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A B S T R A C T

Model predictive control (MPC) has been widely used for traffic management, such as for
minimizing the total time spent or the total emissions of vehicles. When long-term green urban
mobility is considered including e.g. a constraint on the total yearly emissions, the optimization
horizon of the MPC problem is significantly larger than the control sampling time, and thus the
number of the variables that should be optimized per control time step becomes very large. For
systems with dynamics that involve nonlinear, non-convex, and non-smooth functions, including
urban traffic networks, this results in optimization problems that are computationally intractable
in real time. In this paper, we propose a novel bi-level temporal distribution of such complex
MPC optimization problems, and we develop two mathematically linked short-term and long-
term MPC formulations with small and large control sampling times that will be solved together
instead of the original complex optimization problem. The resulting bi-level control architecture
is used to solve the two MPC formulations online for real-time control of urban traffic networks
with the objective of long-term green mobility. In order to assess the performance of the bi-
level control architecture, we perform a case study where a rough version of the model of the
urban traffic flow, S-model, is used by the long-term MPC level to estimate the states of the
urban traffic networks, and a detailed version of the model is used by the short-term MPC
level. The results of the simulations prove the effectiveness (with respect to the objective of
control, as well as computational efficiency) of the proposed bi-level MPC approach, compared
to state-of-the-art control approaches.

1. Introduction and motivations

One of the main long-term objectives of the European Climate Law (EC, 2021) is to achieve climate neutrality by 2050, which
means zero greenhouse gas emissions for all EU countries. The law, correspondingly, sets an intermediate target: to reduce the
net amount of greenhouse gas emissions for, at least, 55% by 2030, compared to the levels in 1990. According to the European
emissions gap report (UNEP, 2020), transportation accounts for one quarter of all the energy-related greenhouse gas emissions, and
it is foreseen that by 2050 two-third of the world population will be urban. This can double the motorized mobility and lead to a 60%
increase in CO2 emissions (Outlook, 2017; Echeverría et al., 2022). Although there have been attempts to reduce the emissions by
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Fig. 1. Main structure of an MPC-based controller.

promoting the use of electric vehicles, public transit, and active transportation (e.g., walking and cycling), the traditional vehicles
that exhaust emissions still make up a dominant part of the transportation. The European Environment Agency (EEA) reported
in 2017 that the amount of nitrogen dioxide produced annually across Europe had significantly violated its allowed values (EEA,
2021). Nitrogen dioxide is a main component of air pollution that is very harmful to the environment and to human health. This
pollution is mostly associated with vehicle emissions, and according to EEA (2021) 86% of the nitrogen dioxide exceedances have
been detected at roadside monitoring locations.

Therefore, there is an urgent need for high-performing control systems that provide green mobility by reducing the traffic
emissions, especially in urban networks, which are also the focus of this paper. In order to coordinate with the climate policies,
while finding a balanced trade-off between minimizing the traffic congestion and the level of harmful pollutants from the vehicle
exhausts, such control systems should maintain the long-term emission levels to ensure that they do not exceed the annual emission
limit.

Model predictive control (MPC) is an interesting approach for traffic control (see Bellemans et al. (2006), Manolis et al.
(2018), Wu et al. (2020), Brandi et al. (2017) and Siri et al. (2021)). MPC has recently been proposed to provide green urban
mobility (De Schutter, 2014; Jamshidnejad et al., 2018b, 2016). The MPC optimization problems for green urban mobility are
multi-objective and subject to several (nonlinear) control and state constraints. Thus, these problems are mathematically and
computationally complex, due to the large simulation horizon (i.e., weeks or months) and small control sampling time (i.e., seconds
or minutes), accompanied by highly nonlinear and fluctuating dynamics of urban traffic. Next, we briefly introduce MPC and its
open challenges for green urban mobility.

1.1. Model predictive control (MPC)

Model predictive control or MPC (Maciejowski, 2002; Bemporad, 2006) is a feedback-based optimal control approach. An
MPC-based controller (see Fig. 1 given for a discrete-time system with control sampling time 𝑐) consists of two main elements, a
prediction model and an optimizer, which at every control time step run across a prediction horizon of size 𝑛p. The prediction model

athematically formulates the evolution of the dynamics of the controlled system, and cooperates with the optimizer to determine
sequence of control inputs that satisfy the constraints and minimize the given cost function. The feedback-based nature of MPC,

.e., using the measured states per control time step, makes the controlled system to some extent robust to unexpected/unpredictable
xternal disturbances (Morari and Lee, 1999). Moreover, MPC has proven to be an efficient approach for problems that should handle
oth input and state constraints, while optimizing multiple cost functions (Camacho and Bordons, 1995; Rawlings and Mayne, 2009).

MPC has been widely used for urban traffic signal control, and a comprehensive survey can be found in Ye et al. (2019). Tet-
amanti et al. (2008) is one of the early studies that utilize MPC in urban traffic management. Haddad et al. (2013) developed a
acroscopic traffic modeling approach for mixed networks of freeways and arterials and solved the corresponding the optimal

raffic control problem using MPC. van de Weg et al. (2018) proposed a hierarchical MPC structure considering the different
ynamics in different levels of traffic networks, in which the higher layer provides reference outflow trajectories to the lower
ayer. Tettamanti et al. (2013) used robust MPC to develop a traffic-responsive optimal signal split algorithm taking uncertainty
nto account. Oliveira and Camponogara (2010) focused on the scalability of MPC for traffic signal control for large-scale traffic
etworks, and proposed a multi-agent MPC algorithm with graceful extension and localized reconfiguration, in which theoretical
esults have been investigated for the formulated linear traffic dynamic systems in terms of convergence and global optimum.
owever, very few studies consider the green urban mobility issue, which can introduce a long-term cumulative constraint that is
2

ifficult to be addressed by conventional MPC methods.
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Fig. 2. A decreased time scale resolution (i.e., a larger control sampling time 𝑐1) for a larger prediction horizon 𝑛1𝑝 may result in less dynamics and adaptability
in the MPC input trajectory compared to when a smaller control sampling time (e.g., 𝑐2) is considered. This is illustrated by the control inputs for the top and
the bottom plot within the highlighted prediction window of length 𝑛𝑝2.

1.2. Current challenges of MPC for green urban mobility

The main challenges of implementing MPC for green urban mobility are explained below:

• The computational complexity of MPC can make MPC intractable in real time (Richter et al., 2012), particularly for green urban
mobility where highly nonlinear dynamics, large spatial and temporal scales, and long-term control objectives and cumulative
constraints are involved.

• Despite providing a longer-term vision of the future (which is in benefit of the long-term control objectives and cumulative
constraints), using a large prediction horizon significantly increases the computational complexity. This issue may be tackled
in two ways:

– Decreasing the time scaling resolution, i.e., using a larger control sampling time: This, however, may result in less
dynamics and adaptability for the MPC input (see Fig. 2).

– Simplifying the prediction model: This, however, may reduce the accuracy of the predicted states, and result in larger
cumulative errors, particularly along a large prediction horizon.

• In general, the optimization horizon of MPC should be related to the time needed to travel through the traffic net-
work (Aboudolas et al., 2010; Tettamanti, 2013; Kachroudi and Mammar, 2013). However, such a choice of prediction horizon
cannot explicitly address long-term control objectives and cumulative constraints. This becomes particularly problematic for
traffic systems that have a large time delay for the control inputs to take effects on the system.

The control frequency also matters in MPC for traffic control. A higher control frequency will improve the control performance, at
the price of more intensive computational complexity, while a lower control frequency requires less computational efforts, resulting
however in general in a less optimal control performance. On the other hand, a larger control sampling time results in a larger
prediction window (as indicated in Fig. 2), but may also lead to loss of control performance. In this paper, we reach a trade-off
between accuracy and computational complexity by adopting a multi-frequency control framework, in which both a low-frequency
MPC with large control sampling time and a high-frequency MPC with small control sampling time are integrated.

1.3. Contributions & structure of the paper

Therefore, in this paper, we will address the challenges of MPC for green urban mobility, to resolve the conflict between the
long-term control objective and constraints on the one hand and the short-term optimization horizon on the other hand. In particular,
we will propose a bi-level control architecture that embeds MPC controllers with different frequencies of operation and prediction
horizons in the two control levels. The proposed control system will be implemented to an urban traffic network to achieve green
mobility.

The main contributions of this paper include: (1) For the first time, a multi-level MPC-based architecture with a larger prediction
horizon at the high level and a smaller prediction horizon at the low level will be implemented for obtaining green urban mobility.
(2) The link and inter-dynamics of the two control levels are defined differently from any existing work: The emissions allowed
in the long term are determined via the high-level MPC controller, and are adjusted for the shorter terms via the low-level MPC
controller. This idea can be generalized to other fields, e.g., for energy allocation in building energy management. (3) This is the
first time that MPC is adopted for long-term control of the cumulative emissions for green urban mobility. In fact, the proposed
framework can limit the emissions for a long enough time span (e.g., a year), with an affordable online computation time compared
to existing control methods.

