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We discuss spin-wave transport in anisotropic ferromagnets with an emphasis on the zeros of the band edges
as a function of a magnetic field. An associated divergence of the magnon spin should be observable by enhanced
magnon conductivities in nonlocal configurations, especially in two-dimensional ferromagnets.
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I. INTRODUCTION

Magnonics is the study of the elementary excitations of
the magnetic order, i.e., spin waves and their quanta called
magnons. Several excellent textbooks cover the basic physics
[1–3]. The field is believed to be competitive in future
information, communication, and thermal management tech-
nologies [4,5].

In the exchange interaction-only continuum model the
spin-wave dispersion is a parabola that shifts linearly with an
applied magnetic field [1–3]. The gain of angular momentum
of the ground state by flipping a single electron is h̄. The
associated change of the magnetic moment is −2μB, where
μB is the Bohr magneton. The exchange energy cost of a
single spin flip is minimized by spreading this excitation over
the whole system, forming a spin wave or its quantum, the
magnon.

Magnetic dipolar interactions and spin-orbit interactions
strongly affect the spin-wave dispersion of ferromagnets.
Crystal anisotropies are the main consequence of the latter,
and cause, for example, magnon gaps in the absence of an
applied magnetic field. Only quite recently have researchers
realized that the magnon spin is not a universal constant.
Ando et al. [6] reported enhanced spin pumping by an elliptic
magnetization precession, which, as we show below, can be
interpreted as an enhanced magnon spin. Flebus et al. [7]
reported that the exchange magnon polaron, i.e., the hybrid
state of a magnon and a phonon, carries a spin between 0
and h̄. Kamra and Belzig [8] predict super-Poissonian shot
noise in the spin pumping from ferromagnets into metallic
contacts based on a magnon spin that is enhanced from its
standard value of h̄ by anisotropy squeezing. These authors
start from a lattice quantum spin Hamiltonian with local and
magnetodipolar anisotropies and predicted magnon spins of
around 4h̄ for the fundamental (Kittel) mode of an iron film.
Kamra et al. [9] address the emergence of the magnon spins in
antiferromagnets at weak applied magnetic fields. Neumann
et al. [10] introduced an orbital contribution to the magnon
magnetic moment. Yuan et al. [11] review the history of

the magnon spin concept and its enhancement by quantum
squeezing.

Magnon currents can be injected into ferromagnetic insu-
lators by heavy-metal contacts, electrically by means of the
spin Hall effect or by thermal gradients (spin Seebeck effect).
Viceversa, magnons can pump a spin current into a heavy-
metal contact and be detected by an inverse-spin-Hall voltage.
Both effects may be combined to study magnon transport in
magnetic insulators [12]. Films of ferrimagnetic yttrium iron
garnet are well suited for magnon transport studies and can
be grown with high quality down to a few monolayers [13].
The same technique also works well for antiferromagnetic
hematite [14–16].

De Wal et al. [17] studied nonlocal magnon transport in
an antiferromagnetic van der Waals film with a perpendicular
Néel vector. An in-plane magnetic field cants the two sub-
lattices until the material becomes ferrimagnetically ordered
at the spin-flip transition, not unlike the in-plane spin tex-
ture of hematite at high fields. In the absence of additional
anisotropies, the band gap of the spin-wave dispersion van-
ishes at this point, i.e., the magnons become soft. In contrast,
our work focuses on the interpretation of soft magnons in
terms of an effective magnon spin, the spin pumping by the
magnetization dynamics, and the divergencies in the bulk
magnon properties that dominate spin transport when the spin
injection is efficient.

Here we make a step back by realizing that magnons can
be soft in simple ferromagnets as well. Yuan and Duine al-
ready interpreted nonanalyticities in the magnon dispersion
of anisotropic ferromagnets in terms of first- and second-
order phase transitions [18], but do not address the magnon
spin. We find that the magnon spin is strongly affected by
the associated nonanalyticities of the dispersion relation and
may even diverge. We illustrate the general concept of soft
magnons and magnon spin for the three generic magnetic
configurations in Fig. 1 in which applied magnetic fields and
uniaxial anisotropies compete [18]. We predict observable
enhancements of magnon transport in bulk materials in the
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FIG. 1. Three configurations of ferromagnets with uniaxial mag-
netic anisotropies parameterized by K and magnetization MB in the
direction of the applied magnetic field B. Case (A) is an easy-plane
ferromagnet with a magnetic field along z (red). In case (B) the field
lies in the easy plane (green). In case (C) the field is normal to the
easy z axis and θ is the tilt angle of the magnetization.

proximity of the soft magnon configurations. These results
may partly explain the strong enhancement of the magnon
transport at the spin-flip transition in antiferromagnets [19].

