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A B S T R A C T

The Flight Control System (FCS) is one of the most important systems in all modern aircraft. For such systems
it is required to have robust Fault Detection Isolation and Reconfiguration (FDIR) functionalities with high
detection performance. In this work we specifically consider the Oscillatory Failure Cases (OFC), which, if
not mitigated, can cause additional structural loads for which the aircraft is not designed. A Sliding Mode
Observer (SMO) based detection method is proposed for fast and consistent detection of these OFC faults.
A benchmark of a generic aircraft FCS equipped with OFC simulation capabilities, as well as the presented
solution for detection, have previously been presented within a competition at the 2020 IFAC World Congress.
1. Introduction

The design of a commercial aircraft is a complex procedure involv-
ing many different requirements, but a common factor throughout it is
the aim to minimize weight to obtain better fuel efficiency in operation.
In this context, the aircraft is supported by a flexible structure that is
designed to withstand a specified load envelope with minimal structural
reinforcements. The load envelope specification is normally based on
the expected loads on the aircraft resulting from atmospheric effects
(such as turbulence) and maneuvers performed by the aircraft itself.
However, certain system faults can lead to additional structural loads
which must also be considered when performing the aircraft design.
These additional loads require extra structural reinforcements which
increases the mass and reduces the fuel efficiency. A particular type
of system fault that only occurs rarely, but causes significant structural
loads is the Oscillatory Failure Case (OFC) (Besch, Giesseler, & Schuller,
1996; Goupil, 2010). An OFC is an unwanted oscillation of a control
surface which is caused by the propagation of a spurious oscillatory
signal inside the servo control loop of a fly-by-wire flight control system
of a commercial aircraft. It is generally due to a fault affecting an
electronic component or a mechanical breakage.

If an OFC could be quickly and robustly detected and accom-
modated, before it causes additional structural loads, the additional
structural reinforcements would not be necessary, thus saving mass,
increasing fuel efficiency, and easing installation constraints. Such
a goal can be attained by employing Fault Detection, Identification
and Reconfiguration (FDIR) methodologies. FDIR constitutes a large
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and active field of research as attested by many surveys that have
been published from 1990 (Frank, 1990) up to recent years (Chen,
Jiang, Ding, & Huang, 2022; Chi, Dong, Wang, Yu, & Leung, 2022;
Hwang, Kim, Kim, & Seah, 2010; Song & He, 2022; Tipaldi & Bruenjes,
2015; Yutian, Changgang, & Junjie, 2010). The first research works
on OFC detection were conducted in the 90’s (Besch et al., 1996) and
describe an oscillatory failure identification system (OFIS) that uses sev-
eral combinations of linear methods and signal processing techniques
where one method corresponds to one fault scenario. Since these first
works, the OFC detection problem has gained significant interest and
a wide range of approaches have been tested and published. Part of
the current industrial state of practice has been published by Airbus in
2010 (Goupil, 2010). Non-linear filtering techniques have been widely
used and assessed in the industrial sector (Alcorta-Garcia, Zolghadri, &
Goupil, 2011; Lavigne, Zolghadri, Goupil, & Simon, 2011) and they are
now fully part of the most recent industrial state of practice (Zolghadri,
Henry, Cieslak, Efimov, & Goupil, 2013) with a certified solution
embedded and flying on the Airbus A350 long range aircraft.

Pons et al. applied a learning approach based on interval analysis
to OFC identification (Pons, Jauberthie, Travé-Massuyès, & Goupil,
2008). Varga and Ossmann (2012) developed a linear parameter-
varying (LPV) based identification approach for oscillatory failure
cases. Due to the oscillatory nature of the fault to detect, differen-
tiator approaches have been successfully applied and tested on real
data (Cieslak, Efimov, Zolghadri, Henry, & Goupil, 2013; Efimov, Cies-
lak, Zolghadri, & Henry, 2013). Sifi, Lavigne, Cazaurang, and Goupil
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Fig. 1. Control surface control loop and OFC sources.
(2012) used an 𝐻∞ observer for OFC detection on new generation
Electro-Hydraulic Actuators. Sun, Patton, and Goupil (2012) proposed
a linear time-invariant model based robust fast adaptive fault estimator
with unknown input decoupling for oscillatory fault detection. Alwi and
Edwards (2013) used an adaptive sliding mode differentiator to recon-
struct OFC signals for the purpose of detection. More recently, Goupil,
Urbano, and Tourneret (2016) and Urbano, Chaumette, Goupil, and
Tourneret (2017) developed and industrially tested a pure data-driven
approach for OFC detection based on similarity index computation.

One way to improve a model-based approach for OFC detection is
to enhance the residual evaluation step. Varga and Ossmann (2014)
used the Narendra criteria (Narendra & Balakrishnan, 1997) as an
adaptive way to evaluate the residual using a forgetting factor, as
opposed to fixed thresholding of the residual. Trinh, Marx, Goupil, and
Ragot (2014) performed a quantitative analysis of a bank of residuals
through a correlation test. Lavigne, Cazaurang, Fadiga, and Goupil
(2014) investigated the Wald test to distinguish between the fault-free
and the faulty case by exploiting the different statistical nature of the
residual in both cases.

All of the aforementioned works generally concern a classical hy-
draulic actuator. Some research has also been performed on OFCs
in new generations of actuators such as Electro-Hydraulic Actuators
(Sachs, Carl, & Thielecke, 2007). Oscillatory behaviour detection for
other kinds of systems can also be found in academic literature. For ex-
ample, Loutridis (2004) investigated damage detection in gear systems
using empirical model decomposition.

In general, an open challenge in the detection of OFC is the design
of methods with theoretical guarantees on detectability. Only the avail-
ability of such guarantees would win the trust of designers and lead
to removing additional structural reinforcements from aircraft design,
thus unlocking the potential benefits in terms of fuel efficiency, mass
reduction and ease of installation. An important line of development
along this direction has been dedicated to unknown input observer
(UIO) (Frank & Ding, 1997; Mohammadi, Marquez, & Tavakoli, 2017)
and sliding mode observer (SMO) (Edwards, Spurgeon, & Patton, 2000;
Mahrukh & Liaqat, 2018; Spurgeon, 2008; Utkin, 1977; Yutian et al.,
2010) based fault estimation and detection methods. In this paper, a
novel SMO-based OFC detection method will be presented, whose dis-
tinctive trait will be the availability of the aforementioned theoretical
guarantees, together with a competitive computational complexity.

Contributions & paper outline

An aerospace industrial benchmark dedicated to fault detection in
the Flight Control System (FCS) of a civil commercial aircraft was
developed by Airbus and Stellenbosch University, South Africa. Detec-
tion of OFCs within this industrial benchmark was posed as one of
three competitions organized in the context of the 2020 IFAC World
Congress. Such competitions are organized in order to enhance industry
participation in IFAC events and to bridge the gap with Academia. Fur-
thermore, it gives the opportunity for participants to compete against
2

other international teams. This paper details the solution proposed
by the winning team from Delft University of Technology which was
selected among all submitted contributions. Two kinds of criteria were
applied by the organizers for the final selection and ranking: academic
relevance and industrial applicability.

The contribution of this paper is the application of a novel Sliding
Mode Observer (SMO) based fault detection scheme to the problem of
fast and reliable detection of OFCs in commercial aircraft. We provide
theoretical proofs of robustness against false detection, and conditions
for guaranteed detectability of OFCs. The detection performance and
robustness of the detection scheme are attested by comparison to
a state-of-the-art scheme through extensive Monte-Carlo simulations
on an industrial benchmark developed by Airbus and Stellenbosch
University. Furthermore, the robustness results obtained in theory and
simulation are validated by applying the detection scheme to two hours
of healthy flight test data provided by Airbus.

The rest of this paper is organized as follows: Section 2 formulates
the problem, and models the system and considered OFCs. Section 3
presents the proposed Sliding Mode Observer based fault detection
scheme. Section 4 provides the theoretical guarantees on robustness
and guaranteed detectability. Section 5 describes the industrial bench-
mark and the Monte Carlo simulations performed on it to extensively
test the OFC detection scheme, and then presents and analyses the
simulation results. Section 6 describes the validation of the OFC detec-
tion scheme based on experimental flight-test data. Finally, Section 7
summarizes the key findings and presents some promising avenues for
future research.

2. Problem formulation and modelling

The problem addressed in this paper is the design of an SMO-
based fault detection scheme to detect OFCs in the FCS of a civil
commercial aircraft. An OFC is a malfunction that creates a spurious
sinusoidal signal which propagates through the flight control loop
and causes unwanted oscillations of a control surface. These OFCs are
primarily caused by electrical components that suddenly enter a fault-
mode where an oscillatory signal is generated. A diagram of the typical
actuator control loop, with potential OFC sources, is shown in Fig. 1.

