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Abstract—Accurately estimating the positions of multi-agent
systems in indoor environments is challenging due to the lack
of Global Navigation Satelite System (GNSS) signals. Noisy mea-
surements of position and orientation can cause the integrated
position estimate to drift without bound. Previous research has
proposed using magnetic field simultaneous localization and
mapping (SLAM) to compensate for position drift in a single
agent. Here, we propose two novel algorithms that allow multiple
agents to apply magnetic field SLAM using their own and other
agents’ measurements.

Our first algorithm is a centralized approach that uses all
measurements collected by all agents in a single extended Kalman
filter. This algorithm simultaneously estimates the agents’ posi-
tion and orientation and the magnetic field norm in a central unit
that can communicate with all agents at all times. In cases where
a central unit is not available, and there are communication
drop-outs between agents, our second algorithm is a distributed
approach that can be employed.

We tested both algorithms by estimating the position of
magnetometers carried by three people in an optical motion
capture lab with simulated odometry and simulated communi-
cation dropouts between agents. We show that both algorithms
are able to compensate for drift in a case where single-agent
SLAM is not. We also discuss the conditions for the estimate
from our distributed algorithm to converge to the estimate from
the centralized algorithm, both theoretically and experimentally.

Our experiments show that, for a communication drop-out
rate of 80%, our proposed distributed algorithm, on average,
provides a more accurate position estimate than single-agent
SLAM. Finally, we demonstrate the drift-compensating abilities
of our centralized algorithm on a real-life pedestrian localization
problem with multiple agents moving inside a building.

Index Terms—Multi-agent, SLAM, Gaussian processes, Dis-
tributed Kalman filters.

I. INTRODUCTION

A wide range of research is being performed on multi-agent
motion control and path planning algorithms [1]. For most
motion control algorithms, it is crucial for each agent to know
its own position [2], [3]. Collaborative pedestrian navigation
can be useful for example for rescue missions or law enforce-
ment applications [4]. Indoors, Global Navigation Satellite
System (GNSS) signal availability is limited and prone to

This publication is part of the project “Sensor Fusion For Indoor localization
Using The Magnetic Field” with project number 18213 of the research
program Veni which is (partly) financed by the Dutch Research Council
(NWO). The experimental data in this publication was collected with the
help of a customized app developed by Piet van Beek, Marnix Fetter, Bart
de Jong, and Giel van der Weerd during their bachelor end project for Delft
University of Technology.

errors [5]. Current indoor navigation systems therefore often
rely on integrating measurements of the change in position
and orientation. For autonomous navigation in GNSS-denied
environments where there are no previously deployed beacons
or other structure supporting navigation, measurements of the
change in position and orientation are often available from
for example inertial sensors, wheel encoders or visual-inertial
odometry [6]. Integrating measurements of change in position
and orientation (odometry) gives accumulated position estima-
tion errors (drift) that can increase without an upper bound [7].

To compensate for odometry drift, multi-agent simultaneous
localization and mapping (SLAM) algorithms for navigation
in GNSS-denied environments based on visual information
have been widely studied [8]. Visual SLAM can in some
applications be infeasible or prone to error due to privacy
concerns, varying light conditions, or lack of distinguishable
features or landmarks [9].

For several single-agent navigation tasks, magnetic field
SLAM has been proposed and demonstrated to compensate
for drift in the position estimate [10]-[17]. The magnetic
field indoors is affected by structural metallic elements [18]. In
Figure 1, an example of the magnetic field norm variations that
can be found indoors is displayed. The indoor magnetic field
typically has significant spatial variations and stays constant
over time [19], [20]. To simultaneously create and use a map of
the magnetic field, most approaches use a nonlinear stochastic
interpolation scheme to learn the magnetic field online based
on measurements. A stochastic interpolation scheme that also
gives an uncertainty measure on the predictions in every
location of the map is Gaussian process regression. Several
of the previous works into magnetic field SLAM use reduced-
rank Gaussian process regression approximated with Hilbert
space basis functions so the computational complexity does
not scale with the number of measurements [10], [11], [14],
[21].

