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A B S T R A C T   

Knowledge of the hierarchical organization of urban heavy truck flows is important for under-
standing the structure of urban freight system and underlying interactions dynamics, providing 
insights to assess and develop freight policies. The complexity and dynamic nature of urban 
freight system pose significant challenges in comprehensively capturing structured arrangement 
of heavy truck movements. In this paper, we uncover the hierarchical organization of urban heavy 
truck flows by using complex network theory. We use large-scale heavy truck GPS data and urban 
freight location point-of-interest (POI) data to construct urban heavy truck mobility networks, 
and detect their community structure. The empirical results suggest different sets of locations are 
closely linked to each other to form multiple clusters. By integrating the categories of locations, 
we reveal the cluster-specific industry concentration and industry-specific location roles, 
informing evidence-based policy formulation. To capture the interaction dynamics of locations, 
we develop a spatial network growth model that considers the spatial agglomeration of industrial 
clusters and interaction pattern of locations. The model provides a mathematical tool to simulate 
the formation process of real-world networks for logistics planning and management.   

1. Introduction 

Modern cities are supported by freight transport system, which guarantees the supply of household goods, industrial raw materials 
and construction materials (Li et al., 2017). Understanding the urban freight transport system provides insights for policymakers and 
business economists to assess and develop freight policies, which are of vital importance for improving the livability and sustainability 
of cities (Tavasszy and De Jong, 2013). The structure of urban freight transport system can be interpreted as the arrangement of 
functional freight locations (e.g., companies, supermarkets and logistics facilities) and their underlying spatial interactions represented 
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by freight vehicle flows (Rodrigue, 2020). Revealing the spatial layouts of freight locations and explaining the underlying interaction 
dynamics help us understand the structure of urban freight transport system. 

The spatial layouts of freight locations refer to the physical arrangement and distribution of facilities and areas involved in freight- 
related activities (Aljohani and Thompson, 2020). This includes the placement and organization of warehouses, distribution centers, 
terminals, ports, manufacturing plants and other nodes in the supply chain. In some cases, freight-related facilities exhibit clustering 
and concentration patterns (Cidell, 2010). This means that certain areas or regions tend to have a higher density of logistics hubs. In 
other cases, facilities may be strategically distributed across different regions or areas to cater to specific markets or reduce trans-
portation distances. The spatial layouts of freight locations reflect the physical structure of urban freight transport system, and this can 
be uncovered by analyzing the movements of freight vehicles. Freight vehicle flows indicate the interactions between freight facilities. 
By examining the hierarchical organization of freight vehicle flows, we can gain insights into the spatial relationships between 
different levels of facilities across global and regional scales, helping understand the connectivity and dependency of locations in urban 
freight transport system (Guo et al., 2023; Wang and Yan, 2023; Wang et al., 2023). 

The underlying interaction dynamics between locations refers to the dynamic processes and mechanisms through which locations 
interact with each other (Barthelemy, 2011). It encompasses the underlying factors and forces that drive the interactions between 
locations, such as supply and demand, transportation infrastructure and economic factors. Location interactions refer to the direct 
connections that occur between individual locations, and they are crucial for understanding and managing urban freight systems. The 
interaction dynamics of locations consider the broader system-level processes and relationships that influence the flow of goods, 
services and information between different locations within a freight network. Modeling the hierarchical organization of freight 
vehicle flows allows for a structured and systematic analysis of the interaction dynamics between locations. The understanding of the 
underlying interaction dynamics helps optimize the freight network, improve coordination and enhance the overall efficiency of 
freight-related activities (Ferrari, 2014, 2015; Nassar et al., 2023). 

Heavy trucks are an important component of urban freight vehicles, undertaking high-volume transport tasks between functional 
freight locations to establish their spatial interactions (Yang et al., 2022b; Zhao et al., 2020). In the big data era, massive heavy truck 
mobility data become available (Demissie and Kattan, 2022), providing the possibility to understand the structure of urban freight 
transport system from the perspective of complex networks (Bombelli et al., 2020; Cheng et al., 2022; Cheung et al., 2020; Ghanei 
et al., 2023). Uncovering and modeling the hierarchical organization of heavy truck flows can shed light on the distinguishing features, 
e.g., spatial agglomeration, of freight locations and the underlying interactions dynamics, providing supports for regulating urban 
freight transport system. 

In the last decades, the use of complex networks to reveal the urban structure by analyzing the hierarchical organization of in-
dividual movement flows has become widespread (Anda et al., 2021; Henry et al., 2022; Louail et al., 2015; Murali et al., 2016; 
Yildirimoglu and Kim, 2018). Most previous studies (Bassolas et al., 2019; Huang et al., 2018; Yildirimoglu and Kim, 2018) have 
devoted a great deal of efforts to reveal the urban population-related structure by using massive individual movement data. In terms of 
urban freight-related structure, previous studies are scarce and mostly focused on the spatial layouts of freight locations, while 
ignoring the more important aspect, i.e., underlying interactions between locations. With regard to modeling the hierarchical orga-
nization of individual movement flows, previous studies (Chen et al., 2022; Lancichinetti et al., 2008; Watts, 2004) have proposed 
various community-based evolving network models. These models aim to capture the dynamic nature of real-world networks and the 
evolving patterns of interactions between nodes. However, these models do not consider the spatial agglomeration of industrial 
clusters, which are characterized by the co-location of firms, suppliers, service providers and other supporting institutions within a 
particular region or locality (Cong and Zou, 2017; Mori and Smith, 2015). The spatial agglomeration of industrial clusters brings 
together related industries, promotes collaboration and facilitates economies of scale, and are widely observed in urban freight 
transport systems. Therefore, to gain a deeper understanding of the interaction dynamics of freight locations, a more realistic network 
model that considers the spatial agglomeration of industrial clusters needs to be developed. 

To fill in the previous gaps, in the paper, we use massive heavy truck GPS data to capture urban heavy truck flows between freight 
locations, and to construct empirical urban heavy truck mobility networks. We uncover the hierarchical organization of urban heavy 
truck flows by characterizing the community structure of networks. According to the empirical results, we analyze the spatial dis-
tribution of freight location clusters and the roles of individual freight locations, and further explore the cluster-specific industry 
concentration and industry-specific location roles. To explain the interaction dynamics of freight locations underlying the hierarchical 
organization of heavy truck flows, we develop a spatial network growth model considering both spatial agglomeration of industrial 
clusters and spatial interaction pattern of freight locations. Finally, we analyze the practical implications inspired by our model for 
regulating urban freight transport system, and discuss the potential applications in practice. 

Our study contributes to the literature are threefold. (1) We construct urban heavy truck mobility networks by massive movement 
flows and characterize the community structure of empirical networks. (2) We uncover the hierarchical organization of urban heavy 
truck flows across communities and nodes, and the cluster-specific industry concentration and industry-specific location roles. (3) We 
develop a community-based spatial network growth model to capture the interaction dynamics of freight locations, providing policy 
supports for regulating urban freight transport system. 

The remainder of this paper is organized as follows: Section 2 gives the literature review. Section 3 presents the collection and 
details of heavy truck GPS data and urban freight location POI data. Section 4 provides the methods of constructing urban heavy truck 
mobility networks, detecting and characterizing community structure, developing and validating the spatial network growth model. 
Section 5 describes the empirical and model results, and the policy implications inspired by the model. Section 6 at the end, offers 
concluding insights. 
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2. Literature review 

The past decade has witnessed a great deal of efforts into understanding the urban structure and underlying interaction dynamics 
by exploring the hierarchical organization of individual movement flows. The research provide insights into the functioning and 
organization of cities, enables the development of efficient transportation systems, helps address societal challenges and capitalizes on 
technological advancements (Chen et al., 2020). Multi-source individual movement datasets, such as mobile phone data (Bachir et al., 
2019; Yan et al., 2017), GPS data (Siripirote et al., 2020; Yang et al., 2022c), social network data (Sala et al., 2021) and smart card data 
(Xia et al., 2020), have been exploded due to the development of information technology. 

With regard to understanding the urban structure, previous studies (Bassolas et al., 2019; Chi et al., 2016; Huang et al., 2018; Liu 
et al., 2015; Saberi et al., 2017; Xia et al., 2020; Yildirimoglu and Kim, 2018; Zhang and Thill, 2017) have revealed various urban 
population-related structure at different scales from the perspective of complex network theory (Barthelemy, 2011). In terms of urban 
freight-related structure, previous studies were scarce and mostly focused on the relationships between transport nodes and networks 
and the regions in which they are situated (Cui et al., 2015). For example, Grobar (2008) reported that urban freight infrastructure 
nodes in the USA, such as ports, are often surrounded by low-income and minority-ethnic communities, with residents that are 
disproportionately exposed to health risks and noise. Similarly, some studies (Dablanc et al., 2013) found that ports, airports and inter- 
modal terminals that host trade-related activities tend to be concentrated within metropolitan areas. Warehousing and distribution 
facilities are often clustered around these terminals, or are located near each other at the urban periphery. Some studies (Jacobs et al., 
2011; Mullen and Marsden, 2015) also explored the links between urban transport nodes and regional development. In addition to the 
exploration of the spatial relationships between transport nodes and networks, previous studies have also focused on the distribution of 
location clusters, i.e., freight community structure. For example, Zheng et al. (2018) investigated the spatial clustering of ports and 
explored the optimal location of hub ports for various communities. Bai et al. (2023) identified overlapping community structures and 
key nodes in global liner shipping network to assess network resilience. Nguyen et al. (2020) found Chinese dry ports have strong 
community structure in the Belt and Road Initiatives. Besides, there are many previous studies (Kale et al., 2007; Krutein and 
Goodchild, 2022; Mesa-Arango and Ukkusuri, 2015; Ouyang et al., 2022; Zhang et al., 2019) that have explored freight-related 
community structures. 

