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ABSTRACT Interactivemachines should establish andmaintainmeaningful social interactionswith humans.
Thus, they need to understand and predict the mental states and actions of humans. Based on Theory of
Mind (ToM), in order to understand and interact with each other, humans develop cognitive models of one
another. Our main goal is to provide a mathematical framework based on ToM to improve the understanding
of interactive machines regarding the perception, cognition, and decision-making of humans. Most state-
of-the-art models of behavioral theories based on machine learning are focused on input-output black-box
representations. Thus, they lack transparency and generalizability, and exhaustive training procedures are
needed to personalize them for various humans. Moreover, these models lack dynamics, i.e., they do not
mathematically describe the evolution of the mental states and actions of humans in time. Following a
systems-and-control-theoretic point-of-view, we represent for the first time the perception, cognition, and
decision-making of humans via a dynamic, mathematical framework by introducing a novel formalization
and an extension to Fuzzy Cognitive Maps (FCMs). The resulting models are given in a general state-space
representation, which can be used by interactive machines within known model-based state estimation and
control methods. In a case study, the resulting models were identified and validated for 21 participants,
in scenarios where predicting the intentions and behavior of the participants required understanding the
dynamics of their mental procedures. The results of these experiments show that our model is capable of
incorporating the dynamics to estimate the intentions and predict the behavior of the participants, with an
accuracy of, respectively, 81.55% and 66.06%. Moreover, we compared our model with a state-of-the-art
formalization of human cognition, which was made dynamic using our introduced FCM framework. Our
model, which in addition to the elements of the state-of-the-art model included emotions, personality traits,
and biases (thus providing amore transparent insight about the mental procedures of the participants) showed
6.25% and 2.45% more accuracy in, respectively, estimating the intentions and predicting the behavior of
the participants.

INDEX TERMS Dynamic mathematical models, long-term interactions of rational agents, state-space
models of cognition, theory of mind.

I. INTRODUCTION
Socially assistive robots (SARs) assist humans mentally and
physically by socially interacting with them. SARs have

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

proven successful in boosting the outcomes of therapeutic
and educational assistance for humans [1], [2], [3], [4], [5],
[6]. Most applications of SARs in literature involve short-
term interactions (e.g., a few interactive sessions lasting no
more than amonth) with humans [7], [8] that exclude in-depth
analysis of the perception, cognition, and decision-making
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of the individuals [8]. Since intelligent machines, including
SARs, are becoming more prominent, it is essential for them
to maintain long-term, meaningful and engaging interactions
with humans [8], whereas state-of-the-art SARs face serious
challenges regarding this [3], [4], [5], [7]. Particularly,
rudimentary social skills displayed by SARs in interaction
with humans negatively impact the human engagement, and
thus the effectiveness of SARs [4], [5], [7], [9]. Although non-
verbal cues, e.g., joint attention (i.e., drawing the attention
of others to an object or person by looking or pointing
at it) [4], eye contact [5], and facial expressions [3], have
been implemented for SARs, these robots often fail to
recognize the best time to display these cues in social
interactions, due to a lack of (deep) understanding of the
human cognition [7], [10]. Moreover, personalizing the
behavior of SARs to every human is crucial to maintain
meaningful interactions [2], [3], [4], [10]. However, without a
white-box approach (e.g., transparent mathematical models),
personalization of SARs has been task-specific [2], [6], case-
based, and ungeneralizable [8]. In fact, personalization for
SARs has been limited to learning interactive behaviors that
improve the performance of humans in the given tasks [2],
[3], [4], [10]. Such task-specific, black-box methods used to
control SARs result in interactions that are perceived as less
natural and engaging for humans, especially in the long term.

The key to successful social interactions by humans, based
on ToM [11], is to build cognitive models of each other and to
interact based on thesemodels. In order to interact as humanly
as possible, SARs should exhibit similar understanding of
rational agents [7], [8], [9], [10], [12]. Thus, we focus on
developing dynamic mathematical models for perception,
cognition, and decision-making of humans that can be used
by intelligent machines in human-machine interactions to
estimate the mental states of humans and to predict their
behavior. In order to provide generalizable, white-boxmodels
with proper mathematical representation and axiomatization
that can effectively be used in model-based state estimation
and control methods by SARs, we provide the followingmain
contributions:

• We follow systems-and-control-theoretic methods
in order to model the perception, cognition, and
decision-making of humans via dynamic equation-based
models for the first time. We identify and represent
the corresponding (controllable and uncontrollable)
input, output, auxiliary, and state variables, as well as
the identification parameters. To provide accuracy and
transparency, we introduce additional state variables
(e.g., emotions, intentions) and auxiliary variables
(e.g., bias, perceived knowledge) into the perception,
cognition, and decision-making models based on the
existing behavioral theories from cognitive science
literature.

• We propose a novel framework based on an extended
version of FCMs. This framework transforms static
representations of ToM into dynamic models with a
general state-space representation. A main advantage of

representing perception, cognition, and decision-making
of humans via equation-based state-space models is
that they can directly be embedded within established
model-based state estimation and control methods to
steer intelligent machines.

• The resulting models are trained and personalized for 21
human participants, and are validated via experiments
that simulate scenarios of emergency evacuation in 2-
dimensional environments. The participants complete
each scenario by controlling a virtual agent in order to
select its trajectory and sequence of tasks. The developed
models are used to estimate the intentions and actions of
each participant. These estimated intentions and actions
are then compared to the intentions and actions selected
by the participants to assess the accuracy of the models.

Including the auxiliary variable ‘biases’ and the identifiable
parameters, and defining new concepts of rational intention
selection and rational action selection, which are agent-
specific, instead of using a universal principle of rational
action for all agents, provide our models with the unique
potential to be personalized per human.

The rest of the paper is structured as it follows. Section
II gives an overview of previous related work and identifies
the open challenges. Section III presents the proposed
methodologies, including the main motivations and mathe-
matical approaches. In Section IV, the proposed models are
implemented and assessed via real-life experiments with 21
volunteer human participants. Finally, Section V concludes
the paper and presents topics for future research.

II. RELATED WORK AND OPEN CHALLENGES
Understanding the (individual) cognitive procedures of
humans in their social interactions is important for both
cognitive psychology and cognitive computing fields (see [4],
[5], [13], [14], [15], [16]).

ToM was first proposed in the neuroscience domain [11],
and since then has been used to develop computational
frameworks for human cognition [17], [18], [19], [20], [21],
[22]. ToM relies on the principle of rationality [23], [24],
which implies that humans take actions that, according to
their beliefs and goals, maximize their desired outcomes,
and/or minimize their losses. This principle is the cornerstone
of most ToM-based computational frameworks. While ToM
involves three main mental procedures of humans, i.e.,
perception, cognition, and decision-making, Belief-Desire-
Intention (BDI) [25] is a framework that particularly models
the decision-making [26], [27], [28]. Based on BDI, the
actions of rational agents are a consequence of their beliefs,
desires, and intentions (without imposing specific conditions,
e.g., rationality) [25]. ToM and BDI can complement one
another [27], [29]: In fact, the concept of intentions intro-
duced in BDI can be included in a dynamic, mathematical
framework of ToM, in order to account for the interlinks
within a sequence of actions of the agent, for achieving a
particular intention [26].
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FIGURE 1. Network representation of human cognition from [30],
explaining the actions taken by humans based on the principles of
rational action and rational belief.

Baker [30] has proposed a Bayesian ToM model based
on the network representation in Figure 1. Using Partially
Observable Markov Decision Processs (POMDPs) [31] and
Bayesian inference [32], this model makes forward and
inverse inferences about, respectively, the actions and the
beliefs and goals of rational agents that follow the principle
of rationality. A simplified version of the model, excluding
general world knowledge and general preferences, was imple-
mented in [33], where virtual rational agents were moving
in two-dimensional spaces. The predictions that were made
by the model and by human participants about the beliefs
and goals of the virtual rational agent were compared, where
the results showed close similarities, and acknowledged that
goals and beliefs need to be inferred simultaneously. The
model and experimental scenarios in [33] did not account
for the differences of humans and represented them via
idealized rational agents that do not deal with biases, which
is not true in real-life scenarios [34], [35]. Additionally, the
stochastic nature of the model formulation makes its use
limited for model-based predictive methods, since decision
trees, which can exponentially grow with the size of the
prediction horizon, need to be generated, and using these
trees in optimization-based decision-making frameworks is
not suited for real-time implementations. Finally, similarly to
most computational frameworks of ToM, the model in [33]
does not include inferences about the emotions of humans.
In fact, based on a recently published review paper [36],
the number of literature that model the understanding of
emotional states from the perspective of an observer is very
limited.

To summarize, the majority of the research on compu-
tational frameworks for ToM are focused on representing
human behavior via POMDPs [17], [19], [21] or approx-
imating it with Neural Networks (NNs) [18], [19], [20],
[21]. The research aiming at using computational models of
ToM to perform inverse inferences is even more scarce [37],
[38]. Furthermore, most state-of-the-art models are static
representations that do not include dynamics [20], [21], [22],
i.e., do not mathematically describe the evolution of the
mental states of humans in time. The articles that do present

a dynamic model are scarce [19], [39], and none of them
proposes a general framework that covers the main aspects
of ToM for a general context. For example, [39] dynamically
models the emotions but does not focus on any other mental
states, or on perception or decision-making, and [19] presents
a dynamic model that is tailored to one specific context.
To the best of our knowledge, there has been no follow-up
research on potential extensions for the model given in [30]
in order to address its challenges and to exploit its potential
for representing a ToM framework. The core focus of this
paper is on how to develop an equation-based model of
and mathematically represent the mentioned theories (ToM
and BDI), which have before been represented as verbal
models, agent-based models, or computer simulations [40].
Thus, the model shown in Figure 1 is our main inspiration
for proposing the first dynamic, mathematical framework for
ToM. In order to complete this discussion, next we briefly
refer to two other behavioral theories that have been proposed
to understand human’s behavior. Although we do not use
these theories in this paper, since the approaches that are
proposed, especially the dynamic framework, are not tailored
to a specific behavioral theory, they may be adopted for the
following theories as well.