The OFC signal may originate at a number of sources, as indicated
on the diagram. For this paper we consider OFCs that originate at either
the servo current input commanded by the flight control computer
or at the rod position sensor. Laboratory tests performed by Airbus
concluded that OFC signals resemble sinusoidal signals with a fixed but
unknown frequency which is uniformly distributed in a bounded fre-
quency range. Beyond such frequency range, the OFC has no significant
effects because of the low-pass behaviour of the actuator. Furthermore,
OFCs can occur as liquid and solid faults. Liquid faults are additive,
where an oscillatory signal is superimposed on the existing signals
in the control loop, and the actuator can still respond to reference
commands. Solid failures completely replace the existing signals in the
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control loop, causing the flight control computer to no longer have any
control over the actuator.

The objective of the fault detection scheme is to detect the OFC
within a specified maximum number of oscillation periods, whatever
the frequency. Since the detection time is expressed as a number of
oscillation periods, the time that is allowed for detection will depend
on the specific OFC frequency. This objective is chosen as it relates to
the aircraft structural design. Any OFCs not detected within this time
cause additional structural loads and should thus be considered in the
structural design. The specific number of oscillations that is allowed
before the structural loads occur depends on many factors, such as
type of control surface and the aircraft model and is generally obtained
through exhaustive structural load and stress simulations.

The detection scheme should detect OFCs with amplitudes as small
as possible. However, it must not produce false alarms during normal
flight in various atmospheric conditions. The detection scheme must be
able to detect both liquid and solid failures, and must be able to detect
OFC signals that originate at either the servo current input or at the
rod position sensor.

A model-based fault detection approach is used in this work, uti-
lizing analytical redundancy by comparing the measured behaviour of
the actuators with the expected fault-free behaviour, which is obtained
by simulating the motion of a fault-free actuator in parallel with
the real actuator. This is however done without using explicitly the
state estimation error, distinguishing the proposed method from other
model-based approaches such as interval observer based or set based
approaches. The main advantages of the detection method proposed in
this work are its strong guarantees on robustness and detectability, and
competitive computational cost.

Remark 1. The use of a model-based detection approach instead of
spectral methods for detection of oscillatory faults might be questioned.
However, in order to effectively use spectral methods, multiple FFTs
need to be calculated in real-time, which is infeasible with the limited
available computational resources. The detection approach proposed
in this paper only requires 120 scalar operations to be performed per
evaluation.

The mathematical models for the real servo actuator, the oscillatory
failure, and the analytically redundant servo model are described in the
following subsections.

2.1. Real servo model

The real aircraft servo is modelled in the industrial benchmark as

�̇� =𝑉𝑐

√

√

√

√

√

𝛥𝑃 + 𝛿𝑘𝑎𝑒𝑟𝑜sgn(𝑉𝑐 )
𝑆

𝛥𝑃𝑟𝑒𝑓 + 𝑘𝑑𝑉 2
𝑐

𝑆

+ 𝛤 ,

𝑉𝑐 =𝑘𝑐 (𝐾(𝑝ref − 𝑝meas) + 𝑖𝑓 ),

𝛿 =𝑘𝑝(𝑝), 𝑝ref = 𝑘𝛿(𝛿des),

𝛿meas =𝛿 + 𝜉𝛿 , 𝑝meas = 𝑝 + 𝜉𝑝 + 𝑝𝑓 ,

(1)

where 𝑝 is the servo rod position in [mm], 𝛿 is the control surface
deflection in [deg], and 𝑉𝑐 is the commanded voltage to the servo. 𝑝ref
and 𝑝meas are the desired and measured servo rod position in [mm],
which are only used in the internal servo control loop. 𝛿des and 𝛿meas are
the desired and measured control surface deflections in [deg], which are
the only input and output of the system, respectively. 𝜉𝑝 and 𝜉𝛿 are the
measurement noises for the rod position and control surface deflection
sensors, respectively.

Furthermore, 𝛥𝑃ref, 𝑆, and 𝐾 are known parameters. 𝛥𝑃 , 𝑘𝑑 , and
𝑘aero are unknown parameters. 𝛤 represents unmodelled, but bounded,
behaviour of the real servo. 𝛤 is defined in Table 1 based on 𝑝ref. 𝑘𝑝
and 𝑘𝛿 are non-increasing known functions and 𝑘𝑐 is a non-decreasing
known function, all of which are defined as lookup tables. Lastly, 𝑝𝑓
and 𝑖 are the faults that can occur in servo rod position measurement
3

𝑓

Table 1
Actuator model parameters.

Parameter Value [Unit] Parameter Range [Unit]

𝛥𝑃ref 21 [N∕mm2] 𝛥𝑃 [15, 29] [N∕mm2]
𝐾 0.4 [mA∕mm] 𝑘𝑑 [3, 6.2] [N s2∕mm2]
𝑆 5000 [mm2] 𝑘aero [435, 975] [N∕deg]

𝛤 [−0.07, 0.07] d2𝑝ref
d𝑡2 [mm∕s2]

and the commanded current respectively. All model parameters can be
found in Table 1.

The servo in healthy conditions can be modelled as

�̇�0 = 𝑉 0
𝑐

√

√

√

√

√

√

𝛥𝑃 + 𝛿𝑘𝑎𝑒𝑟𝑜sgn(𝑉 0
𝑐 )

𝑆

𝛥𝑃𝑟𝑒𝑓 + 𝑘𝑑𝑉 0
𝑐
2

𝑆

+ 𝛤 ,

𝑉 0
𝑐 = 𝑘𝑐 (𝐾(𝑝ref − 𝑝0meas)) , 𝑝

0
meas = 𝑝0 + 𝜉𝑝 ,

(2)

where superscript 0 denotes the healthy condition.

Assumption 1. The unknown parameters 𝛥𝑃 , 𝑘𝑑 , and 𝑘aero can be
expressed as the summation of known nominal values, 𝛥𝑃𝑁 , 𝑘𝑑𝑁 and

aero𝑁 , and unknown variations 𝛥𝑃 , �̃�𝑑 and �̃�aero with known bounds.
Furthermore, the unmodelled dynamics 𝛤 is bounded as |𝛤 | ≤ 𝛾.

ssumption 2. The sensor noises 𝜉𝑝 and 𝜉𝛿 are zero-mean and can be
ounded for all time as |𝜉𝑝| ≤ 𝜉𝑝 and |𝜉𝛿| ≤ 𝜉𝛿 , respectively.

ssumption 3. The faults 𝑝𝑓 and 𝑖𝑓 can be bounded for all time as
𝑝𝑓 | ≤ �̄�𝑓 and |𝑖𝑓 | ≤ 𝑖𝑓 , respectively.

ssumption 4. A fault occurs at time 𝑇𝑓 , such that we have the
ealthy case where 𝑝𝑓 (𝑡) = 0 and 𝑖𝑓 (𝑡) = 0 for 𝑡 < 𝑇𝑓 and a faulty
ase afterwards.

.2. Fault modes

The faults considered are oscillatory faults introduced either in the
ommanded current, 𝑖𝑓 , or in the rod position sensor, 𝑝𝑓 . These faults
an, as previously explained, occur in solid and liquid form, which are
enoted as

iquid:
{

𝑝𝑓 = 𝑝osc
𝑓

𝑖𝑓 = 𝑖osc
𝑓

Solid:
{

𝑝𝑓 = 𝑝ref − 𝑝0meas + 𝑝osc
𝑓

𝑖𝑓 = −𝐾(𝑝ref − 𝑝0meas) + 𝑖osc
𝑓

here 𝑝osc
𝑓 and 𝑖osc

𝑓 are sinusoidal with an unknown constant frequency
f 1 − 10 [Hz], and an unknown fixed amplitude. In practice, both
hese faults rarely occur, therefore it is justified to make the following
ssumption.

ssumption 5. The faults in the commanded current and rod position
easurement never occur simultaneously.

.3. Detector servo model

The detector only has access to the nominal parameters and 𝛿des
nd 𝛿meas, i.e. the input and output of the system. Therefore model
2) cannot be implemented directly. Based on the known variables and
ominal parameters and functions, the servo can be modelled by the
etector as

�̇�model = 𝑉𝑐

√

√

√

√

√

𝛥𝑃𝑁

𝛥𝑃𝑟𝑒𝑓 +
𝑘𝑑𝑁 𝑉 2

𝑐
𝑆

,

̂ −1

(3)
𝑉𝑐 = 𝑘𝑐 (𝐾(𝑘𝛿(𝛿des) − 𝑘𝑝 (𝛿meas))),
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where the used nominal model parameters are design parameters of the
detector. Here 𝑘−1𝑝 (⋅) is the inverse function of 𝑘𝑝(⋅) such that 𝑘−1𝑝 (𝛿meas)
is an approximation of 𝑝meas. One can see that by the use of 𝑘−1𝑝 (𝛿meas)
as an approximation of 𝑝meas, the dynamics of 𝑝model has no internal
state and has become a direct function of only 𝛿des and 𝛿meas.