These previous studies have improved our understanding of urban freight systems, however, most of them focused only on the 
spatial layouts of freight locations, while ignoring the more important aspect, i.e., underlying interactions between locations. In-depth 
studies on understanding urban freight transport system by integrating the interactions characterized by freight vehicle (especially 
heavy truck) flows between freight locations are still lacking. 

With regard to understanding the interaction dynamics of locations, the research aims to develop a community-based evolving 
network model to reproduce the hierarchical organization of individual movement flows, and to explain how urban structure is 
formed. A community-based evolving model refers to a computational framework that incorporates both community dynamics and 
spatial patterns to understand and predict the evolution of a system. This model combines elements of community detection, spatial 
analysis, and evolutionary dynamics to capture the interactions and transformations within a complex system over time (Fortunato, 
2010; Fortunato and Hric, 2016). Early studies mainly concentrated on the unweighted network models, and the most representative 
one is the Barabasi-Albert (BA) model (Barabasi and Albert, 1999). Subsequently, many network models (Barrat et al., 2004, 2005; 
Louf et al., 2013) have been proposed to reproduce and explain a variety of phenomena in real-world systems. However, these network 
models cannot capture the hierarchical organization (also well-known as communities) widely observed in many real-world systems 
(Fortunato, 2010). To this end, previous studies proposed various network models with community structure. A special class of models, 
so-called planted l -partition model (Condon and Karp, 2001), is quite popular in the past decades. The model partitions a graph in l 
communities with equal number of nodes each. The nodes of the same community are linked with a given probability, whereas the 
nodes of different communities are linked with another probability. Inspired by this, many other network models with community 
structure, such as Gaussian random model (Brandes et al., 2003), LFR model (Lancichinetti et al., 2008), relaxed caveman model 
(Watts, 2004) and embedded hierarchy model (Arenas et al., 2006), were proposed. Most of these models are used for generating 
benchmark graphs of community detection algorithms. however, they need to be refined to provide a better description of real-world 
networks with community structure. Accordingly, previous studies proposed a variety of community structured evolving network 
models (Kossinets and Watts, 2006; Li and Chen, 2006). These models were used to capture the community structure of many real- 
world networks, such as social networks (Hanaki et al., 2007; Kossinets and Watts, 2006), biological networks (Rives and Galitski, 
2003) and citation networks (Rosvall and Bergstrom, 2008), but were not specifically designed for transportation systems. Because 
these models did not consider the spatial relationships between nodes when characterizing the community structure, they may not 
fully capture the spatial dependencies and patterns that are inherent in transportation systems (Rodrigue, 2020). Recently, Chen et al. 
(2022) proposed two evolving network models with distance preferences, named MoncSid-N and MoncSid-E, which provide insights 
for explaining the effects of space on the formation of community structure. 

These previous models help us understand the dynamical mechanisms of many real-world systems, but they cannot be applied to 
capture the interaction dynamics of freight locations, because they do not consider the spatial agglomeration of industrial clusters 
observed in urban freight transport systems (Wu et al., 2022). companies of specialized industries tend to concentrate within small 
geographical areas, forming industry clusters based on factors like raw materials, markets, and transport costs (Shakib, 2020; Wu et al., 
2022). Companies within the same industry cluster play similar roles in the urban freight transport system, leading to shared business 
partnerships and specific interaction patterns. However, previous network models fail to explain the interaction dynamics of freight 
locations associated with this phenomenon. Therefore, it is crucial to develop a community-based spatial evolving model that con-
siders the spatial agglomeration of industrial clusters to better understand and explain the interaction dynamics of freight locations. 

Y. Yang et al.                                                                                                                                                                                                           
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This study explores the urban freight-related structure by integrating the interactions between locations characterized by large- 
scale heavy truck flows. We reveal the spatial layout and industry-related interactions between locations by uncovering the hierar-
chical organization of urban heavy truck flows. We develop a spatial network growth model that considers the spatial agglomeration of 
industrial clusters to explain the interaction dynamics underlying the urban freight-related structure. 

3. Data 

3.1. Heavy truck GPS data 

We capture urban heavy truck flows between freight locations by using massive heavy truck GPS data. Our heavy truck GPS data 
are from the China Road Freight Supervision and Service Platform (https://www.gghypt.net/). This platform is used to record the real- 
time geographic locations of all heavy trucks with a load exceeding 12 tons in China and monitor their traffic violations (speeding, 
fatigue driving, etc.). We obtain the GPS trajectories of 2.6 million heavy trucks over the period from May 18, 2018 to May 31, 2018. 
The attributes of the GPS data include truck ID, timestamp, longitude, latitude, speed and direction angle. The number of records is 
greater than 41 billion. 

Raw GPS data often contains erroneous and redundant information, such as data jumps and drifts caused by factors like GPS signal 
reflection or obstruction in urban areas (Demissie and Kattan, 2022) These issues can compromise the quality and reliability of the 
data, particularly in scenarios like tunnels where GPS signal loss is prevalent. To ensure the integrity of the data, we employ data 
preprocessing techniques that specifically address three main types of abnormal data: duplicate or missing data, unreasonable data, 
and data jumps. In dealing with duplicate or missing data, we adopt a straightforward approach of removing corresponding GPS 
records. This step helps maintain the authenticity and validity of the data by eliminating any redundant or incomplete observations. 
Additionally, we identify and eliminate unreasonable data points, such as GPS points located outside national borders, as they are 
unlikely to represent valid movement patterns or locations. To detect and handle data jumps, we calculate the average speed and 
acceleration between successive GPS points and compare them against predefined maximum threshold values (e.g., 120 km/h for 
speed and 5 m/s2 for acceleration). If the calculated average speed or acceleration exceeds these thresholds, indicating a significant 
deviation from normal movement, we consider it a data jump and remove the corresponding GPS records. 

3.2. Freight location POI data 

We use freight location POI data to construct urban heavy truck mobility networks. We use the application programming interface 
(API) of Amap (https://lbs.amap.com) to crawl freight location POIs in each city. In the Amap application, developers store POIs in a 
hierarchical format by industry categories. According to the correlation between POIs and heavy truck freight activities (Amer and 
Chow, 2017; Dernir et al., 2014), we choose four base categories of POIs, including enterprises, shopping, daily life service and 
transportation service. First, the category of enterprises involves manufacturing, distribution and other industries that are significant 
generators and recipients of freight flows. They often serve as origins or destinations for goods, and their spatial distribution has a 
direct impact on urban freight patterns (Pamucar et al., 2022). Second, the category of shopping involves markets and stores that 
attract a substantial amount of freight traffic due to their role in the distribution and sale of goods. These locations serve as key nodes to 
connect suppliers and customers (Lim et al., 2019). Third, the category of daily life service involves logistics facilities that play a crucial 
role in the handling, consolidation, and distribution of goods within urban areas. These facilities act as intermediate points within the 
freight transport systems, facilitating the transfer of goods (de Oliveira et al., 2022). Fourth, the category of transportation service 
involves transshipment terminals that facilitate the consolidation, sorting and redistribution of freight (Mohammed et al., 2023). The 
four selected categories involve different stakeholders, including manufacturers, distributors, retailers and transportation service 
providers, across the urban supply chains, and thus have sufficient representativeness of urban freight networks. 

The subcategories under the base category of enterprises include advertisement & decoration company, construction company, 
medical company, machinery & electronics company, chemical & metallurgy company, network science & technology company, 

Fig. 1. Geographic distributions of four categories of POIs in four cities.  
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commercial trade company, telecommunication company, mining company and factory. The subcategories under the base category of 
shopping include shopping plaza, convenience store, sports store, clothing store, franchise store, home electronics hypermarket, 
personal care items shop, supermarket, plants & pet market, home building materials market, comprehensive market, stationary store 
and special trade house. The subcategories under the base category of daily life service include logistics service, logistics warehouse 
space. The subcategories under the base category of transportation service include airport related location, railway station, port & 
marina and border crossing location. The record of each POI provides its name, geographic location and category. The geographic 
distributions of four base categories of POIs in four case cities are shown in Fig. 1. The results show that freight-related companies tend 
to be located on the suburbs of cities, while shopping and logistics nodes tend to be located in city centers. Freight terminals are the 
least numerous and are more evenly distributed across the city. 

4. Method 

4.1. Construction of urban heavy truck mobility networks 

In the paper, we first construct urban heavy truck mobility networks, and then uncover the hierarchical organization of urban 
heavy truck flows from the perspectives of complex networks (Barthelemy, 2011). We construct urban heavy truck mobility networks 
by using heavy truck GPS data and freight location POI data, as shown in Fig. 2. To begin with, we use a recent trip origin–destination 
(OD) identification algorithm (Yang et al., 2022b) to extract freight trips of each heavy truck from its GPS trajectory (see Fig. 2a-b). In 
this OD identification algorithm, a speed threshold is first determined by analyzing the truck speed distribution characteristics to 
identify truck stops from GPS data, and then the multilevel time thresholds are determined by using a nonparametric iterative method 
to dynamically identify trip ODs from all stops of a truck. For each identified trip origin or destination, freight-related POIs and urban 
road networks are used to determine whether it is a real trip end to ensure algorithmic accuracy. Next, we can obtain the heavy truck 
flows, i.e., the integration of heavy truck trips, between each pair of freight locations (see Fig. 2c). The volume of heavy truck flows, i. 
e., the number of heavy truck trips, between each pair of freight locations indicates the spatial interaction strength between them, as 
shown in Fig. 2d. Finally, we construct urban heavy truck mobility networks by integrating the heavy truck flows between all pairs of 
freight locations (see Fig. 2e). 