Sections II and III set the stage by rederiving results for
the ground and low energy excitations in magnetic systems. In
Sec. II we analyze the ground state by minimizing the classical
magnetic free energy. We solve the linearized Landau-Lifshitz
equations in Sec. III for the spin-wave dispersion relations,
finding results that agree with those obtained from quantum
spin models. In Sec. IV we address the magnon spin in a
way we have not found in the literature. We show that the
Hellman-Feynman theorem can be a useful tool to get hands
on the magnon magnetic moment, but only when field and
magnetization are collinear. In Sec. V we discuss possible
experimental signatures of the large magnon spins close to
the kinks in the magnon dispersion. Section VI contains a
critical discussion of the model and recommendations for
future work.

II. SPIN HAMILTONIANS AND FERROMAGNETIC
GROUND STATES

We consider Hamiltonians for local spins Ŝi and magnetic
moments M̂i = −γ h̄Ŝi on lattice sites i:

H = γ h̄
∑

i

Ŝi · B −
∑

i j

Ji j (Ŝi · Ŝ j ) − γ h̄K̄
∑

i

(
Ŝz

i

)2
, (1)

where Ji j is the exchange integral between spins on sites
i �= j, −γ is the gyromagnetic ratio of an electron, and B is
a constant external magnetic field. We focus here on Ji j > 0
that leads to ferromagnetic order. K̄ is a uniaxial anisotropy
field along the Cartesian z direction, and K̄ > 0 (K̄ < 0) cor-
responds to an easy-axis (easy-plane) ferromagnet.

The ground state that minimizes the total energy of
the macroscopic system is ferromagnetic. The total spin of
the system Ŝ = ∑

i Ŝi then becomes a classical vector S corre-
sponding to a magnetization density M = −(γ h̄/�)S, where

� is the crystal volume. The associated energy density without
irrelevant constant terms reads

E (M) = −M · B − K̄

M
(Mz )2 + D

2M
(∇M)2, (2)

where M = |M| = (γ h̄S/�) and S = |S|. The spin-wave
stiffness D represents the exchange energy cost of spatial
deformations in the continuum limit that depends on crys-
tal structure and the exchange parameters Ji j . We disregard
dipolar and spin-orbit interactions that favor the formation of
magnetic textures. The magnetizations of the ground states
are then constant in space with zero exchange energy cost.
The demagnetization energy in magnetic films with surface
normal n along z can be absorbed into the anisotropy field
K = (SK̄ )/(γ h̄) + M. We do encounter here here the hys-
teresis when cycling magnetic fields along an easy axis, as
described by the Stoner-Wohlfarth model, see Ref. [2], p. 102.

We discuss here three configurations: (A) Easy xy-plane
anisotropy (K < 0) and the magnetic field normal to the
plane; (B) easy xy-plane anisotropy with an in-plane mag-
netic field (Kittel problem); and (C) easy z-axis anisotropy
(K > 0) with a magnetic field in the y direction. Other config-
urations such as in-plane easy-axis, etc. give similar results.
The parameters depend on temperature but may be treated as
constants when temperatures are sufficiently below the phase
transition.

We are interested in the nonanalyticities that emerge at
critical fields Bc = 0 for case (B) and Bc = 2|K| for A and
B.

In case A, B = Bz, where z is the unit vector along
the anisotropy axis, the energy and magnetizations are non-
analytic at Bc = 2|K|

E (A)
0

M
=

{
− B2

4|K|
|K| − B

for
B < 2|K|
B > 2|K| (3)

Mz

M
=

{ B
2|K|
1

for
B < 2|K|
B > 2|K|. (4)

In case B, the energy as a function of the magnetic field B

E (B)(M) = −MyB + |K|
M

M2
z (5)

is minimal for M0 = (0, M, 0) for all B �= 0. Finally, in C a
field B = By along the y axis tilts the magnetization into the
yz plane with M0 = M(0, sin θ, cos θ ), where θ is the angle
with the out-of-plane direction. Eq. (2)

E (C)(θ )

M
= −K cos2 θ − B sin θ (6)

is minimized for

sin θ =
{

B
2K
1

for
B < Bc

B > Bc
. (7)

Above Bc = 2K , the field and magnetization are aligned.