The Theory of Planned Behavior (TPB) describes the
behavior of rational agents as a consequence of their
intentions and perceived behavioral control [41], i.e.,
the perception of the agent regarding the feasibility of
the intended action [42]. The intention is affected by the
perceived behavioral control, the attitude (the value of the
action according to the agent), and the subjective norm
(the social value of the action). Since this theory is mainly
used in medical field applications, we have not focused on it
in this paper.

Common Model of Mind (CMM) [43] is a framework
that has been proposed aiming at integrating the biological,
cognitive, and motor procedures for modeling the behavior of
rational agents. Due to its novelty when compared with other
frameworks that describe human behavior, implementations
of CMM are scarce [44], and do not provide significant
contributions to the cognitive domain.

III. METHODOLOGIES
Next, we explain our methodologies for developing a
dynamic mathematical framework for ToM, based on an
extended version of BDI that includes emotions and biases.
In the rest of the paper, a rational1 agent that makes inferences
about the mental states and actions of another rational agent
is called an observer agent. The other agent is called an
observed agent. First, we briefly motivate our research.

A. MAIN MOTIVATIONS
Mathematical models are used in systems and control theory
in order to represent the governing dynamics of systems as

1The approaches that are proposed are not limited to the principle of
rationality. In fact, by proposing a generalized, white-box model of ToM, it
will be possible to model different policies, objectives, and rationality levels.
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FIGURE 2. Mathematical modeling of dynamical systems.

a set of differential (or difference) equations [45]. Figure 2
shows a system that, in general, receives controlled input
vector uuu and uncontrolled input (external disturbances)
www and generates output vector yyy. [46]. A mathematical
dynamic model in continuous time may be represented by the
following state space representation2

ẋxx(t) = f (xxx(t),uuu(t),www(t), θθθ f ) (1)

yyy(t) = h(xxx(t),uuu(t),www(t), θθθh) (2)

where xxx(t) is a vector of dimension nx that includes all the
state variables of the system, uuu(t) is a vector of dimension
nu that includes all the inputs to the system, www(t) is a
vector of dimension nw that includes all the uncontrollable
inputs to the system, and yyy(t) is a vector of dimension ny
that includes all the outputs of the system. Moreover, f (·)
represents the dynamicmodel, h(·) is a function that generates
the output. Finally, θθθ f and θθθh are defined as vectors that
include all the identification parameters of the corresponding
mathematical model. In fact, when an observed system is
being analyzed, in addition to determining f (·) and h(·),
these parameter vectors should be identified. For instance,
for linear time-invariant systems without disturbances, where
(1) and (2) are transformed into ẋxx(t) = Axxx(t) + Buuu(t) and
yyy(t) = Cxxx(t) + Duuu(t), with A, B, C , and D matrices of
dimensions, respectively, nx × nx , nx × nu, ny × nx , and
ny×nu, [45], [47], the vector θθθ f includes all elements ofA and
B, and similarly the vector θθθh includes all elements of C and
D. Assuming that the system is time-invariant, θθθ f and θθθh do
not depend on time, and thus the argument time t is not shown
for these two vectors [45]. In most real-life applications, it is
common to discretize the model given by (1) and (2) in time,
with the corresponding discrete-time model given by

xxx(k + 1) = fd (xxx(k),uuu(k),www(k), θθθ f ) (3)

yyy(k + 1) = hd (xxx(k),uuu(k),www(k), θθθh)

(4)

with k the discrete time step, and fd (·) and hd (·) the discrete
version of f (·) and h(·).

A model given by (1) and (2) (or similarly by (3) and
(4) in the discrete time) can be used via model-based state
estimation methods in order to provide information about
internal mental states of the human (e.g., in a human-machine
interaction context) that are not measured directly via the
output. Figure 3 illustrates such amodel-based state estimator
for estimation of the internal mental states of a human (which,

2Throughout the paper, for the mathematical notations, italic fonts are
used for scalar variables and to distinguish vectors, italic bold fonts are used.

FIGURE 3. Model-based state estimator for making inferences about
internal mental states of humans. In this figure, we use the cognitive and
decision-making modules of the proposed model to predict internal
mental states and action of a human, which correspond to, respectively,
xxx(t) and yyy (t) in (1) and (2). A correction algorithm is used to produce the
estimated mental states of the human based on the mental states
predicted by the model and the error between the predicted output and
the real output, i.e., the action of the human. Finally, the estimated
mental states of the human determined by this model-based state
estimator are fed back to the model (which closes the loop) and are sent
to the observer agent (e.g., a social robot).

according to ToM, manifest themselves in the output, i.e.,
action of the human, and are thus observable according
to the systems theory definition [45]). A more advanced
version of such a state estimator may also be adaptive in the
course of the human-machine interactions. More specifically,
re-identification of the parameters of the cognitive and
decision-making models (i.e., parameters that are represented
via θf and θh) in (1)-(4) may occur with a frequency lower
than the frequency of the operation of the state estimator,
i.e., per simulation step. In fact, the adaptive algorithm that
performs the re-identification of the parameters may only be
activated when necessary (e.g., whenever the estimation error
surpasses a certain threshold). Moreover, such models can
effectively be used by predictive control methods, e.g., in a
loop with an optimizer, to propose a sequence of controlled
inputs within a prediction window for the dynamical system
that guarantees given requirements on desired performance
criteria, and that satisfies imposed and desired constraints.

These two applications, i.e., estimating internal states (see
Section III-B1) and making controlled inputs (i.e., decisions)
that account for their long-term effect on the performance, are
highly relevant for SARs that should understand and interact
with humans, and will directly contribute to closing the gaps
that have been identified in Section II. Figures 3 and 4
illustrate our main idea for using such mathematical dynamic
models in estimating the mental states of humans and in
enabling SARs tomake future-aware decisions in interactions
with humans that guarantee the success of these interactions
in long terms.

In order to facilitate the formulation, the proposed
ToM network representation has been divided into four
submodules (see Figure 5): (1) cognition module, including
the internal variables that play a role in the dynamic
evolution of the fast-dynamics state variables, (2) perception
module, including the variables and functions that con-
tribute to the perceived knowledge of the rational agent,
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FIGURE 4. Model-based predictive control of intelligent machines that
interact with humans.

(3) decision-making module, including rational intention
selection and rational action selection, and (4) world model,
which formulates the influence of the actions of the rational
agent on real-life data. The mental states and thus actions
and behaviors of an observed agent are influenced by its
fixed (i.e., invariant in short terms) characteristics including
the general world knowledge, general preferences, and
personality traits [30], [48], as well as by its dynamic state
variables, including beliefs, goals, and emotions [24], [38].
Moreover, the environmental data of an observed agent is
perceived by the agent in a personalized way [34], [35]. Next,
we explain how the proposed cognitive models incorporate
these characteristics.

B. NETWORK REPRESENTATION:IDENTIFYING VARIABLES
AND INTER-DYNAMICS
We propose a network representation (see Figure 5) of the
perception, cognition, and decision-making procedures of
humans that is composed of various elements connected via
directed links. These links represent the interdependencies
and influences of the elements. The oval-shaped elements
are used for variables, and the rectangular elements show
mathematical functions. The cognition module in this repre-
sentation is an extension of the model proposed by Baker [30]
(see section II for details), where in addition to beliefs, goals,
general world knowledge, and general preferences, we have
included emotions and personality traits, which according
to the literature (see the discussions in section II as well
as [2], [7], [19], [38], [49], [50], [51]) are highly relevant for
the cognition and social interactions of humans. Moreover,
in order to represent the inter-dynamics of all these variables
with more transparency, we have introduced two auxiliary
variables, called ‘bias’ and perceived knowledge’.
Remark 1: Goals are immediate desires and needs of

rational agents, such as finding food or reaching a location.
General preferences of rational agents build up in long
terms and remain invariant for long, and in order to identify
them several interactions with a rational agent are needed.
Examples of general preferences include favorite tastes,
friends, and hobbies of a rational agent. Beliefs correspond
to temporary knowledge or interpretations of rational agents
from their world, while general world knowledge consists
in persistent rationally perceived knowledge, which remains
unchanged or is rarely updated. For example, a rational agent

believes that a friend who has left an hour ago to fetch a
medicine from the drugstore is now in the city center, whereas
the exact location of the drugstore is the agent’s general world
knowledge.

The perception module, which represents the procedure
of transitioning real-life data (i.e., the input of the module)
into rationally perceived knowledge (i.e., the output of the
module), is composed of perceptual access (i.e., a function
that models the observation of the agent), perceived data
(i.e., the current representation of the real life data according
to the observation of the agent), and rational reasoning,
which is a function that receives perceived data and generates
rationally perceived knowledge. Finally, the decision-making
module includes the function ‘‘rational intention selection’’
that outputs the intention(s) of the observed agent, as well as
the function ‘‘rational action selection’’, which generates the
action of the agent based on the intention(s). In summary, the
main elements represented in Figure 5 correspond to:

1) External inputs (e.g., the weather conditions, the
actions of a SAR) that may influence the mental states
and thus actions and behaviors of observed agents.