Urban heavy truck mobility networks are weighted undirected networks G(N,E,W), where N is the set of nodes represented by 
freight locations, and their geographical coordinates are given by latitude and longitude. E is the set of links represented by spatial 
interactions between freight locations and W is the set of link weights represented by interaction strengths, i.e., truck flows, between 
freight locations. 

4.2. Community detection and characterization 

4.2.1. Community detection method 
We use the Infomap (Rosvall and Bergstrom, 2008) method to detect the communities of urban heavy truck mobility networks, and 

uncover the hierarchical organization of urban heavy truck flows by characterizing the community structure. Infomap is one of the 
most popular community detection method: it uses the probability flow of random walks on a network as a proxy for information flows 

Fig. 2. Network construction by using heavy truck GPS trajectory data and urban freight location point-of-interest data. We first extract heavy truck 
trips (panel b) from GPS trajectories (panel a) by using trip ends identification method, and then obtain the heavy truck flows (panel c) and spatial 
interactions (panel d) between freight locations. e Constructing network by integrating spatial interactions of all freight location pairs. The network 
nodes and links are represented by freight locations and spatial interactions between them. Line width in the panel indicates interaction strength. 
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in the real system and decompose the network into communities by compressing a description of the probability flow. In the previous 
empirical comparisons of algorithms to find communities (Lancichinetti and Fortunato, 2011), Infomap showcased remarkable ad-
vantages in accuracy and computational performance, and is applicable to large-scale networks. The Infomap method, originally 
designed for unweighted networks, has also been extended to handle weighted networks (Rosvall and Bergstrom, 2008). In the case of 
weighted networks, the algorithm takes into account both the topology of the network (connections between nodes) and the weights 
associated with those connections. To detect the community structure of urban heavy truck mobility networks, we construct a tran-
sition probability matrix that describes the probability of moving from one node to another. These probabilities are positively 
correlated with the weights of connections. Next, imagine a random walker moving on the network. At each step, the walker transitions 
from one node to another based on the transition probabilities in the matrix. The goal is to find a partition that minimizes the expected 
description length of the walker’s movements. The algorithm iteratively optimizes the description length by trying different partitions 
and evaluating their quality. Once the algorithm converges, the resulting partition provides information about the detected 
communities. 

Community structure is the organization of nodes in communities, with many links joining nodes of the same community and 
comparatively few links joining nodes of different communities (Fortunato, 2010). In urban heavy truck mobility networks, the result 
of community detection is the set of partition C = (C1,C2,⋯,Cm) with m communities, where each community C is the set that 
contains the nodes in this community. Fig. 3 shows the illustrations of detected community structure of heavy truck mobility networks 
of four cities. 

4.2.2. Community characterization metrics 
We characterize the detected community structure of urban heavy truck mobility networks by using complex network metrics 

(Fortunato and Hric, 2016). We aim to uncover hierarchical organization of heavy truck flows at the levels of community and node, 
and to understand the spatial distribution of freight location clusters and the roles of individual freight locations. 

With regard to community-level metrics, we use metrics include: modularity Q, global Moran’s I GMI, community internal strength 
wint

C , community external strength wext
C , centrality index ΘC, cost ϕc, weighted conductance Cw,C. We use modularity Q (Newman, 2004; 

Newman and Girvan, 2004) as a quality function to estimate the quality of a partition of the network in communities. Next, we 
elaborate each measure. 

The modularity Q is given by 

Q =
1

2W
∑

ij

(
wij −

sisj

2W

)
δ(G i,G j) (1)  

where W is the sum of the weights of all links, wij is the weight of link E(i, j), si is the strength of node i. Node strength si is defined as the 
sum of the weights of all the edges connected to a node, i.e., si =

∑
j∈Γ(i)wij, where Γ(i) is the neighbor nodes of node i. δ-function yields 

one if nodes i and j are in the same community (G i = G j), zero otherwise. The z-score of modularity is given by z = (Q − 〈Q〉NM)/σNM
Q , 

where 〈Q〉NM and σNM
Q are average and standard deviation of modularity of many realizations of the null model, obtained from the 

original graph by randomly rewiring its links. If z ≫ 1, network has strong community structure. 
We use global Moran’s I GMI (Moran, 1950) to measure the spatial concentration of freight locations in the same community. The 

global Moran’s I is a measure of the overall clustering of the spatial data. For a network with N nodes, GMI exceeds − 1/(N − 1) and z- 
score of GMI greater than 1 indicate positive spatial autocorrelation. Community internal strength wint

C is the sum of weights of links 
connecting nodes in community C, given by wint

C =
∑

i,j∈Cwij. Community external strength wext
C is the sum of weights of links con-

necting nodes in community C and the nodes in other communities, given by wext
C =

∑
i∈C,j∕∈Cwij. 

Centrality index ΘC (Moraes Pereira et al., 2013) is used to measure the concentration of heavy truck flows among the freight 
locations in a community, given by 

ΘC = HC • PC (2) 

Fig. 3. Results of community detection for heavy truck mobility networks of four cities. The network nodes belong to the same community are 
marked in the same color. 

Y. Yang et al.                                                                                                                                                                                                           



Transportation Research Part E 179 (2023) 103318

7

Where HC is location coefficient, i.e., HC =
∑n

1|μi − 1/n|/2, in which n denotes the number of locations in the community C, μi denotes 
the ratio of strength of location i to the total strengths of all locations in community C. PC is normalized spatial separation index, i.e., 
PC = 1 − V/Vmax, in which V = S′ × D × S denotes the spatial separation index. S = (μ1, μ2, μ3⋯μn)

T is a column vector composed of μi, 
D is a distance matrix with elements dij representing the Euclidean distance between locations i and j. Centrality index ΘC is within the 
interval [0, 1], and the closer ΘC is to 1, the more significantly higher the heavy truck flows generated and attracted by few freight 
locations in community C. ΘC = 0 indicates the transportation demands of all freight locations in community C are equal. 

Cost ϕc is an important metric of spatial networks, given by 

ϕc = l T/l MST
T (3)  

where l T denotes the sum of length of the links between the freight locations in community C,l MST
T denotes the sum of length of the 

links of minimum spanning tree for the subgraph of community C. Weighted conductance Cw,C is defined by the ratio between the 
community external strength and internal strength: Cw,C = wext

C /wint
C . 

With regard to node-level metrics, we use metrics include: node degree ki, node internal strength wint
i , node external strength wext

i , 
weighted embeddedness ξw,i, weighted within-module degree Zw,i, weighted participation coefficient Pw,i. Next, we elaborate each 
node-level metric. Node degree ki is the sum of edges connected to node, given by ki =

∑
jAij. When i and j are connected, Aij = 1; and 

vice versa, Aij = 0. Node internal strength wint
i is the sum of weights of links connecting node i and the nodes in the same community C 

that node i is in, given by wint
i =

∑
j∈Cwij. Node external strength wext

i is given by wext
i =

∑
j∕∈Cwij. Weighted embeddedness ξw,i is the 

ratio between the internal strength and total strength of a node, given by ξw,i = wint
i /si. The larger ξw,i, the stronger the relationship 

Table 1 
Community characterization metrics and explanation.  

Metric Symbol Mathematical meanings Practical meanings Purposes 

Modularity Q The difference between observed weights of 
edges within communities to the expected 
weights in a random network. 

A higher value indicates a stronger 
community structure, with dense 
connections within communities and sparse 
connections between communities. 

Evaluating how well the 
locations in the network are 
organized into distinct 
communities. 

Global Moran’s I GMI Normalization of the covariance and 
variance of the observed edge weights and 
the spatial weights. 

A higher value indicates that spatially 
adjacent locations more tend to cluster in 
the same community. 

Quantifying the extent of 
spatial agglomeration of 
locations. 

Community 
internal 
strength 

wint
C Summing the weights of the edges that 

connect nodes within the same community. 
A higher value indicates that locations 
within the community have stronger and 
more frequent interactions with each other. 

Measuring the cohesion of 
locations within a community. 

Community 
external 
strength 

wext
C Summing the weights of the edges that 

connect nodes belonging to different 
communities. 

A higher value indicates stronger and more 
frequent interactions between nodes from 
different communities. 

Measuring the integration 
between different communities. 

Centrality index ΘC Multiplying the location coefficient and 
normalized spatial separation index. 

A higher value indicates a more significantly 
higher the heavy truck flows generated and 
attracted by few freight locations. 

Measuring the concentration of 
flows among the locations in a 
community. 

Cost ϕc Ratio of the sum of length of the links 
between the locations in a community to 
that of minimum spanning tree. 

A higher value indicates a relatively longer 
transportation routes within the community. 

Measuring the spatial 
organization and accessibility 
of a community. 

Weighted 
conductance 

Cw,C Ratio between the community external 
strength and internal strength. 