Remark 2. Note that faults 𝑖𝑓 and 𝑝𝑓 are indistinguishable based on
the signals available to the detector, i.e. 𝛿des and 𝛿meas. Therefore, in
theory a composite fault 𝑖𝑓 −𝐾𝑝𝑓 could be considered in the same way
as the individual faults.

3. Sliding mode observer based fault detection scheme

In this section the novel sliding mode observer (SMO) based fault
detection scheme will be presented. Theoretical guarantees for ro-
bustness and guaranteed detectability are presented in Section 4. The
theoretical guarantee on robustness is especially useful for the detection
of OFCs, as such faults only rarely occur.

The scheme relies on known bounds on the state estimation error
of the SMO, which are guaranteed to hold under healthy conditions.
Therefore, once the observer error is no longer within these bounds,
this is guaranteed to be caused by a fault. Note that due to the inherent
invariance properties of SMOs the state estimation error will never
deviate from a bounded region around the origin. Instead, the bounds
are designed such that when a fault occurs, one of the bounds will
deviate from zero. To detect such occurrence without knowing the
true estimation error, the known bounds on the estimation error are
compared directly leading to detection when the lower bound becomes
larger than the upper bound or vice versa.

First, to aid the implementation of the detection scheme, we will
write the relation between �̇�, Eq. (1), and �̇�model, Eq. (3), as

�̇� = �̇�model + 𝛩 + 𝐹 ,

where 𝐹 ≜ �̇� − �̇�0 is the effect of the fault and 𝛩 ≜ �̇�0 − �̇�model
includes the effects of unmodelled dynamics, parameter uncertainty,
and measurement noise. Note that by Assumption 4 we have 𝐹 (𝑡) =
0 ∀𝑡 < 𝑇𝑓 . The combined uncertainty 𝛩 can be bounded as |𝛩| ≤ 𝜃

here

= max
�̃�𝑑 ,𝛥𝑃 ,�̃�aero ,𝛤 ,𝜉𝛿 ,𝜉𝑝

(|�̇�0 − �̇�model|) . (4)

n explicit form of 𝜃 based on the actuator dynamics in Eq. (2) is
erived in Appendix A. Note that there are more ways to obtain a bound
, however, it is beneficial to the performance of the detector that 𝜃 is
s small as possible. With this bound and Assumption 1, the dynamics
f the real servo can be bounded as

�̇�model − 𝜃 + 𝐹 ≤ �̇� ≤ �̇�model + 𝜃 + 𝐹

here 𝜃 can be calculated based exclusively on quantities known to the
etector.

.1. Sliding mode observer

The fault detection scheme is based on the error dynamics of a Slid-
ng Mode Observer (SMO). The SMO estimates the servo rod position
sing

̇̂𝑝 = �̇�model −𝐾𝐿𝑒meas + 𝜈 (5)

here 𝐾𝐿 < 0 is the linear observer gain, the switching term 𝜈 is defined
s

= 𝐾𝑠sgn(𝑒meas),

here 𝐾𝑠 is the switching gain, and 𝑒meas = 𝑘−1𝑝 (𝛿meas) − �̂� is the
easured observer error. 𝐾𝑠 is set to 𝐾𝑠 = 𝜃 + 𝜂. Here 𝜂 is a positive

onstant, such that 𝐾 is an upper bound on the model uncertainty.
4

𝑠

By defining 𝑒 = 𝑝 − �̂�, the observer error dynamics can be obtained
sing Eqs. (1) and (5) as

̇ = 𝛩 + 𝐹 +𝐾𝐿𝑒meas − 𝜈 . (6)

Note here that 𝑒meas relates to 𝑒 as 𝑒meas = 𝑒+𝑘−1𝑝 (𝛿meas)−𝑝. This relation
is such that if 𝛿meas = 𝛿, we have 𝑒meas = 𝑒. This relation is used below in
Theorem 1.1 to prove that in the healthy case 𝑒 converges to a bounded
region around the origin.

Theorem 1. The initial rod position estimate �̂�(0) can always be chosen
such that the observer error dynamics in Eq. (6) satisfies the following
propositions:

1. 𝑒0 ≤ 𝑒(𝑡) ≤ 𝑒0 and �̇�0 ≤ |�̇�(𝑡)| ≤ ̄̇𝑒0 for 𝑡 < 𝑇𝑓 , i.e. in the healthy
case,

2. sgn(�̇�(𝑡)) = −sgn(𝑒meas(𝑡)) for 𝑡 < 𝑇𝑓 , i.e. in the healthy case,
3. �̇�+ ≤ �̇� ≤ ̄̇𝑒+ if 𝑒meas > 0 and �̇�− ≤ �̇� ≤ ̄̇𝑒− if 𝑒meas < 0,

where
𝑒0 = min

𝑝,𝜉𝛿
(𝑝 − 𝑘−1𝑝 (𝑘𝑝(𝑝) + 𝜉𝛿))

𝑒0 = max
𝑝,𝜉𝛿

(𝑝 − 𝑘−1𝑝 (𝑘𝑝(𝑝) + 𝜉𝛿))

̄̇+ = 𝐾𝐿𝑒meas − 𝜂 + 𝐹

̇+ = −2𝜃 +𝐾𝐿𝑒meas − 𝜂 + 𝐹
̄̇− = 2𝜃 +𝐾𝐿𝑒meas + 𝜂 + 𝐹

̇− = 𝐾𝐿𝑒meas + 𝜂 + 𝐹

�̇�0 = |𝐾𝐿𝑒meas| + 𝜂
̄̇𝑒0 = 2𝜃 + |𝐾𝐿𝑒meas| + 𝜂

Furthermore, the healthy bounds �̇�0, ̄̇𝑒0, 𝑒0, and 𝑒0 depend only on known
parameters and variables.

Proof. For readability, the proof is presented in Appendix B □

Corollary 1. From Theorem 1 it follows that 𝑒meas + 𝑒0 ≤ 𝑒 ≤ 𝑒meas + 𝑒0

Proof. By definition 𝑒 − 𝑒meas = 𝑝 − 𝑘−1𝑝 (𝛿meas) = 𝑝 − 𝑘−1𝑝 (𝑘𝑝(𝑝) + 𝜉𝛿).
Therefore, by definition of 𝑒0 and 𝑒0 in proposition 1 of Theorem 1
we have 𝑒0 ≤ 𝑒 − 𝑒meas ≤ 𝑒0, which is equivalent to the corollary
statement. □

3.2. Observer error bounds

Based on the bounds on the healthy behaviour from Theorem 1,
and the real behaviour represented by 𝑒meas, time-varying upper and
lower bounds on 𝑒 are constructed which are guaranteed to hold under
healthy behaviour. These bounds will be denoted by

̃
𝑒 and 𝑒 for the

lower and upper bound respectively.
Let us denote the times at which new measurements from the

continuous time system (1) become available to the observer as
{

𝑡𝑚
}

,
as visualized in Fig. 2. Then, at each 𝑡𝑚, 𝑒 can be bounded using
Corollary 1 as 𝑒meas+𝑒0 ≤ 𝑒 ≤ 𝑒meas+𝑒0. Combining this with the bounds
on 𝑒 from Theorem 1, we obtain some static bounds on the healthy 𝑒
as

max(𝑒meas + 𝑒0, 𝑒0) ≤ 𝑒 ≤ min(𝑒meas + 𝑒0, 𝑒0) (7)

Based on the bounds on the healthy �̇� from Theorem 1.1 and 1.2 also
time-varying bounds on the healthy 𝑒 can be defined as

If 𝑒meas(𝑡𝑚−1) < 0

∫

𝑡𝑚

𝑡𝑚−1
�̇�0(𝑇 )d𝑇 ≤ 𝑒(𝑡𝑚) − 𝑒(𝑡𝑚−1) ≤ ∫

𝑡𝑚

𝑡𝑚−1

̄̇𝑒0(𝑇 )d𝑇

If 𝑒meas(𝑡𝑚−1) > 0
𝑡𝑚

̄̇𝑒0(𝑇 )d𝑇 ≤ 𝑒(𝑡𝑚) − 𝑒(𝑡𝑚−1) ≤ −
𝑡𝑚

�̇�0(𝑇 )d𝑇

(8)
∫𝑡𝑚−1 ∫𝑡𝑚−1
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Fig. 2. Nominal behaviour of observer error 𝑒, where 𝑡𝑚 for 𝑚 ∈ {0…6} denote the
easurement times and 𝑡𝑠𝑖 for 𝑖 ∈ {1…4} denote the switching times.

hen, by combining the bound of Eqs. (7) and (8) we obtain definitions
f 𝑒 and

̃
𝑒 as

f 𝑒meas(𝑡𝑚−1) < 0

𝑒(𝑡𝑚) =min(∫

𝑡𝑚

𝑡𝑚−1

̄̇𝑒0(𝑇 )d𝑇 , 𝑒meas(𝑡𝑚) + 𝑒0, 𝑒0)

̃
𝑒(𝑡𝑚) =max(∫

𝑡𝑚

𝑡𝑚−1
�̇�0(𝑇 )d𝑇 , 𝑒meas(𝑡𝑚) + 𝑒0, 𝑒0)

f 𝑒meas(𝑡𝑚−1) > 0

𝑒(𝑡𝑚) =min(−∫

𝑡𝑚

𝑡𝑚−1
�̇�0(𝑇 )d𝑇 , 𝑒meas(𝑡𝑚) + 𝑒0, 𝑒0)

̃
𝑒(𝑡𝑚) =max(−∫

𝑡𝑚

𝑡𝑚−1

̄̇𝑒0(𝑇 )d𝑇 , 𝑒meas(𝑡𝑚) + 𝑒0, 𝑒0)

(9)

where by design
̃
𝑒 ≤ 𝑒(𝑡) ≤ 𝑒 if 𝐹 (𝜏) = 0∀𝜏 < 𝑡.