Next we present a background discussion on the related theory (i.e., multi-level MPC). The rest of this paper has the following
structure: Section 2 describes and formulates the MPC problem of green urban mobility. In Section 3, our proposed novel approaches
for tackling complex MPC optimization problems, including that of the green urban mobility, are explained. Section 4 presents a
3
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Table 1
Frequently-used mathematical notations (using a discrete-time framework).
𝑠 Simulation sampling time of the traffic model (e.g., 1 min). Without specification, 𝑠 denotes the detailed model simulation sampling

time, while 𝑠LT denotes the rough model simulation sampling time
𝑘 Without specification, 𝑘 denotes the short-term MPC control time step, while 𝑘LT denotes the long-term MPC control time step
𝑐 Control sampling time: the number of time units during which a control input remains unchanged. Without specification, 𝑐 denotes the

short-term MPC control sampling time (e.g., 5 min), while 𝑐LT denotes the long-term MPC control sampling time (e.g., 60 min)
𝑐o Operation sampling time: every a certain number of time units the control sequence is optimized and updated. Without specification, 𝑐o

denotes the short-term MPC operation sampling time (e.g., 5 min), while 𝑐o,LT denotes the long-term MPC operation sampling time (e.g.,
60 min)

𝑛p (𝑘) Prediction horizon at control time step 𝑘; in particular, 𝑛ST (𝑘) denotes the short-term MPC prediction horizon, while 𝑛LT(𝑘LT) denotes
the (shrinking) long-term MPC prediction horizon

𝑛s (𝑘) Simulation horizon at control time step 𝑘, which initially equals 𝑁 s and shrinks gradually, where 𝑁 s is the considered total simulation
interval length (e.g., for a simulation interval of 1 day with the simulation sampling time of 1 min, 𝑁 s = 1440)

𝒖 (𝑘 + 𝓁|𝑐) Control input at control time step 𝑘 + 𝓁 (where 𝓁 = 0, 1,… , 𝑛p (𝑘) − 1) that is computed at control time step 𝑘, with control sampling
time 𝑐 (e.g., the green time length for urban traffic control). This notation applies for both short-term and long-term MPC

𝒙(𝑘 + 𝓁|𝑐) State variable at control time step 𝑘+ 𝓁 (where 𝓁 = 1, 2,… , 𝑛p (𝑘)) that is estimated by the prediction model at control time step 𝑘, with
control sampling time 𝑐 (e.g., the number of vehicles, queue lengths, vehicle speeds on each lanes, etc.). In addition, ̌̃𝒙 represents the
states estimated by the rough model

𝒙meas (𝑘|𝑐) State variable measured at control time step 𝑘, with control sampling time 𝑐; note that 𝒙(𝑘|𝑐) = 𝒙meas (𝑘|𝑐)
�̃� (𝑘, 𝑛|𝑐) Sequence of the control inputs determined at control time step 𝑘 for all control time steps across the horizon 𝑛, with control sampling

time 𝑐, i.e., �̃� (𝑘, 𝑛|𝑐) = [𝒖(𝑘|𝑐),… , 𝒖 (𝑘 + 𝑛 − 1|𝑐)]⊤

�̃� (𝑘, 𝑛|𝑐) Sequence of the state variables estimated by the prediction model at control time step 𝑘 for all control time steps across the horizon 𝑛,
with control sampling time 𝑐, i.e., �̃� (𝑘, 𝑛|𝑐) = [𝒙(𝑘 + 1|𝑐),𝒙(𝑘 + 2|𝑐),… ,𝒙(𝑘 + 𝑛|𝑐)]⊤; in addition, ̌̃𝒙 represents the corresponding variables
for the rough model

𝑓 state(⋅) Detailed integrated flow-emission traffic model (e.g., an integrated macroscopic traffic model and emission model Lin et al., 2013);
while 𝑓 state(⋅) denotes the extracted rough integrated model

�̄�𝑘 Cumulative travel time of all the vehicles at control step 𝑘. This value can be calculated via the integrated traffic model 𝑓 state(⋅); while
̌̄𝑇𝑘LT (⋅) represents the corresponding function for the rough model 𝑓 state(⋅)

�̄�𝑘 Emissions generated at control step 𝑘. This value can be calculated via the integrated traffic model 𝑓 state(⋅); while ̌̄𝐸𝑘LT (⋅) represents the
corresponding function for the rough model 𝑓 state(⋅)

𝑉 (⋅) Function computing the norm of the variation in between two consecutive control input vectors, in order to avoid significant
fluctuations between the consecutive green time lengths

Note: For 𝒖, 𝒙, 𝒙meas, �̃�, and �̃� to be complete in definition, in addition to the control sampling time, the initial control time step should generally also be
given as an argument. However, we assume that the initial control time steps for all time frames, independent of the size of the control sampling time, are
synchronized and coincide with a fixed, known initial time step.

case study, where our proposed MPC approach is compared with various state-of-the-art control methods for a simulated urban
traffic network, and discusses the corresponding results. Section 5 concludes the paper and gives topics for future research. Table 1
lists and defines the frequently-used mathematical notations in the paper.

1.4. Related work

Hierarchical (multi-level) MPC schemes are often used to address complex control problem. This topic has been studied
extensively, and a comprehensive review can be found in Scattolini (2009), where hierarchical MPC is classified into four categories:

1. Hierarchical MPC for coordinated control: In such architectures, a higher-level controller coordinates the control inputs
generated by the lower-level local controllers, where the controllers of both levels can be MPC-based.

2. Hierarchical MPC for dealing with systems with multiple time scales: In general, the higher-level controller operates according
to slow dynamics and a lower frequency, whereas the lower-level controller operates with faster dynamics and a higher
frequency. Both control levels can be used for the same system that is then described via different time scales. The high-level
controller optimizes the control variables that have a long-term effect on the system, and these values are then used as
references for the low-level controller to track (see, e.g., Brdys et al. (2008), van Henten and Bontsema (2009) and van de
Weg et al. (2018)). Moreover, the two control levels can be used for different sub-systems with different functionalities and
control frequencies (see, e.g., Han et al. (2021) and Dunham et al. (2019)).

3. Hierarchical MPC for control of systems with a hierarchical structure: This category corresponds to a classical cascade
feedback control system. For examples of controllers that belong to this category, see Dunham et al. (2019) and Di Cairano
et al. (2019).

4. Hierarchical control for plantwide optimization: The high level of control can use the detailed dynamics of the system to
compute optimal operating conditions, whereas the low level of control employs simpler dynamics to follow the references
generated by the high-level controller. This control architecture is usually used in the process industry. Such a control system
can also be implemented in a dual way, i.e., the high level of control uses simplified or abstracted dynamics of the system
to predict the long-term performance, and considers the objective function across a large prediction horizon. Meanwhile,
the low level of control works with a more accurate model and calculates the current control inputs according to a shorter
prediction horizon (Pappas et al., 2000).
4
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The following paper will be illustrated in more details, since it is more relevant to our work. Jin et al. (2019) consider the
ierarchical MPC approach of category 2 to schedule the energy resources of smart buildings with a microgrid. The high level
f control follows a day-ahead dynamic optimal scheduling, where the schedules of the smart buildings, distributed generators,
atteries, and day-ahead setpoints of electric tie-line power are optimized for an entire day. The corresponding prediction horizon
overs the duration from the current time to the end of the day, and the optimization is performed hourly. The low level of control
ollows an intra-hour rolling adjustment, where the low-level MPC works with a detailed model and a faster control frequency, and
erforms with a smaller prediction horizon. The low-level MPC tries to follow the reference (i.e., day-ahead schedules) generated
y the high-level optimization process. A similar strategy is used by Liu et al. (2020) for energy management of microgrids.

Most of the literature that use hierarchical MPC consider the application in energy management for buildings, process industry, or
astewater treatment. A few researchers have also implemented hierarchical MPC for traffic management. The early work (Varaiya,
993) proposed a four-layer control architecture for freeway traffic, where the tasks of these four layers are route choice, path
lanning, maneuver, and regulation. Two more recent papers (Baskar et al., 2012; Roncoli et al., 2016) employed hierarchical MPC
f category 1 for coordinated control of freeway traffic networks. Su et al. (2017, 2019) consider a multi-level control strategy for the
aintenance of railway networks, in which a chance-constrained MPC is used at the high level to perform a long-term optimization

or the overall maintenance plan, and to provide maintenance suggestions for the low-level controllers (Su et al., 2017, 2019). Han
t al. (2020) used a hierarchical control structure for the ramp metering control of a freeway network. A high-level MPC-based
ontroller determines the optimal total inflow from the on-ramps to the freeway stretch by using an aggregated model. Then the
otal inflow is distributed among the on-ramps via a low-level MPC-based controller. Nonetheless, no study has considered any
emporally-distributed multi-level MPC for traffic management yet. In this paper, we proposed a bi-level MPC control framework
ith a hierarchical structure of category 4.

. Green urban mobility based on an annual MPC schedule

In this section, the concept of cumulative constraints for MPC is first introduced. Then we formulate the MPC problem of green
rban mobility, discuss the main characteristics of the resulting optimization problem, and explain our novel approach for tackling
he complexities of this problem.

.1. Cumulative constraints

In general, ordinary MPC only considers instantaneous constraints on the states and inputs (see the second and the third top plots
n Fig. 3), which indicate, respectively, that the realized value of an equality constraint should be equal to the given value, and that
he realized value of an inequality constraint should not violate the upper bound. However, cumulative constraints (i.e., constraints
efined on the summation of the realized values of a variable for multiple control time steps) should be considered for green urban
obility, since there are annual emission limits required by climate policies (i.e., the cumulative emissions over the entire year

hould not exceed an annual limit).
For every control time step 𝑘 + 1,… , 𝑘 + 𝑛p across the prediction horizon of MPC, the accumulated value of a specific variable

(i.e., the height of the corresponding dashed bar in the top plot of Fig. 3) should not exceed a given upper bound (shown by the
black continuous curve in the top plot of Fig. 3). Note that the height of each colored (blue) bar in Fig. 3 corresponds to the realized
value of the variable at the current control time step. Moreover, the height of every dashed bar represents the accumulated value
of this variable (i.e., the summation of the heights of the current and all the previous colored blue bars).

A main feature of cumulative constraints is that the maximum value of the corresponding variable for a given control time
step (i.e., the maximum allowed height of the corresponding colored blue bar) depends on the value of the cumulative constraint
already realized, while for instantaneous constraints the upper bound is independent of the previous values. This characteristic of
cumulative constraints can provide flexibility in the predictive decision-making of MPC, i.e., by selecting an alternative optimal
solution that further constrains the cumulative value at one control time step, MPC can loosen the upper bound constraint for the
upcoming control time steps, and vice versa.