A higher value indicates that the community 
has more substantial interactions and 
exchanges with locations outside the 
community. 

Measuring the internal 
coherence of a community. 

Node degree ki The count of edges connected to a node. A higher value indicates that a location has 
more connections with other locations. 

Quantifying the connectivity of 
a node. 

Node strength si Summing up the weights of all the edges 
connected to a node 

A higher value indicates that a location has 
stronger interactions with other locations. 

Measuring the overall 
importance or influence of a 
node. 

Node internal 
strength 

wint
i Summing up the weights of all the edges 

that connect a node to other nodes within 
the same community. 

A higher value indicates that a location has a 
stronger internal connection within the 
community. 

Identifying the role played by a 
node 

Node external 
strength 

wext
i Summing up the weights of all the edges 

connecting a node to nodes outside its 
community 

A higher value indicates that a location has a 
stronger external connection with other 
communities. 

Identifying the role played by a 
node 

Weighted 
embeddedness 

ξw,i The ratio between the internal strength and 
total strength of a node 

A higher value indicates a larger proportion 
of node’s connections within its community 

Identifying the role played by a 
node 

Weighted within- 
module 
degree 

Zw,i Standardized node internal strength using 
mean and standard deviation 

A higher value indicates that a location is 
more tightly integrated into its community. 

Identifying the role played by a 
node 

Weighted 
participation 
coefficient 

Pw,i Summing the squares of the proportions of 
the weights of node’s connections to nodes 
in other communities, and then subtracting 
the sum from 1 

A higher value indicates that a location has 
connections with multiple communities and 
actively participates in their activities. 

Identifying the role played by a 
node  

Y. Yang et al.                                                                                                                                                                                                           



Transportation Research Part E 179 (2023) 103318

8

between node i and its community. Weighted within-module degree Zw,i (Guimera and Amaral, 2005) measures how ‘well-connected’ 
node i is to other nodes in the community, given by 

Zw,i =
wint

i − wint

σwint

(4)  

where wint
i is internal strength of node i, wint is the average of internal strengths over all the nodes in node i’s community, σwint is the 

standard deviation of wint . Weighted participation coefficient Pw,i (Guimera and Amaral, 2005) measures how ‘well-distributed’ the 
links of node i are among different communities, given by 

Pw,i = 1 −
∑m

c=1

(
Wic

si

)2

(5)  

where si is total strength of node i, Wic is the sum of weights of links of node i to nodes in community C. The weighted participation 
coefficient of a node is therefore close to 1 if its links are uniformly distributed among all the communities and 0 if all its links are 
within its own community. The larger Pw,i, the more likely the freight location i is to play the role of community connector. Table. 1 
shows the explanation of mathematical meanings, practical meanings and purposes of used metrics. 

4.3. Spatial network growth model 

In the previous section, we use a variety of community-level and node-level metrics to reveal the structural properties of the real 
heavy truck mobility networks. Here, we aim to develop a spatial network growth model that can capture the interaction dynamics of 
freight locations. The model serves as a mathematical tool of simulating the formation process of real-world networks for logistics 
planning and management. Compared to previous network models (Barrat et al., 2004, 2005), our model, as shown in Fig. 4, considers 
the spatial agglomeration of industrial clusters and spatial interaction pattern of freight locations, therefore, is more interpretable and 
realistic. 

Our model starts with an initial fully connected seed network containing N0 nodes, which are randomly selected from among the 
freight locations in city. Each link in this seed network is given a weight w0. For simplicity, we set N0 = 5 and w0 = 1 both to constants. 
At each step, we randomly select a point from the remaining urban freight locations as the new added node i. According to the recent 
empirical study on heavy truck mobility networks (Yang et al., 2022a), we initialize the degree ki of new node i from the distribution 
p(k) = a(k + Δk)− γe− k/kx , where a, γ and kx are the given parameters, and initialize the strength si of new node i by si = bkα

i , where b 
and α are also the given parameters. 

Next, new node i chooses its connecting nodes. In this process, we consider the spatial agglomeration of industrial clusters and 
spatial interaction pattern of freight locations. In urban freight transport system, a set of companies of specialized industries tend to 
concentrate within small geographical areas and form industry clusters, i.e., communities, in consideration of raw materials, markets 
and transport costs (Aljohani and Thompson, 2016; Shakib, 2020; Wu et al., 2022). To explain this phenomenon, the model considers 
location clustering interactions. The communities of the network are first detected by using Infomap method, and the community with 

Fig. 4. Model illustration. a Network obtained at previous time step. b Network growth. In the next time step, the communities of the current 
network are first detected, and the nodes belong to the same community are marked by the same color. The gray zone denotes the community G i 

that the new node i is in. The nodes in the sets I and O are chosen to be the potential connecting nodes of node i, as linked by dashed lines. The 
probability of each potential connecting node j being connected by new node i is Pij, in which Pradiation

ij is the interaction probability of radiation 
model, sij is total strength of nodes located in the circle of radius rij centred at new node i, as illustrated in the lower left corner. The number of nodes 
connected by new node i is equal to the initialized degree ki. c Network weight updates. The initialized strength si of new node i is proportionally 
distributed among the links departing from the node i according to the strengths of connected node Γ(i). 
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the shortest average distance from the nodes in it to the new node i is identified to be the community G i that the new node i is in, as 
shown in Fig. 4a-b. A distinguishing feature of industry clusters is that the companies in the same industry cluster tend to play similar 
roles in the urban freight transport system, manifesting themselves as shared business partners. To explain this phenomenon, the 
model assumes that the nodes (defined as in-community nodes) in community G i and the nodes (defined as out-of-community nodes) 
in other communities but have connections with community G i are chosen to be the potential connecting nodes of node i. The 
probability Pij of each potential connecting node j being connected by new node i is defined as 

Pij∝

⎧
⎨

⎩

ρ ⋅ Pradiation
ij

(1 − ρ) ⋅ Pradiation
ij

,
ifj ∈ I
ifj ∈ O (6)  

where I is in-community node set, O is out-of-community node set, ρ is embedding coefficient and Pradiation
ij is interaction probability of 

freight locations calculated by radiation model (Simini et al., 2012), given by 

Pradiation
ij =

sisj

(si + sij)(si + sj + sij)
(7)  

where si is the strength of node i, and sij is total strength of nodes located in the circle of radius rij centred at new node i (excluding the 
strength of node i and j) in the network at current step. The radiation model is a universal parameter-free spatial interaction model, 
widely used to analyze and predict the interactions between locations (Ren et al., 2014). The spatial interaction pattern of radiation 
model can be summarized as: freight locations tend to establish interactions with the closest and more competitive freight locations, in 
other words, the probability of interacting with a freight location is positively correlated with its competitiveness and negatively 
correlated to distance. In our model, the competitiveness of a freight location i is measured by its transportation demand, i.e., 
generated and attracted heavy truck flows (denoted by node strength si). The embedding coefficient ρ in eq. (6) controls the rela-
tionship between new node i and its community. The larger ρ, the more likely a freight location is to establish interactions within its 
industry cluster, otherwise the more significant it is to undertake the role of a connector between different industry clusters. When 
calculating the connection probability Pij between new node i and existing node j, the radius rij is identical to the spatial distance 
between them. A larger radius rij means the probability of establishing a connection between new node i and existing node j is lower. 
The embedding coefficient ρ is the given model parameter. New node i chooses its connecting nodes Γ(i) according to the probability in 
eq. (6), and the number of connected nodes is equal to the initialized degree ki of new node i. 

In the following, we determine the interaction strength, i.e., link weight, between new node i and each connected node j ∈ Γ(i). 
Model assumes that the interaction strength between two freight locations is proportional to their competitiveness measured by node 
strength in the network at current step, as shown in Fig. 4c. The weight wij of each new link E(i, j) is given by 

wij = si ⋅
sj

∑
k∈Γ(i)sk

(8)  

It is worth noting that the geographic location of this new node n added at the current time step is the same as the corresponding node 
in the real network, but the strength of this new node is randomly given according to the above pre-defined statistical distribution. The 
probabilities of potential connections are calculated by considering the strengths of the nodes in the current network. After establishing 
new edges, the strength of each existing node connected by the new node will be updated too. Therefore, as the network grows, the 
node strengths are changeable, reflecting the interaction dynamics. 

In the next step, another new node is added from the remaining urban freight location POIs, and the current network grows ac-
cording to the above process. This process will terminate until the number of nodes in the network reaches that of a real network. As the 
proposed spatial network growth model considers community structure and the spatial interaction pattern of radiation model, we refer 
to this model as the community-based radiation network model, i.e., CRN model. 

4.4. Model validation 

In the above, we develop the CRN model to explain the interaction dynamics of freight locations underlying the hierarchical or-
ganization of heavy truck flows. In this section, we describe how we validate the model by reproducing the community structure of 
empirical urban heavy truck mobility networks. 

The CRN model contains one key parameter, i.e., embedding coefficient ρ, that needs to be estimated before the model validation. 
We use a graph similarity-based method (Sala et al., 2010) to estimate model parameter to reproduce the community structure of 
empirical networks as best as possible. This method estimates the optimal parameter ρ* by maximising the similarity between model 
networks and the empirical network. The similarity of two networks is measured by the Canberra distance (Lance and Williams, 1966) 
between network attribute vectors. We construct the network attribute vector by using two node-level metrics, i.e., weighted 
embeddedness ξw,i and weighted participation coefficient Pw,i. In the model parameter estimation, we obtain multiple optional 
parameter values of parameter ρ at certain intervals. For each optional parameter value, we generate 100 realizations of CRN model to 
construct the attribute vector of model networks. The optional parameter value corresponding to the minimum Canberra distance 
between the attribute vectors of model networks and the empirical network is the estimated optimal parameters ρ*. 

