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Abstract. Health indicators are indices that act as intermediary links between raw
SHM data and prognostic models. An efficient HI should satisfy prognostic
requirements such as monotonicity, trendability, and prognosability in such a way
that it can be effectively used as an input in a prognosticmodel for remaining useful
life estimation. However, discovering or designing a suitable HI for composite
structures is a challenging task due to the inherent complexity of the evolution of
damage events in such materials. Previous research has shown that data-driven
models are efficient for accomplishing this goal. Large labeled datasets, however,
are normally required, and theSHMdata canonly be labeled, respecting prognostic
requirements, after a series of nominally identical structures are tested to failure. In
this paper, a semi-supervised learning approach based on implicitly imposing
prognostic criteria is adopted to design a novel HI suitable. To this end, single-
stiffener composite panels were subjected to compression-compression fatigue
loading and monitored using acoustic emission (AE). The AE data after signal
processing and feature extraction were fused using a multi-layer LSTM neural
network with criteria-based hypothetical targets to generate an intelligent HI. The
results confirm the performance of the proposed scenario according to the prog-
nostic criteria.

Keywords: Prognostic and health management � Structural health monitoring �
Intelligent health indicator � Semi-supervised deep neural network � Composite
structures

1 Introduction

Composite structures have an essential role in a variety of industries, notably aerospace
and wind energy because they are high-performance structures with high strength-to-
weight and stiffness-to-weight ratios. They are, however, vulnerable to a variety of
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damage modes that could lead to unexpected failures during operation [1]. The damage
process comprises a complex and partially unknown sequence of fracture events that
creates a high level of uncertainty in the structural assessment.

The process of establishing a damage identification method for aerospace, civil, and
mechanical engineering infrastructure is termed Structural Health Monitoring
(SHM) [2], in which permanently installed sensors record data in order to be analyzed.
A natural evolution of SHM is prognostic and health management (PHM), in which
forecasts of remaining useful life (RUL) are updated on a regular basis utilizing sensor
information. To be capable of predicting RUL, a health indicator (HI) appropriate for
consideration in a prognostic algorithm [3] is required. HI is a distinguishing feature
derived from SHM data that reflects the health condition of the structure being
monitored.

Well-known metrics such as Monotonicity (Mo), Trendability (Tr), and Prognos-
ability (Pr) can be used to test the suitability of HI [4, 5]. Mo evaluates the general
rising or declining pattern of a variable during history, whereas Tr reflects the
resemblance of variable trajectories. Pr is used to determine the distribution of a
variable’s ultimate value. The most common procedure for extracting an HI is to
choose the best features as an HI or the principal constituent components of the HI
based on these prognostic criteria. In this framework, some features will be ignored
even though they do not fit the criteria, yet their fusion may meet the necessary criteria.
To address this problem, the prognostic metrics could act as a supervisory function in
the HI design process instead of simply being a way of measuring HI’s efficiency. The
Artificial Neural Network (ANN) is a helpful approach in the case of PHM [6, 7] and is
a powerful mathematical method for entering this challenge. Notwithstanding,
explicitly implementing the prognostic metrics (Mo, Tr, and Pr) into an ANN is dif-
ficult because the backpropagation algorithm involves the metrics’ derivatives, which
are difficult to calculate. Moreover, since the values of HIs are unavailable to be used as
targets for ANN, a supervised learning algorithm cannot address this problem. As a
result, the lack of a strategy to overcome this issue is evident.

Semi-supervised learning (SSL) has been proposed as a viable approach for
prognostics with a linear degradation trend in the literature. However, no study has
been conducted on the HI design by combining features using an SSL framework to
fulfill the prognostic requirements. Because only prognostic metrics and end-of-life
(EOL) are accessible to help the framework, the present study proposes an inductive
SSL named “intrinsically semi-supervised” [8], which is an extended form of super-
vised learning to incorporate unlabeled observations into the objective function.