The contribution of this paper is twofold. The first con-
tribution is an algorithm that uses all information measured
by multiple agents to perform magnetic field norm SLAM
online with an extended Kalman filter (EKF). This EKF
is obtained by augmenting the state-space of the EKF for
magnetic field SLAM in [21] to contain the poses of multiple
agents as opposed to just a single agent. We denote this as
the centralized algorithm, as it is an algorithm that can be
executed in a centralized station that receives all measurements
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Fig. 1: Estimated magnetic field map and trajectories of
multiple agents based on measurements from magnetometers
carried by three people. The position of the magnetometer was
recorded in an optical motion capture lab. The color of the map
reflects the magnitude of the magnetic field norm, while the
opacity of the overlaid map is inversely proportional to the
marginal variance of the estimate.

made by all agents. Multi-agent systems do not always have
access to a centralized control unit. Our second contribution
is therefore a distributed version of the algorithm, where
each agent uses information shared in communication between
the agents to collaboratively approximate the output of the
centralized algorithm. To implement the centralized EKF as a
decentralized EKF, we use an approach closely related to the
decentralized Kalman filter described in [22]. To the best of
the author’s knowledge, this is the first proposed algorithm for
distributed multi-agent magnetic field SLAM with Gaussian
process regression.

II. CONNECTIONS TO PREVIOUS WORK

Previous work has applied average consensus to achieve dis-
tributed reduced-rank Gaussian process regression using mea-
surements from multiple agents [23], [24]. Recursive stochas-
tic least squares correspond to applying repeated Kalman
filter measurement updates [25]. Magnetic field SLAM with
an extended Kalman filter uses both a dynamic update and
a measurement update at each timestep to jointly estimate
the magnetic field map and the pose of a single agent [21].
Previous work has also demonstrated that Kalman filters
with both measurement updates and dynamic updates can
be implemented for multiple agents distributively with em-
bedded consensus filters [22]. The distributed implementation
in [22] is implemented by solving two consensus problems
at each time step, one in the dynamic update and one in the
measurement update. We also implement the distributed EKF
by solving these two consensus problems at each time step.
For both our distributed EKF and for the distributed Kalman
filter in [22], even if each average consensus problem has not
converged, the intermittent result is an approximation of the
centralized solution [26].

Unlike previous work into extended Kalman filtering for
magnetic field SLAM, we execute the measurement update on
the information form. This allows for the measurement update
to be implemented distributively by executing the average
consensus algorithm at each timestep. Performing the measure-
ment update for magnetic field SLAM on information form is
closely related to the execution of the measurement updates on
information form for magnetic field mapping proposed by [24].
The main difference between our work and the estimation
algorithm presented in [24] is that we jointly and distributively
estimate the pose of the agents and the map, while [24] only
estimates the map. The main difference between our work
and [21] and [27] is that we perform magnetic field SLAM
for several agents instead of just one and that we propose a
distributed algorithm for doing so. An additional difference
between our work and the work presented in [21] is that we
for simplicity consider only the magnetic field norm instead
of the three-component magnetic field.

III. MODEL

We assume that each individual agent has access to noisy
odometry measurements, according to a model we describe
in Section III-A. We also assume that each agent carries a
magnetometer capable of measuring the magnetic field norm.
In Section III-B we give the measurement model for the
magnetometer and the model of the magnetic field norm that
we use to apply Gaussian process regression to learn the
magnetic field map.

A. Dynamic model

We estimate the position of a set of m agents indexed as
i = 1,...,m. The position and orientation of each agent at
each timestep ¢ are denoted by the vector p;, and the unit
quaternion ¢;; respectively. The quaternion is defined as the
orientation from the world frame to the body frame. The body
frame has its origin in the IMU’s center of mass, and its axes
are aligned with the accelerometer sensor axes. The world
frame is defined as the stationary inertial frame that shares its
origin with the body frame at time ¢ = 0, where the gravity
field is aligned with the negative z-axis, and the initial yaw-
angle between the body and world-frame at ¢t = 0 is zero. The
position is given in the world frame.