2.2. Problem formulation

The problem involves real-time scheduling and planning of traffic signals at the intersections of an urban traffic network, such
that the congestion and total emissions of particular pollutants across a predefined simulation horizon are reduced. For the simulation
horizon, we consider a fixed yearly time frame, where the control procedure begins at 0:00 of the first day of January and ends
at 23:50 of the last day of December of the same year (considering a control sampling time of 10 min). The size of the simulation
horizon for the entire 1 year (i.e., 365 days × 24 h × 60 min divided by the control sampling time 10 min) is given by 𝑁 s. The
main constraints are on the total emissions of particular pollutants at given monitoring time steps (e.g., at the end of the year).

At control time step 𝑘 (when the measured state 𝑥meas(𝑘|𝑐) is received),2 the corresponding green mobility control problem can
be formulated across the simulation horizon 𝑛s(𝑘) (which initially equals 𝑁 s and shrinks gradually) by:

2 We suppose that the simulation time steps coincide with the control time steps.
5
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(

Fig. 3. Illustration of the variables, cost functions, and constraints for an MPC optimization problem: In the second to fourth plots from the top, the white
triangles, stars, and bars represent the stage constraints/costs and the colored triangles, stars, and bars show their terminal values. In the top plot, the dashed
bars represent the realized cumulative (from control time step 𝑘 until the current control time step) constraint for every control time step, whereas the colored
blue) part of the bars represent the realized value of the constraint for that particular control time step.

min
�̃�(𝑘,𝑛s(𝑘)|𝑐)

(

�̄�𝑘
(

�̃�
(

𝑘, 𝑛s (𝑘) |𝑐
)

)

+
∑

𝜖∈E
𝜆𝜖�̄�𝑘

(

𝑷 𝜖 , �̃�
(

𝑘, 𝑛s (𝑘) |𝑐
)

)

+

𝜆var𝑉
(

�̃�
(

𝑘, 𝑛s (𝑘) |𝑐
)

)

)

(1)

s.t. ∶
𝐂𝟏 ∶ state prediction model:

�̃�(𝑘, 𝑛s(𝑘)|𝑐) = 𝑓 state(𝒙meas (𝑘|𝑐) , �̃� (𝑘, 𝑛s (𝑘) |𝑐)
)

,
𝐂𝟐 ∶ instantaneous stage and terminal constraints:

�̃�(𝑘, 𝑛s(𝑘)|𝑐) ∈ X𝑛s(𝑘), �̃�(𝑘, 𝑛s(𝑘)|𝑐) ∈ U𝑛s(𝑘),
𝐂𝟑 ∶ cumulative constraint ∀𝜖 ∈ E∶

�̄�𝑘
(

𝑷 𝜖 , �̃�(𝑘, 𝑛s(𝑘)|𝑐)
)

≤ �̄�safe
𝜖 − �̄�real

𝜖 (𝑘|𝑐).

Every control time step, the simulation horizon is reduced by 1 unit compared to the previous control time step. Thus, 𝑛s (𝑘) = 𝑁 s−𝑘.
In (1), �̄�𝑘(⋅) and �̄�𝑘(⋅) give the cumulative travel time (a quantitative measure of the traffic congestion) and the cumulative emissions
of a particular pollutant for all the vehicles within the time interval corresponding to the horizon 𝑛s(𝑘), starting at control time step
𝑘. These values can be calculated via the traffic model 𝑓 state(⋅) with given initial states and control inputs. Moreover, 𝑷 𝜖 is a matrix
that includes parameter values that are identified experimentally for every pollutant 𝜖 (e.g., see Zegeye et al. (2013)) with E the
set of all pollutants, and 𝜆𝜖 is a weight that indicates the relative importance of various pollutants. The function 𝑉 (⋅) computes the
norm of the variation in between two consecutive control input vectors and 𝜆var is the corresponding weight. In C1, 𝑓 state(⋅) is a
generally nonlinear function that models the evolution of the traffic flow and emissions of the traffic network. Due to limited space,
the detailed formulation of the traffic model is not presented here. The interested reader can refer to e.g. Lin et al. (2013) for more
details. In C2, X and U are the admissible sets for the state variables and the control inputs, with the superscript 𝑛s(𝑘) denoting
the dimension. For example, the queue length should not exceed a given value to avoid backpropagation of traffic congestion, and

̄ safe
6

the green time length should be within a given range. In C3, 𝐸𝜖 shows the maximum allowed value of the cumulative emissions
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Fig. 4. The significant difference between the temporal scales of the control costs (i.e., a year), cumulative constraints (i.e., up to a year), and the control input
(i.e., a minute), including a zoomed-in sketch of the finest time resolution that corresponds to the control sampling time.

for pollutant 𝜖, which is illustrated by the continuous black curve in Fig. 3. Note that in the green urban mobility application this
upper bound is fixed, i.e., it is equal to the maximal allowed annual emissions of a pollutant. Finally, �̄�real

𝜖 (⋅|𝑐) is the value of the
otal emissions of 𝜖 already realized by a given control time step (this value for every control time step is the height of the dashed
ar at the previous time step in Fig. 3).

.3. Characteristics of the optimization problem

The constrained optimization problem (1) has the following characteristics:

• The problem involves minimization of a cost function subject to various control and state constraints, looking into the
future across a finite simulation horizon with a fixed final control time step. This implies that (1) has the structure of a
shrinking-horizon optimization problem (Skaf et al., 2010).

• Due to the nonlinearities in the traffic behavior, �̄�𝑘(⋅), �̄�𝑘(⋅), and 𝑓 state(⋅) are in general nonlinear, non-smooth, and possibly
non-convex. Therefore, (1) is generally nonlinear and non-convex.

• The green urban mobility optimization problem, including the cost function and the cumulative constraints, is defined over a
relatively long time span (e.g., 12 months), while the control inputs (i.e., the green times of the traffic signals) of the controlled
system (with dynamics that may be prone to rapid nonlinear changes), need to be determined at relatively high frequencies
(e.g., every few seconds or minutes). These result in small control sampling times and a large value 𝑁 s for the simulation
horizon, which implies a large number of optimization variables that should be determined online and in real time via (1).

• For (1) to be computationally tractable, the details may be reduced via, e.g., simplifying the prediction models and increasing
the control and operation sampling times, which respectively decrease the computational burden and the number of the
optimization variables. Taking these measures may result in negative impacts on the accuracy and performance of the control
system, as it was discussed in Section 1.2.

• The above-mentioned characteristics of (1), including nonlinearity, non-convexity, and long-term control objectives and
constraints, next to the need for frequent online and real-time decision making, involving a large number of optimization
variables, yield a complex optimization problem.

ig. 4 illustrates the entire simulation horizon, over which the elements of the cost function, i.e., �̄�𝑘(⋅) and �̄�𝑘(⋅), and the cumulative
onstraints are defined. A cut of the plot (within the rectangular frame) has been zoomed in, which shows the significant difference
etween the temporal scales of the control input and the control costs and cumulative constraints. The characteristics of (1)
entioned earlier imply that this optimization problem may not be easy/tractable to tackle online and in real time by conventional
7

ethods. Next, we discuss how our proposed novel approaches can make (1) computationally tractable.
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Fig. 5. MPC input across the shrinking simulation horizon corresponding to the rough long-term MPC optimization formulation (𝑐LT = 1/3 month).

3. Proposed methodology for tackling the optimization complexity resulting from various temporal scales

In this section, we give our proposed approaches for tackling the complexities of (1), due to different temporal scales (i.e., small
control sampling time and large simulation horizon). Our proposed methods consist of a temporal distribution and reformulation of
the problem, using a shrinking-horizon approach, called jumping-horizon, and a bi-level multiple-frequency control architecture for
implementation and solving the new formulations of the optimization problem (1).

3.1. Bi-level temporal distribution of the problem

In the optimization problem (1), two very different temporal scales appear, due to 𝑁 s ≫ 𝑐. For a controlled system with a long-
term cost function, an efficient control system should guarantee that the short-term control inputs will gradually lead the controlled
system towards its desired long-term cost, while the short-term behavior of the controlled system also fulfills the requirements of
the users of the controlled system, taking into account the rapid fluctuations of the system dynamics. Such a control system needs
an overall vision of the controlled system through the entire control period, as well as more detailed information and vision about
its short-term dynamics. Therefore, we propose to develop two linked MPC optimization formulations for the original optimization
problem (1), where the long-term and short-term costs and constraints of (1) are distributed among these two formulations. The
resulting MPC problems can be solved individually online, and their integrated solutions can result in a controlled behavior for
the system that is sufficiently close to the behavior of a centralized controller that solves (1), while being significantly more
computationally efficient. Next, we explain the two MPC formulations in detail.

Assumption 3.1. It is assumed that a detailed mathematical model 𝑓 state(⋅) can be obtained that approximates the evolution of
the traffic states and the traffic emissions accurately. Meanwhile, a rough traffic model 𝑓 state(⋅) can be extracted that has a larger
simulation sampling time, thus resulting in long-term prediction.

3.1.1. Rough long-term MPC formulation
A rough long-term MPC optimization problem is formulated within the same shrinking simulation window as (1), but with a

(significantly) larger control sampling time 𝑐LT (in this case, one-third of a month), resulting in different control time steps 𝑘LT.
Fig. 5 illustrates an example of the rough long-term MPC input at long-term control time step 𝑘LT, assuming that 𝑘LT coincides with
April 1 at 0:00. Moreover, simplified versions of �̄�𝑘(⋅) and �̄�𝑘(⋅) (shown by ̌̄𝑇𝑘LT (⋅) and ̌̄𝐸𝑘LT (⋅)), and a less detailed prediction model
𝑓 state(⋅) for the state variables are considered. The prediction horizon of the rough long-term MPC at long-term control time step 𝑘LT

is given by 𝑛LT(𝑘LT). The initial size of the long-term prediction horizon is 𝑁 s𝑐∕𝑐LT, and thus for the long-term prediction horizon
we have 𝑛LT(𝑘LT) = 𝑁 s𝑐∕𝑐LT − 𝑘LT. The rough long-term MPC optimization problem at long-term control time step 𝑘LT is given by:

min
�̃�(𝑘LT ,𝑛LT(𝑘LT)|𝑐LT)

(

̌̄𝑇𝑘LT

(

̌̃𝒙
(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT)
)

+

∑

𝜖∈E
𝜆𝜖 ̌̄𝐸𝑘LT

(

𝑷 𝜖 , ̌̃𝒙
(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT)
)

+

𝜆var𝑉
(

�̃�
(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT)
)

)

(2)
8
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s.t. ∶
state prediction model:
̌̃𝒙
(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT) =

𝑓 state
(

𝒙meas (𝑘LT
|𝑐LT) , �̃�

(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT)
)

,

instantaneous stage and terminal constraints:
̌̃𝒙
(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT) ∈ X𝑛LT(𝑘LT),
�̃�
(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT) ∈ U𝑛LT(𝑘LT),
cumulative constraint ∀𝜖 ∈ E:
̌̄𝐸𝑘LT

(

𝑷 𝜖 , �̃�
(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT)
)

≤ �̄�safe
𝜖 − �̄�real

𝜖 (𝑘LT
|𝑐LT).