Remark 3. Three bounds on the healthy 𝑒 are derived in Theorem 1,
Corollary 1 and Eq. (8).1 Each of these bounds is proven to always
bound the healthy 𝑒. Therefore, a less conservative bound on the
healthy 𝑒 can be obtained by combining the individual bounds as max(∗
) =

̃
𝑒 ≤ 𝑒 ≤ 𝑒 = min(∗) which is still guaranteed to always bound the

healthy 𝑒. A formal proof of the robustness of 𝑒 and
̃
𝑒 is provided in

Theorem 2.

Remark 4. In the edge case where 𝑒meas(𝑡𝑚−1) = 0, we consider
𝑒meas(𝑡𝑚−1) = −𝑒meas(𝑡𝑚−2) in determining which case to use in Eq. (9).
Furthermore 𝑒(𝑡0) and

̃
𝑒(𝑡0) are fully defined by the static bounds

n Eq. (7).

.3. Fault detection logic

Ideally, one would like to directly use these bounds as thresholds on
to detect faults, i.e. a fault is detected if

̃
𝑒 ≤ 𝑒 ≤ 𝑒 is violated. However,

his is not possible because only 𝑒meas is known to the detector, and not
𝑒 itself. Therefore, instead, the bounds are compared to each other for
detection such that a fault is detected if

̃
𝑒(𝑡𝑚) > 𝑒(𝑡𝑚) (10)

is satisfied. This detection condition can be monitored at any 𝑡𝑚.

Remark 5. The SMO based fault detection method proposed in this
paper is distinctly different from traditional fault detection methods

1 The bounds defined in (8) are proven to hold by Theorem 1.1 and 1.2
5

𝑒

such as set based methods or those based on interval observers. These
methods derive detectability from having a sufficiently large state
estimation error. The method presented here, however, does not require
the state estimation error to increase. Instead the detection condition
in Eq. (10) only depends on two bounds, which will become conflicting
for sufficiently large faults. Furthermore, the inherent capability of the
SMO to simultaneously estimate the state and fault has the potential
to be used in future work on identification and accommodation of the
fault.

4. Theoretical analysis of robustness and detectability

In this section robustness and detectability guarantees of the pro-
posed detection method are presented. To this end we need to define
{𝑡𝑠𝑖} as the times at which 𝑒meas changes sign. This is visualized in
Fig. 2. Using this notation, first it will be proven that it is guaranteed
that there is no false detection. Then sufficient conditions on the fault
will be presented for which detection is guaranteed. The detectability
proof is split into two parts. Firstly in Lemma 1 it is proven that some
conditions on �̇� allow us to guarantee detection within a specified time.

hen in Theorem 3 it is shown that the conditions in Lemma 1 can
e achieved by sufficiently large faults. Furthermore, note that both
emma 1 and Theorem 3 contain two conditions which address positive
nd negative faults respectively.

To increase readability the proofs of Theorem 2 and Lemma 1 are
resented in Appendices C and D respectively.

heorem 2 (Robustness). In healthy conditions, i.e. for 𝑡 < 𝑇𝑓 , the
detection criterion (10) will not be satisfied at time 𝑡.

Lemma 1 (Detectability). If

̇0 > −�̇�+𝑖+𝑗 + 𝜖+ and ̄̇𝑒0 < �̇�−𝑖+𝑗 − 𝜖+ for the period
[

𝑡𝑠2𝑖 𝑡𝑠2𝑖+2𝑁
]

with 𝜖+ > 0.

hen, detection is guaranteed to occur before 𝑡𝑠2𝑖+2𝑁 if

−1
∑

𝑗=0
𝑡+𝑖+𝑗 >

2(𝑒0 − 𝑒0 − |𝑒meas|)

𝜙(�̇�0 + ̄̇𝑒0)𝜖+

where 𝜙 ≤ 1
�̇�−𝑖+𝑗

∀𝑖, 𝑗. Likewise if

̄̇0 < −�̇�+𝑖+𝑗 − 𝜖− and �̇�0 > �̇�−𝑖+𝑗 + 𝜖− for the period
[

𝑡𝑠2𝑖 𝑡𝑠2𝑖+2𝑁
]

with 𝜖− > 0.

hen, detection is guaranteed to occur before 𝑡𝑠2𝑖+2𝑁 if

−1
∑

𝑗=0
𝑡+𝑖+𝑗 >

2(𝑒0 − 𝑒0 − |𝑒meas|)

𝜙(�̇�0 + ̄̇𝑒0)𝜖−

where 𝜙 ≤ 1
�̇�−𝑖+𝑗

∀𝑖, 𝑗.

Theorem 3 (Detectability). There exist a 𝜏 such that the detection Condi-
tion (10) is guaranteed to be satisfied if 𝐹 > ̄̇𝑒0− �̇�0+𝜖+ or 𝐹 < �̇�0− ̄̇𝑒0−𝜖−

or a duration longer than 𝜏.

roof. In Lemma 1 conditions on �̇�+ and �̇�− are presented such that
etection occurs within a duration 𝜏 = 𝑡𝑠2𝑖+2𝑁 − 𝑡𝑠2𝑖 . Here 𝑁 is implicitly

defined in Lemma 1. In this proof it thus remains to be shown that
the conditions on �̇�+𝑖+𝑗 and �̇�−𝑖+𝑗 from Lemma 1 hold for any fault 𝐹 >
̄̇0 − �̇�0 + 𝜖+ or 𝐹 < �̇�0 − ̄̇𝑒0 − 𝜖−.

If 𝐹 > ̄̇𝑒0 − �̇�0 + 𝜖+, using the bounds from Theorem 1, we can write

̇+ = − ̄̇𝑒0 + 𝐹 > − ̄̇𝑒0 + ̄̇𝑒0 − �̇�0 + 𝜖+ = −�̇�0 + 𝜖+ ,

�̇�− = �̇�0 + 𝐹 > �̇�0 + ̄̇𝑒0 − �̇�0 + 𝜖+ = ̄̇𝑒0 + 𝜖+ ,

Similarly if 𝐹 < �̇�0 − ̄̇𝑒0 − 𝜖−, we can write

̄+ ̄0 − ̄− 0 − 𝜖−
̇ < −�̇� − 𝜖 and �̇� < �̇�
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Fig. 3. Simulink Model for OFC Benchmark.
This proves that the conditions on 𝐹 presented in this theorem are
sufficient conditions for the conditions on �̇�+𝑖+𝑗 and �̇�−𝑖+𝑗 from Lemma 1,
and thus also sufficient conditions for detection. □

Remark 6. From the analysis in this section it can be seen that
robustness of the detector is guaranteed. Therefore, there is no trade-off
between robustness and detectability as is common in fault detection
literature. In Lemma 1 and Theorem 3 one can however see that the
fault magnitude and time required for detection are dependent on the
bounds on the observer error dynamics 𝑒 as presented in Theorem 1.
Therefore, detectability can be influenced by the design parameters of
the observer.

5. Simulation study

In this section, the robustness and detection performance of the
proposed OFC detection scheme is demonstrated through exhaustive
Monte Carlo simulations within the industrial benchmark for OFC
detection developed by Airbus and Stellenbosch University. To this
end, first the benchmark simulation will be introduced, followed by the
analysis of results obtained through Monte Carlo simulations.

5.1. Industrial OFC benchmark

The OFC detection scheme was tested in simulation using a Simulink
model that was developed by Airbus and Stellenbosch University for
the Aerospace Industrial Benchmark on Fault Detection competition at
the 21st IFAC World Congress. The Simulink model is a high-fidelity
model of a control loop for a specific flight phase, namely the cruise
phase, and for a given flight point. It allows for generating the control
surface position corresponding to a given flight path angle or load
factor command. It also allows the injection of OFCs originating from
the rod position measurement or the current commanded by the FCC,
at different frequencies and for a given amplitude. A top-level diagram
of the Simulink model is shown in Fig. 3.