In the present work, twelve single-stiffener composite panels were monitored using
the acoustic emission (AE) method during compression-compression (C-C) fatigue
loading to evaluate the suggested approach. The main data set comprises six AE
variables, which are referred to as “signal” henceforth: amplitude, rise time, duration,
energy, counts, and RMS. The feature extraction (FE) procedure was conducted in the
time and frequency domains, and the derived features were used as inputs to a semi-
supervised deep neural network (SSDNN). To optimize network hyperparameters
while taking holdout validation into account, a Bayesian optimizer was implemented.
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2 Experimental Setup

C-C fatigue loadings were applied to twelve composite specimens (CSs), which are
composed of a skin panel and a single T-shape stiffener based on an Embraer design.
The skin and stiffener are manufactured of IM7/8552 carbon fiber-reinforced epoxy
unidirectional prepreg with [45/−45/0/45/90/−45/0]S and [45/−45/45/−45]S layouts,
correspondingly [9]. Figure 1 depicts the arrangement of the AE sensors as well as the
panel size. An impact loading with 10 J energy was applied to all panels, which did not
occur in the same locations but always in the stiffener area [10]. Five CSs 1, 2, 3, 7, and
8 were impacted from the start, and the rest after 5000 cycles. Three CSs 4, 5, and 6
also had disbond defects with dimensions of 15 � 20, 20 � 20, and 20 � 25 between
the skin panel and the stiffener, which were introduced during fabrication.

The CSs were loaded using an MTS machine at a frequency of 2 Hz and an R-ratio
of 10, where a compression load was set in the range of [6.5, 65.0] kN. The fatigue
loads were applied until the panels lost their load-bearing capability. Since AE data is
included in the ReMAP project [10] and other SHM methods were used, the fatigue
load was interrupted at 500-cycle intervals to allow the other SHM equipment to collect
measurements.

Vallen Systeme GmbH VS900-M broadband sensors with a frequency band of
100–900 kHz were utilized as AE sensors. An AMSY-6 Vallen acquisition system was
used to capture the AE hits. Vallen preamplifiers with a gain of 34 dB were also
employed. Four AE sensors were attached to different locations on the skin of the CSs
to form a parallelogram in order to localize damage. As shown in Fig. 1b, the [x, y]
positions of the AE Sensors 1, 2, 3, and 4 were [145, 190], [145, 20], [20, 50], and [20,
220] mm, respectively.

To prevent recording background signals, an amplitude threshold of 60 dB was
applied for detecting events. Only events occurring inside the AE sensor region are
considered. For localization, the internal Vallen processor for planar positioning, which

Fig. 1. (a) Stiffener side and (b) sensor coordinates (dimensions in [mm]) shown as blue circles.
Locations of impact shown as a movable orange circle.
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is in accordance with Geiger’s model, was employed [9, 11]. A filter was also applied
to eliminate incidents with a location uncertainty of more than 50 mm. Six variables
were selected and logged from AE events: amplitude (A), rise time (R), energy (E),
counts (CNTS), duration (D), and RMS.

3 Workflow

This section describes the overall workflow, which comprises signal pre-processing,
feature extraction (FE), and feature fusion (FF) with the product of HI.

3.1 Signal Pre-processing

Labeling cycles, time windowing, and missing values are all discussed in this
subsection.

Labeling Cycles. Because HI will be constructed using a semi-supervised framework
with consideration of hypothetical HIs as targets, the process of labeling cycles on AE
data is essential for this framework. The cycle number of each hit could be approxi-
mated by signal processing methods using the captured displacement and load from the
MTS machine.

Time Windowing. Signals such as amplitude, rising time, duration, energy, counts,
and RMS are windowed for more efficient analysis. Because of the natural period of QS
loads, the windowing process for the present research was conducted with a static
length and interval of 500 cycles.

Missing Values. Due to the imposed filters, no events may have been logged in a few
periods of 500 cycles, resulting in missing values for such time windows. Missing
values should be removed or filled in since they affect succeeding steps of the HI
building framework, with the first approach being used in the current study.

A zero-mean normalization, based on only the mean value and standard deviation
from the training dataset, will be used after FE as another pre-processing action.