Note that ̌̃𝒙 is used to show that the corresponding states are determined by the prediction model 𝑓 state(⋅), instead of by 𝑓 state(⋅).
To formulate the rough long-term MPC optimization problem (2), a good choice of 𝑐LT (with 𝑐LT > 𝑐) that results in a balanced
trade-off between the time and accuracy of computations is important. This variable has been represented by a different color (red)
in (2) to specify that it is a design variable in the proposed temporally-distributed approach. The solutions of the rough long-term
MPC optimization problem, which are determined based on a farther vision of the future and less details in the dynamics of the
controlled system, may affect the solutions of the short-term MPC optimization problem (explained next in Section 3.1.2), while
they do not directly steer the controlled system.

3.1.2. Detailed short-term MPC formulation
A second MPC optimization problem is formulated across an adaptive prediction horizon 𝑛ST (𝑘) starting at the current control

time step 𝑘, with 𝑛ST (𝑘) ≤ 𝑛s (𝑘) and control sampling time 𝑐. Note that since the control sampling time of the short-term MPC
formulation and (1) are the same, and also based on Remark 1, the short-term control time step is simply 𝑘. Additionally, detailed
prediction models (e.g., the same as for (1)) are considered. The detailed short-term MPC optimization problem at control time step
𝑘 is given by:

min
�̃�(𝑘,𝑛ST(𝑘)|𝑐)

(

�̄�𝑘
(

�̃�
(

𝑘, 𝑛ST (𝑘)|𝑐
)

)

+

∑

𝜖∈E
𝜆𝜖�̄�𝑘

(

𝑷 𝜖 , �̃�
(

𝑘, 𝑛ST (𝑘)|𝑐
)

)

+

𝜆var𝑉
(

�̃�
(

𝑘, 𝑛ST (𝑘)|𝑐
)

)

+

𝜆term
(1)

‖

‖

‖

𝒙(1)
(

𝑘 + 𝑛ST (𝑘)|𝑐
)

‖

‖

‖

− 𝜆term
(2)

‖

‖

‖

𝒙(2)
(

𝑘 + 𝑛ST (𝑘)|𝑐
)

‖

‖

‖

)

(3)

s.t. ∶
state prediction model:

�̃�
(

𝑘, 𝑛ST (𝑘)|𝑐
)

= 𝑓 state
(

𝒙meas (𝑘|𝑐) , �̃�
(

𝑘, 𝑛ST (𝑘)|𝑐
)

)

,

instantaneous stage and terminal constraints:
�̃�
(

𝑘, 𝑛ST (𝑘)|𝑐
)

∈ X𝑛ST(𝑘), �̃�
(

𝑘, 𝑛ST (𝑘)|𝑐
)

∈ U𝑛ST(𝑘),
cumulative constraint ∀𝜖 ∈ E:

�̄�𝑘

(

𝑷 𝜖 , �̃�
(

𝑘, 𝑛ST (𝑘)|𝑐
)

)

≤ �̄�safe, ST
𝜖 (𝑘) − �̄�real

𝜖 (𝑘|𝑐).

At every control time step 𝑘, the short-term prediction horizon 𝑛ST (𝑘) is determined and applied to the detailed short-term MPC
optimization problem in a shrinking manner until the next time step 𝑘 + 1. In (3), 𝒙(1) and 𝒙(2) are, respectively, the sub-vector of
the state variables of 𝒙 (e.g., the number of vehicles moving on the lanes and the number of vehicles idling in the queues) that
should be minimized at the terminal control time step, and the sub-vector of 𝒙 including the kinetic state variables (e.g., the speeds
and accelerations of the vehicles) that should be maximized at the terminal control time step. The last two terms in the argument
of the min function in (1) correspond to the terminal cost that is added to the short-term MPC problem, in order to compensate for
the effect of reducing the size of the prediction horizon with respect to the original optimization problem. The parameters 𝜆term

(1) and
𝜆term
(2) are weights for the components of the terminal cost.

Fig. 6 shows an example for the detailed short-term MPC input, where the adaptive shrinking prediction horizon starts at 0:00,
has an initial size of 72, and gradually shrinks (e.g., the prediction horizon illustrated in Fig. 6 has already shrunk for 36 control
time steps). Note that in this example, the detailed short-term MPC optimization problem temporally covers a part of the rough
long-term MPC optimization problem that is shown within a highlighted yellow rectangle in Fig. 5 (i.e., one-tenth of the long-term
control sampling time).

In formulation (3) for the detailed short-term MPC optimization problem, the choice of 𝑛ST (𝑘) and �̄�safe, ST
𝜖 (𝑘) plays an important

role in the effectiveness of the determined control inputs. Therefore, we have shown these variables in color (red) to specify that
these are design parameters. In general, the value of 𝑛ST (𝑘) can be selected according to the size of the traffic network, such that the
9

horizon aligns with the time needed to travel through the traffic network (Aboudolas et al., 2010; Tettamanti et al., 2013; Kachroudi



Transportation Research Part C 156 (2023) 104334A. Jamshidnejad et al.
Fig. 6. MPC input across the adaptive prediction horizon corresponding to the detailed short-term MPC optimization formulation for 𝑐 = 20 min.

Fig. 7. Jumping-horizon MPC for green urban mobility for an entire operation period of 12 months, where the frequency of operation is 3 (i.e., the controller
updates the control input sequence after every 3 control time steps), the operation sampling time is 1 month, with the operation time steps coinciding with Jan.,
. . . , Dec., and the control sampling time is one-third of a month.

and Mammar, 2013). In the proposed multi-frequency bi-level MPC framework, the high-level MPC controller can address the long-
term plan with a large control sampling time and a low control frequency. Therefore, the low-level MPC can employ a normal size
of prediction horizon as suggested by the references given above. The main aim of the proposed approach is to select �̄�safe, ST

𝜖 (𝑘) in
(3) based on the solution of (2), such that the resulting optimal MPC solution of (3) provides a high level of accuracy due to, both,
the small control sampling time of (3) and the long-term temporal vision of (2), while a proper choice of �̄�safe, ST

𝜖 (⋅), may result
in more flexibility (i.e., less tight constraints) for the cumulative constraints in the remainder of the simulation time. Such novel
integration of (2) and (3) will provide a balanced trade-off between the speed and accuracy of the optimization computations.

Remark 1. We assume that the initial control time steps for (1), long-term, and short-term MPC optimizations overlap, and that
the control sampling times of the corresponding controllers are such that the terminal control time steps for all these frameworks
fall on the terminal time instant of the simulation window.

3.1.3. Jumping-horizon MPC
We introduce the concept of jumping-horizon MPC, where the operation frequency of the MPC-based controller can be different

from the control frequency. Operation frequency of MPC indicates how often the controller solves the optimization problem and
updates the control input sequence, while control frequency implies how often the control input changes. Therefore, jumping-horizon
MPC is a combination of shrinking-horizon MPC and multi-frequency MPC.

In jumping-horizon MPC, the relationship between the operation sampling time 𝑐o and the control sampling time 𝑐 is given by:

𝑐o = 𝜈 ⋅ 𝑐, with 1 ≤ 𝜈 ≤ 𝑛p, (4)

where 𝜈 = 1 corresponds to regular MPC explained in Section 1.1. For every control time step that coincides with an operation time
step and the next 𝜈 − 1 control time steps, the first 𝜈 elements of �̃�(𝑘, 𝑛p

|𝑐) are implemented to the controlled system.
Fig. 7 illustrates jumping-horizon MPC for the green mobility control problem (see Section 2) applied to the rough long-term

MPC formulation. In this figure, the control sampling time is one-third of the operation sampling time, i.e., 𝜈 = 3.

3.1.4. Linking the long-term and short-term MPC formulations
In order to link the long-term and short-term MPC formulations (2) and (3), we propose a bi-level control architecture with

various frequencies of operation (see Fig. 8). The long-term MPC problem (2) is solved less frequently via a slow-rate controller,
whereas the short-term MPC problem (3) is solved via a fast-rate controller. In order to simplify the formulations and thus let the
10
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Fig. 8. Linking the long-term and short-term MPC formulations at long-term control time step 𝑘LT that corresponds to short-term control time step 𝑘, using an
dapter block for distribution of the estimated cumulative emissions among the short-term prediction window and the remainder of the simulation window.

peration time steps overlap with the control time steps, we suppose that the operation sampling time of the slow-rate MPC controller
s a multiple of the long-term control sampling time, thus a multiple of the control sampling time 𝑐 (see Remark 1).