III. SPIN-WAVE DISPERSION

Here we consider the frequency dispersion relation for
the elementary excitations in homogeneous extended magnets
that can be bulk crystals, thin films, or two-dimensional sys-
tems. The excitation frequencies are sharply defined in the
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FIG. 2. Spin-wave frequency of the magnon band edges for the
configurations (A)–(C) in Fig. 1. The dashed black line ω0/γ = B −
K is the asymptotic form of case (B) at large fields.

limit of small amplitude oscillations, in which spin waves
can be mapped on a set of noninteracting harmonic oscilla-
tors. The magnon Hamiltonian is the lowest-order term in the
Holstein-Primakoff expansion of the spin Hamiltonian, which
can subsequently be diagonalized by a Bogoliubov transfor-
mation, see Ref. [1], p. 83, Ref. [2], p. 277, Ref. [18]).

Here we chose to start from the Landau-Lifshitz equa-
tion Ṁ = −γ (M × Beff ), in which Beff = −∂E (M)/∂M and
E (M) is the classical magnetic free energy introduced above.
Writing Mq = M0 + mq and Beff = B + bq to leading order
in the small transverse excitation amplitudes mq · M0 = 0, the
spin-wave frequencies ωq for wave vector q are the solutions
of

(iωq − γ B×)mq = −γ M0 × bq. (8)

For simplicity, we compute ωq without the dipolar interactions
that cause well-known anisotropic corrections for q �= 0, but
do not affect the band edges in Fig. 2. The results agree
with those obtained from the lowest-order Holstein-Primakov
expansion of the corresponding spin Hamiltonians.

When the magnetic field is normal to the easy plane (A),
the spin-wave dispersion reads

ω(A)
q = γ

{ √
Dq2(2|K| − B2

2K2 + Dq2)
B − 2|K| + Dq2

for
B < 2|K|
B > 2|K| .

(9)

The spin-wave frequency of the uniform precession (q =
0) vanishes for magnetic fields below Bc because the torques
generated by the anisotropy and applied fields cancel. The
energies for all magnetization directions that lie on a cone
with opening angle θ are the same, so the ground state is
highly degenerate.

The Kittel problem B leads to

ω(B)
q = γ

√
(B + Dq2 + 2K )(B + Dq2). (10)

The anisotropy qualitatively changes the dispersion at small
magnetic fields from ω

(B)
0 = γ B for K = 0 to ω

(B)
0 ∼ γ

√
B

when K > B. The anisotropy breaks the axial symmetry
and mixes the anticlockwise circular precession mode with
positive frequencies and the forbidden clockwise one with
negative frequencies, which leads to the square-root depen-
dence rather than 2γ K , the linearly extrapolated value from
the high-field region.

In configuration C (as in A), magnetization and field are
not collinear for fields B < Bc. By rotating the coordinate
system around the x axis by θ such that M′

0 is along z′, we
can impose the magnon approximation by solving for small
amplitude oscillations m′

q · M′
0 = 0. The result is

ω(C)
q = γ

{√
1

2K (2K + Dq2)(4K2 − B2 + 2DKq2)√
(B + Dq2 − 2K )(B + Dq2)

for
B < 2|K|
B > 2|K| . (11)

We observe that the B dependence of the collinear configura-
tion equals that of the Kittel mode shifted by 2|K| to higher
magnetic fields.

IV. MAGNON SPIN AND HELLMANN-FEYNMAN
THEOREM

An excited state |q〉 with energy εq = h̄ωq of an ar-
bitrary spin Hamiltonian carries a spin magnetic moment
μq = 〈q|M̂|q〉 − M0, where M̂ = −γ h̄

∑
i Ŝi. Consider a

spin system with zero-field Hamiltonian HS that interacts with
constant applied magnetic field B by the Zeeman interaction

H = HS − M̂ · B. (12)

The Hellmann-Feynman theorem then states that for simplic-
ity in the absence of textures,

μq = − ∂εq

∂B‖

M0

M
, (13)

where B‖ = B · M0/M. For our classical spin system, we
replace εq with �Eq = E (M0 + μq) − E (M0). When the
magnetization and the applied field are parallel, we can sim-
ply read off the spin of the excited state from the magnon
spectrum as a function of the applied field. When M ∦ B, the
situation is more complicated and the Hellmann-Feynman the-
orem requires additional calculations. Configurations A and
C at fields B < 2K, for example, acquire an orbital correction
[10]

μq = −dεq

dB
+ ∂εq

∂θ

∂θ

∂B
, (14)

where θ is the equilibrium tilt angle. The implicit dependence
on the field enters here with an opposite sign compared to
Ref. [10].