For the real heavy truck mobility network of a city, we can obtain the corresponding model network generated by the CRN model 
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with the estimated parameters ρ*. The nodes in model network and in real network are identical. We use Infomap method to detect the 
community structure of model network and that of the real network. To validate the CRN model, we aim to examine whether the model 
network has similar community structure of the real network, as manifested in three aspects: (1) whether node pairs located in the 
same community in the real network also clustered in the same community in the model network; (2) whether the community spatial 
distribution characteristics of the model network match those of the real network; and (3) whether the roles played by nodes with 
different connectivity in the model network match those of the real network. For the first aspect, we use two similarity metrics, i.e., 
Wallace index WI (Wallace, 1983) and normalized mutual information NMI (Danon et al., 2005), to measure whether node pairs that 
are in the same community in the empirical network are also in the same community in the model network. Wallace index WI is a 
measure based on pair counting depend on the number of pairs of nodes which are classified in the same (different) communities in the 
two partitions of model network and real network. The normalized mutual information NMI is a measure based on information theory 
(MacKay, 2003). The idea is that, if two partitions are similar, one needs very little information to infer one partition given the other. 
Both WI and NMI range from 0 to 1, where 0 indicates complete dissimilarity (no shared node pairs between the communities) and 1 
indicates complete similarity (the communities have exactly the same set of node pairs). For the second aspect, we characterize the 
community spatial distribution of model network by using community-level metrics, and compare them with real results. For the third 
aspect, we characterize the roles played by nodes with different connectivity in model network by using node-level metrics, and 
compare them with real results. 

Furthermore, we use two benchmark models, i.e., space-constrained growth network model (SGN model) (Barrat et al., 2005) and 
Barrat-Barthelemy-Vespignani model (BBV model) (Barrat et al., 2004), to validate the advantages of the proposed CRN model. First, 
SGN model incorporates geographical attributes along with topological and weight (traffic) properties into the network growth 
process. SGN model is developed for simulate the growth of weighted spatial networks including transportation networks. This model 
considers the spatial interaction pattern between locations at the micro level, but not location clustering interactions at the meso level, 
which is incorporated in the CRN model. Second, BBV model is developed for simulating the growth of weighted networks by coupling 
topology and weight dynamics. This model does not consider either the geographical attributes or the location clustering interactions 
in the network growth process. We estimate the optimal parameters contained in the SGN model and BBV model respectively by using 
the data of real network of a city. Next, we use SGN model and BBV model with the estimated optimal parameters to simulate the 
network of a city and detect the communities of model network respectively. To evaluate the performance of CRN model, we compare 
the community structure of real network with that generated by CRN model and two benchmark models. 

5. Results 

5.1. Spatial distribution of freight location clusters 

First, the communities of urban heavy truck mobility networks are detected for four cities, i.e., Beijing, Tian, Hangzhou and 
Fuzhou, in China by using Infomap method (Rosvall and Bergstrom, 2008). The illustration of the detected communities for four cities 
is shown in Fig. 3. We first uncover the hierarchical organization of heavy truck flows by using community-level metrics (see Section 
4.2), and then to understand the spatial distribution of freight location clusters. 

The global characterization of detected communities of urban heavy truck mobility networks is shown in Table. 2. The network 
sizes vary across cities, but the networks of these cities have similar structure properties. The z-scores of modularity ZQ ≫ 1, indicate 
urban heavy truck mobility networks have community structure and different sets of freight locations are closely linked to each other 
to form multiple clusters, e.g., industrial clusters (Shakib, 2020). The global Moran’s I GMI > 0 and its z-score ZMI ≫ 1, indicate the 
spatial autocorrelation of freight locations, i.e., spatially adjacent freight locations tend to be in the same cluster. This phenomenon of 
spatial agglomeration of industrial clusters is led by factors such as raw materials, markets and transport cost, reflecting urban land use 
patterns and economic layouts. The results provide supports for formulating policies to better develop the urban agglomeration 
economies (de Bok and van Oort, 2011). Next, we calculate the internal strength wint

C and external strength wext
C of each community C, 

and the distributions of these two metrics with respect to community size nC are shown in Fig. 5. We can find that both community 
internal strength and external strength are positively correlated with community size. The larger an industry cluster is, the higher the 
heavy truck flows not only between the freight locations within this industry cluster, but also between this industry cluster and other 
industry clusters. The results indicate the hierarchical organization of heavy truck flows across communities with different sizes. 

We also calculate the centrality index ΘC of each community C, and obtain the distributions of this metric with respect to com-
munity size nC (see Fig. 6a-d). The positive correlation between ΘC and nC suggests that the larger an industry cluster is, the more 
heterogeneous are the heavy truck flows distributed within it, i.e., heavy truck flows generated and attracted by few freight locations in 

Table 2 
Global characterization of detected communities of heavy truck mobility networks of four cities in China. Number of network nodes N; number of 
network links E; number of communities NC; modularity Q; z-score of modularity ZQ; global Moran’s I GMI; z-score of global Moran’s I ZGMI .  

City N E NC Q ZQ GMI ZGMI 

Beijing 15,983 207,264 11  0.51 43  0.43 106 
Tianjin 10,697 216,724 12  0.47 30  0.65 142 
Hangzhou 10,611 160,718 13  0.42 51  0.51 104 
Fuzhou 3391 26,016 10  0.45 38  0.67 82  
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larger industry cluster are more significant. Moreover, we calculate the cost ϕc of each community C, and obtain the distributions of 
this metric with respect to community size nC (see Fig. 6e-h). We can find the costs of larger industry clusters are higher, suggesting the 
subgraphs of small industry clusters tend to be characterized with tree-like features and freight locations in larger industry clusters are 
more closely linked to each other. This also suggests the scale effects of larger industry clusters are more remarkable. Finally, we obtain 
the distributions of weighted conductance Cw,C with respect to community size nC (see Fig. 6i-l). The results indicate the larger an 
industry cluster is, the more concentrated heavy truck flows are within it, exhibiting relatively fewer interactions between it and other 
industry clusters. This can be explained by the fact that companies in larger industry clusters tend to form more established 
manufacturing supply chains, and therefore their interactions with the companies in other industry clusters are not prominent (Jote 
et al., 2013). 

The above analysis reveals the spatial distribution of freight location clusters. In the following, we explore the cluster-specific 
industry concentration by analyzing which categories of locations tend to be in the same community and how they interact each 
other. In urban heavy truck mobility networks, the nodes contain four categories of locations, i.e., enterprise locations, shopping 
locations, logistics location and terminal locations. We examine which categories of locations tend to be in the same community by 
applying a chi-squared test (Pearson, 1900), which enables us to analyze the observed frequencies of category co-occurrence within 
communities and compare them to the expected frequencies under the assumption of independence. If the observed co-occurrence 
frequency of a category pair significantly deviated from the expected frequency in a community, it indicates these two categories 
of locations tend to be grouped together in this community. To obtain the expected frequencies, we randomly shuffle the category 
labels of all nodes while keeping network structure unchanged, and calculate the co-occurrence frequencies of category pairs in each 
community as the expected frequencies. We apply the chi-squared test for all detected communities, and the test results of four typical 
communities in the network of Beijing are shown in Fig. 7a-d. We also apply the chi-squared test to uncover which categories of 
locations tend to interact directly, i.e., establishing connections, in a community, and the process is similar to the co-occurrence test. 
The direct interaction test results of selected four typical communities in the network of Beijing are shown in Fig. 7e-h. The results 
suggest that the spatial organization of different categories of locations varies across different communities. 

For the first community, we observe a notable co-location pattern within this community, where the categories of enterprises and 
shopping (markets and stores) tend to be grouped together (see Fig. 7a). This clustering suggests a shared proximity and potential 
interdependencies between these categories, implying a cohesive concentration of economic activities related to the movement and 
distribution of goods. The interaction test indicates that the locations categorized as shopping tend to exhibit direct interactions within 
this community (see Fig. 7e). This finding highlights the significance of shopping locations as important nodes for direct exchanges and 
transactions within this community. For the second community, we observe the tendency for the categories of companies and logistics 
to appear together in this community (see Fig. 7b), while the locations of logistics and terminals exhibit direct interactions (see Fig. 7f). 
Enterprises and logistics facilities have interdependent operations within the supply chains. By co-locating, companies can have direct 
access to logistics services and resources, leading to streamlined operations in this community. The direct interactions of logistics 
facilities and freight terminals enable efficiently managing the sorting, consolidation and transfer of goods to save transport costs. For 

Fig. 5. Community strength characteristics observed from empirical networks of four cities and reproduced by the proposed model. a-d Distribu-
tions of internal strength wint

C with respect to community size nC. The legend “real data” represents the distributions of the metrics of the real 
networks, and each point represents each detected community. The legend “model” represents those of the model networks. e-h Distributions of 
external strength wext

C with respect to nC. 
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the third community, the co-occurrence of shopping and logistics categories indicates a close physical proximity (see Fig. 7c), sug-
gesting the importance of logistics support for the efficient functioning of retail activities. Additionally, the direct interactions between 
logistics and enterprises (see Fig. 7g) highlight the collaboration and interdependence between logistics providers and businesses in 
managing transportation and distribution processes. For the fourth community, logistics holds a significant position within the 
community, acting as a connector between freight companies, markets and stores (see Fig. 7dh). 