We assume that each agent has access to noisy measure-
ments Ap; ; of the change in their position and Ag; ; of the
change in their orientation from sensors mounted in the body
frame. The noisy measurements are defined such that

Dit+1 =DPit + R(qit)(Apis + €ipt), (1a)
Qit+1 = Git © expy(Agi ) © expy(eige),  (1b)
[ez—'fp,t’ eiT,q,t]T ~ N(07 Z)a (IC)

where e; , ; is a measurement noise of the change in position,
€4,q,¢ 1S @ measurement noise of the change in orientation, and
where ¥ is a known noise covariance, ® is the quaternion
product, and exp, is the operator that maps an axis-angle ori-
entation deviation to a quaternion, defined as in the odometry

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2023 at 11:59:20 UTC from IEEE Xplore. Restrictions apply.



model in [14], and where R(-) is an operator transforming a
unit quaternion to a rotation, defined as in the odometry model
in [27]. Note that we assume the odometry covariance is the
same for all agents.

B. Measurement model

We assume that each agent ¢ has access to a continuous
stream of measurements from the magnetic field norm in their
current position p; ¢, according to

Yie = f(pit) + €, eir ~ N(0, 03)7 2)

where y; ; is the measurement from agent 4 at time ¢, f : R® —
R is a function that maps the position to the magnetic field
norm, and e;; is the measurement noise with a covariance
Uy2. We model the function f as a stationary Gaussian process
according to

[~ gP(O, KSE('? ))a 3)
with a squared exponential kernel
z—x
kse (7, 2') = og exp —w ; “)
25

where o; and Isg are hyperparameters denoting the variance
and lengthscale of the magnetic field norm nonlinearities,
respectively [27]. We use the same basis functions as [21]
and [27] to approximate the Gaussian process regression. The
basis functions are defined in Appendix A.

C. Communication graph

We assume that the agents have the possibility to send and
receive [N, messages to all other agents two times at each
timestep t, once for the dynamic update and once for the
measurement update.

We model the communication graph at time ¢ and commu-
nication step ¢. as an undirected graph G(¢,t.) = (E(t,1c), V)
where E(t,t.) C {{i,j}|i,j € V} denote the set of ac-
tive communication edges at time ¢ between the set V =
{1,---,m} of all agents. We assume the probability for
two agents to be able to communicate at any timestep ¢
at communication step t. to be 1 — a, where « is the
probability of communication failure. We will refer to « as
the communication failure rate or the dropout rate in the
remainder of this paper. We denote the communication step
at each timestep by the index ¢., where t, = 1,...,2N,.

IV. CENTRALIZED EKF FOR MULTI-AGENT MAGNETIC
FIELD SLAM

Following the approach of [21], we parameterize our system
in terms of an error state & linearised about the prior beliefs
of the position of agents ¢ = 1,...,m denoted p; 4;_1, the
prior beliefs of the orientation of agent i = 1, ..., m denoted
qi,t|t—1 and the prior belief of the map denoted w; ;;—;. The
error state & is defined as

T T T T ™T
&t = [51,t Me - 5m,t Mt Vi 1 @)
where ;¢ = pi+ — Dis+—1 denotes the position estimation

error, vy; = w — W;4;—1 denotes the magnetic field state

estimation error, and 7;; denotes the orientation estimation
error parameterized as an axis-angle deviation according to

Qi =expy(Ni,t) © Gitje—1- (6)

For simplicity, we assume that the initial position and orien-
tation of all agents are known. The initial error state is then
distributed as & ~ N(0, Py|o), where Py is given by

Pojo = o @)
0 0

0 A,
with A defined in (28).

A. Dynamic update

The posterior linearisation point is propagated to a prior
linearisation point by applying the dynamic model in (1a)-(1c)
through the update

Git1)t =i t)e © expg(Agit), 1=1,....m  (8a)
Dit1)t =Pisle + B(Gie)Apie, i=1,...,m  (8b)
721t+1\t :wt|t~ (80)

The centralized dynamic update is defined as
Py = FtPt\tFtT +Q, &)
where @ is given by

P 0 0
Q= : (10)
0 X 0
0 0 0
and F; is defined as
Fy 0 0
F = S (1)
0 Fn: O
0 0 I
where the matrix F}; is given by
I R(g; Apj X
Fj,t — 0 ( j,t\t)][ 5.t } , (12)
and where [Ap; ;x| is defined as the skew-symmetric matrix
such that [Ap; x]Ju = Ap;; x u gives the cross-product

between Ap;, and a vector u € R3.