3.2 Feature Extraction (FE)

To begin, the Fast Fourier Transform (FFT) is used to map data from the time domain
into the frequency domain as a standard and reasonable step toward improving FE.
Following that, the common statistical features [12–14] from the time domain and
frequency domain (Table 1) were extracted. According to Table 1, 33 features are
obtained from each of the 6 windowed signals (amplitude, rise-time, energy, counts,
duration, and RMS) of the AE dataset. The set of features has been expanded to include
three new potentially helpful features: cumulative rise-time/amplitude ratio, cumulative
energy, and cumulative counts [15]. As a result, the AE database provided 201 features
(6 � 33 + 3). It should be emphasized that the FE step can also be considered as a
dimension reduction step, because raw signals with thousands or even millions of data
points within each time window were compressed to 201 sample points.
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3.3 Feature Fusion

In this step, the extracted features are combined. This step’s output is known as a
“health indicator” (HI), and it will be used in a prognostic framework to forecast RUL.
A HI should satisfy a number of metrics in order to be regarded as a prognostic
parameter. Monotonicity (Mo), Prognosability (Pr), and Trendability (Tr) [4], which
are employed in the current work, are three popular criteria for evaluating an HI and are
formulated as follows:

Table 1. Statistical features in time and frequency domain.

No Time domain features No Frequency domain features

1
Xm ¼

PN

n¼1
xðnÞ

N

20
p1 ¼ Xmf ¼

PK

k¼1
sðkÞ

K

2
Xsd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1
x nð Þ�Xmð Þ2
N�1

r
21

p2 ¼
PK

k¼1
s kð Þ�p1ð Þ2

K�1

3
Xroot ¼

PN

n¼1

ffiffiffiffiffiffiffiffi
xðnÞj j

p
N

� �2 22
p3 ¼

PK

k¼1
s kð Þ�p1ð Þ3

K
ffiffiffiffi
p2

pð Þ3
4

Xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1
x nð Þð Þ2

N

r
23

p4 ¼
PK

k¼1
s kð Þ�p1ð Þ4

Kp22

5
Xrss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 x nð Þj j2

q
24

p5 ¼ Xfc ¼
PK

k¼1
f ksðkÞPK

k¼1
sðkÞ

6 Xpeak ¼ max xðnÞj j 25
p6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
f k�p5ð Þ2sðkÞ
K

r
7

Xskewness ¼
PN

n¼1
x nð Þ�Xmð Þ3

N�1ð ÞXsd
3

26
p7 ¼ Xrmsf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
f k

2sðkÞPK

k¼1
sðkÞ

s

8
Xkurtosis ¼

PN

n¼1
x nð Þ�Xmð Þ4

N�1ð ÞXsd
4

27
p8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
f k

4sðkÞPK

k¼1
f k

2sðkÞ

s

9 Xcrest ¼ Xpeak

Xrms
28

p9 ¼
PK

k¼1
f k

2sðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
sðkÞ
PK

k¼1
f k

4sðkÞ
q

10 Xclearance ¼ Xpeak

Xroot
29 p10 ¼ p6

p5

11 Xshape ¼ Xrms
1
N

PN

n¼1
xðnÞj j

30
p11 ¼

PK

k¼1
f k�p5ð Þ3s kð Þ
Kp63

12 Ximpulse ¼ Xpeak

1
N

PN

n¼1
xðnÞj j

31
p12 ¼

PK

k¼1
f k�p5ð Þ4s kð Þ
Kp64

13 Xp2p ¼ maxðxðnÞÞ �minðxðnÞÞ 32
p13 ¼

PK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
f k�p5ð Þ

p
s kð Þ

K
ffiffiffiffi
p6

p

14, 15, 16, 17
Xk cm ¼

PN

n¼1
x nð Þ�Xmð Þk
N ;