Overall, these findings provide insights into the spatial organization, interdependencies and functional relationships among 
industry-related locations within each community. They highlight the importance of co-location, direct interactions and collaborative 
efforts in facilitating efficient and coordinated operations within the urban heavy truck mobility networks. 

5.2. The roles of individual freight locations 

In this section, we uncover the hierarchical organization of heavy truck flows by using node-level metrics (see Section 4.2), and to 
understand the roles of individual freight locations. We first calculate the internal strength wint

i and external strength wext
i of each node 

i, and the distributions of these two metrics with respect to node degree ki are shown in Fig. 8. We can find the positive correlations 
between these two metrics and ki, suggesting the hierarchical organization of heavy truck flows across freight locations with different 
connections. A freight location with high internal strength has many connections to other locations within the same community, 
indicating it is a major center of freight activity within its community. Similarly, a freight location with high external strength has 
many connections to locations outside of its community, indicating it serves as a major gateway for heavy truck flows to and from other 
communities. The freight locations with high both internal and external strength play a critical role in the movement of goods and 
materials, and are essential for the functioning of freight transport system. In addition, we can observe the variations in the slope of the 
distributions of these two metrics with respect to node degree across different cities, especially for big cities (e.g., Beijing) and small 
cities (e.g., Fuzhou). The higher slope of the distributions in a big city implies that there is a greater heterogeneity in the roles and 
influence of individual freight locations. High-connectivity nodes play a relatively more crucial role in terms of their internal and 

Fig. 6. Community spatial distribution characteristics observed from empirical networks of four cities and reproduced by the proposed model. a- 
d Distributions of centrality index ΘC with respect to community size nC. The legend “real data” represents the distributions of the metrics of the real 
networks, and each point represents each detected community. The legend “model” represents those of the model networks. e-h Distributions of cost 
ϕC with respect to nC. i-l Distributions of weighted conductance Cw,C with respect to nC. 
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external strength. The results also suggest that the big city may have a more efficient and structured transportation system to support 
the key economic hubs that generate and attract a massive volume of truck flows from different regions in the city. 

To further explore the roles of freight locations, we calculate the weighted embeddedness ξw,i, weighted within-module degree Zw,i 
and weighted participation coefficient Pw,i of each node i, and obtain the distributions of them with respect to ki (Fig. 9). We can find 
that the more connections a freight location has, the higher its weighted embeddedness (see Fig. 9a-d), suggesting that high- 
connectivity freight locations serve as community hubs as they have many strong connections to other freight locations within the 
same community. In contrast, low-connectivity freight locations tend to be peripheral players in the community, have a small number 
of weak connections with others. We can also derive similar findings from the distribution of weighted within-module degree Zw,i with 
respect to ki in Fig. 9e-h. Moreover, Fig. 9i-l shows that weighted participation coefficient Pw,i is positively correlated to ki, suggesting 

Fig. 7. The analysis of cluster-specific industry concentration for four typical communities in the heavy truck mobility network of Beijing. a- 
d Category co-occurrence test. There is a 4 × 4 matrix for all category pairs for a community. The colorbar represents the normalized chi-square 
value for each category pair in a community. e-h Category direct interaction test. 

Fig. 8. Node strength characteristics observed from empirical networks of four cities and reproduced by the proposed model. a-d Distributions of 
internal strength wint

i with respect to node degree ki. The legend “real data” represents the distributions of the metrics of the real networks, and each 
point represents each node. The legend “model” represents those of the model networks. e-h Distributions of external strength wext

i with respect to ki. 
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that high-connectivity freight locations also serve as community connectors and they are connected to multiple communities in the 
network, however, low-connectivity freight locations mainly interact with others within the same community, playing a “peripheral” 
or “kinless” role. Comparing the roles played by nodes with different connectivity across the four cities, we can find that in larger cities 
like Beijing and Tianjin, high-connectivity nodes tend to have higher weighted within-module degrees. This suggests that the heavily 
connected nodes within these cities are more tightly interconnected within their respective clusters. It implies the presence of strong 
local connections and a higher level of specialization within these bigger cities. In contrast, in small cities like Fuzhou, the weighted 
within-module degree of high-connectivity nodes is lower, indicating a less dense local structure within the small city. On the other 
hand, the weighted participation coefficient of low-connectivity nodes is higher in small cities, indicating their importance in facil-
itating connections between different clusters. These nodes also play a crucial role in integrating different parts of the network and 
enabling efficient truck flows between various locations. 

The above analysis reveals the correlation between the connectivity of locations and the roles they play. Next, we explore industry- 
specific location roles across different communities. For each detected community, we calculate the weighted within-module degree 
Zw,i and weighted participation coefficient Pw,i for four different categories of nodes. The metric of Zw,i measures how ‘well-connected’ 
node i is to other nodes in the community and the metric of Pw,i measures how ‘well-distributed’ the links of node i are among different 
communities. Fig. 10 shows the distributions of these two metrics for different categories of locations in four typical communities that 
are identical to those shown in Fig. 7. For ease of expression, we refer to the location with the highest Zw,i as a community hub and the 
location with the highest Pw,i as a community connector. The results suggest that the roles of different categories of locations as 
community hubs and connectors vary significantly across different communities. For the first community (see Fig. 10a), a shopping 
node, such as market or store, plays a crucial role as community connector, facilitating connections and interactions between different 
communities. An enterprise node assumes the role of hub within its community, serving as a central point for freight consolidation, 
storage and distribution. For the second community (see Fig. 10b) and fourth community (see Fig. 10d), logistics nodes assume both 
community connector and hub. They ensure the seamless movement of goods between different communities and enable efficient 
coordination of logistics activities within their own community, facilitating the integration of supply chains and contribute to the 

Fig. 9. Node role characteristics observed from empirical networks of four cities and reproduced by the proposed model. a-d Distributions of 
weighted embeddedness ξw,i with respect to node degree ki. The legend “real data” represents the distributions of the metrics of the real networks, 
and each point represents each node. The legend “model” represents those of the model networks. e-h Distributions of weighted within-module 
degree Zw,i with respect to ki. i-I Distributions of weighted participation coefficient Pw,i with respect to ki. 
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overall efficiency of freight transportation. For the third community (see Fig. 10c), a shopping location acts as community connector, 
attracting trucks from various sources to supply the demands of locations within the community. A logistics node acts as community 
hub, receiving shipments from various origins, consolidate them and redistribute them to their final destinations in the community. 
These results suggest that the roles assumed by different categories of locations can vary greatly within different communities due to 
the specific characteristics, industry composition and logistical requirements of each community. By strategically locating community 
connectors and hubs, communities can optimize their logistics operations, reduce congestion, and improve overall transportation 
efficiency. 

Taking together the above and the analysis, we can explore the whole picture of urban freight transport system, as shown in Fig. 11. 

Fig. 10. The analysis of industry-specific location roles across four typical communities in the heavy truck mobility network of Beijing. A point 
indicates a location in the community. The horizontal axis represents the weighted within-module degree of locations and the vertical axis rep-
resents categories of locations. The size of each point represents weighted participation coefficient of each location. We refer to the location with the 
highest Zw,i as a community hub and the location with the highest Pw,i as a community connector, as indicated in the figures. 

Fig. 11. Illustration of the community structure of empirical network of Beijing. a Detected communities and spatial distribution of typical high- 
connectivity nodes. Different communities are marked with different colors, and the nodes with white boundaries denote the top 10 nodes with the 
highest degree in each community. b Spatial interactions of typical nodes inside and between different communities. The width of solid line denotes 
interaction strength, i.e., heavy truck flows. The two communities marked with dotted lines correspond to panels c and d. c Spatial interactions 
between typical nodes in a large community. d Spatial interactions between typical nodes in a small community. 
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Spatially adjacent freight locations tend to cluster in the same community (see Fig. 11a). The larger a community, the higher heavy 
truck flows into and out of that community, and the interactions between two communities are mainly undertaken by high- 
connectivity freight locations, also known as community connectors or freight hubs (see Fig. 11b). In the large community, high- 
connectivity freight locations are closely linked to each other and interact with most of other locations (see Fig. 11c). However, in 
the small community, the interactions between freight locations tend to be characterized with tree-like structure, and low-connectivity 
freight locations play a “peripheral” or “kinless” role (see Fig. 11d). Heavy truck flows are heterogeneously distributed across com-
munities with different sizes and freight locations with different connections. The roles of enterprise locations, shopping locations, 
logistics location and terminal locations vary across communities, highlighting their diverse functions and interdependencies. Un-
derstanding these industry-specific node roles and their interactions within communities is crucial for effective freight transportation 
planning and policy-making. 

5.3. Model results and analysis 

The above analysis uncovers the hierarchical organization of heavy truck flows across communities with different sizes and nodes 
with different connections, helping us understand the community structure of empirical urban heavy truck mobility networks. In this 
section, we explore the interaction dynamics of locations and explain how the structural properties of real networks are formed during 
the network growth by interpreting the model results. We first validate the performance of CRN model by evaluating how well it can 
reproduce the observed structure properties of real networks, and then provide explanations for their formation process based on the 
model mechanisms. 