The Simulink model consists of the following functional blocks:
The real servo actuator with the option to inject an OFC, the aircraft
longitudinal dynamics with turbulence, the load factor controller, the
flight path angle controller, and the OFC detection scheme.

The real servo actuator block implements the model in Eq. (1) that
describes the motion of the servo actuator in response to a control
surface deflection command, and also allows an OFC to be injected. The
6

Table 2
Observer gains and nominal model parameters.

Parameter Value [Unit] Parameter Value [Unit]

𝜂 0.1 [−] 𝛥𝑃𝑁 28 [N∕mm2]
𝐾𝐿 −1 [s−1] 𝑘𝑑𝑁 5.5 [n s2∕mm2]
𝛾 |0.07 d2𝑝ref

d𝑡2 | 𝑘aero𝑁
650 [N∕deg]

aircraft longitudinal dynamics block models the longitudinal motion
of the aircraft in response to the elevator control surface deflection,
including the effect of external wind turbulence. The wind turbulence
is modelled using a Von Karman Wind Turbulence Model from the
Simulink Aerospace Blockset. The load factor controller block controls
the load factor of the aircraft by commanding the elevator control
surface deflection using the measured load factor and measured pitch
rate of the aircraft as feedback. The flight path angle controller block
controls the flight path angle of the aircraft to maintain level flight by
commanding the load factor using the measured flight path angle as
feedback. The OFC detection scheme block implements the SMO-based
approach described in Section 3.

5.2. Detector performance analysis through Monte Carlo simulation

Extensive Monte Carlo simulations were performed using this bench-
mark model and the parameters in Table 1. Furthermore, the observer
gains have been chosen as in Table 2. The nominal model parameters
and their uncertainties have been identified based on extensive flight
test data from the considered actuator. Note that the nominal model
parameters are not in the middle of their respective uncertainty ranges.
Instead, they are chosen as the expected value of the probability
distribution over the uncertainty range. Furthermore, the detection
performance is not very sensitive to observer gains 𝜂 and 𝐾𝐿. However,
in general higher gains provide faster detection, at the cost of increasing
the minimum fault magnitude that can be detected.

Simulations have been performed while injecting faults in the com-
manded current and rod position sensor as described in Section 2.2.
Detection performance is shown for the full range of considered fault
frequencies, amplitudes, and fault types.

The results of the Monte Carlo simulations are shown in Figs. 4
and 6 for all considered fault types. These results are obtained by
performing 200 simulations for each combination of fault frequency



Control Engineering Practice 141 (2023) 105719T. Keijzer et al.
Fig. 4. Performance of the presented SMO-based detection method for detection of faults in the rod position sensor.
Fig. 5. Performance of the detection method from Goupil (2010) for detection of faults in the rod position sensor.
and amplitude, with different uncertainties. For each simulation in-
stance the uncertain parameters 𝛥𝑃 , 𝑘𝑑 , 𝑘aero, and 𝛤 are drawn from
a uniform distribution within the possible set defined in Assump-
tion 1. Furthermore, excitation of the system is obtained through 𝑝ref,
which is calculated by using the load factor control in flight path
mode performing a stabilization task under four different turbulence
conditions.

Recall that the objective of the detection scheme is to detect an
OFC within a specified maximum number of oscillations, while having
no false detection. This detection objective derives from the additional
loads caused by the OFC if it remains unmitigated for more than
this number of oscillations. The specific number of oscillations that is
allowed before the structural loads occur depends on many factors, such
as the type of control surface and the aircraft model. To show the broad
applicability of the method, in Figs. 4 and 6 the contours show the
regions for which detection always occurs within 1, 3, and 10 oscil-
lations. Furthermore, the background colour shows the percentage of
missed detections, which is defined as no detection within 3 oscillations
of the fault. Note that the choice to show results for detection within
1, 3, and 10 oscillations has been made as an example as they span
a realistic range of potential detection requirements, but they do not
reflect the actual requirement for the considered actuator.

From the contours in Figs. 4 and 6 it can be seen that for all
fault types, faults with a sufficiently large amplitude can be consis-
tently detected within any specified maximum number of oscillations.
This shows that the detection objective can be achieved for all fault
types and frequencies. Furthermore, during the 96,000 simulations
performed to obtain the Monte Carlo results, no false alarms were
recorded, demonstrating the robustness of the detection scheme.
7

Furthermore, it can be seen that the fault amplitude required for
consistent detection increases approximately linearly with fault fre-
quency. This finding is supported by theory through Theorem 3, where
it is proven that detection is guaranteed for sufficiently positive (or neg-
ative) faults which persist longer than 𝜏. For the considered zero-mean
liquid faults, this means detection guarantees for higher frequency
faults demand a larger amplitude. Lastly, it can be seen that the de-
tector consistently shows better detection performance for solid faults
than for liquid faults. Unlike liquid faults, solid faults are not zero-
mean. Therefore, we can once again invoke Theorem 3 to explain the
improved detection performance. The nonzero mean of the solid fault
will always cause an increase in either the duration for which the
oscillatory fault is positive or negative.

To get a feeling for the type of data from which the extensive Monte
Carlo results presented above are obtained, Fig. 8 shows simulation
results for a single realization of the uncertainty. Here, a liquid fault
in the commanded current with frequency 5 Hz and amplitude 1.5 mA
is introduced at 10 s under light turbulence conditions. Fig. 8(a) shows
the control surface deflection for the performed stabilization maneuver,
and the behaviour of the fault detection bounds 𝑒 and

̃
𝑒 is shown in

Fig. 8(b). One can see that for this realization of the uncertainty fault
detection occurs well within 0.1 [s].

Remark 7. It can be seen in Fig. 8(b) that after the first detection,
the detection decision is not maintained continuously. Specifically
detection only occurs around the times at which the oscillatory fault
peaks. As the presented detector has strong robustness guarantees even
a short period of detection is enough to guarantee the presence of a
fault, after which the detector latches and the actuator is considered
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Fig. 6. Performance of the presented SMO-based detection method for detection of faults in the commanded current.
Fig. 7. Performance of the detection method from Goupil (2010) for detection of faults in the commanded current.
Fig. 8. Example of behaviour of the actuator and fault detector under a fault in the commanded current. A fault with frequency of 5 Hz and amplitude of 1.5 mA occurs at 10 s.
faulty until inspection. Therefore, the time of first detection has been
used as performance indicator throughout this section. Furthermore,
the regularity of detection at the fault peaks can be used to obtain
some continuity in detection. This is, however, outside the scope of this
paper.

5.3. Comparison to industrial state of practice

In this section the performance of the proposed SMO-based OFC
detector is compared to the current industrial state of practice as pub-
lished in Goupil (2010). In Goupil (2010) OFCs are detected based on a
8

scheme that is primarily based on oscillation counting, i.e. it counts the
oscillations of the residual and raises an alarm if sufficient oscillations
are counted within a sliding window. This oscillation counting OFC
detector is currently implemented on the A380.

To make the comparison, Monte Carlo simulations have been per-
formed using the oscillation counting OFC detector with the same set-
tings as used in Section 5.2. The obtained results using the oscillation
counting OFC detector for all fault types can be found in Figs. 5 and 7.

One can see that the OFC amplitude required for detection using
the oscillation counting detector sharply increases around a frequency
of 3 Hz for all fault types, while it is only slowly increasing over the
remainder of the frequency range. This sharp increase is due to the
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Table 3
Metrics describing the flight test data and corresponding detection bounds.
Data Duration 𝛿meas [deg] 𝑒 − 𝑒

∼
[mm]

set [min] Variance Range Range Median < 0

1 63 16.6 [−35.3, 35.1] [0.11, 0.74] 0.62 No
2 22 10.6 [−33.5, 24.3] [0.08, 0.74] 0.62 No
3 24 23.7 [−30.6, 26.1] [0.07, 0.74] 0.62 No
structure of the oscillation counting detector, which uses two detectors
for the frequencies above and below 3 Hz. This profile is distinctly
different than for the SMO-based detector, where the OFC amplitude
required for detection increases linearly. Furthermore, one can see that
the oscillation counting scheme cannot detect any fault consistently
within 1 oscillation.

Comparing the detection performance, one can see that the OFC
amplitude required for sufficiently fast detection with the oscillation
counting detector is comparable to the proposed SMO-based detector
for frequencies lower than 3 Hz. For frequencies higher than 3 Hz the
OFC amplitude required for sufficiently fast detection is two to three
times as large as with the proposed SMO-based detector. This means
that implementation of the proposed SMO-based detector provides for
better detection performance, allowing for the structural design to
consider a smaller class OFCs.