The slow-rate computations are performed via the outer loop in Fig. 8. While the slow-rate MPC controller uses a rough model for
rediction, its solution �̃�

(

𝑘LT, 𝑛LT(𝑘LT)|𝑐LT) is used by a detailed integrated flow-emission model (e.g., 𝑓 state(⋅)) with sampling time
to determine �̃�

(

𝑘LT, 𝑛s(𝑘LT)|𝑐
)

, and then �̄�𝑘LT

(

𝑷 𝜖 , �̃�
(

𝑘LT, 𝑛s(𝑘LT)|𝑐
)

)

for all 𝜖 ∈ E. Next, the values of the cumulative emissions
estimated for the remainder of the simulation window are injected into an adapter block, which distributes these values between
the current short-term prediction window (e.g., the section of the simulation window that is distinguished by a highlighted yellow
rectangle in Fig. 5) and the remainder of the simulation window. The share of the cumulative emissions that is associated with the
short-term prediction window by the adapter block will be used by the MPC formulation (3) as the upper bound value �̄�safe, ST

𝜖 (⋅)
for the cumulative constraints in order to determine the control input sequences �̃�

(

𝑘, 𝑛ST (𝑘) |𝑐
)

. In practice, only those elements of
this control input sequence that correspond to one fast-rate operation sampling time are used to steer the system (see for instance
the control inputs illustrated in red in Fig. 6) are injected into the controlled system to control the actuators (in this case the traffic
signals).

After one fast-rate operation sampling time, the values of the cumulative emissions realized within this interval are sent via
the controlled system to the adapter block, which uses these values to update the upper bounds for the cumulative emissions, and
re-distribute these values between the current short-term window and the rest of the simulation window.

Note that the adapter block can be designed to produce in parallel various candidate distributions for the upper bound of the
cumulative emissions. In that case, (3) will be solved for all these possible distributions in parallel, and from all the optimal solutions
determined, the one that corresponds to the least realized cost and/or the least value for �̄�safe, ST

𝜖 (⋅) (or to the least value for a
weighted combination of these two quantities) will be selected.

4. Case study

In this section, we perform two case studies with different time scales in order to evaluate the performance and validate the
temporal-scalability of the proposed bi-level temporally distributed MPC approach for green mobility in an urban traffic network.
The cost function consists of the total time spent (TTS) and total emissions (TE) of the vehicles traveling in the urban traffic network
within a given simulation window. For the emissions, we focus on CO2, which is the main cause of greenhouse effect. For comparison,
we consider state-of-the-art control methods, including fixed-time control, responsive control, optimized fixed-time control, and
11

conventional MPC. The performance of these controllers is assessed according to the following criteria: realized values of the total
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Fig. 9. Urban traffic network used for the case study.

time spent by the vehicles in the urban traffic network, total emissions of CO2, the realized value of the cost function (i.e., a weighted
summation of the total time spent and total emissions, and for conventional MPC a penalty corresponding to constraint violation),
as well as the CPU time for the computations of each controller.

4.1. Setup for case study 1

4.1.1. Urban traffic network
In this case study, we consider an urban traffic network (shown in Fig. 9; a similar network has been considered by Kong et al.

(2013)) with 8 source/destination nodes labeled by numbers 1–8 where vehicles enter and leave the traffic network, and with 9
ntersection nodes labeled by letters A–I. The arrows in the figure illustrate the links on which the vehicles can move from an
pstream node to a downstream node. The numbers next to these arrows give the length of the corresponding link in m. Every two
djacent intersection nodes are connected by at least one link and at most two links with different directions. Each intersection
ode is controlled via a traffic signal, except for node B, which does not have a controller. A centralized controller is used for all
he traffic signals, which have the same fixed cycle time equal to 1 min and are synchronous. Each directed link consists of 1–3
anes, where the number of lanes corresponds to the number of the downstream links. As an example, the detailed illustration of a
art of the urban traffic network that includes the links corresponding to nodes A and B is shown in Fig. 10. Since link (A,B) has
wo downstream links (B,C) and (B,E), it consists of two lanes. Vehicles that enter the traffic network via a source node are not
llowed to turn immediately from the corresponding source link into a neighboring destination link and leave the traffic network
e.g., vehicles that enter via node 1 in Fig. 10 are not allowed to turn into link (A,2)). Finally, the cycle of every traffic signal
ncludes two phases (see Fig. 11 for an intersection node with four links). Note that the same condition holds for T-shaped crosses,
uch as those at intersection nodes F, G, and I.

.1.2. Traffic flow and emission models
In this case study, the dynamics of the urban traffic flow is modeled via the S-model (Lin et al., 2011), which is macroscopic and

pdates the state variables of every link of the urban traffic network per simulation time step (which is considered to be equal to
he cycle time of the downstream traffic signal of the link). The state variables for every link include the total number of vehicles
nd the number of vehicles in the queue(s) on the link (see Lin et al. (2011) and Jamshidnejad et al. (2018a) for more details). The
missions of CO2 are calculated according to the states of the vehicles in the network, such as the acceleration and speed. More
pecifically, we use VT-micro (Zegeye et al., 2013) integrated with the S-model to obtain the amount of emissions (see Lin et al.
2013) for details).

For the detailed short-term and rough long-term MPC controllers, two versions of the S-model are considered: the S-model with
detailed simulation sampling time (equal to the cycle time of the traffic signals, i.e., 1 min), and the S-model with a rough
12

imulation sampling time (five times the cycle time of the traffic signals, i.e., 5 min), respectively. The rough version of the S-model
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Fig. 10. Detailed illustration of the part of the urban traffic network that includes intersection nodes A and B.

Fig. 11. Illustration of the two phases corresponding to the cycle of every traffic signal.

Table 2
Parameters of the integrated flow and emission model used for the case study.
𝑣free [m/s] 𝑣idle [m/s] 𝑎acc [m/s2] 𝑎dec [m/s2] 𝑙veh [m]

16.67 1.11 2 −2 5

approximates the state variables of the urban traffic network faster and with a reduced, but acceptable accuracy compared to the
detailed version of the S-model. The parameters used for the integrated flow and emission model for the urban traffic network are
presented in Table 2, where 𝑣free is the free-flow speed, 𝑣idle is the idling speed, 𝑎acc is the acceleration, 𝑎dec is the deceleration, and
𝑙veh is the average length of the vehicles in the traffic network.

4.1.3. Demand profiles
Six demand scenarios have been considered for a simulation window of 6 hours, beginning at 6:00 and ending at 12:00. This

simulation window covers the morning rush hours. Although larger simulation windows can be considered to be controlled by the
proposed approaches, we have considered this simulation window in order to compare the proposed control approach with more
existing control methods with lower computational burden, where 6 h is large enough to represent various traffic flow and emission
dynamics. The profiles for the traffic demands at the source nodes for the 6 scenarios are shown in Fig. 12. Compared to Scenario 1,
Scenario 2 has a delayed peak in the morning and no peak for the demand at noon, while for Scenario 3 the peaks correspond to
larger values of demand both in the morning and at noon. Moreover, Scenarios 4 and 5 have lower peak values both in the morning
and at noon, while Scenario 6 has a higher morning peak than Scenario 1, but no peak occurs for this scenario at noon. In order
to make the case study more realistic, we have included some noise to the demand profiles for Scenarios 2–6, which will be used
to evaluate and compare the performance of various controllers. More specifically, in each of the Scenarios 2–6, we have added
he noise signals defined by 𝑁1(𝑡) = 10 sin(10𝑡), 𝑁2(𝑡) = 40 sin(𝑡), 𝑁3(𝑡) = 40 cos(2𝑡 + 1), 𝑁4(𝑡) = 45 cos(𝑡 + 1), 𝑁5(𝑡) = 50 sin(0.5𝑡),
6(𝑡) = 50 sin(1.2𝑡 + 1), 𝑁7(𝑡) = 40 sin(1.5𝑡 + 1), 𝑁8(𝑡) = 40 cos(1.3𝑡 + 1), to the demands at sources 1–8, respectively. The demand
rofiles that include the noise correspond to the predicted demands and imply that imperfect predictions of the real-life demand
13

rofiles may be available for the controllers.
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Fig. 12. Demand profiles for the 6 scenarios in case study 1.

ssumption 4.1. It is assumed that historical data of traffic demands is available for the high-level long-term MPC controller, and
hat the real-time traffic demands can be estimated for the low-level short-term MPC controller.

.1.4. Cumulative emission constraints
The maximum allowed cumulative emissions of CO2 are set to 70 000 kg for all the scenarios, except for Scenario 4, where the

maximum is 65 000 kg. The reason for considering a smaller cumulative emissions of CO2 in Scenario 4 is that there the demands
are significantly lower compared to the other scenarios.

4.2. Controllers

For all the controllers considered in this case study, the control input variable is the green time length for each traffic signal,
with a lower bound of 10 s and an upper bound of 50 s. The controllers that have been considered in this case study are introduced
next.

4.2.1. Fixed-time controller
With the fixed-time controller, the green time lengths are not optimized, but are instead given as a fixed value of 30 s for all the

controlled intersections within the entire simulation window of 6 h. This case is considered as a benchmark for all the other control
approaches that are implemented in this case study.

4.2.2. Responsive controller
The responsive controller is an online adaptive traffic controller that updates the green time length of a controlled intersection

at every control time step according to the traffic volume of the connecting links of that intersection. The links that include more
vehicles will receive a larger green time length (see Section 2.1 of Keyvan-Ekbatani et al. (2019) for details). The control sampling
time of the responsive controller is 1 min.

4.2.3. Optimization policies for adaptive control (OPAC)
OPAC is a computational strategy for real-time demand-responsive traffic signal control (Gartner, 1983). For the next control

sampling time step, the controller estimates the upcoming traffic flows, and enumerates all the possible choices of green time
length (which should be integer values within the allowed range of the control input variable) in order to find an optimal value for
the corresponding green time length that results in the least total delay for the particular controlled intersection. Note that these
estimations are performed for individual controlled intersections simultaneously (i.e., in a decentralized way). The dynamics of the
links corresponding to the controlled intersection are updated via the S-model and are used to predict the future values of the state
variables of these links. Note that the constraints on the emissions cannot be incorporated explicitly in an OPAC controller. The
14

control sampling time of the OPAC controller is set to 1 min.