2) State variables, including the mental states
(e.g., beliefs, goals, emotions) and auxiliary variables
(e.g., biases) of the observed agent.

3) Fixed parameters, including general world knowledge,
general preferences, and personality traits of observed
agents.

4) Dynamic processes, which are functions that receive
the fixed parameters, current external inputs, and state
variables, and update the next step state variables of the
observed agent or predict its behaviors.

Note that when a SAR interacts with the observed agents,
the actions of the SAR are the controlled inputs to the
model, whereas factors such as the weather conditions are the
uncontrollable inputs.

1) ELEMENTS INTERNAL AND EXTERNAL
TO AN OBSERVED AGENT
While Baker [30] distinguishes the elements in the cognitive
network representation of Figure 1 based on whether or not
they depend on the current situation, we differentiate the
elements of our proposed network representation (Figure 5)
considering whether or not they are external to the observed
agent. This explicit categorization of internal and external
elements provides a model that can be personalized more
efficiently than black box approaches. Moreover, since the
internal elements of an observed agent are not visible to the
observer agent, their inference is in general personalized to
an observer agent. Although out of the scope of this paper,
our framework is easily expandable for cases where second-
order inferences, i.e., inference about the inference of an
observer agent about the observed agent [17], are of interest.
In addition to fully internal and fully external elements,
our representation incorporates partially external elements.
In particular, the perceptual access of an observed agent is
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FIGURE 5. Proposed network representation of human perception, cognition, and decision-making procedures of humans including emotions,
personality traits, and biases. Oval-shaped elements show input, output, state, and auxiliary variables, and rectangular elements correspond to processes
or functions.

partially external, given that this process is influenced by
external inputs, and is partially internal, since it is shaped by
internal characteristics of the individual. This dual influence
on perceptual access is explained in detail in Section III-B3.

2) FAST-DYNAMICS AND SLOW-DYNAMICS STATE
VARIABLES
The state variables of the proposed model are distinguished
according to their relevance for duration (i.e., short-term
or long-term) of interactions between two rational agents
and to the frequency of their dynamics. Consequently, two
categories of state variables are defined: (i) Fast-dynamics
state variables, which may constantly vary (with a timescale
in the range of seconds or minutes) as a response to
specific situations the observed agent faces. Goals, beliefs,
and emotions in Figure 5 are fast-dynamics state variables.
(ii) Slow-dynamics state variables, which vary according
to large time scales (months or years). General world
knowledge, general preferences, and personality traits in
Figure 5 are slow-dynamics state variables. Fast-dynamics
state variables are more relevant for short-term interactions,
while slow-dynamics state variables become more relevant
throughout long-term interactions, when the fixed or repet-
itive patterns of cognitive procedures resulting from these
slow-dynamics state variables provide extra information for
the observer agent to make more precise estimates and
predictions [48].
Remark 2: Slow-dynamics state variables may influ-

ence the evolution of fast-dynamics state variables (see
Example 1-Example 4 in Appendix A), while the opposite
is not necessarily true (especially in short terms). The main
aim of this paper is to formalize and formulate the evolution
of fast-dynamics state variables. Modeling the evolution of

slow-dynamics state variables is out of the scope of this paper.
Thus, slow-dynamics state variables are mainly considered as
fixed parameters.
In the next sections, we explain how the inter-dynamics
of the cognition, perception, and decision-making modules
of the proposed model, shown in Figure 5, have been
developed based on literature and real-life examples given in
Appendix A.

3) PERCEPTION MODULE
In the model proposed by Baker et al. (see [30] and [33]), the
perception procedure that generates the beliefs is represented
by a single element called the principle of rational belief (see
Figure 1). This simplification was shown to be sufficient to
explain the relationship between the environmental inputs
and the inferred beliefs in the simple environments and
scenarios considered in [33]. In real-life scenarios, however,
a more complicated procedure occurs before a belief is
developed based on the raw real-life data. More specifically,
rational agents may (deliberately or indeliberately) access
and perceive only a portion of the real-life data. For instance,
in the same environment, different rational agents may
notice different types of data [35] (e.g., one may notice a
sound, while another agent filters it out). Moreover, rational
agents may receive partial data due to external constraints
(e.g., missing visual data due to occlusion). Therefore,
observed agents may hold false or inaccurate beliefs (c.f.
the Sally-Anne experiment [52]), which is essential for
ToM-based observer agents to recognize [18], [53], [54].
Furthermore, the same perceived data can be differently
interpreted by different rational agents [34], [55].

To address these aspects, in our proposed model, the
perception process that transforms real-life data into beliefs
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is decomposed into smaller, well-defined sub-processes i.e.,
perceptual access and rational reasoning (see Figure 5
and Examples 9 and 10 in Appendix A). Real-life data
from the environment is perceived via perceptual access,
which, as discussed above, is partially personalized and
partially depends on the environment. Thus, the rectangular
element corresponding to the perceptual access function
in Figure 5 is located partially inside the agent box and
partially in the environment. The perceived data is then
processed via rational reasoning, which, as opposed to the
universal principle of rational reasoning applied by Baker
et al. in [30] and [33], is specific to a rational agent.
Accordingly, the rational agent makes a judgment called the
rationally perceived knowledge, which is then transformed
into a belief or a piece of general world knowledge in the
cognitive module.

4) COGNITIVE MODULE
The cognitive module receives the rationally perceived
knowledge as input. Since, compared to the model of Baker
shown in Figure 1, the cognitive module of our model
includes emotions and personality traits as well, we first
discuss the inter-dynamics of the emotions with the other
fast-dynamic state variables. Next, we explain the influence
of personality traits on the fast-dynamics state variables.

Emotions of a rational agent are stimulated by its
beliefs [56], [57], where goals and general preferences,
alongside beliefs, can also stimulate emotions [56]: On
the one hand, when a rational agent develops a belief
that is in line with the fulfillment of its goal, positive
emotions may be stimulated (see Example 6 in Appendix
A). On the other hand, when the agent develops a belief that
hinders the chances of fulfilling its goal, negative emotions
may be stimulated. Similarly, when a general preference
is supported by a developed belief, positive emotions can
be generated, while beliefs that conflict with the general
preferences may result in negative emotions (see Example 7
in Appendix A). We assume that direct influences from
general world knowledge on emotions are negligible, since
when a piece of general world knowledge is relevant in the
current context, it generates a belief (see Figure 5), and this
belief can then influence emotions.

Studies show that emotions can affect the goals of rational
agents [51], [58], [59], [60], [61]. For instance, gratitude can
galvanize rational agents into helping others [60], or anxiety
may trigger rational agents to avoid stressful situations [58].
More specifically, emotions may result in the development of
a goal that contradicts with general preferences of the rational
agent, or in the change of a goal that was previously made by
the agent. The influence of emotions on goals is shown in
Figure 5 via a directed link (also see Example 8 in Appendix
A).While emotions do not directly influence beliefs, they can
affect the processes that result in judgements or beliefs of
rational agents [55], [58], [59]. Thus, we have introduced the
auxiliary variables ‘bias’ and ‘perceived knowledge’ in order

to illustrate this influence. For example, positive emotions
may introduce optimistic biases into the process of generation
of new beliefs, whereas negative emotions may lead to the
formation of overly pessimistic beliefs [60]. Therefore, the
influence of emotions on the development of beliefs will
be introduced into the proposed cognitive model via bias.
Similarly to emotions, goals of rational agents may introduce
some bias into their rational reasoning processes [62], where
the intensity of the bias may depend on the personality traits
of rational agents [55] (see Example 12 in Appendix A).
For the purpose of describing the cognition of an observed
agent, the bias is introduced into the belief after the rational
reasoning process is executed (see Figure 5). This results in
the perceived knowledge (as opposed to rationally perceived
knowledge), which generates the biased beliefs.

Regarding the influences of personality traits on
fast-dynamics state variables, there is no evidence that beliefs
are directly affected by personality traits, whereas goals
may directly be affected by personality traits [48] (see
Figure 5): For instance, while the goal of an introverted
rational agent is to avoid strangers, the goal of an extroverted
rational agent is to make new friends. Moreover, while
emotions are not generated by personality traits [50], [55],
they are regulated by personality traits. In fact, personality
traits of rational agents may determine the extent to which
certain beliefs affect their emotions [50], [56], [63]. For
instance, extroverted individuals are more likely to experi-
ence positive and intense emotions when under the same
stimuli [55].
Remark 3: In summary, beliefs, either alone or in com-

bination with generated goals or general preferences, and
boosted or hindered by personality traits, trigger the
emotions. For the sake of brevity, we use the following
terminology: emotion trigger 1, emotion trigger 2, and
emotion trigger 3 for, respectively, a combination of beliefs
and general preferences, solely beliefs, and a combination of
beliefs and goals, triggering emotions.
Remark 4: Note that, as it is demonstrated in Figure 5,

the rationally perceived knowledge that is the input of the
cognitive module can be transformed into a belief, or if this
piece of knowledge does not change in the short term, into a
general world knowledge ([43], [44]).