B. Measurement update

The measurement update is performed by linearising the
measurement model in (2) about the prior linearisation point
with respect to the error state £. We let the information vector
ty¢—1 and information matrix Z;;_; denote the information
form of the state estimate ét‘t,l and the corresponding co-
variance P! |, according to

t|t—1°
Ljt—1 :PtTtl,lét|t71 =0, (13)
Tije1 =Py (14)
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Algorithm 1 Centralized EKF for multi-agent magnetic field
SLAM

Input: {{Apz t, AGit, Yi, t}’t 1 }m

m

Output: {{Pzt\t; Gi bt wt\t}t 1} .
Initialization: p; 00 = O3x1, Gio0 = qoi» Woo =
Oarxa, (7)

1: fort=1to N do

Dynamic update according to (8a), (8b), (8c) and (9).

3:  Measurement update according to (14), (15a), (15b)
and (17). Relinearization according to (18a), (18b)
and (18c).

4: end for

»

The Kalman filter measurement update can then be expressed
as an update of the information matrix and information vector
as

m

1
Tye =Lyjp—1 + Z tHZTu (15a)
i=1 y
L =tgje—1 + Z Hit(Yit — @(Bip—1) " Wye—1), (15b)
with
Hi s =[01x6(i—1), (VR (Digj—1)Weje—1) | (16)

01x(346(m—4))> (‘I)(ﬁi,t|t—1))T]T-

The posterior error state estimate and covariance are given by

Pt|t:I;1

. (17)

£ —1

ft\t = It‘t Lt)ts
The posterior linearisation point can then be calculated by
propagating the estimated error state to the prior linearisation
point according to

Dit|t =Ditjt—1 + Si,t\ta 1=1,...,m, (18a)
Git)e = exPq(Nieft) © Gigje—1, i=1,...,m,  (I18b)
Wyp =Wyg—1 + Vet (18¢)

Recursively applying the dynamic update and measurement
update results in the centralized EKF for multi-agent magnetic
field SLAM, as described in Algorithm 1.

V. DISTRIBUTED MULTI-AGENT EKF FOR MAGNETIC
FIELD SLAM

We denote agent ¢’s approximation of a centralized term
by including a superscript (i) on the approximated term. The
initial posterior linearisation points are known and given as
pi ())IO Di0» ql( 3|0 gi,0 and wé‘z) = 0. As in the centralized
ﬁlter we assume that the initial error centralized error state
§ He = = 0 and the initial centralized covariance P(l) = Py are

b0th known.

A. Dynamic update

In the case where each agent only has access to their own
measurements, the posterior linearisation point of each agent
can be propagated to a prior linearisation point through the
dynamic model in the same way as for the centralized EKF,
using (9). The matrix F; cannot be computed directly by any
agent as each term [ ; contains the odometry measurement
Ap;+ which is only available to agent j. The matrix F} can
however be approximated by the network as a whole through
average consensus, if each agent initializes their belief about
the matrix Ft(l) according to

F ... 0 0
FO=| 0 (19)
0 ... FY o0
o ... 0 I
where the term Fj(ft) is defined according to
@ _ [mF,—(m-0I, j=i
Fae = { I jri 2

The average of all the terms {F )} n, is Fy, so applying
average consensus according to

F =N "Wt t) B, 1)
j=1
where the weights W; ;(¢,t.) are defined as in [26] as
o i, € Et,te)
Wit te) = Q1 — dilbale), i=j ., (2
0, otherwise

and where d;(t,t.) are the number of edges to node ¢ in the
communication graph £(t,t..) at timestep ¢, fort. = 1,..., N,
causes th’ to converge to F; as N, — co [26]. As we only
apFIy a finite amount of average consensus steps N., we use
F D at time N, as an approximation in the dynamic update
of the covariance.