k = 3, 4, 5, 6

33
p14 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
f k�p5ð Þ2s kð ÞPK

k¼1
sðkÞ

s

18 XFM4 ¼ X4 cm

Xsd
4

19
Xmed ¼

PN

n¼1
tðnÞ

N
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Mo ¼ MMK ¼ 1
M

XM

j¼1

PNj

i¼1

PNj

k¼1;k[ i tk � tið Þ:sgn x tkð Þ � x tið Þð Þ
ðNj � 1ÞPNj

i¼1

PNj

k¼1;k[ i tk � tið Þ

�����
�����:100 ð1Þ

sgnðxÞ ¼
�1 if x\0
0 if x ¼ 0
1 if x[ 0

8<
: ð2Þ

Tr ¼ min
j;k

q xj; xk
� ��� ��; j; k ¼ 1; 2; . . .;M ð3Þ

q xj; xk
� � ¼ cov xj; xk

� �
rxjrxk

ð4Þ

Pr ¼ exp � stdjxj Nj
� �� �

meanj xj 1ð Þ � xj Nj
� ��� ��� �

 !
; j ¼ 1; 2; . . .;M ð5Þ

where xj denotes the vector of feature measurements on the jth sample, M the number of
samples monitored, and Nj the number of measurements on the jth sample. tk and ti are
the measurement times for x(tk) and x(ti), respectively. cov denotes the covariance, in
which the standard deviations of xj and xk have been indicated by r(xj) and r(xk),
respectively. To take into account all of the above prognostic metrics at the same time,
an objective function named “Fitness” [5] is utilized:

Fitness ¼ a�MonotonicityHI þ b� PrognosabilityHI þ c� TrendabilityHI ð6Þ

where a, b, and c represent control factors that regulate the importance of each criterion
in proportion to the rest. These factors are commonly user-defined parameters [5],
which are typically expected to be in the [0–1] range. In this research, they are all
regarded as one, yielding a fitness score of [0–3]. In current research, incorporating
these metrics into the fusion step is one of the most essential and challenging phases.

Semi-supervised Criteria-Based Fusion Neural Network. The current work pro-
poses a fusion model based on deep neural network (DNN) and semi-supervised
learning (SSL). Inductive learning algorithms, termed intrinsically semi-supervised [8],
are improvements to preexisting supervised algorithms that enable labelled and unla-
beled data to be used directly to optimize an objective function with components.

In this research, a semi-supervised deep neural network (SSDNN) is proposed to
generate HI using feature fusion through implicitly implementing the prognostic
metrics as well as exploiting the given EOL. As can be seen in Fig. 2, following the
prognostic criteria, a hypothesized optimal HI function is defined and then utilized as
an objective for a supervised ANN to simulate the HI function.
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To choose the optimum function, four primary functions with high compatibility
with the metrics are investigated, which are linear (HIt = t), quadratic polynomial
(HIt = t2), natural logarithm (HIt = ln(t)), and exponential functions (HIt = exp(t)).
Such functions should be characterized in terms of usage time, which is fatigue cycles
in this work. To adapt Pr as a recursive reconstruction process of HI, the functions
should be standardized by using max-min normalization.

Three synthetic specimens with different lifespans of 7, 4, and 10 time units (time
step is 0.05) are adopted to evaluate the prognostic metrics. Based on the calculated
criteria, all functions perfectly suit Mo and Pr, yet only linear and quadratic polynomial
ones have the maximum value (1) of Tr. Because damage propagation and accumu-
lation nonlinearity should be reflected in the HI trend, the quadratic polynomial
function is employed to form the targets.

Because the database for the analyzed composite structures is new and no existing
research has been done on them, simple shallow designs such as Multi-Layer Per-
ceptrons (MLPs) were used to generate HI at first, prior to actually evolving into more
complex networks. Each layer was inserted one by one, the number of hidden neurons
at each layer was increased, and then the next layer was inserted. In the meantime,
different kinds of layers, including the Fully Connected (FC) layer and Long Short-
Term Memory (LSTM), were examined to produce more suitable results. The finalized
DNN architecture is composed of the following layers: FC, Dropout, (Rectified Linear
Units) ReLU, LSTM, and Regression layers.