5) DECISION-MAKING MODULE
Based on the BDI theory, we introduce the rational intention
selection procedure (see the rectangular element in Figure 5),
which is an intermediate process in the generation of actions
and behaviors of rational agents. This process generates
or selects an intended high-level action that maximizes the
chance of fulfillment of the goals of the rational agent, given
its beliefs. In other words, mathematically, rational intention
selection is a function, with beliefs and goals as inputs
and intentions as outputs. The generated intention can then
be translated into lower-level actions by the rational action
selection function. For example, the intention of the agent
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may be to drink a glass of water, where one action is to open
the cabinet where the glasses are kept.

C. DYNAMIC MATHEMATICAL REPRESENTATION OF
PERCEPTION, COGNITION, AND DECISION-MAKING
The main aim of this paper is to model the dynamic
evolution of the fast-dynamics state variables for the network
representation given in Figure 5, and to predict the resulting
action. Thus, we need to develop mathematical formulations
for the perception, cognition, and decision-making modules
given in Figure 5. Note that a mathematical model that
represents perception receives real-life data as input and
generates rationally perceived knowledge as output. This
output is the input to the mathematical model of cognition,
which generates two outputs, beliefs and goals. Finally, these
two outputs enter the decision-making module as input, and
the corresponding model generates action as output.

Previous works [19], [33], [38], [64], [65] mainly use
Baye’s theorem to describe human’s cognition. Modeling
cognition under this assumption corresponds to representing
the cognitive network representation as a Bayesian net-
work [66]. However, this requires knowing beforehand the
probability functions of all the variables that are part of the
network. Furthermore, the integration of a probabilistic-based
formulation of the model with model-based predictive
approaches would require the usage of decision-trees,
which tend to grow exponentially with the size of the
prediction horizon. Therefore, this formulation cannot be
integrated with model-based predictive methods in real life
applications.

Alternatively, FCMs [67] represent concepts and variables
that correspond to complex and/or uncertain systems and
their interlinks and interactions. Contrarily to Bayesian
networks, FCMs support cyclic connections [68], which is
very relevant for modeling cognitive procedures of humans
(c.f. Figure 5). Moreover, concepts or variables in an FCM
can be represented mathematically by fuzzy variables, which
excellently fit the concepts that are involved in human
cognitive procedures (e.g., beliefs, goals, emotions, etc.).
Therefore, in this paper, based on the idea of FCMs,
we propose an extended FCM representation and use it
to mathematically formulate the cognitive module of our
proposed ToM model.

1) NOVEL FCM-BASED FRAMEWORK FOR TRANSFORMING
STATIC NETWORK REPRESENTATIONS INTO DYNAMIC
MATHEMATICAL MODELS
In an FCM, we denote the vector of all the n state variables
that describe the system at time k by xxx(k), and the ith state
variable by xi(k) with i = 1{1, . . . , n}. This vector for
the cognitive module of our proposed model includes the
fast-dynamics and slow-dynamics state variables, and the
auxiliary variables. Mathematically, xi (e.g., emotion) can be
represented as a fuzzy variable in an FCM,with X̃i,j a possible

FIGURE 6. Simple and complex linkage. (a) Simple Linkage. The
horizontal arrow is a simple linkage, shown by (i, j ). (b) Complex Linkage.
The vertical arrow is a side linkage, shown by (ℓ, i, j ).

realization that is mathematically given by a fuzzy set.3

Fuzzy variables [69] are used to mathematically represent
concepts that are imprecise, vague, and mainly given by
human linguistic terms. Fuzzy sets are a generalization of
regular (crisp) sets; while an element either belongs to
or does not belong to a crisp set (i.e., its membership
degree to the crisp set is either 1 or 0), it may partially
belong to a fuzzy set, with its membership degree varying
within the interval [0, 1] [70]. In order to represent fuzzy
sets and perform mathematical operations on them, their
corresponding membership functions are used [70]. The
fuzzy sets X̃i,j should cover the domain Xi of xi.

The influence of variable xi over variable xj in an FCM is
represented by a directed line called a linkage (see Figure 6).
In the classic FCM formulation, every linkage between xi and
xj is characterized by a weight wij ∈ [−1, 1] that reflects the
level of influence of variable xi over variable xj. Whenever
wij is positive (negative), an increase of xi implies an increase
(a decrease) of xj, and the larger the absolute value of wij, the
larger the influence of xi over xj (wheneverwij is null, changes
in variable xi do not influence variable xj).
In FCMs, the weights wij are considered to be constant.

However, in order to accurately model most real-world
systems with FCMs, variable weights may be required [71],
[72]. For instance, in rule-based FCM [71] the values of the
weights depend on the realized values of the causing variable
xi. In our proposed cognitive network representation, due to
the mutual influences of the fast-dynamics state variables
on one another, the value of weight wij may vary in time
and, in general, depend on the realized values of the causing
variable xi(k), affected variable xj(k), or other intermediate
variables xℓ(k). To address this, we consider weights as
functions of the causing, affected, or intermediate variables
and accordingly define simple linkages, side linkages, and
complex linkages, which are explained next.

The linkage (i, j) that directly connects two variables xi(k)
and xj(k) and is not influenced by any intermediate variables
(see Figure 6(a)) is called simple linkage. A side linkage
(ℓ, i, j) (see the vertical arrow in Figure 6(b)) corresponds to
the directed influence of an intermediate variable xℓ(k) over

3In this paper, to distinguish fuzzy sets from crisp sets, we use a tilde
symbol.
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TABLE 1. Mathematical notations used in (8)-(13).

a linkage (i, j) that connects variables xi(k) and xj(k). The
group of a linkage that is influenced by one or several side
linkages and all its side linkages is called a complex linkage
(see Figure 6(b)). The set of all pairs (i, j) corresponding
to simple linkages is given by L and the set of all trios4

(ℓ, i, j) that correspond to complex linkages is given by L.
Note that L and L are complementary sets, and have no
common element. The weight ws

ij(k) of a simple linkage and
wc
ij(k) of a complex linkage for time step k are computed via,

respectively, function f s : Xi × Xj → [−1, 1] and function
f c : Xi × Xj × Xℓ → [−1, 1]. We have

ws
ij(k) = f s

(
xi(k), xj(k)

)
,

∀i, j for which (i, j) ∈ L (5)

wc
ij(k) = f c

(
xℓ(k), xi(k), xj(k)

)
,

∀i, j for which ∃ℓ such that (ℓ, i, j) ∈ L (6)

for all k ∈ {1, 2, . . .}, and xi(k) ∈ Xi, xj(k) ∈ Xj, and xℓ(k) ∈

Xℓ are elements of the state vector xxx(k).
Then, the dynamic equation for updating variable xj(k) that

evolves per time step k within the proposed extended FCM is
formulated by

xj(k + 1) =

∑
(i,j)∈L

f s
(
xi(k), xj(k)

)
xi(k)

+

∑
(i,j,ℓ)∈L

f c
(
xℓ(k), xi(k), xj(k)

)
xi(k) + fj

(
xj(k)

)
(7)

where function fj(·) determines the influence of variable xj(k)
on its evolved value xj(k + 1).
Next, we describe the mathematical representations of the

perception, cognition, and decision-making modules. Since,
for the sake of compactness of the mathematical notations,
we use a number of abbreviations in the mathematical
notations of the following sections, Table 1 represents the
meaning of these mathematical notations.

4In our cognitive network representation given in Figure 5, complex
linkages include no more than one side linkage. Thus, for the brevity of
notations, we talk about pairs and trios only.

2) MATHEMATICAL REPRESENTATION OF PERCEPTION
The perception procedure includes two functions (see
Figure 5), i.e., perceptual access (shown by fPA(·)) and
rational reasoning (shown by fRR(·)). Perceptual access
receives real life data (which we show by dRL) and generates
perceived data (which we show by dP). Thus, at time step k
we have

dp(k) = fPA(dRL(k)) (8)

Similarly, rational reasoning receives perceived data and
generates rationally perceived knowledge (shown by κRP).
Thus, at time step k we have

κRP(k) = fRR(dp(k)) (9)

Hence, from (8) and (9), the mathematical representation for
the perception module is given by

κRP(k) = fRR(fPA(dRL(k))) (10)

3) MATHEMATICAL REPRESENTATION OF COGNITION
For the cognitive module of our proposed model, (7) may
be used with xj(k) ∈ {current beliefs, current goals,
current emotions, current biases}, xi(k) ∈ {current beliefs,
current goals, current emotions, current biases, general world
knowledge, general preferences, personality traits, current
perceived knowledge}, and xℓ(k) ∈ {current goals, general
preferences, personality traits}. In fact, using (7) will provide
us with the desired state space representation (3), where
the current ‘perceived knowledge’ acts as input uuu(k), and
the weights computed via f s(·) and f c(·), as well as the
‘general world knowledge’, the ‘general preferences’, and the
‘personality traits’, act as the parameters in θfθfθf . Note that in
this case there are no particular external disturbances www(k)
and fd (·) in (3) has been represented as addictive functions in
(7).
Remark 5: In order to define functions f s(·), f c(·), and fj(·)

for the proposed cognitive models, different approaches may
be used, such as using explicit mathematical representations
or describing these functions via fuzzy inference systems
(see, e.g., [71]). When we use explicit expressions for f s(·),
f c(·), and fj(·), in order to use fuzzy variables for the
extended FCM, we should in general use Zadeh’s extension
principle [69]. In case this is (computationally or analytically)
not possible, these functions can be modeled via fuzzy
inference systems [71].