6. Experimental study

To bridge the gap between academic research and real practice,
measurements of the actuator behaviour have been obtained from
flight tests performed by Airbus. These measurements show the healthy
behaviour of the actuator in real flight and are utilized here to validate
Theorem 2, where it is proven the detection method is free of false
alarms. The verification of the robustness is a key step for the industrial
acceptance of the developed solution. In particular OFCs are very rare
events so the assessment of the probability to degrade the so-called
Mean Time Between Failure (MTBF) of flight control equipment is of
primary interest. The missed detection rate has been verified through
extensive simulations as presented in Section 5.

The obtained data corresponds to typical in-service sensor measure-
ments of a real commercial aircraft, with the sampling rate of typical
flight control computers. The provided data sets include the desired
control surface position (the command), generated by the Flight Control
Laws, as well as the measured control surface position. Three different
data sets have been delivered from different flight tests with the same
aircraft type. The first data set is of a flight lasting more than one hour
and starting with flight control checks on the ground, followed by many
dynamic maneuvers until the cruise phase. The second data set is a
complete but short flight, containing take-off and landing phases, in
which steady maneuvers as well as dynamic maneuvers are performed.
The third data set covers a highly dynamic flight phase. The evolution
of the control surface deflection for the first data set is shown in
Fig. 9(a). The other data sets are quantified in Table 3. One can see that
all data sets comprise a large range of possible deflections and contain
several highly dynamic flight phases.

The detection algorithm receives the pre-recorded flight data se-
quentially and calculates the thresholds and detection condition on-
line. The detector is applied with the parameters from Table 2. In
Fig. 9(b) the time-varying bounds on 𝑒 used for detection are shown
when applied to data set 1. An excerpt of a dynamic phase of the
flight is highlighted, where it can be seen that the bounds more
closely approach each other, but still no false detection occurs. To give
some more insight into the evolution of the detection bounds, Table 3
presents some properties of 𝑒 −

̃
𝑒 also for the other data-sets. One can

see that for all data sets 𝑒 −
̃
𝑒 comes close to 0, which is as expected

considering the dynamic flight phases in each data set. However, no
false alarm is triggered in any data set, which validates the robustness
9

of the detection scheme.
6.1. Computational complexity

Computational complexity is important to determine the real-time
applicability of the detection scheme on a commercial aircraft. There-
fore the number of scalar operations, such as lookup tables, addition,
multiplication, and logic operations, for each update of the detection
scheme are counted. One update of the detector requires 120 scalar
operations, of which 20 are used to update the SMO and the remaining
100 are used to construct the bounds on 𝑒 and perform detection.

7. Conclusion

We have introduced a Sliding Mode Observer (SMO) based detection
scheme for fast and reliable detection of oscillatory actuator failures in
commercial aircrafts. Strong guarantees on both robustness and detec-
tion of the OFCs are presented. The detection scheme is by construction
guaranteed to produce no false detection. Furthermore, the detection
scheme provides guarantees on the minimum OFC amplitude as a func-
tion of OFC frequency that can be reliably detected within a specific
maximum number of oscillation cycles of the fault. The maximum
undetected OFC amplitude per frequency is related to the additional
loads the OFC can cause and thus serves as an important input to
the aircraft structural design. The detection scheme was verified in
simulation and validated using real flight test data.

Monte-Carlo simulations were performed using a benchmark simu-
lation of the actuator developed by Airbus and Stellenbosch University.
The simulation results show that the detection scheme is able to con-
sistently detect OFCs within a specified maximum number of cycles
over the whole frequency range of 1–10 Hz, for both liquid and solid
failures, and that originate at either the servo current input or at the rod
position sensor. The OFC amplitude that can be consistently detected is
a function of the OFC frequency, and is smaller at low frequencies than
at high frequencies. Furthermore, no false detections were produced in
any of the simulations, which shows that the detection scheme is robust
to parameter uncertainty and external wind disturbances.

To validate the results obtained in simulation, the detection scheme
was also applied to healthy flight test data provided by Airbus. No
false detections were produced for any of the three different flight tests
data sets, including a flight test of over one hour. This shows that the
detection scheme is robust to practical parameter uncertainty, external
wind disturbances, and aircraft maneuvers.

Some appealing avenues have been identified for future works,
especially in view of a potential industrial use. First of all, an additional
and more exhaustive validation campaign would be required. This
comprehensive testing phase would allow to verify the robustness for a
wider set of uncertainties for non-average and extreme situations and
to verify the detection performances for additional configurations. This
could be done in a first step on a more representative simulator (very
high fidelity) and in a second step on real data. Another interesting
perspective concerns the fault detection logic which is currently based
on checking that the lower bound becomes greater than the upper
bound. A more performant decision making step exploiting the differ-
ence of bounds behaviour in the faulty and fault-free situation could
be investigated. Furthermore, the sliding mode observer (SMO)-based
detection method utilizes an SMO which can simultaneously estimate
the state and fault. This information that is inherently provided with
the detection method has the potential to be used for fault identifi-
cation and accommodation in the future. From the point of view of
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Fig. 9. Maneuvers and detector response during healthy behaviour of the performed flight test.
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implementing the proposed algorithm on a real time platform, with
limited CPU capacity, it would be interesting to study potential design
simplification in view of alleviating the corresponding computational
burden. The ultimate step would then be to code the proposed design
on an industrial platform with a state-of-the-art and certified coding
language for advanced tests on representative equipment (e.g. actuator
test bench and real aircraft).
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Appendix A. Healthy system bounds

The expression for 𝜃 in Eq. (4) can be expanded to
= max(| max

�̃�𝑑 ,𝛥𝑃 ,�̃�aero ,𝛤 ,𝜉𝛿 ,𝜉𝑝
(�̇�0) − �̇�model|, | min

�̃�𝑑 ,𝛥𝑃 ,�̃�aero ,𝛤 ,𝜉𝛿 ,𝜉𝑝
(�̇�0) − �̇�model|),

as �̇�model is not dependent on the uncertainties. In this way we only
require to derive the bounds on �̇�0 over all uncertainties to obtain 𝜃.
Based on Eq. (2) we will first derive bounds on 𝑉 0

𝑐 and 𝛿 based on the
uncertainty in the sensor noise. We will then use these bounds and the
bounds on the uncertain model parameters to bound �̇�0.

First note that the detector does not know 𝑝meas, but needs to derive
it from 𝛿meas using the relations in Eq. (1) as 𝑝meas = 𝑘−1𝑝 (𝛿meas−𝜉𝛿)+𝜉𝑝.
Using this relation and the definition of 𝑉 0

𝑐 from Eq. (2) we can write
𝑉 0

𝑐 ≤ 𝑉 0
𝑐 ≤ 𝑉 0

𝑐 where

𝑉 0
𝑐 = 𝑘𝑐 (𝐾(𝑝ref − (𝑘−1𝑝 (𝛿meas + 𝜉𝛿) − 𝜉𝑝))) ,

𝑉 0
𝑐 = 𝑘𝑐 (𝐾(𝑝ref − (𝑘−1𝑝 (𝛿meas − 𝜉𝛿) + 𝜉𝑝))) .

(A.1)

Furthermore, 𝛿 can be bound as

𝛿meas − 𝜉𝛿 = 𝛿 ≤ 𝛿 ≤ 𝛿 = 𝛿meas + 𝜉𝛿 . (A.2)

Now we will bound �̇�0, where we assume that all instances of 𝑉 0
𝑐

ppearing in Eq. (2) can be set independently to achieve the extremes.
his results in

max(�̇�0) ≤ 𝑉 0
𝑐

√

√

√

√

√

√

√

√

max
𝛥𝑃

(𝛥𝑃 ) + max
�̃�aero

(𝑘aero)max
𝛿,𝑉 0

𝑐

( 𝛿sgn(𝑉 0
𝑐 )

𝑆
)

𝛥𝑃ref + min
�̃�𝑑

(𝑘𝑑 )min
𝑉 0
𝑐

( 𝑉
0
𝑐
2

𝑆
)

+ max
𝛤

(𝛤 ) if 𝑉 0
𝑐 > 0

max(�̇�0) ≤ 𝑉 0
𝑐

√

√

√

√

√

√

√

√

min
𝛥𝑃

(𝛥𝑃 ) + min
�̃�aero

(𝑘aero)min
𝛿,𝑉 0

𝑐

( 𝛿sgn(𝑉 0
𝑐 )

𝑆
)

𝛥𝑃ref + max
�̃�𝑑

(𝑘𝑑 )max
𝑉 0
𝑐

( 𝑉
0
𝑐
2

𝑆
)

+ max
𝛤

(𝛤 ) if 𝑉 0
𝑐 ≤ 0
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(A.3) s
where max
𝛿,𝑉 0