To leading order, the solutions of the LL equation are
transverse, i.e., mq · M0 = O(m2

q ). If we transform back into
the time domain, the transverse components oscillate with
the spin-wave frequency and average out to zero. A magnon
moment along the magnetization direction persists in the time
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average as

μq

2μB
≈ −|mq|2

2M

M0

M
. (15)

The amplitudes of the solutions of the LL equation are con-
tinuous but can be quantized by requiring that the minimum
excitation energy of a mode with energy εq is discrete:

�Eq = E (Mq) − E0 = h̄ωq. (16)

By normalizing the mode amplitudes in this way we can com-
pute the spin of a single magnon for our three configurations
A–C.

In case A, the moment of a single magnon μ(A)
q = −2μB

for B > Bc follows from the Hellmann-Feynman theorem.
Spin and magnetization are not collinear for B < Bc. The LL
equation then leads to a magnon magnetic moment along the
equilibrium magnetization direction of

μ(A)
q

2μB
= −

|K| − B2

4|K| + Dq2√
Dq2

(
2|K| − B2

2|K| + Dq2
) (17)

that diverges when q → 0 because the degeneracy of all mag-
netization directions on the cone with angle θ allows coherent
precession of the magnetization without an energy cost.

In case B, we can compute the magnon spin simply as
a derivative of the frequency with respect to the applied
magnetic field from the Hellmann-Feynman theorem Eq. (13)
since B ‖ M :

μ(B)
q

2μB
= − B + K + Dq2√

(B + Dq2 + 2K )(B + Dq2)
. (18)

In the zero field limit, μ
(B)
0 = −2μB/

√
K/(2B) diverges. The

anisotropy mixes right and left precession modes to create an
elliptic motion that in the limit of zero magnetic field leads
to a linear x-polarized motion in the easy plane. As in case
A the restoring torque vanishes in this limit, which allows the
magnon amplitude to become large.

Also in the high-field regime B > Bc of the case C, we can
use the Hellmann-Feynman theorem without having to worry
about orbital terms

μ(C)
q

2μB
= − (B + Dq2) + (B + Dq2 − 2K )√

(B + Dq2 − 2K )(B + Dq2)
for B > Bc, (19)

which is a shifted version of μ(B)
q . μ

(C)
0 diverges for B ↓ Bc

at the band edge q = 0 like 1/
√

B − Bc because the torque in
the out-of-plane z direction vanishes. The magnon spin for the
canted configuration (B < Bc) can be computed directly from
the solutions of the LL equation. Along the canted equilibrium
magnetization direction

μ(C)
q

2μB
= −

√
Dq2 + 2K√

2K

×
√

4K2 − B2 + 2DKq2(8K2 − B2 + 4DKq2)

(4K2 − B2)4K + (16K2 + 4KDq2 − 3B2)Dq2
.

(20)

which shows a square root divergence when B ↑ Bc. In
Fig. 3 we plot the in-plane projection of the magnon spin

FIG. 3. Magnon spin at the band edges for the configurations
(A)–(C) in Fig. 1. In (C) the magnon spin is tilted for B < 2|K| with
a component in the y (full curve) and z directions (dashed curve).

at the band edges along the y direction, i.e., the spin
component μ

(C)
0 sin θ that can be injected and detected by

Pt contacts, as well as the z component along the easy
axis.

V. TRANSPORT

We now discuss some physical consequences of the re-
sults derived above. In case A the magnons are gapless up
to Bc = 2|K|. The absence of an energy cost of the in-
plane magnetization amplitude implies that the equilibrium
direction is arbitrary and depends on the history, remaining
in-plane anisotropies, or disorder. Even small energy gains
of the magnetodipolar interactions break a uniform magne-
tization down into domains. At Bc the magnon spin jumps
to its standard value of −2μB. In case B interesting effects
may occur when the magnon spin diverges at vanishing mag-
netic fields but it is again difficult to control the equilibrium
magnetic order. Therefore, the soft magnon in the field depen-
dence of case C at the critical field looks most interesting.
While the fluctuations and the associated magnon spin be-
come large, the finite applied field hinders the breaking of
the magnetic order even when the magnon gap vanishes.
Hence, we focus on case C with an applied magnetic field
that approaches the critical value from above. We address
magnon transport in bulk materials and in two-dimensional
ferromagnets.