4) MATHEMATICAL REPRESENTATION OF
DECISION-MAKING
The decision-making procedure is composed of two func-
tions, rational intention selection fRIS(·), and rational action
selection fRAS(·). The intention selection receives the belief
xB(k + 1) and goal xG(k + 1) predicted for the next step and
generates the intention of the rational agent i(k + 1) that is
predicted also for the next step. Thus, for time step k + 1 we
have

i(k + 1) = fRIS(xB(k + 1), xG(k + 1)) (11)
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Similarly, the rational action selection receives the intention
that is predicted for the next time step, and generates the
predicted action for the next time step k + 1. We have

a(k + 1) = fRAS(i(k + 1)) (12)

Thus, the decision-making is mathematically given by

a(k + 1) = fRAS(fRIS(xB(k + 1), xG(k + 1))) (13)

where a(k+1) is the predicted action of the rational agent for
time step k+1 based on the observations, measurements, and
estimations at time step k . Moreover, xB(k+1) and xG(k+1)
are the predicted next belief and next goal.
Remark 6: For a predictive decision-making by, e.g., a

SAR with a prediction horizon bigger than 1, the influence
of the actions on real life data should also be modeled
(see Figure 5). This, however, is out of the scope of this
paper, since it concerns a modeling of the environment of the
rational agent.

IV. CASE STUDY
The ToM model proposed in this paper (see Figure 5)
was implemented via Python and was used to estimate
the expected perception, cognition, and decision-making
procedures of human participants in virtual scenarios of
emergency evacuation. The experiment were designed to
assess the following research questions:

1) Howwell does the proposedmodel predict the behavior
and estimate the mental states of rational agents,
particularly humans, in a 2-dimensional environment
(similarly to the work in [18] and [33])?

2) Howmuch do the cognitive elements (emotions, biases,
and personality traits) that were proposed in this paper
contribute to improving such predictions?

3) How much do the models that were identified for each
participant provide a relevant insight about the general
preferences of the participants?

In particular, we answer these research questions for our
model (which, in the rest of the case study, we call ToM-I)
in comparison with a model that did not include the elements
that were proposed in this paper (which we call ToM-II and
is illustrated in Figure 7). Since the personality trait is an
adaptable parameter, ToM-II has one less parameter than
ToM-I. To assess the contribution of the emotions and biases
independently of the number of adaptable parameters, a third
model, ToM-III, that is similar to ToM-I but does not include
the personality traits, was also considered.

A. EXPERIMENT SETUP
While Baker et al. [33] and Rabinowitz et al. [18] artificially
generated the behavior of the observed agents to use as
ground truth, we used the observed behavior of human
participants in order to generate the ground truth behavior
of the observed agents. This is because our main objective
for answering research question (1) is to assess how well
the proposed model estimates the mental states and behavior

FIGURE 7. Baseline model used for comparison in the experiments,
ToM-II. This baseline model is similar to the model represented in
Figure 5, but it does not include the emotions, biases, and personality
traits.

of real humans. Hence, the performance of our ToM model,
ToM-I, was assessed based on how accurately it estimated
the goals and predicted the behavior of the participants.
Moreover, in order to answer research question (2), i.e., to
assess the particular contribution of the elements emotions,
biases, and personality traits that have been added to our
model, ToM-I was compared with the model proposed by
Baker [30]. For a fair comparison, the three models were
formulated as described in section III-C1.

The experiments were performed via a computer simula-
tion, with 21 human participants. The participants were aged
between 14 and 32 years old. Every participant received an
executable of a set of simulations that they could run on their
own computer. In this set of simulations, participants were
able to control the movements, actions, and decisions of a
virtual rational agent in 16 simulated scenarios. The decisions
taken by each participant were recorded into an Excel file
that was sent back to the researchers. The aforementioned
scenarios consisted of emergency evacuation scenarios that
included a closed space that was populated by living beings
(e.g., pets, humans) and objects (e.g., personal belongings).
The participants were able to move the rational agent around
and decide which entity they wanted to save in each scenario
(see 8). To increase the diversity in the general preferences,
the scenarios included three types of entities: a dependent
being (e.g., a child or a pet), a human colleague, and a
personal object (e.g., a wallet or a set of keys). In order to
make the scenarios more realistic and to increase the chance
that the general preferences had a broad span of values, at the
start of the experiment, each participant chose which entity
they related to most in each category from a predefined set
of options. During the simulation, the participants were able
to save an entity by picking it up (see Figure 8(a)) and
going to the exit (shown as a green gate in Figure 8(a)).
Alternatively, the participants could go to the exit without
saving any objects or beings. Once the rational agent reached
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FIGURE 8. Examples of emergency evacuation scenarios used in our case study. (a) A screenshot of a simulated scenario that a participant can perform:
On the left-hand side of Figure 8, the participant sees the simulated emergency evacuation scenario, including various entities (e.g., a colleague and a
wallet). On the top right-hand side of Figure 8, the participant sees reminders about the main rules of the simulation. At the bottom right-hand side of
Figure 8, the participant can use the buttons to move the rational agent and to pick up objects or beings. (b) An example of a scenario where one of the
entities (the colleague) is surrounded by fire and another entity (the pet) is injured.

the green door, the scenario terminated. In some scenarios, the
entities were injured or surrounded by fire (see Figure 8(b)).
These variations were added to induce emotions of fear in the
participants for the entities that were at risk. Note that at every
simulation step (i.e., after each action of the rational agent),
the participants could only observe the closest positions to the
rational agent and the previously visited positions. In order
to decrease the exploring movements by the participants, the
position of the exit was always visible.

B. IMPLEMENTATION SETUP
For the perception module, the real-life data contained the
inputs from the two-dimensional environment, including the
positions of all entities, the rational agent, and the obstacles,
as well as the characteristics of the entities (e.g., if they
are injured, or if they are a living being or an object). The
perceptual access was modeled based on the field of view
of the rational agent per simulation step. The field of view
of the rational agent was assumed to cover an area of five
by five cells. The cells that fell within the current field of
view of the rational agent, as well as the cells that were
previously in the field of view of the rational agent, were
visible to both the participant and the corresponding ToM
model (as it is also shown in 8). The perceived data was based
on the real-life data corresponding to the visible positions,
but did not include any data from the unseen positions. The
rationally perceived knowledge was deduced according to
logical propositions and based on the perceived data. For
example, the location of the fire and the current position of
the rational agent were used to deduce a rationally perceived
knowledge about whether or not the rational agent was near
the fire.

Regarding the cognitive module, since humans express
their mental states mainly via quantified expressions

(e.g., relatively happy), the fast-dynamics state variables
of the cognitive module (e.g., beliefs, goals, emotions)
were represented by fuzzy variables, i.e., verbal terms were
associated with the realizations of each variable. These
variables in the experiments corresponded, for example,
to the belief of the rational agent about an entity being
injured, or to the goal of the rational agent to save one entity,
or to the emotion of fear. As for the slow-dynamics state
variables, we considered the preference towards each of the
entities (i.e., the general preferences), and the altruism of the
agent (i.e., a personality trait). The full list of all the fuzzy
variables, and the corresponding linguistic terms and range
values, can be found in [73]. The linkages that connected
the elements of the cognitive module were mathematically
represented by fuzzy inference systems (see Remark 5 for
details).

As for the decision-making module, the intention of the
rational agent was computed based on the goal fired with
the highest value at each simulation step. The action of the
rational agent was computed as the movement of the rational
agent along the shortest path (according to the Dijkstra’s
Algorithm) to the entity that was associated with the current
intention of the rational agent, except for when the position
of the rational agent and the position of the entity were the
same: in that case, the action would be to pick up the object
or the being.

C. TRAINING PHASE FOR THE MODELS
A proportion of the data that was collected from each
participant was used to personalize the model to that
participant. In fact, the data that was collected in 75% of
the scenarios was used to train the ToM model, and the
remaining was used to test the accuracy of the model in
predicting the behavior of the agent in unseen scenarios.
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The personalization consisted in identifying the values of the
slow-dynamic state variables (i.e., the general preferences
towards each of the entities for ToM-I, ToM-II, and ToM-II,
as well as the personality trait altruism for ToM-I) for each
participant. The slow-dynamic state variables are also called
the model parameters due to their very low update frequency.
These parameters θθθ were optimized using a grid search
algorithm with a step of 0.1. The number of scenarios per
participant was only 16, where this number was selected
to provide sufficient data for training the models, while
preventing the participants from getting distracted or tired,
resulting in inaccurate answers. Hence, in order to increase
the reliability of the results, the combination of scenarios that
were used for training and for testing were shuffled in order to
create 4 different combinations. Running one iteration of the
model using an Intel CPU (i7-1185G7 3.0GHz, single thread
implementation) took 0.20554 s on average. Furthermore,
around 8 hours per participant were required to train the
ToM-I model on a super computer with 48 cores (2x Intel
XEON E5-6248R 24C 3.0GHz).