𝑐

(𝛿sgn(𝑉 0
𝑐 )) and min

𝛿,𝑉 0
𝑐

(𝛿sgn(𝑉 0
𝑐 )) can be obtained by calculating

he expression for all four combinations of the extremes of 𝛿 and 𝑉 0
𝑐 .

astly, by Assumption 1, max𝛤 (𝛤 ) ≤ 𝛾.

ppendix B. Proof of Theorem 1

roof (Proposition 1). Recall that we consider the healthy behaviour
here 𝐹 = 0. With 𝐾𝑠 = 𝜃 + 𝜂 we can define 𝑉 = 𝑒2

2 such that

�̇� = �̇�𝑒 = 𝐾𝐿𝑒meas𝑒 + 𝛩𝑒 − (𝜃 + 𝜂)sgn(𝑒meas)𝑒 . (B.1)

ote that 𝑒 − 𝑒meas = 𝑝 − 𝑘−1𝑝 (𝛿meas) = 𝑝 − 𝑘−1𝑝 (𝑘𝑝(𝑝) + 𝜉𝛿), such that if
≥ max𝑝,𝜉𝛿 (𝑝−𝑘

−1
𝑝 (𝑘𝑝(𝑝)+𝜉𝛿)) ≥ 0 we have 𝑒meas ≥ 0 and we can simplify

q. (B.1) to

̇ ≤ (𝛩 − (𝜃 + 𝜂))𝑒 ≤ −𝜂𝑒 ≤ 0 (B.2)

here �̇� = 0 iff 𝑒 = 0 such that 𝑉 is a Lyapunov function under
ealthy behaviour if 𝑒 ≥ max𝑝,𝜉𝛿 (𝑝 − 𝑘−1𝑝 (𝑘𝑝(𝑝) + 𝜉𝛿)) = 𝑒0. In the same
ay it can be proven that 𝑉 is a Lyapunov function if 𝑒 ≤ min𝑝,𝜉𝛿 (𝑝 −
−1
𝑝 (𝑘𝑝(𝑝)+𝜉𝛿)) = 𝑒0 ≤ 0. This means that under healthy behaviour 𝑒 will

converge to a region around the origin where 𝑒0 ≤ 𝑒 ≤ 𝑒0. Furthermore,
by initializing �̂� as �̂� = 𝑘−1𝑝 (𝛿meas) we have 𝑒 = 𝑝 − 𝑘−1𝑝 (𝛿meas) =
− 𝑘−1𝑝 (𝑘𝑝(𝑝) + 𝜉𝛿). So the derived bounds 𝑒0 ≤ 𝑒 ≤ 𝑒0 hold also for

the initial condition and therefore the bounds hold for all time.
From Eq. (6), with 𝐹 = 0, one can derive ̄̇𝑒0 as

|�̇�| =|𝛩 +𝐾𝐿𝑒meas − (𝜃 + 𝜂)sgn(𝑒meas)| ≤ |𝛩| + |𝐾𝐿𝑒meas|

+ |(𝜃 + 𝜂)sgn(𝑒meas)|

≤ 𝜃 + |𝐾𝐿𝑒meas| + 𝜃 + 𝜂 = 2𝜃 + |𝐾𝐿𝑒meas| + 𝜂 = ̄̇𝑒0

or �̇�0 we consider first that 𝑒meas > 0, which by point 2 of this theorem
means �̇� < 0. Therefore

|�̇�| = − 𝛩 −𝐾𝐿𝑒meas + (𝜃 + 𝜂) ≥ −𝐾𝐿𝑒meas + 𝜂 = |𝐾𝐿𝑒meas| + 𝜂 = �̇�0 ,

where we use 𝐾𝐿 < 0 and 𝜃 ≥ |𝛩|. Then consider that 𝑒meas < 0, which
y point 2 of this theorem means �̇� > 0. Therefore

�̇�| =𝛩 +𝐾𝐿𝑒meas + (𝜃 + 𝜂) ≥ 𝐾𝐿𝑒meas + 𝜂 = |𝐾𝐿𝑒meas| + 𝜂 = �̇�0 ,

where we again use 𝐾𝐿 < 0 and 𝜃 ≥ |𝛩|. □

Proof (Proposition 2). From Eq. (6), with 𝐹 = 0, we have

sgn(�̇�) =sgn(𝛩 +𝐾𝐿𝑒meas − (𝜃 + 𝜂)sgn(𝑒meas))

= sgn((𝛩 − 𝜃sgn(𝑒meas)) +𝐾𝐿𝑒meas − 𝜂sgn(𝑒meas))

here using 𝜃 ≥ |𝛩|, 𝐾𝐿 < 0 and 𝜂 > 0 for each additive term
n the right-hand side it holds sgn(⋅) = −sgn(𝑒meas), such that also
gn(�̇�) = −sgn(𝑒 ). □
meas
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Proof (Proposition 3). First, consider 𝑒meas > 0, such that from Eq. (6)
we have

̇ =𝛩 + 𝐹 +𝐾𝐿𝑒meas − (𝜃 + 𝜂) ≤ 𝐾𝐿𝑒meas − 𝜂 + 𝐹 = ̄̇𝑒+ ,

�̇� =𝛩 + 𝐹 +𝐾𝐿𝑒meas − (𝜃 + 𝜂) ≥ −2𝜃 +𝐾𝐿𝑒meas − 𝜂 + 𝐹 = �̇�+ .

ere we used 𝜃 ≥ |𝛩|. Then consider 𝑒meas < 0, such that from Eq. (6)
we have

̇ =𝛩 + 𝐹 +𝐾𝐿𝑒meas + (𝜃 + 𝜂) ≤ 2𝜃 +𝐾𝐿𝑒meas + 𝜂 + 𝐹 = ̄̇𝑒− ,

�̇� =𝛩 + 𝐹 +𝐾𝐿𝑒meas + (𝜃 + 𝜂) ≥ 𝐾𝐿𝑒meas + 𝜂 + 𝐹 = �̇�− .

Here we again used 𝜃 ≥ |𝛩|. □

ppendix C. Proof of robustness

roof (Robustness). Define the sequence {𝑡𝑠𝑖} as the times where 𝑒meas
hanges sign, and without loss of generality, assume 𝑒meas becomes
ositive at every 𝑡𝑠2𝑖 . Now we can define �̇�+𝑖 as the average �̇� during
𝑡𝑠2𝑖 , 𝑡𝑠2𝑖+1

]

, and �̇�−𝑖 as the average �̇� during
[

𝑡𝑠2𝑖+1 , 𝑡𝑠2𝑖+2
]

. Furthermore
enote 𝑡+𝑖 = 𝑡𝑠2𝑖+1 − 𝑡𝑠2𝑖 and 𝑡−𝑖 = 𝑡𝑠2𝑖+2 − 𝑡𝑠2𝑖+1 . Note that superscript +

enotes that 𝑒meas is positive, which, by Theorem 1, means that �̇�+ < 0
in healthy conditions. Similarly, in healthy conditions, �̇�− > 0. Then, for
analysis purposes, rewrite the continuous dynamics of 𝑒2 from Eq. (6)
in a discrete form based on the switching times as

𝑒(𝑡𝑠2𝑖+2𝑁 ) = 𝑒(𝑡𝑠2𝑖 ) +
𝑁
∑

𝑗=0
𝑐𝑖+𝑗 ∀𝑁 ∈ Z ,

where 𝑐𝑖 ≜ 𝑡+𝑖 �̇�
+
𝑖 + 𝑡−𝑖 �̇�

−
𝑖 ,

where 𝑁 is a counter that indicates the result holds for all time. Here
𝑐𝑖 can be bounded in healthy conditions using Eq. (7) as

max(𝑒meas+𝑒0, 𝑒0)−𝑒(𝑡𝑠𝑖 ) ≤
𝑁
∑

𝑗=0
𝑐𝑖+𝑗 ≤ min(𝑒meas+𝑒0, 𝑒0)−𝑒(𝑡𝑠𝑖 ) ∀𝑁, 𝑖 ∈ Z .

(C.1)

Now, we will have a look at the dynamics of the bounds 𝑒 and
̃
𝑒

from Eq. (9). Without loss of generality, we will derive the dynamics of
𝑒 and

̃
𝑒 considering, individually, three situations that together describe

its full dynamics.

1. 𝑒 and
̃
𝑒 are fully determined by the integral bounds in Eq. (8).

2. 𝑒 or
̃
𝑒 is affected by the static bounds in Eq. (7).

3. 𝑒 and
̃
𝑒 are both affected by the static bounds in Eq. (7).