Transportation Research Part C 156 (2023) 104334A. Jamshidnejad et al.

o
t
w
f
c
a

4

i
o
t
w
t
C
c

4

p
s
t
l

4

d
s
c
h

4

i
t
M
h
h
h

a
t
d
b
p
b
i

R
w
e
d
m

Table 3
Parameters values for the case study.
𝑠 𝑠LT 𝑛ST(𝑘LT) 𝑛LT(𝑘LT) 𝑐 𝑐LT 𝑐o 𝑐o,LT 𝜆CO2

𝜆var 𝜆term
(1) 𝜆term

(2)

1 min 5 min 15 min 360 min 5 min 60 min 5 min 60 min 0.005 0 0 0

4.2.4. Optimized fixed-time controller
This controller is optimized off-line using a rough version of the S-model and demand Scenario 1 shown in Fig. 12. The

ptimization problem is solved considering a cost function that is defined as a weighted summation of the TTS and the TE within
he simulation window, with a control sampling time of 60 min. A rough estimation of the total emissions within the simulation
indow is given as the upper bound for the cumulative constraint of the optimization problem. Whenever the optimizer fails to

ind a feasible solution with respect to the given constraint, the optimization problem is solved excluding the cumulative emission
onstraint, and a penalty corresponding to the emission constraint violation is added to the cost function. This controller is taken
s the benchmark for comparison.

.2.5. Conventional MPC controller
In order to implement an MPC controller in real time for green mobility in the given urban traffic network, the prediction time

nterval is limited to 15 min with a control sampling time of 5 min (i.e., the prediction horizon is 3) and an operation sampling time
f 5 min. The MPC optimization problem is solved considering the detailed S-model and a cost function defined as a weighted sum of
he TTS and the TE within the prediction window. The upper bound for the cumulative emissions of CO2 within the current prediction
indow is estimated based on the demand profiles, i.e., the ratio of the expected demand within the current prediction window and

he future expected demand is used to distribute the remaining allowed cumulative emissions. By comparing the performance and
PU time of this MPC controller and the bi-level MPC controller, we can realize how and to what extent adding the long-term MPC
ontroller impact the overall performance of the controlled system, as well as the computational burden of the MPC controller.

.2.6. Conventional MPC with a large prediction horizon
The same conventional MPC controller as the previous subsection, but with a larger prediction horizon is considered. The

rediction time interval of this controller is doubled (i.e., it is 30 min), and therefore the prediction horizon size is 6. The other
ettings are exactly the same as the previous conventional MPC controller. Comparing the performance of this MPC controller with
hat of the bi-level and conventional MPC controller will show us whether or not we can gain the desired performance via a single
evel of control, with still an affordable computation time.

.2.7. Single-level long-term MPC controller
The rough long-term MPC-based controller in the high level of the proposed framework will be considered as the controller that

irectly controls the traffic network. The rough long-term MPC controller optimizes the multi-objective cost function (i.e., weighted
ummation of the TTS and the TE) considering a rough version of the S-model, with a simulation sampling time of 5 min, and a
ontrol and operation sampling time of 60 min. The controller originally has a prediction horizon size of 6 (equal to the simulation
orizon), which is implemented in a shrinking-horizon way.

.2.8. Bi-level temporally-distributed MPC controller
In the bi-level MPC framework the rough long-term MPC controller in the higher level of control has the same setting as the one

ntroduced in Section 4.2.7. The parameters of the detailed short-term MPC controller in the lower level of control are similar to
hose of the conventional MPC controller explained in Section 4.2.5. Note that since the prediction interval of the detailed short-term
PC is 15 min, within one operation sampling time (i.e., 60 min) of the rough long-term MPC controller the short-term prediction

orizon size remains 3, except for the short-term control time step corresponding to the 50th min, for which the short-term prediction
orizon size will be 2 and for the short-term control time step corresponding to the 55th min, for which the short-term prediction
orizon size will be 1. The parameter values are presented in Table 3.

For the integrated flow and emission model in the adapter block (see Fig. 8), the detailed versions of the S-model and VT-micro
re used (see Lin et al. (2013) for more details). Thus, the rough control inputs determined via (2) and the predicted demands for
he upcoming 1 h (see Fig. 12) are used to estimate the expected realized total emissions for the upcoming 1 h. This value is initially
istributed via the adapter block evenly among the detailed short-term control time steps. After every control time step, the upper
ounds for the cumulative emissions for the remaining control time steps are updated by evenly re-distributing the value of the
revious upper bound minus the value of the cumulative emissions realized in the last control sampling time. The updated upper
ounds for the cumulative emissions are used by the detailed short-term MPC optimization problem to determine an optimal control
nput sequence that will be injected into the controlled system for the upcoming control sampling time (5 min).

emark 2. The proposed bi-level MPC framework can be extended to larger simulation windows, e.g., one month or one year,
here additional intermediate adapter blocks can be included. For instance, one rough adapter block allocates the estimated total
missions for the entire simulation window (e.g., a month) over the individual days in the month, and a second detailed adapter block
istributes these daily upper bounds over the individual hourly intervals. This approach will make the procedure computationally
15

ore efficient.
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Fig. 13. Demand profile for 10 days in case study 2.

.3. Setup for case study 2

In this case study, a larger simulation interval (i.e., 10 days) is considered to further assess the ability of the proposed framework
o fulfill the long-term control task. This case study shares the same settings as case study 1, including the urban traffic network,
raffic flow and emission model, and the controllers. The only difference is the traffic demand, which extends over a longer period
see Fig. 13), and the same noise is added as in Section 4.1.3. Accordingly, the rough traffic model is modified with a simulation
ampling time of 2 h. The high-level MPC controller has a control and operation sampling time of 6 h. All the controllers introduced
n case study 1 are also implemented for this case study, and their control performance is compared. Moreover, the cumulative
mission constraint on CO2 over the 10-day simulation interval is 2 million kg.

.4. Results and discussions

All controllers were implemented in MATLAB version R2019b running on a PC with an Intel Xeon Quad-Core E5-1620 V3 CPU
ith a clock speed of 3.5 GHz. Due to the nonlinear dynamics of the urban traffic network, for all the optimization-based controllers,

he function 𝚏𝚖𝚒𝚗𝚌𝚘𝚗 from MATLAB has been used together with the SQP algorithm (Boggs and Tolle, 1995). Moreover, due to
he non-convex nature of the optimization problems, in order to avoid selecting local optima that may result in a performance
or the controller that is (much) worse than that of the global optimum, a number of off-line experiments have been conducted
o determine suitable numbers of optimization starting points for achieving near-global optima. Consequently, 10 and 15 starting
oints for, respectively, the rough long-term and the detailed short-term MPC optimization problems are considered. Moreover, 15
tarting points are considered for the optimization problem of conventional MPC. Based on the off-line experiments, the parameters
f 𝚏𝚖𝚒𝚗𝚌𝚘𝚗 were also determined such that a balance is achieved between accuracy and computational efficiency of the solver. So for
he 𝚏𝚖𝚒𝚗𝚌𝚘𝚗 stopping criterion the values of the cost function tolerance, step tolerance, and constraint tolerance are selected to be
0−2 for the detailed short-term MPC and 10−1 for the rough long-term MPC. For the cost functions of (1), (2), and (3), 𝜆CO2

= 0.005
as considered, where the order of this weight corresponds to the relative orders of the total time spent of the vehicles and the

otal emissions of CO2. The rest of the weights are set to 0.

emark 3. In case the optimization solver fails to find a feasible solution for an MPC optimization problem, it switches to another
ersion of the problem, where the cumulative constraint on the emissions of CO2 is excluded. A penalty is then added to the cost
unction with a weight equal to 0.48. This weight should be tuned carefully: with a very large value, the solver determines solutions
hat compromise reduction of the traffic congestion in order to decrease the total emissions of CO2, especially for the short-term
redictions, which impose short-sighted decision making. In such cases, the controller causes the vehicles to idle instead of traveling
reely, since idling vehicles emit the least CO2 per time step.

Table 4 presents the results of the simulations for scenarios 2–6, including the CPU time and the realized values of TTS, TE,
ost, and the change (in %) in the objective function (i.e., the weighted sum of the TTS and the TE) compared to the benchmark
ixed-time controller for all the implemented controllers.

Overall, all controllers perform better than the fixed-time controller, while the MPC-based methods outperform the other
ontrollers in terms of the realized values of TTS and TE, except for the single-level rough long-term MPC, which cannot guarantee
he performance outside of the bi-level control architecture. For a few certain scenarios, the non-MPC methods can achieve a
erformance comparable to the MPC-based methods with negligible CPU time, but their performance cannot be guaranteed for all
16

he scenarios. Furthermore, since some controllers (e.g., responsive controller and OPAC) cannot explicitly consider the constraints
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Table 4
CPU time in [s], total time spent (TTS) in [h], total emissions (TE) of CO2 in [kg], cost, and TTS and TE compared to the benchmark fixed-time controller (in
%) within the entire 6-h simulation time window for Scenarios 2–6 of case study 1. For the abbreviations of the controllers: Opt. fixed-time is the optimized
ixed-time controller; Conv. MPC is the conventional MPC controller; L-hori. MPC is the conventional MPC controller with a large prediction horizon; L-term MPC
s the single-level long-term MPC controller. The notation ‘–’ means that the item is not applicable to that controller. Note that the CPU time of the long-term
PC controller corresponds to a larger control sampling time than the other MPC controllers.
(a) Scenario 2

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 2676 17 223 269.6 1372
CPU time per control step [s] – – – – 37.17 239.2 44.93 15.06
TTS [h] 5487.2 4815.0 4674.6 5287.2 4715.4 4675.2 5252.3 4674.9
TE (CO2) [kg] 80 232 76 609 77 571 79 543 75 484 75 062 79 198 75 445
Objective function 5888.2 5198.0 5062.5 5684.9 5092.8 5050.5 5648.3 5052.1
Obj. value compared with Opt. fixed-time +3.58% −8.56% −10.95% – −10.42% −11.16% −0.64% −11.13%

(b) Scenario 3

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 2917 22 491 236.1 1608
CPU time per control step [s] – – – – 40.52 312.4 43.85 18.34
TTS [h] 6790.3 4754.2 4603.9 4844.2 4685.1 4612.2 5185.2 4605.9
TE (CO2) [kg] 90 333 77 773 78 700 78 245 77 179 76 380 80 432 76 745
Objective function 7242.0 5143.0 4997.4 5235.4 5071.0 4994.1 5587.4 4989.6
Obj. value compared with Opt. fixed-time +38.33% −1.76% −4.55% – −3.14% −4.61% +6.72% −4.69%