The action of the participants per simulation step included
moving the rational agent to one of its (allowed) neighboring
cells or picking up/rescuing an object/being. This action
depended on two decision levels: (1) Whether or not the
rational agent decided to rescue a particular being or pick
up a particular object (2) Which path the rational agent
followed to approach the corresponding being/object or the
exit. Therefore, for identifying the models per participant,
for the training sets, two independent optimizations were
performed in order to train and assess the models for two
types of predictions: the prediction about the entity that the
rational agent would save in each scenario (i.e., predicting the
overall intention of the rational agent per scenario), as well
as the prediction of the action that would be taken by the
rational agent per simulation step. In order to train and assess
the models regarding the first prediction, per simulation step
the models were run, and the predicted actions of the rational
agent were executed consecutively, until the exit was reached.
The saved entity, as predicted by each model, was compared
with the entity that was really saved by the participant who
steered the rational agent in that scenario (see Figure 9(a)).
In order to train and assess the models regarding the second
prediction, the actions that were chosen by the participant
in each simulation step were compared with the actions that
were predicted via each model for that simulation step (see
Figure 9(b)).
Equation (14a) shows the cost function used to train and

assess the models with respect to the prediction of the overall
intention for participant p throughout a set S of training or
test scenarios, where ip,s is the intention of participant p for
scenario s that is predicted via the model, and i∗p,s is the
intention of participant p in scenario s. Both ip,s and i∗p,s
take one out of the four following realizations: save one of
the three entities (i.e., the dependent being, the colleague,
or the personal belonging), or directly move to the exit. The
cost function used to train and assess the prediction of the

FIGURE 9. Graphic representation of the two types of predictions made
by the models. (a) Predictions by the models regarding the overall
intention of the rational agent, where these predictions are considered
correct if the model predicted a trajectory in which the agent chose the
same intentions as the participants (i.e., either to save a specific entity or
to go directly to the exit). The dashed arrows in blue represent an
accurate prediction of the overall intention (i.e., the rational agent
rescued the orange entity, which was also rescued by the participant in
this scenario, and then went to the exit), while the dashed red arrows
represent a wrong prediction about the intention of the participant via
the models (i.e., the rational agent rescued the purple entity, which was
different from the orange entity that was in reality rescued by the
participant in this scenario, and then went to the exit). (b) Predictions by
the models regarding the action(s) of the rational agent for different
simulation steps. In the first two simulation steps (specified by k = 1 and
k = 2), correct predictions are shown by the dashed blue arrows. Since
the model estimates that the rational agent wants to save the orange
entity, any of the two predicted actions shown in the figure for the first
simulation step (i.e., moving downwards or moving to the right) are
equally likely to be chosen by the agent. An incorrect prediction is shown
via dashed red arrows for the simulation step k = 7, where the model
estimates the optimal actions to be moving towards the purple entity,
while the participant wants to go to the exit.

step-wise actions of the rational agent for participant p is
given by (14b), where ck,p,s(θθθ ) is 0 if the action taken by the
participant p in scenario s at simulation step k is one of the
predicted actions by the model for the same simulation step,
and is 1 otherwise. Moreover, nsteps,p,s is the total number of
the simulation steps taken by participant p in scenario s. For
p = 1, . . . , np (with the number of participants np = 21 in
our case study), we have

Jint,p(θθθ) =

∑
s∈S

Jint,p,s with Jint,p,s(θθθ )

=

{
0, if ip,s = i∗p,s

1, otherwise
(14a)

Jact,p(θθθ ) =

∑
s∈S

Jact,p,s with Jact,p,s(θθθ )

=
1

nsteps,p,s

nsteps,p,s∑
k=1

ck,p,s(θθθ ) (14b)

Note that for both optimization procedures, θθθ is the
optimization variable, which includes all the identification
parameters of the corresponding model.
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TABLE 2. Average minimum cost achieved by each model when predicting the intentions of each participant. The smallest this minimum cost value, the
more satisfactory the performance of the corresponding model.

TABLE 3. Average minimum cost achieved by each model when predicting the actions of each participant.

D. RESULTS AND DISCUSSIONS
In order to assess the performance of our model and the
influence of our contributions, the average optimal costs
achieved by each one of the three models for the test phase
were compared. The optimal costs J∗

int,p and J∗
act,p that are

achieved by each model for participant p are obtained by
evaluations equations (14a) and (14b) using the parametersθ∗θ∗θ∗

that have been obtained by minimizing these cost functions in
the training phase. The average optimal costs J̄∗

int and J̄
∗
act for

each trainedmodel are an average of the aforementioned costs
J∗

int,p and J
∗
act,p across all the np participants and are divided

by the number of the scenarios, as it is given by (15) for
the average intention cost J̄∗

int. Given that the costs computed
via (14) are normalized, the costs computed via (15) are also
normalized, and we report them in percentage.

J̄∗

int =
1
ns

·
1
np

np∑
p=1

J∗

int,p(θ
∗θ∗θ∗) (15)

The average optimal cost J̄∗
act for the action prediction

is calculated similarly to J̄∗

int. The average optimal costs
obtained both in training and in test conditions when
the models estimated the intention of the participants and
predicted their actions are shown, respectively, in Tables 2
and 3 for the four combinations of training and test scenarios.
Regarding the estimations of the intentions of the par-

ticipants, we first focus on the comparison between ToM-I
and ToM-II, and we subsequently focus on comparing ToM-
I with ToM-III. ToM-I obtained the best performance, i.e.,
the lowest estimation error compared to ToM-II in both the
training and the test phases for all the four combinations
of training and test scenarios (compare the average costs
given in the last row of Table 2 for TOM-I (see column
2 and column 5) with those for TOM-II). On average, ToM-I
achieved an error of 6.94% on the training scenarios and of
18.45% on the test scenarios, representing an improvement of

8.63% in training conditions and of 6.25% in test conditions
when compared to the performance of ToM-II. Although
ToM-I had one more parameter to be optimized compared to
ToM-II, it was possible to establish that the improvement of
the performance of ToM-I was not uniquely prompted by the
extra parameter by comparing the performances of ToM-II
and ToM-III: In fact, ToM-III outperformed ToM-II for all
combinations of training and test sets in both the training
and the test phase, where on average, ToM-III had an error
of 5.55% less in estimating the intentions of the participants
than ToM-II in the training phase and of 4.16% less in the
test phase. Finally, compared to ToM-III, ToM-I showed a
better accuracy in estimating the intentions of the participants
both in the training and in the test phases, which confirms that
including and personalizing the parameter that corresponds to
the personality trait of altruism for each participant improves
the performance of the model.

Regarding the predictions of the actions that each rational
agent took per simulation step, ToM-I made more accurate
predictions than ToM-II for all combinations of the training
and test sets in both training and test phases. On average,
compared to ToM-II, ToM-I was 2.94% more accurate in the
training phase and 2.45% more accurate in the test phase.
In order to show that the improved performance of ToM-I
with respect to ToM-II was not only due to the extra parameter
that was identified in ToM-I, but also that the additional
cognitive elements that have been added to ToM-I have
influenced its performance, the performances of ToM-II and
ToM-III were also compared. ToM-III was more accurate
than ToM-II in the training phase for all the combinations of
training and test scenarios. ToM-III also outperformed ToM-
II for three out of the four combinations of training and test
scenarios in the test phase. On average, ToM-III was 1.47%
more accurate than ToM-II in the training phase and 1.82%
more accurate in the test phase. Nonetheless, including and
identifying the altruism parameter allows ToM-I to improve
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its prediction capabilities, which is shown by the fact that
the performance of ToM-I was better than the performance
of ToM-III in all cases.

Furthermore, the parameter vector θθθ that was identified per
participant has the advantage of providing transparency and
an opportunity for more detailed analysis, due to assigning
real (rather than abstract) meaning to the elements of this
vector, compared to the existing black-box approaches, e.g.,
machine learning methods. More specifically, for example,
the three parameters that are used in all the three models
ToM-I, ToM-II, and ToM-III, correspond to the preferences
of each participant towards each one of the three entities
in the scenarios. Thus, in order to assess how much the
identified parameters provided a correct insight about the
preferences of the participants, at the end of each experiment,
the participants were asked to evaluate in a scale from
0 to 10 how much they cared for each one of the entities.
The self-assessed preferences θθθ sp of each participant p were
compared to the parameter vector θθθ∗

p that was identified
by each model for that participant.5 However, the scale of
the parameters in the parameter vector θθθ∗

p can be different
from the scale used by the participants to self-assess their
preferences, since the former depends on the fuzzy systems
that were defined to represent the cognitive module. This
occurs because the choice of the membership functions and
the ranges of the variables, as well as the definition of the
rules, was done manually and intuitively by the researchers
as to represent the relationships between the variables in
Fig. 5 in a way that is general (i.e., not personalized) to
all rational agents. These design choices can introduce a
shift (i.e., an offset) in the range of the parameters, where
this offset was naturally corrected during the identification
procedure. For example, the set of parameters identified for
a participant p (e.g., θθθp = [0.9, 0.2, 0.5]) when using a
certain fuzzy system to represent the cognitive module, could
be slightly different (e.g., θθθp = [0.8, 0.1, 0.4]) if the fuzzy
system had been projected following different design choices
(e.g., using different shapes of the membership functions,
or a different number of linguistic terms per variable).
Nevertheless, when we compare the values of one parameter
amongst participants (or of the parameters identified for one
participant p), it is still possible to obtain relevant insights
about the preferences of the participants. For this reason,
there may be an offset between the subjective scales used
by the participants and the scale of the parameters, which
should be corrected. Similarly, the ranges of ToM-I and ToM-
II can have different offsets, since the fuzzy rules that are
defined for these models are different. Furthermore, the range
of the parameters that corresponded to the preferences of
the participants for the living entities (i.e., the dependent
being and the colleague) was different from the range of
the parameter that corresponded to the preference of the

5For this purpose, the answers that were given by the participants were
divided by a factor of 10, as to be in the same scale as the parameters
identified by the models.

participants for the personal belonging. This is because the
fuzzy rules that defined the influence of the parameters
corresponding to the preference for the living beings over
the fast-dynamics state variables were different from the
fuzzy rules that described the influence of the parameter
corresponding to the preference for the personal belonging
over these state variables (the entire rule base of these fuzzy
systems has been made available via [73]). For example, the
variable ‘‘fear for an entity’’ (emotion) is only considered
when the entity is a living being. Thus, there are fuzzy rules
that describe the influence of the parameters corresponding to
general preferences towards the living beings over emotions,
while there are no fuzzy rules describing the influence of
the general preference towards the objects over emotions.
In practice, for each model, we computed two offsets: the
offset of the parameters θj=1 and θj=2 (for the preferences
towards the living beings), and the offset of the parameter
θj=3 (for the preference towards the objects). The offset of
each group of parameters was computed as the average error
between the identified parameter θ∗

j,p, and the self-assessed
preference θ sj,p across all the participants and all the
parameters of the group. The computation of the offsets is
shown in (16).