For the empirical heavy truck mobility network of a city, we estimate the optimal model parameter ρ* (see Section 4.4) and 
generate the model network by the CRN model with the estimated ρ*. Next, we detect the communities of the model network by using 
Infomap method, and calculate the community-level and node-level metrics of the detected community structure. The global char-
acterization of model networks of four cities in China is shown in Table. 3, which suggests that the CRN model can reproduce not only 
the community structure of empirical networks (z-score of modularity ZQ

′ ≫ 1; Wallace index WI and normalized mutual information 
NMI are high), but also the spatial autocorrelation of freight locations (global Moran’s I GMI′ > 0 and its z-score ZGMI

′ ≫ 1). This is 
mainly attributed to the spatial agglomeration of industrial clusters and spatial interaction pattern of freight locations considered in 
the CRN model. In the network growth, new added freight location shares the similar partners of the freight locations in the closest 
existing industry cluster, i.e., a community, and establish new connections under the interaction pattern driven by spatial distance 
(associated with transport costs) and freight location competitiveness. Therefore, the CRN model reproduces the observed phenom-
enon that spatially adjacent freight locations tend to cluster in the same community, and provides an explanation for this. 

Besides, the community and node strength characteristics of model networks are in excellent agreement with the empirical results. 
This is mainly attributed the initialization rule that the strength and degree of a new node obey the power-law relationship, and the 
weight update rule that the more competitiveness (measure by node strength) a freight location has, the more truck flows it will 
generate and attract. Therefore, the CRN model reproduces the positive correlations of both community internal strength wint

C and 
external strength wext

C with respect to community size (see Fig. 5), and of both node internal strength wint
i and external strength wext

i with 
respect to node degree (see Fig. 8). Additionally, we obtain the distributions of centrality index ΘC (see Fig. 6a-d), cost ϕc (see Fig. 6e- 
h) and conductance Cw,C (see Fig. 6i-l) with respect to community size, and they are again in excellent agreement with the indices from 
the data. This is mainly attributed to the spatial interaction pattern of freight locations considered in the CRN model, which assumes 
that freight locations tend to establish interactions with the closest and more competitive freight locations. In this way, the CRN model 
defines an agglomeration economy rule so that a few freight locations are dominant in their communities, and this is more pronounced 
in larger communities. Therefore, the CRN model can reproduce the community spatial distribution characteristics of empirical 
networks, as shown in Fig. 6. Similarly, under the agglomeration economy rule, high-connectivity freight locations serve as community 
hubs and connectors, and low-connectivity freight locations tend to be peripheral players in the community. Therefore, the CRN model 
can also reproduce the node role characteristics of empirical networks, as shown in Fig. 9. 

To evaluate the performance of CRN model, we also compare the community structure of real network with that generated by CRN 
model and two benchmark models, i.e., SGN model and BBV model. We calculate two similarity metrics, i.e., Wallace index WI and 
normalized mutual information NMI, to assess whether node pairs located in the same community in the real network also clustered in 
the same community in the model network. The calculated WI and NMI for CRN model and two benchmark models are shown in 
Fig. 12a-b. The results suggest that the BBV model has the lowest performance due to the fact that this model does not consider the 

Table 3 
Global characterization of model networks for four cities in China. Estimated embedding coefficient ρ; number of network nodes N′; number of 
network links E′; number of communities NC′; modularity Q′; z-score of modularity ZQ

′; global Moran’s I GMI′; z-score of global Moran’s I ZGMI
′; 

Wallace index WI; normalized mutual information NMI.  

City ρ N′ E′ C′ Q′ ZQ
′ GMI′ ZGMI

′ WI NMI 

Beijing  0.49 15,983 205,539 11  0.57 56  0.46 113  0.5697  0.5938 
Tianjin  0.42 10,697 210,342 12  0.43 35  0.64 130  0.4957  0.4409 
Hangzhou  0.39 10,611 158,817 13  0.50 33  0.56 118  0.6189  0.5990 
Fuzhou  0.32 3391 26,751 10  0.34 42  0.70 99  0.5143  0.6198  
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geographical attributes and location clustering interactions. The SGN model outperforms the BBV model due to its integration of 
spatial effects on location interactions. However, the SGN model does not consider location clustering interactions, so it cannot explain 
the spatial agglomeration of industrial clusters. Therefore, the performance of SGN model is lower than that of proposed CRN model. 
Next, we calculate the metrics of modularity Q and global Moran’s I GMI for real networks and model networks generated by CRN 
model and two benchmark models, as shown in Fig. 12c-d. The results suggest that the significance of network community structure 
generated by the CRN model is significantly higher than benchmark models. The above analysis highlights the necessity of integrating 
space effects and location clustering interactions in modeling urban freight networks, demonstrating the advantages of the proposed 
model. 

To further elucidate the model mechanisms, we analyze the effects of the variation of the key parameter, i.e., embedding coefficient 
ρ, on the community structure of model networks. We take the empirical network of Fuzhou as the context for our analysis. We give the 
fixed initialization parameters fitted from real data, and set this key parameter to different values, i.e., ρ = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. 
For each parameter value, we generate 100 model networks by the CRN model, and detect the communities of these model networks. 
Next, we calculate the community-level and node-level metrics of these model networks on average, and find the metrics significantly 
affected by the parameter ρ, as shown in Fig. 13. The results suggest that the larger the parameter ρ, the more closely the nodes in the 
community are connected to each other (see Fig. 13a) and the fewer the interactions between communities (Fig. 13b). Moreover, the 

Fig. 12. Comparing the performance of proposed CRN model with two benchmark models.  

Fig. 13. Results of the model analysis for different values of ρ. a Distributions of cost ϕC with respect to community size nC. b Distributions of 
weighted conductance Cw,C with respect to community size nC. c Distributions of weighted embeddedness ξw,i with respect to node degree ki. 
d Distributions of participation coefficient Pw,i with respect to node degree ki. 
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parameter ρ in the CRN model controls the roles of individual nodes, i.e., the larger the parameter ρ, the more nodes tend to establish 
interactions with the nodes in the same community (see Fig. 13c), while the less significant the role of community connector un-
dertaken by high-connectivity nodes (see Fig. 13d). Taken together, we can adjust the embedding coefficient ρ to control the roles of 
nodes, and to shape the overall community structure of model networks. The CRN model captures the essential interaction dynamics of 
freight locations, and can reproduce a wide range of community structure characteristics. 

5.4. Practical implications 

5.4.1. Policy making 
Understanding the community structure of urban heavy truck mobility networks can provide valuable insights for policymaker, and 

can inform the development of more effective policies. For example, detecting the network communities can help to identify regions 
that are isolated or disconnected from the rest of the network. These isolated regions may be at a disadvantage in terms of access to 
markets and may require targeted interventions to improve transportation connections (Ren et al., 2022). Additionally, key nodes, or 
freight hubs, that play a critical role in connecting different regions and facilitate heavy truck flows can also be identified. These hubs 
may be important targets for investment in transportation infrastructure, such as ports, airports and logistics warehouses, to improve 
the efficiency of transportation networks and reduce transportation costs (Wang et al., 2022). Moreover, identifying the communities 
that have higher heavy truck flows can help to guide investment in infrastructure and safety measures. This can help to reduce the 
negative impacts of heavy truck traffic on local communities and improve overall safety on the road (Alkhoori and Maghelal, 2021). 

The analysis of cluster-specific community structure suggests that the spatial organization and system roles of different categories 
of locations varies across different communities, highlighting their diverse functions and interdependencies. These findings can 
provide specific industry-related implications. For example, the finding that different category pairs tend to be grouped together in 
different communities encourages industry co-location and proximity. Zoning and land use policies (Diriye et al., 2022; Gallagher 
et al., 2022) can be implemented to encourage mixed-use development, allowing enterprises, shopping locations and logistics facilities 
to coexist in the local areas. This can be achieved by designating specific zones or areas where these activities are allowed and pro-
moting the development of infrastructure and services that support them. The economic zones or clusters that specialize in specific 
industries or sectors can also be created. These clusters can attract businesses related to the movement and distribution of goods, 
fostering collaboration, knowledge sharing and innovation within the industry. In addition, the finding that logistics nodes tend to 
assume community connectors and hubs inspires the development of policies that strengthen the logistics infrastructure (Cedillo- 
Campos et al., 2022; Netirith and Ji, 2022). One of the effective measures is to increase the investment in the development and 
improvement of logistics infrastructure, such as warehouses, distribution centers and intermodal facilities. These facilities should be 
strategically located to serve multiple communities efficiently. Enhancing infrastructure can help streamline operations, reduce 
transportation costs and improve supply chain efficiency. 

The CRN model explains the interaction dynamics of freight locations, providing valuable policy implications for regulating urban 
freight transport system. One aspect of the interaction dynamics is embodied that freight locations tend to establish interactions with 
the closest and more competitive freight locations. This inspires the regulations and incentives to manage freight companies in a 
strategic way to reduce the needs for long-distance truck trips, so that the transportation costs can be reduced. This can be achieved by 
identifying and locating freight hubs in strategic locations, planning for co-location of freight facilities, optimizing routes and delivery 
schedules, and implementing consolidated delivery systems (Aljohani and Thompson, 2020). These strategies can help to improve the 
efficiency of the freight industry, while also creating cost savings for businesses. Another aspect of the interaction dynamics of freight 
locations is embodied that the locations in the same industrial cluster tend to share partners. This encourages the development of 
agglomeration economies by identifying business sectors that have similar production processes, supply chain requirements and 
market conditions (Abegaz and Nene, 2022). Government can play a key role in the development of industrial clusters by providing 
financial incentives, tax breaks, and other forms of supports to attract and retain businesses in the target business sectors (Yin et al., 
2022). Overall, the interaction dynamics of freight locations explained by the CRN model help regulators develop targeted policies to 
promote the efficiency and sustainability of urban freight transport systems, and create a more livable urban environment for citizens. 

