] S. Särkkä, “Linear operators and stochastic partial differential equations
in Gaussian process regression,” in International Conference on Artificial
Neural Networks. Springer, 2011, pp. 151–158.

[29] C. Williams and M. Seeger, “Using the Nyström method to speed up
kernel machines,” Advances in neural information processing systems,

vol. 13, 2000.
[30] J. Quinonero-Candela and C. E. Rasmussen, “A unifying view of sparse

approximate Gaussian process regression,” The Journal of Machine
Learning Research, vol. 6, pp. 1939–1959, 2005.
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