B. Measurement update

The measurement update can be carried out in a distributed
manner by first letting each agent update its belief about the
information vector according to

() _7(0) 1 T
It\t It\t 1+ 7H1szt» (23a)
) =t +m—s H”<yzt ®(p ) TEl) ), (@3b)

and then carry out average consensus across the network on the
resulting information matrix and information vector, according
to

W)= ST Wit ) (24a)
j=1

74) < 3 Wit t)Z) (24b)
j=1
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Algorithm 2 Distributed EKF for multi-agent magnetic field
SLAM for agent %

Input: {{Ap; ¢, Agie, yibrer 1y
Output: {{pz(’t)t, ~(i)
(4)

) AN Y™

9; t|t> wi\lt) }tzl }il
Initialization: f)l('?())IO = 03x1, (j%‘o = qo, 11701‘0 = Omrxts
(7

1: fort=1to N do

2:  Dynamic update: Perform average consensus accord-
ing to (19), (20) and (21). Then, propagate own belief
of own state according to (8a), (8b), (8c) and (9), using
output terms from average consensus.

3:  Measurement update: according to (23a), (23b). Av-
erage consensus according to (24a) and (24b). Relin-
earization according to (18a), (18b) and (18c).

4: end for

The result will then converge to the information matrix and
information vector obtained by (15a)- (15b) as the number
of communication steps goes to infinity. We use the output
from the average consensus procedure as an approximation to
the centralized information matrix in each agent. Each agent
can therefore update their own linearization point locally by
using the same update as the centralized EKF in (18a)-(18c).
When there is no communication failure, the approximation
will be exactly equal to the centralized solution even with
N, = 1. Recursively applying the dynamic update and the
measurement update gives the Distributed EKF for multi-
agent magnetic field SLAM described in Algorithm 2. If all
m agents are running Algorithm 2, the multi-agent system
will collaboratively approximate the centralized estimate of
Algorithm 1.

VI. RESULTS
A. Comparison of Algorithm 1 to Single-Agent SLAM

We test the ability of our algorithm to simultaneously
estimate the locations of three handheld devices containing
magnetometers, by testing on data collected by three test
subjects in a motion capture lab. The experimental setup
is illustrated in Figure 1. Each test subject held an Xsens
MTi-100 IMU, which was used to collect magnetic field
measurements. The ground truth position and orientation of
the IMU were recorded with an optical motion capture system.
The test subjects moved sequentially in the test area to ensure
marker visibility for the optical motion capture system, but
we test our algorithm on the three measured trajectories as if
collected simultaneously.

The position measurements Ap; ; were simulated by first
computing the difference of the recorded ground truth posi-
tions from each timestep to the next, and then adding noises
of e, = [0.000, 0.001 0], e+ = [—0.001, —0.0005, O]
and egp; = [0.001, —0.0005, 0]. These noise values were
selected such that the position estimates of the agents would
drift in different directions over a short timescale, making the

dead-reckoning position estimates to other agents particularly
poor.

The differential orientation measurements Ag; ; were sim-
ulated by computing the difference in orientation from one
timestep to the next, and then adding a simulated noise
sampled from a normal distribution with standard deviation
o4 = 1.0e — 5. We then applied Algorithm 1 to the mag-
netic field measurements and the simulated odometry. The
Gaussian process hyperparameters were set to osg = 0.074,
oy = 0.0042, [sg = 0.86m. The hyperparameters were
selected based on an optimization of the Gaussian process
likelihood, using the recorded position for all the agents as
the input locations and the magnetic field norm as the output.
The parameter o, used in the estimation was set to 0.022,
which is two times as high as the maximum norm of the
simulated noise, to make sure that the Kalman filter did not put
too much trust in the odometry. To approximate the Gaussian
process, 100 basis functions were used in a domain €2 defined
as the smallest cube that was no closer than 3 meters to the
closest recorded position. This is a sufficient amount of basis
functions, as the approximation error between the reduced rank
and the full GP in ten test points selected in random locations
sampled from a uniform distribution inside the domain given
all the collected measurements is lower than one measurement
noise standard deviation .