δ1,2 =
1
2

·
1
np

2∑
j=1

np∑
p=1

(θ∗
j,p − θ sj,p) (16a)

δ3 =
1
np

np∑
p=1

(θ∗

3,p − θ s3,p) (16b)

Afterwards, each of these parameters can be corrected per
participant using the offsets, where the corrected parameter
is represented by θ̂p,j for j = 1, 2, 3, as it is shown in (17).

θ̂j,p = θ∗
j,p − δ1,2, j = 1, 2 (17a)

θ̂3,p = θ∗

3,p − δ3 (17b)

The computed offsets for ToM-I and for ToM-II in the
contexts of intention estimation and action prediction can
be found in Table 4 and Table 5, respectively. Note that
the optimal parameters of ToM-I and ToM-III are the same,
and consequently the optimal parameters of ToM-III are
not represented. Finally, to assess the degree to which
the identified parameters corresponded to the self-assessed
preferences of each participant p, an average of the absolute
errors between the corrected parameters θ̂j,p identified by the
model and the self-assessed preferences θ sj,p across all the
participants and across the three parameters was computed as
it is shown in (18). The errors obtained by ToM-I and ToM-II
are also given in Table 4 and Table 5.

eθ =
1
3

·
1
np

3∑
j=1

np∑
p=1

|θ̂j,p − θ sj,p| (18)

The average errors eθ in the parameters that were identified
by ToM-I and by ToM-II when estimating the intentions of
the participants were 18.4% and 23.4%, respectively. When
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TABLE 4. Parameter offsets and errors between parameters and
self-assessed preferences achieved by ToM-I and ToM-II when estimating
the intentions of the participants.

TABLE 5. Parameter offsets and errors between parameters and
self-assessed preferences achieved by ToM-I and ToM-II when predicting
the actions of the participants.

predicting the actions of the participants, the average errors
eθ were 21.4% for ToM-I and 24.2% for ToM-II. In both
cases, the parameters identified by ToM-I are closer to the
self-identified preferences of the participants, compared to
the parameters that were identified by ToM-II. It is important
to mention that an error of 0 would be impossible to reach in
practice, since the self-assessment of the participants might
not correspond to the ground truth, as they can be biased in
the cognitive procedure of assessing their own preferences.
Moreover, the interpretation of the scale is subjective and
can diverge per participant. Nonetheless, the achieved results
show a strong relationship between the corrected identified
parameters and the opinions of the participants about their
own preferences. We can then conclude that these parameters
give a relevant practical insight about the preferences of the
participants.

All in all, by assessing the performance of the three ToM-
based models when predicting the actions and estimating the
intentions of the participants, the experiments acknowledged
the benefits of including the emotions, biases, and slow-
dynamics state-variables such as personality traits and
general preferences in the ToM-based models. They also
showed that themodel canmake dynamic predictions and that
the identified parameters provide a realistic insight into the
meaning and contribution of each parameter, contrarily to the
parameters that are often identified in black-box approaches.

V. CONCLUSION AND TOPICS FOR FUTURE RESEARCH
The main aim of this paper is to provide interactive machines,
e.g., socially assistive robots, with the capability of exhibiting
theory of mind in their interactions with humans. Theory
of mind states that in their interactions, humans create
mental models of each other’s cognitive procedures, in order
to estimate the mental states of one another. Therefore,
we proposed a novel formalization for the perception,
cognition, and decision-making procedures of humans using

a network representation. We transformed this network
representation into a dynamic formulation by introducing
an extended version of FCMs, and generated a state-space
representation for the mental procedures of humans, in order
to model the theory of mind for interactive machines.

Compared to the state-of-the-art representations of human
cognition, which mainly include beliefs, goals, and intentions
of humans, we also included emotions, personality traits,
and biases in our ToM-based models, which have been
shown to be important elements in cognition and decision-
making procedures of humans (see, e.g., [2], [7], [19], [38],
[49], [50]).

The resulting ToM models were identified and validated
in experiments that included computer-based simulations
with 21 human participants. We performed several analyses
about the performance and accuracy of the resulting models,
where the results showed both the success of the model
in predicting the intentions and actions of the participants,
which are not possible unless the model is dynamic, as well
as the accuracy of the model compared to a model that
does not include emotions, personality traits, and biases.
In the future, a more extensive validation with a larger
number of participants and longer-term interaction per
participant can be carried out for various contexts of human-
machine interaction, so that the model can be validated
and used for different real-life applications. Furthermore,
the linkages of our mathematical representation can be
represented by parameterized polynomial functions rather
than by fuzzy inference systems (FIS) in case the training
needs to be accomplished faster. In fact, this change of the
mathematical representation leads to an improvement ofmore
than 400 times in the computation time. Moreover, for online
applications, the identification of the parameters can be done
using a gradient descent algorithm instead of a grid search,
which can significantly decrease the computational time.

In the future, the proposed cognitive models will be used
for interactive robots for two purposes: (1) to estimate the
internal mental states of humans, using model-based state
estimation methods, and (2) to predict the evolution of the
mental states and actions of humans, and let the robot behave
accordingly, in order to improve the quality of the human-
robot interactions.

APPENDIX A
EXAMPLES THAT ILLUSTRATE THE IMPORTANCE OF THE
ELEMENTS OF THE PERCEPTION, COGNITION, AND
DECISION-MAKING MODEL
This appendix represents a number of examples according
to real-life scenarios, where these examples motivate the
elements and/or linkages that are introduced in the proposed
cognitive model.
Role of Slow-Dynamics State Variables: The following

four examples show the influence of the slow-dynamics state
variables on the dynamic evolution of fast-dynamics state
variables. In these examples, the observer agent (described
by first-person pronouns) makes inferences about the mental
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state of the observed agent (referred to by a specific name
in the examples) based on their observed actions (inverse
inference).
Example 1: Ana and I are both in the library at 5:30 PM.

Ana picks up her wallet and walks towards the door (action
of the observed agent noticed by the observer agent). The
coffee house nearby has a late opening hour until 6:00 PM,
but I do not know whether or not Ana knows about this (no
access to the general world knowledge of the observed agent).
I guess Ana knows about the opening hour of the coffee house
and believes that it is still open (guessing the general world
knowledge and inferring about the belief of the observed
agent). I infer that Ana is going to buy a cup of coffee (goal
of the observed agent inferred by the observer agent).
In this example, since the observer agent does not have access
to the general world knowledge of the observed agent, the
inference involves an intermediate procedure, i.e., inference
about the belief of the observed agent based on a guess rather
than facts.

Suppose that according to Ana’s general world knowledge
the opening hour of the nearby coffee house is until 5:00 PM.
Thus Ana does not go at 5:30 PM to the coffee house, which
she supposes to be closed. In case I had access to Ana’s
general world knowledge, then I would not conclude that Ana
is going to grab a coffee. Therefore, my inference about Ana’s
goal was more reliable.
Example 2: Consider the scenario of Example 1, but this

time I have heard from Ana before that she knows that the
coffee house nearby is open until 6:00 PM (access to the
general world knowledge of the observed agent). This time
I infer with more certainty that Ana is going to buy a cup of
coffee.
Although this example shows that when the general world
knowledge of the observed agent is known by the observer
agent, an inverse inference about the goals of the observed
agent are less prone to uncertainties, the next example
shows that knowing the general world knowledge of the
observed agent alone may not suffice to make precise inverse
inferences.
Example 3: Suppose that in Example 2, in addition to

being aware of Ana’s general world knowledge, I know that
she needs to drink coffee when studying late (access to the
general preference of the observed agent). Then I infer that
Ana is going to buy coffee with a much higher certainty than
in Example 2. On the contrary, if I know that Ana never drinks
coffee in the afternoon (general preference of the observed
agent) I will not infer that her beliefs and goals are related to
grabbing a coffee.
This example shows that the access of an observer agent
to the general world knowledge and general preferences
of an observed agent significantly improves the reliability
and level of certainty of the inferred fast-dynamics state
variables. Moreover, having access to only one of these
slow-dynamics state variables may still result in inaccurate
or erroneous inferences. In particular, having access to the
general preferences of the observed agent in addition to the

general world knowledge in Example 3 supports the certainty
of the inferences or prevents the observer agent from making
erroneous inferences.
Example 4: Now consider Example 3, where I am aware

that Ana never drinks coffee in the afternoon. While the
combination of Ana’s general world knowledge and general
preference prevents me from making a wrong inference, they
do not provide me with a chance either to make an inference
about what Ana’s beliefs and goals at the moment are. Now
suppose that I know Ana for long enough to be aware that she
is an introvert (i.e., she needs some personal time after long
interactions) with higher levels of neuroticism6 (i.e., she often
feels worried). These personality traits of Ana together with
her actions help me to infer that Ana believes she needs some
personal time (thus she leavesme to be by herself). I also infer
that Ana believes that, if she leaves her wallet unattended,
someone may steal it (thus takes her wallet with her).
This example shows the importance of incorporating the
specific personality traits of rational agents in cognitive
models for achieving more precision and reliability with the
resulting inferences.
Elements that Influence Emotions: The following three