In addition, we conduct a simulation analysis using Fuzhou as the context city to explore the effects of key parameter ρ(ρ = 0.0, 0.2,
0.4, 0.6, 0.8, 1.0) on the structure of model networks in Section 5.3. The simulation results suggest that parameter ρ controls the 
location roles, with larger values of ρ indicating a stronger tendency for locations to establish interactions within their own com-
munities rather than acting as community connectors. This leads to a higher density of links within each community, resulting in an 
increased total transportation distance or cost within the communities. From another perspective, a higher density of links may also 
indicate a higher efficiency, due to the reduced possibility of cargo transshipment. Therefore, the simulation analysis highlights the 
implications for achieving a trade-off between efficiency and cost within industry clusters by leveraging the roles of important lo-
cations. Policymakers can explore strategies to influence location roles within communities. This can involve policies and incentives 
(Ali et al., 2014; van den Heuvel et al., 2013) to encourage industries and supply chains to concentrate within specific communities, 
promoting intra-community interactions. By strategically clustering industries and supply chains within specific communities, poli-
cymakers can promote proximity, collaboration and efficient resource utilization. This localization strategy can minimize the cost of 
transportation and logistics, enhancing community efficiency while managing costs. 

5.4.2. Model application 
The primary purpose of the CRN model is to provide a mathematical tool for simulating the formation process of urban freight 

networks. Such simulations can be used to explore various scenarios, test the impact of different policy interventions, and make 
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informed decisions regarding urban freight transport infrastructure investments. 
Firstly, The CRN model offers an effective tool for conducting simulations that allow stakeholders in urban freight transportation to 

explore a wide range of scenarios and policy interventions. These simulations can include varying parameters such as population 
growth, changes in industrial clusters, alterations in transportation infrastructure, and shifts in consumer demand. By adjusting these 
variables within the model, urban planners and policymakers can gain insights into how different factors impact the formation and 
evolution of freight networks. For instance, they can assess how the expansion of a specific industrial cluster might affect trans-
portation needs or how improvements in transportation infrastructure can enhance network efficiency. This capability empowers 
decision-makers to make data-driven choices when considering policy interventions and investments. 

Secondly, CRN model can be used to test the impact of various policy interventions on urban freight networks. Policymakers can 
use the model to simulate the outcomes of proposed changes in regulations, congestion pricing strategies, emission reduction ini-
tiatives, or shifts to more sustainable transportation modes. By observing the simulated effects on network structure, traffic patterns, 
and efficiency metrics, decision-makers can better understand the potential consequences of their policy choices before implementing 
them in the real world. This proactive approach minimizes the risk of unintended negative consequences and enables the development 
of well-informed policies that align with sustainability, economic, and logistical goals. 

Thirdly, decision-makers can use the CRN model to evaluate different scenarios of infrastructure development (Sakai et al., 2020), 
including the construction of new transportation hubs, expansion of road networks, and deployment of advanced logistics technol-
ogies. By simulating the impact of these investments (Lin, 2020) on network performance and efficiency, stakeholders can make 
informed decisions about where and how to allocate resources. This ensures that infrastructure investments are strategically directed 
toward areas where they will have the greatest positive impact, enhancing the overall effectiveness and sustainability of urban freight 
transport systems. 

In conclusion, the CRN model’s simulation capabilities offer significant benefits for decision-makers in the field of urban freight 
transportation. It provides a versatile and adaptable framework for exploring scenarios, testing policy interventions, and optimizing 
infrastructure investments. By harnessing the insights generated through these simulations, stakeholders can make informed decisions 
that promote the efficiency, sustainability, and resilience of urban freight networks in a rapidly evolving urban landscape (Namatama, 
2020). 

6. Discussion and conclusion 

The advent of the big data era provides us the opportunity to understand and regulate urban freight transport systems by 
uncovering and modeling the hierarchical organization of heavy truck flows from the perspective of complex networks. In this paper, 
we construct urban heavy truck mobility networks by using massive heavy truck GPS data and freight location POI data. We detect the 
communities of empirical networks by using the Infomap method and characterize their community structure by using the community- 
level and node-level metrics. We uncover the hierarchical organization of heavy truck flows across communities with different sizes, 
and across nodes with different connections. Additionally, these empirical results reveal the spatial distribution of freight location 
clusters and the roles of individual freight locations, helping us understand the structure the urban freight transport systems. Moreover, 
we develop a spatial network growth model, named CRN model, to explain the interaction dynamics of freight locations underlying the 
hierarchical organization of heavy truck flows. 

The development of CRN model takes a bottom-up approach (Barthelemy, 2011; Zhai et al., 2019), starting from individual nodes 
and simulating their interactions over time. This approach allows for the emergence of network structures and interactions based on 
local decisions and behaviors. The CRN model is developed based on the assumptions derived from the phenomena of real-world 
freight systems, including spatial agglomeration of industrial clusters and spatial interaction pattern of locations. The performance 
of CRN model can be proven by evaluating how well it can reproduce the observed structure characteristics of real networks, and this 
process also validates the credibility of model assumptions. One of the purposes of CRN model is to explain and understand the un-
derlying unobservable processes and mechanisms that drive the formation and evolution of real networks. For example, the CRN model 
delves into how freight locations interact and influence each other as the network evolves over time, with a focus on their spatial 
proximity and competition dynamics. By considering the concept of spatial agglomeration, the CRN model captures the tendency of 
specialized industries to cluster in close geographic proximity, forming industry-specific communities. The CRN model highlights how 
freight locations within a community tend to play similar roles, such as shared business partners, contributing to the local dynamics of 
the network. In addition, the CRN model explores how collective behaviors at the individual node level, combined with interactions 
within and between communities, give rise to emergent properties at the network level. Specifically, the CRN model accounts for the 
influence of node strength, which represents transportation demand, on the likelihood of establishing connections. It also incorporates 
the spatial interaction pattern, wherein freight locations are more likely to interact with those that are closer and more competitive, 
considering competitiveness in terms of generated and attracted heavy truck flows. This spatial interaction pattern mirrors real-world 
behavior and explains how network structure emerges from local interactions. The CRN model demonstrates how the spatial orga-
nization of freight locations, their competitive dynamics, and the formation of local communities collectively shape the structural 
properties of the evolving network. 

Compared to top-down modeling approaches (Ghaffarinasab and Kara, 2022; Guo et al., 2022), CRN model has its own unique 
advantages in data-driven transportation planning. For example, in top-down hub location and traffic assignment, it involves analyzing 
existing traffic patterns, demand data, and infrastructure capacity to optimize the allocation of resources and improve network per-
formance. The top-down models are valuable for optimizing existing networks based on predefined objectives and criteria, but are 
often less adaptable to changing conditions and future uncertainties. They optimize network performance based on historical data and 
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predetermined structures, which may not account for emerging trends, evolving demand patterns or the impacts of new policies. In 
contrast, the bottom-up modeling approach (like the CRN model) can provide insights into how spatial interactions, location clustering 
and emergent behavior shape the network. It enables flexibility to assess the impacts of changes in infrastructure, industry distribu-
tions or policy interventions. This capability helps decision-makers explore different planning scenarios, optimize network perfor-
mance and make informed choices to improve traffic management. 

For the work applicability, one limitation lies in the simplifications made within our model. The model assumptions may not always 
align perfectly with the intricacies of real-world urban freight transport systems, which can vary significantly from one location to 
another. Therefore, our model may not capture the full complexity of every practical scenario. Moreover, the calculated indicators, 
while valuable for understanding network growth dynamics, may have limitations when applied directly to practical decision-making 
or policy implementation. Further validation and calibration of the model and indicators against empirical data from specific regions 
or scenarios would be essential to enhance its practical relevance and applicability. 

Given the work in this paper, more meaningful future studies can be done. One of the promising future research direction is 
exploring the multi-resolution or overlapping communities (Fortunato, 2010) of urban heavy truck mobility networks. We can un-
derstand the structure of the urban freight system in greater depth by analyzing the communities from multi-resolution perspectives, i. 
e., “smaller communities in a big community”, and by analyzing the communities with spatial overlap, i.e., “two communities contain 
some of the same nodes”. Another promising future research direction is exploring the communities of freight multi-modal networks 
and developing an applicable network model. We can provide more reliable policy guidance by analyzing the more realistic urban 
freight network considering multi-modal shipping mode, including trains, planes and minivans. In addition, we can obtain the cargo- 
specific information of truck trips, e.g., whether the truck is loaded or empty, the types and weights of transported goods, by iden-
tifying the trip purposes (Gingerich et al., 2016) or by acquiring other secondary data. A directed network that captures the specific 
directional flows can be constructed to capture the true interaction relationships between locations. It enables a more detailed analysis 
of the key suppliers, consumers and the specific directionality of goods between locations. This refinement in the network analysis can 
provide valuable insights into the spatial dynamics and optimize decision-making processes related to logistics and transportation 
planning. 
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