The estimated trajectories using Algorithm 1 are displayed
together with the learned magnetic field in Fig. 2. The results
in Figure 3 show that the EKF for a single agent improves
on the position estimate for all three agents. The end-point
estimation error for Single agent SLAM is 87%, 65%, and 81%
of the odometry error, respectively. Over time, the position
estimates for Single agent SLAM are typically bounded [21],
but for this example on this timescale, each agent does not
have time to collect sufficient information about the magnetic
field to compensate fully for the odometry drift. Even in this
challenging case for magnetic field SLAM, multi-agent SLAM
is able to compensate for the odometry drift. The end-point
estimation errors of the position estimates from Algorithm 1
in Figure 3 are 37%, 8.2% and 7.9% compared to odometry
error, for the three agents respectively.

B. Testing Algorithm 2 on real magnetic field measurements
with simulated odometry noise

We investigate the effects of varying communication failure
rates v on the difference between the distributed estimate from
Algorithm 2 and the centralized estimate from Algorithm 1. To
study the most challenging case, we assume the agents have
the possibility to communicate only once for each average
consensus problem. By using the approximation obtained
through one step of average consensus, we see in Figure 4 that
the distributed algorithm is able to give an improved position
estimate compared to single-agent magnetic field SLAM for
failure rates up until 80%.

Each average consensus problem will give a solution that
is exactly corresponding to the centralized solution when the
communication failure rate is zero [22]. Otherwise, average
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Fig. 2: Learned magnetic field map using Algorithm 1. The intensity of the learned magnetic field norm is indicated by the
color, while the marginal variance of the magnetic field map is inversely proportional to the opacity. The estimated trajectories

of the agents are indicated with black lines, and the current positions at each time are indicated with black crosses.
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Fig. 3: Position estimation errors for three agents, relative to
known ground truth position measured with optical motion
capture system. The error is given as the euclidian distance
between the true position p; and the estimated position p; from
Algorithm 2 with N, = 10 and o = 0.2, from Single agent
SLAM and from integrating the pure odometry, respectively.

0.7
Single agent SLAM
0.6 — Algorithm 1
\ —J— Algorithm 2
0.5 1
jaa]
n
= 04
=]
9]
E03r
wn
o
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0.2
0.1F -
0 L 1 1 1 J
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(1-a)

Fig. 4: RMSE of the full trajectory estimate using measure-
ments from the motion capture lab, for a range of commu-
nication failure rates . The error bars indicate one standard
deviation after 100 Monte-Carlo repetitions. The green line
marks the average deviation in the position estimate between
the single-agent SLAM solution and the centralized solution
after 100 Monte-Carlo repetitions, and the light green area
marks the range of one standard deviation. Algorithm 2 was
run with N, = 1.

consensus gives an approximation that converges to the true
estimate as N. — oo. The results in Fig. 4 confirm that
the estimation error of Algorithm 1 is equivalent to the
estimation error of Algorithm 2 when the dropout rate is zero.
Furthermore, the results in Fig. 4 show that increasing the
dropout rate «, increases the estimation error of Algorithm 2.
For all dropout rates of 80% or lower, the resulting position
estimate from Algorithm 2 is closer to the centralized solution
compared to the Single-agent SLAM. The results in Fig. 5
show that for higher N, the distributed estimate converges
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(1-«a)
Fig. 5: Deviation between the estimate from Algorithm 1 and
Algorithm 2 using measurements from the motion capture
lab, for a range of communication rates «, and a range of
communication steps at each iteration N.. The lines connect
the average results after 100 MC repetitions, and the error bars
indicate one standard deviation.