(c) Scenario 4

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 3054 8956 153.4 1580
CPU time per control step [s] – – – – 42.42 124.4 25.57 17.50
TTS [h] 4058.7 4081.2 4058.9 4399.4 4067.7 4058.7 4058.7 4058.7
TE(CO2) [kg] 67 612 67 728 69 990 68 085 67 395 67 612 67 612 67 400
Objective function 4396.8 4419.8 4408.8 4739.8 4404.7 4396.7 4396.7 4395.7
Obj. value compared with Opt. fixed-time −7.24% −6.75% −6.98% – −7.07% −7.24% −7.24% −7.26%

(d) Scenario 5

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 2990 12 736 339.2 1598
CPU time per control step [s] – – – – 41.53 176.9 56.5 17.94
TTS [h] 4426.2 4389.9 4329.4 4329.5 4352.1 4334.4 4330.4 4329.2
TE(CO2) [kg] 72 783 72 445 74 152 72 482 71 919 71 638 71 840 71 858
Objective function 4790.1 4752.1 4700.2 4691.9 4711.7 4692.6 4689.6 4688.5
Obj. value compared with Opt. fixed-time +2.09% +1.28% +0.18% – +0.42% 0.00% 0.00% 0.00%

(e) Scenario 6

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 3114 18 771 254 1577
CPU time per control step [s] – – – – 43.26 260.7 42.3 18.63
TTS [h] 6686.7 4889.9 4722.6 4734.7 4760.6 4722.2 4975.2 4730.3
TE(CO2) [kg] 88 708 77 811 78 769 77 120 76 610 76 231.4 78 390 76 602
Objective function 7130.2 5279.0 5116.4 5120.3 5143.6 5103.4 5367.1 5113.3
Obj. value compared with Opt. fixed-time +39.25% +3.10% 0.00% – +0.46% −0.33% +4.82% −0.14%

on the emissions, their realized TE values are much higher than those of the MPC-based methods. In addition, the bi-level MPC
controller performs better than the conventional MPC, particularly in terms of the CPU time (i.e., in all cases the computational
speed corresponding to the bi-level MPC controller is more than twice smaller than that of the conventional MPC controller). The
bi-level MPC controller achieves a performance that is comparable to the large-horizon conventional MPC in terms of TTS and
TE, but with significantly less CPU time. Moreover, during the simulations it was noticed that in all cases the conventional MPC
controller failed to find a feasible solution under the given constraint, and hence it had to switch to the unconstrained version
of the optimization problem and include a penalty term in the cost function. As a result, the computational complexity increased
significantly and solutions that were obtained resulted in slightly poorer performance compared to the bi-level MPC controller. Due
to the use of a higher-level rough MPC controller and the adapter block in the proposed bi-level architecture, however, the detailed
short-term MPC controller most often received an upper bound for the cumulative constraint that prevented the corresponding
constrained optimization problem to become infeasible.

As an extra remark, from Table 4 it is deduced that for scenario 4 the fixed-time controller performed better than all other
ontrollers, except for the bi-level MPC-based controller. This is because the green time corresponding to the fixed-time control
olicy (i.e., 50% of the cycle time) is very close to the optimal solution for this scenario. Moreover, it has been verified that the
PC-based controllers result in a similar performance as the fixed-time controller. In addition, the performance of the opt. fixed-time
17

ontroller cannot be guaranteed due to the quality of the historical data.
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Table 5
CPU time in [s], total time spent (TTS) in [h], total emissions (TE) of CO2 in [kg], cost, and TTS and TE compared to the benchmark fixed-time controller (in
%) within the entire 6-h simulation time window of case study 2. For the abbreviations of the controllers: Opt. fixed-time is the optimized fixed-time controller;
Conv. MPC is the conventional MPC controller; L-hori. MPC is the conventional MPC controller with a large prediction horizon; L-term MPC is the single-level
long-term MPC controller. The notation ‘–’ means that the item is not applicable to that controller. Note that the CPU time of the long-term MPC controller
corresponds to a larger control sampling time than the other MPC controllers.

Fixed-time Responsive OPAC Opt. fixed-time Conv. MPC L-hori. MPC L-term MPC Bi-level MPC

CPU time [s] – – – – 10 5698 41 6035 20 363 65 432
CPU time per control step [s] – – – – 36.7 144.5 509.1 22.7
TTS [×103 h] 188.830 160.993 159.611 167.606 179.748 159.527 169.357 159.578
TE(CO2) [×103 kg] 2835.165 2610.805 2703.496 2655.158 2707.206 2586.102 2684.967 2598.886
Objective function value [×103] 203.006 174.047 173.129 180.882 193.284 172.458 182.782 172.572
Obj. value compared with Opt. fixed-time +12.23% −3.78% −4.29% – +6.86% −4.66% +1.05% −4.59%

Table 5 presents the simulation results of the different controllers in case study 2. It is shown that the proposed bi-level control
ramework achieves the best control performance in terms of both TTS and TE, when considering a long-term green mobility control
ask (i.e., 10 days). In addition, the bi-level MPC framework is more computationally efficient than other MPC-based methods. This
ase study indicates that the proposed bi-level control framework is able to address long-term control objectives and long-term
onstraints that cannot be handled efficiently with conventional MPC control methods.

. Conclusions and topics for future work

We have proposed a novel bi-level temporally-distributed MPC approach in order to tackle the challenge of high computational
urden for complex constrained optimization problems with different time scales. Consequently, we have introduced two linked
hort-term and long-term MPC optimization problems. In the proposed framework, the rough long-term MPC problem is solved by a
upervisory controller that may use a different prediction model, control sampling time, and operation time than the detailed short-
erm MPC problem. The controller corresponding to the detailed short-term MPC problem is implemented at the lowest control level
nd directly controls the system. The supervisory MPC controller determines new adaptive upper bounds for the constraints of the
etailed short-term MPC problem, based on the rough long-term solutions. We have implemented the proposed control approaches
o an urban traffic network in order to achieve green mobility. The results of the case study show that the proposed bi-level MPC
ontroller outperforms other conventional control methods used for urban traffic control in terms of the total time spent, total
missions of CO2, and CPU time. More specifically, the bi-level MPC controller has shown to require a computation time less than
alf of the computation time of a conventional MPC controller.

It is expected that for larger spatial and temporal scales of the network, the difference between the computation time of the
i-level MPC controller and the conventional MPC controller becomes more significant. Moreover, for future work we propose
o use a more sophisticated adapter block, with several levels that distribute the upper bound of the constraints among various
emporal scales. The proposed bi-level MPC architecture provides the opportunity of giving different weights to various costs in
ifferent temporal scales or for considering completely different cost functions in different temporal scales, while incorporating
he inter-linked dynamics. Therefore, applying the proposed approach to various complex and non-linear dynamical systems and
onsidering variations in the weights and costs in different temporal scales is an interesting topic for future work.

RediT authorship contribution statement

Anahita Jamshidnejad: Conceptualization, Methodology, Validation, Writing – original draft, Writing – review & editing,
roject administration, Funding acquisition. Dingshan Sun: Conceptualization, Investigation, Software, Formal analysis, Writing –

original draft. Antonella Ferrara: Conceptualization, Validation, Writing – review & editing . Bart De Schutter: Conceptualization,
Validation, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Acknowledgments

Research supported by the NWO Talent Programme Veni Grant (18120), the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 101018826 CLariNet), and the China
Scholarship Council Grant (CSC.201806230254).

References

Aboudolas, K., Papageorgiou, M., Kouvelas, A., Kosmatopoulos, E., 2010. A rolling-horizon quadratic-programming approach to the signal control problem in
large-scale congested urban road networks. Transp. Res. C 18, 680–694.

Baskar, L.D., De Schutter, B., Hellendoorn, H., 2012. Traffic management for automated highway systems using model-based predictive control. IEEE Trans.
Intell. Transp. Syst. 13, 838–847.

Bellemans, T., De Schutter, B., De Moor, B., 2006. Model predictive control for ramp metering of motorway traffic: A case study. Control Eng. Pract. 14, 757–767.
Bemporad, A., 2006. Model predictive control design: New trends and tools. In: 45th IEEE Conference on Decision and Control. pp. 6678–6683.
18

Boggs, P.T., Tolle, J.W., 1995. Sequential quadratic programming. Acta Numer. 4, 1–51.

http://refhub.elsevier.com/S0968-090X(23)00323-6/sb1
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb1
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb1
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb2
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb2
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb2
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb3
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb4
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb5


Transportation Research Part C 156 (2023) 104334A. Jamshidnejad et al.

B

C
D
D

D

E

E
E
G
H

H

H

v
J

J

J

J

K

K

K

L

L

L

M
M

M
O
O
P
R
R

R

S
S
S
S

S

T

T
T

U
v

V
W

Y

Z

Brandi, A., Ferrara, A., Sacone, S., Siri, S., Vivas, C., Rubio, F., 2017. Model predictive control with state estimation for freeway systems. In: American Control
Conference (ACC). pp. 3536–3541.

rdys, M., Grochowski, M., Gminski, T., Konarczak, K., Drewa, M., 2008. Hierarchical predictive control of integrated wastewater treatment systems. Control
Eng. Pract. 16, 751–767.

amacho, E.F., Bordons, C., 1995. Model Predictive Control in Process Industry. Springer.
e Schutter, B., 2014. Model predictive traffic control for green mobility. In: 2014 European Control Conference. pp. 2260–2263.
i Cairano, S., Bäthge, T., Findeisen, R., 2019. Modular design for constrained control of actuator-plant cascades. In: 2019 American Control Conference (ACC).