For case 1, just looking at the integral bounds in Eq. (8), we can write

𝑒(𝑡𝑠2𝑖+2 ) = 𝑒(𝑡𝑠2𝑖 ) − 𝑡+𝑖 �̇�
0 + 𝑡−𝑖 ̄̇𝑒0 . (C.2)

From the definition of 𝑐𝑖 it can be derived that 𝑡−𝑖
𝑡+𝑖

= 𝑐𝑖
𝑡+𝑖 �̇�

−
𝑖
−

�̇�+𝑖
�̇�−𝑖

, from
hich 𝑡−𝑖 can be substituted in Eq. (C.2) to obtain

̃(𝑡𝑠2𝑖+2 ) = 𝑒(𝑡𝑠2𝑖 ) −
𝑡+𝑖
�̇�−𝑖

( ̄̇𝑒0�̇�+𝑖 + �̇�0�̇�−𝑖 ) +
̄̇𝑒0

�̇�−𝑖
𝑐𝑖.

This can be extended for 𝑒(𝑡𝑠2𝑖+2𝑁 ) as

𝑒(𝑡𝑠2𝑖+2𝑁 ) = 𝑒(𝑡𝑠2𝑖 ) +
𝑁−1
∑

𝑗=0

(

−
𝑡+𝑖+𝑗
�̇�−𝑖+𝑗

( ̄̇𝑒0�̇�+𝑖+𝑗 + �̇�0�̇�−𝑖+𝑗 ) +
̄̇𝑒0

�̇�−𝑖+𝑗
𝑐𝑖+𝑗

)

. (C.3)

for any 𝑁 ∈ Z. Similarly for
̃
𝑒 we can derive

̃
𝑒(𝑡𝑠2𝑖+2𝑁 ) =

̃
𝑒(𝑡𝑠2𝑖 ) +

𝑁−1
∑

𝑗=0

(

−
𝑡+𝑖+𝑗
�̇�−𝑖+𝑗

(�̇�0�̇�+𝑖+𝑗 + ̄̇𝑒0�̇�−𝑖+𝑗 ) +
�̇�0

�̇�−𝑖+𝑗
𝑐𝑖+𝑗

)

. (C.4)

It can be seen that in healthy conditions, when �̇�0 ≤ �̇�−𝑖 ≤ ̄̇𝑒0 and
− ̄̇𝑒0 ≤ �̇�+ ≤ −�̇�0 for all 𝑖, then ( ̄̇𝑒0�̇�+ +�̇�0�̇�− ) ≤ 0 and (�̇�0�̇�+ + ̄̇𝑒0�̇�− ) ≥ 0.
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𝑖 𝑖+𝑗 𝑖+𝑗 𝑖+𝑗 𝑖+𝑗
Substituting this in Eqs. (C.3) and (C.4) the following inequalities can
be obtained.

𝑒(𝑡𝑠2𝑖+2𝑁 ) − 𝑒(𝑡𝑠2𝑖 ) ≥
𝑁−1
∑

𝑗=0

̄̇𝑒0

�̇�−𝑖+𝑗
𝑐𝑖+𝑗 ≥

𝑁−1
∑

𝑗=0
𝑐𝑖+𝑗 ,

̃
𝑒(𝑡𝑠2𝑖+2𝑁 ) −

̃
𝑒(𝑡𝑠2𝑖 ) ≤

𝑁−1
∑

𝑗=0

�̇�0

�̇�−𝑖+𝑗
𝑐𝑖+𝑗 ≤

𝑁−1
∑

𝑗=0
𝑐𝑖+𝑗 .

(C.5)

Subtracting these inequalities gives 𝑒(𝑡𝑠2𝑖+2𝑁 )−
̃
𝑒(𝑡𝑠2𝑖+2𝑁 ) ≥ 𝑒(𝑡𝑠2𝑖 )− ̃

𝑒(𝑡𝑠2𝑖 ).
This proves that in healthy conditions, considering only the integral
behaviour of case 1, the difference between 𝑒 and

̃
𝑒 is non-decreasing.

This only leaves to prove that in cases 2 and 3, the instantaneous
update causes 𝑒 >

̃
𝑒. In case 2, considering the lower bound is affected

by the static bounds in Eq. (7), we have
̃
𝑒(𝑡𝑠2𝑖+2𝑁 ) = max(𝑒meas + 𝑒0, 𝑒0).

Then using the first Equation in (C.5) we can write

𝑒(𝑡𝑠2𝑖+2𝑁 ) ≥ 𝑒(𝑡𝑠2𝑖 ) +
𝑁−1
∑

𝑗=0
𝑐𝑖+𝑗 ≥𝑒(𝑡𝑠2𝑖 ) + max(𝑒meas + 𝑒0, 𝑒0) − 𝑒(𝑡𝑠2𝑖 )

≥ max(𝑒meas + 𝑒0, 𝑒0) =
̃
𝑒(𝑡𝑠2𝑖+2𝑁 ) .

n case 3 𝑒 −
̃
𝑒 = 𝑒0 − 𝑒0 − |𝑒meas| ≥ 0. □

Appendix D. Proof of detectability

Proof (Lemma 1: Detectability). First, use �̇�0 > −�̇�+𝑖+𝑗 + 𝜖+ and ̄̇𝑒0 <
̇−𝑖+𝑗 − 𝜖+ ∀𝑖, 𝑗 to derive

0 = �̇�0 ̄̇𝑒0 − ̄̇𝑒0�̇�0 < �̇�0(�̇�−𝑖+𝑗 − 𝜖+) − ̄̇𝑒0(−�̇�+𝑖+𝑗 + 𝜖+)

−(�̇�0�̇�−𝑖+𝑗 + ̄̇𝑒0�̇�+𝑖+𝑗 ) < −(�̇�0 + ̄̇𝑒0)𝜖+ .

Then substitute this and 𝜙 ≤ 1
�̇�−𝑖+𝑗

∀𝑖, 𝑗 in Eq. (C.3) giving

𝑒(𝑡𝑠2𝑖+2𝑁 ) − 𝑒(𝑡𝑠2𝑖 ) ≤ −(�̇�0 + ̄̇𝑒0)𝜖+𝜙
𝑁−1
∑

𝑗=0
𝑡+𝑖+𝑗 +

𝑁−1
∑

𝑗=0

̄̇𝑒0

�̇�−𝑖+𝑗
𝑐𝑖+𝑗 .

Using the bound on 𝑐𝑖+𝑗 from Eq. (C.1), this gives

𝑒(𝑡𝑠2𝑖+2𝑁 ) < − (�̇�0 + ̄̇𝑒0)𝜖+𝜙
𝑁−1
∑

𝑗=0
𝑡+𝑖+𝑗 + min(𝑒meas + 𝑒0, 𝑒0) − 𝑒(𝑡𝑠𝑖 ) + 𝑒(𝑡𝑠2𝑖 )

≤ − (�̇�0 + ̄̇𝑒0)𝜖+𝜙
𝑁−1
∑

𝑗=0
𝑡+𝑖+𝑗 + 2min(𝑒meas + 𝑒0, 𝑒0)

− max(𝑒meas + 𝑒0, 𝑒0)

Meanwhile, always
̃
𝑒 ≥ max(𝑒meas + 𝑒0, 𝑒0), so

𝑒(𝑡𝑠2𝑖+2𝑁 ) −
̃
𝑒(𝑡𝑠2𝑖+2𝑁 ) < −(�̇�0 + ̄̇𝑒0)𝜖+𝜙

𝑁−1
∑

𝑗=0
𝑡+𝑖+𝑗 + 2min(𝑒meas + 𝑒0, 𝑒0)

− 2max(𝑒meas + 𝑒0, 𝑒0)

= −(�̇�0 + ̄̇𝑒0)𝜖+𝜙
𝑁−1
∑

𝑗=0
𝑡+𝑖+𝑗 + 2(𝑒0 − 𝑒0 − |𝑒meas|)

his means that 𝑒(𝑡𝑠2𝑖+2𝑁 ) <
̃
𝑒(𝑡𝑠2𝑖+2𝑁 ) if (�̇�0 + ̄̇𝑒0)𝜖+𝜙

∑𝑁−1
𝑗=0 𝑡+𝑖+𝑗 ≥ 2(𝑒0 −

𝑒0 − |𝑒meas|), or equivalently ∑𝑁−1
𝑗=0 𝑡+𝑖+𝑗 ≥

2(𝑒0−𝑒0−|𝑒meas|)
(�̇�0+ ̄̇𝑒0)𝜖+𝜙

.

Similarly we can obtain ∑𝑁−1
𝑗=0 𝑡+𝑖+𝑗 ≥

2(𝑒0−𝑒0−|𝑒meas|)
(�̇�0+ ̄̇𝑒0)𝜖−𝜙

using ̄̇𝑒0 < −�̇�+𝑖+𝑗−
− and �̇�0 > �̇�−𝑖+𝑗 + 𝜖−. To this end derive −(�̇�0�̇�+𝑖+𝑗 + ̄̇𝑒0�̇�−𝑖+𝑗 ) > (�̇�0 + ̄̇𝑒0)𝜖−

and substitute in Eq. (C.4). □
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