— Algorithm 1
—— Odometry

Fig. 6: Learned magnetic field map and estimated trajectories
for three agents in a large building. The black circles indicate
the estimated end positions of the agents using Algorithm
1, while the red circles indicate the estimated end positions
of the agents using visual-inertial odometry. The color of the
map is proportional to the learned intensity of the magnetic
field norm, while the opacity is inversely proportional with the
marginal variance.

more rapidly to the centralized estimate as « increases. When
the communication failure rate is zero, so for 1 — a = 1,
we can observe that the position estimate from the distributed
EKF is equivalent to the position estimate from the centralized
algorithm.

C. Indoor experiment with three smartphone measurements

To test our algorithm on a larger scale experiment with real
odometry and magnetic field norm measurements, we collected
three sequences of visual-inertial odometry and magnetic field
norm measurements inside a building using Google Pixel

smartphone. Google provides a platform primarily targeted at
building augmented reality Apps called ARCore. Among other
features, ARCore uses the phone’s camera, accelerometer and
gyroscope to compute a position and orientation estimate.
Using a customized app, we simultaneously recorded this
position and orientation estimate and the magnetometer mea-
surements from the phone’s built-in magnetometer at 200Hz.
We subsequently computed the magnetic field norm using
the three-component magnetic field measurements, and down-
sampled all measurements to 10 Hz. Algorithm 1 was applied
to these three sequences as if they were collected by three
separate agents simultaneously. The algorithm was applied
with the following hyperparameters: osg = 7.2, Isg = 1.2m,
oy = 1.2, 0, = 0.15, o4 = 0.0001 and with 500 basis
functions in cubic tiles of size 38m x 38m x 38m. The tiles were
placed with 8 meters of overlap at the borders. The resulting
visual-inertial odometry estimate of the three trajectories is
displayed in Fig. 6. The trajectories are illustrated with respect
to the floor plan of the building where they were collected. The
visual-inertial odometry is initially close to the real position,
but over time, it drifts away from the hallways where the
measurements were collected. In the same figure, the resulting
position estimate of Algorithm 1 is displayed. These estimates
are closer to the hallways where the measurements were
collected, and therefore likely to have higher accuracy. The
magnetic field map learned collaboratively by the three agents
is displayed in Fig. 6.

VII. CONCLUSION

For multiple agents navigating in a new environment, we
proposed two algorithms that allow them to collaborate about
solving the simultaneous mapping and localization task. The
first algorithm can be employed when a central unit has access
to all measurements from all agents. The second algorithm
allows for multiple agents to collaboratively approximate
the estimate of the first algorithm when there is no central
station that can communicate with all agents at all times. Our
proposed algorithms are capable of compensating for drift also
in cases where single-agent SLAM fails to do so. We presented
experimental results that confirm that the centralized multi-
agent SLAM algorithm obtains a higher position accuracy
compared to single-agent magnetic field SLAM. For our
experimental results, the second algorithm was shown to give
more accurate position estimates compared to single-agent
SLAM for communication drop-out rates up until 80%.
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APPENDIX
A. Basis function definitions
The basis functions are defined over a finite-support cubical
domain Q C R¢, defined as = [Li1, Lua) X [Li2, Ly2] X
[Li,3, Ly, 3)- The basis functions are given as

3
V2 (an'd(pd+L1 d))
i(p) = sin : : , (25
) (p) dl;ll /Lu,d — Ll,d Lu,d - Ll,d

where the set (n;1,m;2,n;3) is the set of three natural
numbers that is different from the sets (n, 1, n; 2,1, 3) defined
for all j < 1, that gives the corresponding value of a parameter
\; defined as

7T’/l1'7d

D 2
As = Z (Lu,d — Ll,d) ’

d=1

(26)

as large as possible. These basis functions are then used to
approximate the Gaussian process prior with a parametric prior

FroTw,  w~N(O,A),

where ® is a vector of M basis functions ¢; : R — R,
w € RM is a vector of weights, and A is defined as

A = diag {SSE(\/E), . SSE(\/W,”)} ;

with Ssg(-) being the spectral density of the squared ex-
ponential kernel, as defined in [28]. This means that the
approximation of the magnetic field norm in (27) has a prior
distribution that tends to (3) as M goes to infinity, and the
size of the domain goes to infinity [29].

27)

(28)
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