IEEE, pp. 1755–1760.
unham, W., Hencey, B., Girard, A.R., Kolmanovsky, I., 2019. Distributed model predictive control for more electric aircraft subsystems operating at multiple

time scales. IEEE Trans. Control Syst. Technol. 28, 2177–2190.
C, 2021. Regulation (EU) 2021/1119 of the european parliament and of the council of 30 June 2021 establishing the framework for achieving climate neutrality

and amending Regulations (EC) no 401/2009 and (EU) 2018/1999 (‘European Climate Law’).
cheverría, L., Giménez-Nadal, J.I., Molina, J.A., 2022. Who uses green mobility? exploring profiles in developed countries. Transp. Res. A 163, 247–265.
EA, 2021. Air Quality e-Reporting.
artner, N.H., 1983. OPAC: A demand-responsive strategy for traffic signal control. Transp. Res. Rec. J. Transp. Res. Board (906), 75–81.
addad, J., Ramezani, M., Geroliminis, N., 2013. Cooperative traffic control of a mixed network with two urban regions and a freeway. Transp. Res. B 54,

17–36.
an, H.G., Fu, S.J., Sun, H.Y., Qiao, J.F., 2021. Hierarchical nonlinear model predictive control with multi-time-scale for wastewater treatment process. J. Process

Control 108, 125–135.
an, Y., Ramezani, M., Hegyi, A., Yuan, Y., Hoogendoorn, S., 2020. Hierarchical ramp metering in freeways: an aggregated modeling and control approach.

Transp. Res. C 110, 1–19.
an Henten, E., Bontsema, J., 2009. Time-scale decomposition of an optimal control problem in greenhouse climate management. Control Eng. Pract. 17, 88–96.
amshidnejad, A., Lin, S., Xi, Y., De Schutter, B., 2018a. Corrections to Integrated urban traffic control for the reduction of travel delays and emissions. IEEE

Trans. Intell. Transp. Syst. 20, 1978–1983.
amshidnejad, A., Papamichail, I., Hellendoorn, H., Papageorgiou, M., De Schutter, B., 2016. Gradient-based model-predictive control for green urban mobility

in traffic networks. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems. pp. 1077–1082.
amshidnejad, A., Papamichail, I., Papageorgiou, M., De Schutter, B., 2018b. Sustainable model-predictive control in urban traffic networks: Efficient solution

based on general smoothening methods. IEEE Trans. Control Syst. Technol. 26, 813–827.
in, X., Jiang, T., Mu, Y., Long, C., Li, X., Jia, H., Li, Z., 2019. Scheduling distributed energy resources and smart buildings of a microgrid via multi-time scale

and model predictive control method. IET Renew. Power Gener. 13, 816–833.
achroudi, S., Mammar, S., 2013. The effects of the control and prediction horizons on the urban traffic regulation. In: 13th International IEEE Conference on

Intelligent Transportation Systems. IEEE.
eyvan-Ekbatani, M., Gao, X., Gayah, V.V., Knoop, V.L., 2019. Traffic-responsive signals combined with perimeter control: investigating the benefits. Transportmetr.

B: Transp. Dyn. 7, 1402–1425.
ong, Q.J., Xu, Y., Lin, S., Wen, D., Zhu, F., Liu, Y., 2013. UTN-model-based traffic flow prediction for parallel-transportation management systems. IEEE Trans.

Intell. Transp. Syst. 14, 1541–1547.
in, S., De Schutter, B., Xi, Y., Hellendoorn, H., 2011. Fast model predictive control for urban road networks via milp. IEEE Trans. Intell. Transp. Syst. 12,

846–856.
in, S., De Schutter, B., Xi, Y., Hellendoorn, H., 2013. Integrated urban traffic control for the reduction of travel delays and emissions. IEEE Trans. Intell. Transp.

Syst. 14, 1609–1619.
iu, D., Wu, J., Liu, H., Song, P., Wang, K., 2020. Multi-time scale energy management strategy of micro energy grid based on model predictive control. In:

2020 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, pp. 1511–1516.
aciejowski, J., 2002. Predictive Control with Constraints. Prentice Hall.
anolis, D., Pappa, T., Diakaki, C., Papamichail, I., Papageorgiou, M., 2018. Centralised versus decentralised signal control of large-scale urban road networks

in real time: A simulation study. IET Intell. Transp. Syst. 12, 891–900.
orari, M., Lee, J.H., 1999. Model predictive control: Past, present, and future. Comput. Chem. Eng. 23, 667–682.
liveira, L.B.D., Camponogara, E., 2010. Multi-agent model predictive control of signaling split in urban traffic networks. Transp. Res. C 18, 120–139.
utlook, I., 2017. Itf Transport Outlook 2017.
appas, G.J., Lafferriere, G., Sastry, S., 2000. Hierarchically consistent control systems. IEEE Trans. Automat. Control 45, 1144–1160.
awlings, J.B., Mayne, D.Q., 2009. Model Predictive Control: Theory and Design. Nob Hill Publishing.
ichter, S., Jones, C.N., Morari, M., 2012. Computational complexity certification for real-time mpc with input constraints based on the fast gradient method.

IEEE Trans. Automat. Control 57, 1391–1403.
oncoli, C., Papamichail, I., Papageorgiou, M., 2016. Hierarchical model predictive control for multi-lane motorways in presence of vehicle automation and

communication systems. Transp. Res. C 62, 117–132.
cattolini, R., 2009. Architectures for distributed and hierarchical model predictive control–a review. J. Process Control 19, 723–731.
iri, S., Pasquale, C., Sacone, S., Ferrara, A., 2021. Freeway traffic control: A survey. Automatica 130, 109655.
kaf, J., Boyd, S., Zeevi, A., 2010. Shrinking-horizon dynamic programming. Internat. J. Robust Nonlinear Control 20, 1993–2002.
u, Z., Jamshidi, A., Núñez, A., Baldi, S., De Schutter, B., 2017. Multi-level condition-based maintenance planning for railway infrastructures–a scenario-based

chance-constrained approach. Transp. Res. C 84, 92–123.
u, Z., Jamshidi, A., Núñez, A., Baldi, S., De Schutter, B., 2019. Integrated condition-based track maintenance planning and crew scheduling of railway networks.

Transp. Res. C 105, 359–384.
ettamanti, T., 2013. Advanced Methods for Measurement and Control in Urban Road Traffic Networks (Ph.D. thesis). Budapest University of Technology and

Economics.
ettamanti, T., Luspay, T., Kulcsar, B., Péni, T., Varga, I., 2013. Robust control for urban road traffic networks. IEEE Trans. Intell. Transp. Syst. 15, 385–398.
ettamanti, T., Varga, I., Kulcsár, B., Bokor, J., 2008. Model predictive control in urban traffic network management. In: 2008 16th Mediterranean Conference

on Control and Automation. IEEE, pp. 1538–1543.
NEP, U., 2020. Emissions Gap Report 2020. UN environment programme.
an de Weg, G.S., Vu, H.L., Hegyi, A., Hoogendoorn, S.P., 2018. A hierarchical control framework for coordination of intersection signal timings in all traffic

regimes. IEEE Trans. Intell. Transp. Syst. 20, 1815–1827.
araiya, P., 1993. Smart cars on smart roads: problems of control. IEEE Trans. Automat. Control 38, 195–207.
u, N., Li, D., Xi, Y., De Schutter, B., 2020. Distributed event-triggered model predictive control for urban traffic lights. IEEE Trans. Intell. Transp. Syst. 22,

4975–4985.
e, B.L., Wu, W., Ruan, K., Li, L., Chen, T., Gao, H., Chen, Y., 2019. A survey of model predictive control methods for traffic signal control. IEEE/CAA J. Autom.

Sin. 6, 623–640.
egeye, S., De Schutter, B., Hellendoorn, J., Breunesse, E., Hegyi, A., 2013. Integrated macroscopic traffic flow, emission, and fuel consumption model for control

purposes. Transp. Res. C 31, 158–171.
19

http://refhub.elsevier.com/S0968-090X(23)00323-6/sb6
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb6
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb6
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb7
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb7
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb7
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb8
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb9
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb10
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb10
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb10
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb11
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb11
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb11
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb12
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb12
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb12
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb13
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb14
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb15
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb16
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb16
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb16
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb17
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb17
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb17
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb18
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb18
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb18
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb19
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb20
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb20
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb20
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb21
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb21
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb21
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb22
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb22
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb22
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb23
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb23
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb23
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb24
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb24
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb24
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb25
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb25
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb25
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb26
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb26
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb26
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb27
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb27
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb27
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb28
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb28
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb28
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb29
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb29
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb29
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb30
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb31
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb31
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb31
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb32
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb33
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb34
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb35
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb36
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb37
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb37
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb37
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb38
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb38
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb38
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb39
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb40
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb41
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb42
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb42
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb42
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb43
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb43
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb43
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb44
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb44
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb44
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb45
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb46
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb46
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb46
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb47
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb48
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb48
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb48
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb49
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb50
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb50
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb50
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb51
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb51
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb51
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb52
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb52
http://refhub.elsevier.com/S0968-090X(23)00323-6/sb52

	A novel bi-level temporally-distributed MPC approach: An application to green urban mobility
	Introduction and motivations
	Model predictive control (MPC)
	Current challenges of MPC for green urban mobility
	Contributions & structure of the paper
	Related work

	Green urban mobility based on an annual MPC schedule
	Cumulative Constraints
	Problem formulation
	Characteristics of the optimization problem

	Proposed methodology for tackling the optimization complexity resulting from various temporal scales
	Bi-level temporal distribution of the problem
	Rough long-term MPC formulation
	Detailed short-term MPC formulation
	Jumping-horizon MPC
	Linking the long-term and short-term MPC formulations


	Case study
	Setup for case study 1
	Urban traffic network
	Traffic flow and emission models
	Demand profiles
	Cumulative emission constraints

	Controllers
	Fixed-time controller
	Responsive controller
	Optimization policies for adaptive control (OPAC)
	Optimized fixed-time controller
	Conventional MPC controller
	Conventional MPC with a large prediction horizon
	Single-level long-term MPC controller
	Bi-level temporally-distributed MPC controller

	 Setup for case study 2
	Results and Discussions

	Conclusions and topics for future work
	CRediT authorship contribution statement
	Acknowledgments
	References