examples illustrate the role of various state variables in
triggering the emotions of an observed agent (referred to by
a specific name).
Example 5: While walking on the street, Elisa’s wallet

falls out of her purse (real-life data). Later on in a shop,
Elisa reaches for her wallet and realizes that it is not in her
purse (perceptual access). She reasons that she has lost the
wallet (rationally perceived knowledge). She then supposes
that she has lost her wallet (inference of a belief based on
the rationally perceived knowledge). This belief makes her
anxious (stimulation of emotions).
In the given example, before Elisa notices that her wallet
is missing (i.e., without perceptual access) and before she
reasons that she has lost the wallet (i.e., without rational
reasoning), she was not anxious (no stimulation of emotions).
In a different situation, for the same perceptual access that
causes the same perceived data, i.e., a missing wallet, Elisa
may reason and believe that she has left her wallet on the
dining table at home (different rational reasoning and hence
different rationally perceived knowledge). Therefore, Elisa
will not be anxious (no stimulation of emotions). In summary,
independent of what the real-life data is (e.g., the wallet
has fallen on the street or is at home) the emotions of a
rational agent may be moderated by the perceptual access
of the agent to that data and by the reasoning the agent
applies to the perceived data. In other words, the emotions of
a rational agent depend on its beliefs rather than on real-life
data directly.
Example 6: Frank is exploring a new city for the first

time and wants to buy an ice cream (goal). While walking,
he notices a few people across the street who are eating

6We use the terms introversion and neuroticism according to the
categorization introduced by the Big Five Personality Traits [74].
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ice cream (perceived data). Correspondingly, he reasons and
believes that there should be an ice cream shop close by
(rationally perceived knowledge transformed into a belief),
which makes him feel satisfied (stimulated emotions).
This example shows a case where a belief by itself does not
stimulate emotions, but the belief together with a goal does.
In other words, if Frank did not want to eat an ice cream, the
belief that an ice cream shop is nearby would not influence
his emotional status.
Example 7: Grace is afraid of dogs (general preference).

While walking in a park, she notices the footprints of a dog
(perceptual access) and correspondingly reasons and believes
that there should be a dog nearby (rationally perceived
knowledge transformed into a belief). This belief makes her
anxious (stimulated emotion).
This example illustrates how general preferences alongside
beliefs may directly stimulate emotions in rational agents.
Note that in this case, if Grace was not afraid of dogs, the
belief that a dog is nearby by itself would not stimulate
particular emotions in her.
Elements That are Influenced by Emotions: The following

example illustrates how emotions of rational agents may
influence their goals.
Example 8: Hailey has planned to go to a party tonight

(original goal). In the afternoon, Hailey receives some bad
news that make her deeply sad (emotion). As a consequence,
she decides not to go to the party anymore (change in the goal
due to the emotions).
This example shows that emotions may change the goals of
rational agents. Although Hailey’s general preference may
be to participate in such parties, and she may in general be
an extrovert with high levels of conscientiousness (i.e., self-
discipline and tendency to follow her schedules), due to her
sadness she may make a goal (i.e., skipping the party) that
contradicts her initial goal that corresponded to her general
preferences, personality traits, etc.
Importance of Personalizing the Perceptual Access and

the Rational Reasoning Processes: The first example below
illustrates the importance of personalizing the perception
procedure of various rational agents. In the given example,
the tourist is the observed agent and the tour leader and the
tourist’s close friend are the observer agents. The second
example below demonstrates the importance of decomposing
the process that yields the rationally perceived knowledge
into the sub-processes that are explained in subsubsection
III-B3.
Example 9: Suppose that a tourist tells her tour leader that

she has already been to the historical city center of the city
they are visiting. The tour leader may assume that the tourist
has a perfect knowledge of the real-life data, including the
location of the church, the old building of the City Hall,
and all the souvenir shops (general world knowledge of the
observed agent according to the observer agent), while in her
previous visit, the tourist has overlooked the old building of
the City Hall. Then the general world knowledge considered
by the tour leader for the tourist is inaccurate. Now suppose

that the tourist tells her close friend (an observer agent who is
aware of the personalized perception of the observed agent)
that she has once been to the historical city center. The friend
assumes - knowing the personalized perception procedure of
the tourist - that she might have overlooked the old building
of the City Hall.
Example 10: Brian, Charlie, and Diana are inside a

shopping mall. Although they cannot see the outside, before
they entered the shopping mall, it was sunny. Someone
soaked in water enters the shopping mall. Brian does not
notice this person (no updated perceptual access) and thus,
keeps the belief that outside is sunny. Charlie and Diana
notice this person (updated perceptual access). Charlie
reasons and accordingly believes that it must be raining now,
while Diana reasons that this person has fallen into a ditch
(different [personalized] rational reasoning) and keeps the
belief that it is still sunny outside.
Note that in the above example, if an observer agent infers
about the beliefs of Brian, Charlie, and Diana (all as observed
agents), if their personalized perceptual access and rational
reasoning processes are excluded, the observer agent may
infer that all three observed agents hold the same belief that,
e.g., it is now raining outside.
Elements That Bias the Generation of Beliefs: The two

following examples show how the generation of beliefs for
rational agents may be biased by their emotions and goals,
respectively. Igor and Jane (in the first example), and Kevin
and his father (in the second example) are the observed
agents.
Example 11: Igor and Jane are having a walk together.

While walking, they both see a dog (real-life data, which after
perceptual access and rational reasoning, for both observed
agents results in the belief that there is a dog nearby). Since
Igor is afraid of dogs (general preference), he feels afraid
(emotion resulting from emotion trigger 1, see Remark 3), and
starts to believe that the dog might harm him (belief biased
by emotion). Jane, however, does not feel any fear and thus
believes there is no threat from the dog.
In the above example, although both observed agents initially
had the same belief (i.e., there is a dog nearby) one of them
develops a biased new belief about the dog because of his
triggered emotions.
Example 12: Kevin is a football fan (general preference).

The team he supports is currently in the second place in the
championship.When all evidences are studied by an objective
analyst, they conclude that - although not impossible yet - the
chances that Kevin’s favorite teamwins the championship are
very small (unbiased belief). Since Kevin wants his team to
win (Kevin’s desire or goal), he believes that his teamwill win
(belief biased by a goal). Now suppose that Kevin’s father has
the same general preference and goal as Kevin, while he has a
much lower level of conscientiousness (a personality trait that
implies Kevin’s father is generally less stubborn and more
flexible regarding various situations). Consequently, Kevin’s
father develops a much less strong belief than his son about
their team winning the championship.
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The above example illustrates that goals can bias the beliefs
of rational agents, whereas personality traits - while not
generating a bias by themselves - may regulate (boost or
hinder) this influence.
Inverse Inference of Emotions from Actions: The following

two examples illustrate the process of inverse inference of
emotions based on the observed actions of rational agents,
which is based on updating the belief and the goal of
the observed agent (due to the influence of emotions),
respectively. The observer agent is specified by the first-
person pronouns, and the other person in the examples is the
observed agent.
Example 13: I see Anabel and smile at her. Anabel and I

are friends, so I expect Anabel to smile back (expected
action). Anabel, however, looks unfriendly instead and turns
her back at me (observed action). Thus, I conclude that
Anabel may feel negative emotions about me at the moment
(inferred emotion).

In the above example, the observer agent initially estimates
the belief of the observed agent to be ‘‘we are good to each
other’’. The observed action of the observed agent, however,
implies that this belief is wrong. Therefore, the observer agent
updates the belief of the observed agent to ‘‘Anabel is not
good to me’’, and deduces that she holds negative emotions.
Now, in order for the observer agent to infer precisely about
the emotion of the observed agent (e.g., whether Anabel is
angry or sad), the observer agent should be aware of the
belief(s) and goal(s) of the observed agent in their previous
interaction(s).

Suppose that this morning Anabel showed me a picture
of a dress. Her goal was to wear it for her sister’s wedding
(Anabel’s goal in the previous interaction). I said the dress
may not look nice on her. Anabel believed that I was being
mean to her (Anabel’s belief in the previous interaction). This
made her feel angry at me, and thus in our next interaction
she updated her belief from ‘‘we are good to each other’’ to
‘‘we are not friends anymore’’.
Example 14: Last week, I had a good discussion with

Lewis about his projects. While walking on the campus,
I come across Lewis. I know he has a vacancy for his new
project. I tell to Lewis that I am seeking a new project to join.
I suppose that Lewis has developed the goal of establishing
a collaboration with me after our previous talk, so I expect
him to invite me to join his new project (expected action).
Instead, Lewis wishes me good luck and leaves (observed
action). Clearly my inference about Lewis’ goal was wrong.
In this example, the observer agent expects a particular action
from the observed agent based on inferring the observed
agent’s belief to be ‘‘the observer agent has very high
qualifications’’. Although this belief is correctly deduced,
the goal is wrongly inferred, because the observer agent has
not considered the beliefs and goals of the observer agent
during their last interaction, i.e., their talk (Lewis believed
that he should always be better than his employees and while
talking his goal was to show he knows the best), and thus the
emotions that were triggered (Lewis feels threatened by the

qualifications of the observer agent and thus develops the goal
to avoid collaborating with him).
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