Evaluation Metric and Hyperparameters Optimization. The Bayesian optimization
algorithm was utilized to determine the optimal hyperparameters’ sets, such as the
number of hidden neurons in each layer, batch size, and dropout. To this end, according
to the holdout validation method, 10, 1, and 1 CSs were regarded as training,

Fig. 2. The proposed semi-supervised criteria-based fusion neural network for HI construction.
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validation, and test datasets, respectively. For this optimization problem, the maximum
RMSE over all CSs as the objective function must be minimized. It should be
underlined that by evaluating the maximum RMSE of all CSs instead of other statistical
characteristics such as their mean RMSE, the optimizer tries to simultaneously reduce
the mean value and standard deviation of RMSE, which is more desired.

4 Results and Discussions

The deep learning model was trained using an Adam optimizer [16], with an initial
learning rate of 0.005, a learning rate drop factor of 0.2, a learning rate drop period of
5, and a gradient threshold of 1, all of which were chosen through trial and error. The
training dataset was shuffled before each epoch. Despite having a maximum of 500
training epochs, the network’s output was exported according to the minimum vali-
dation loss, where the frequency of the validation check was adjusted to 30 trials
(number of trained batches) and the validation check tolerance was adjusted to 6.

The number of neurons and units in the hidden layers based on trial and error as
well as the batch size range based on the number of CSs in the training dataset, have
been adjusted. Because each set of Bayesian optimization final outcomes is also
conditional on the initial start points, the whole procedure was performed several times.
Table 2 shows the five top hyperparameter sets. As can be seen, the configurations
resulted in a very narrow RMSE range of [0.08–0.11], which is the maximum RMSE
across all CSs as the objective function of the Bayesian optimizer.

Figure 3 depicts the constructed HIs by model 1, which is ranked first. Figure 4
shows the prognostic metrics for all individual input features alongside the HIs gen-
erated by model 1. The top four features with a fitness score greater than 1.5 are:

• feature 185 (1.630): the 6th-order central moment of the RMS signal in the time
domain

• feature 184 (1.599): the 5th-order central moment of the RMS signal in the time
domain

• feature 88 (1.586): the variance of the Energy signal in the frequency domain
• feature 183 (1.566): the 4th-order central moment of the RMS signal in the time

domain

Table 2. The top 5 hyperparameter sets (models) determined by the Bayesian optimization
algorithm and holdout validation with 11th CS as the validation and the 12th CS as the test
dataset. RMSE is the maximum one over all CSs. [initial: step size: end]

Model (rank) Batch size
[1: 1: 5]

Dropout
[0: 0.1: 0.5]

FCL1
[1: 1: 201]

LSTM1
[1: 1: 256]

FCL2
[1: 1: 50]

RMSE

1 4 0.3 110 154 50 0.0829
2 5 0.4 124 83 48 0.0884
3 5 0.5 201 79 36 0.0983
4 5 0.4 152 81 27 0.1013
5 5 0.5 41 142 43 0.1026
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The high Fitness score of 2.891 for HIs, which is 77.3% greater than the best feature
(1.630), shows model 1’s outstanding efficiency in constructing HIs.

5 Conclusions

To address the shortage of labeled data, a semi-supervised deep neural network
(SSDNN) was proposed to implicitly induce a multi-layer LSTM network that fulfills
the prognostic requirements and was applied to a case study involving AE data col-
lected during fatigue tests of composite specimens. A Bayesian optimizer used for
holdout validation yielded five top models. The high Fitness score of 2.891 for HIs
(maximum Fitness is 3) showed model 1’s high performance in creating HIs based on
prognostic metrics, which is 77.3% greater than the best input feature (1.6303) and
demonstrates the efficiency of the suggested framework. For this improvement, the
prognostic metrics were included within the feature fusion and HI construction
framework instead of being employed merely as an HI quality measuring device.

Fig. 3. HIs constructed by model 1. The validation and test datasets are CS 11 and 12,
respectively, and the others are training datasets. Dot lines show ideal HIs.

Fig. 4. The prognostic metrics for all 201 extracted features and the constructed HIs for model 1.
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