A. Spin pumping

The magnon spin affects the spin pumping [6] and spin
pumping shot noise [8]. The spin pumped into the metal by
the dynamics of an insulating or metallic ferromagnet in units
of ampere reads

Js = e

2π

[
gr

M2
0

M × Ṁ+ gi

M0
Ṁ

]
, (21)

where gr + igi is the dimensionless interface spin-mixing con-
ductance [20]. Inserting the LL equation for case C and B ↓ Bc
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leads to a dc spin current:

J (dc)
s = egr

2π

2μBN

M0
ω0, (22)

where N is the number of magnons in the Kittel mode. The
vanishing resonance frequency of soft magnons cancels the
divergence in the magnon spin.

B. Magnon conductivity and spin Seebeck effect

Next, we consider diffuse dc magnon transport in a bulk
ferromagnet under gradients of temperature or magnon chem-
ical potential with a special focus on the magnon conductivity
in configuration C. We disregard the spin injection by Pt
contact, which is allowed when transport is limited by the
magnon propagation in the bulk of the ferromagnet. Yuan
and Duine address the opposite limit of interface-dominated
magnon transport that is also enhanced but not affected by the
nonanalyticities in the magnon spin [18].

We employ the relaxation time approximation to the
steady-state linearized Boltzmann equation for the distribu-
tion function f (q, r; t )

∂ f (q, r; t )

∂t
+ vq · ∇ f (q, r; t ) =

(
∂ f

∂t

)
col

, (23)

where vq = ∂ωq/∂q is the group velocity. In the steady
state ∂t f = 0. In the constant relaxation time (τr) approxima-
tion the collision term (∂t f )col = −( f − f0)/τ (nd )

r and f0 =
[exp( h̄ωq

kT ) − 1]−1 is the Planck distribution. τ (nd )
r parameter-

izes the scattering of magnons at magnetic disorder, phonons,
and other magnons. It may depend strongly on temperature
and frequency and be very different for n = 2, 3 dimensions
[13]. The magnon current is polarized along the equilibrium
magnetization M0. We disregard the magnetodipolar interac-
tions on the dispersion relation since these cancel to a large
extent in magnon transport except at very low temperatures.
We are interested in the magnon conductivity σ (nd )

m (spin
Seebeck coefficient S(nd )

m ) that characterizes the magnon spin
current under a gradient in the magnon chemical potential
(temperature). In electric units [σ (nd )

m ] = Sm2−n and [S(nd )
m ] =

V/m [13]:

σ (nd )
m = e2τ (nd )

r

kBT

∫
dqn

(2π )n

−μq

2μB
v2

q f 2
0 e

h̄ωq
kBT , (24)

σ (nd )
m S(nd )

m = eτ (nd )
r

kBT 2

∫
dqn

(2π )n

−μq

2μB
h̄ωqv

2
q f 2

0 e
h̄ωq
kBT , (25)

where vq = ∂ωq/∂ky is the group velocity in the transport
y direction. Typical frequencies are in the GHz regime, so
assuming that temperatures are not too low, kBT  h̄ωq. The
combination μqωq in the integrand of the spin Seebeck coef-
ficient is analytic when the magnon turns soft. So we do not
expect anomalies in thermally driven spin transport.

An artifact of the above equations, derived for a continuum
model of the lattice, the constant relaxation time approxi-
mation, and the high-temperature limit, is the divergence of
Eq. (24) at high wave numbers. When K = 0 and in three

dimensions this can be regulated by

σ (3d )
m = e2

h̄2

2

3π2
τ (3d )

r kBT

×
(

Q∞+ Bq

2(DQ2∞ + B)
−3

2

√
B

D
arctan

(√
D

B
Q∞

))
,

(26)

where Q∞ is an ultraviolet cutoff, at room temperature pro-
vided by the onset of strong magnon-phonon scattering at THz
frequencies. Including the easy axis anisotropy K > 0 causes
a logarithmic divergence at the critical field B ↓ Bc. We avoid
it by a low-momentum cutoff Q0 that can be rationalized by a
residual in-plane anisotropy or disorder. To leading orders for
large Q∞ and small Q2

0 :

σ (3d )
m → e2

h̄2

2

3π2
τ (3d )

r kBT

(
Q∞ −

√
2

16

√
K

D
ln

DQ2
0

8K

)
. (27)

The last term is the conductivity enhancement by the soft
mode magnon.

In two dimensions and K = 0

σ (2d )
m = e2

h̄2

1

π
τ (2d )

r kBTe2τ (2d )
r

kBT

π

1

2

×
[

ln

(
1 + DQ2

∞
B

)
+ B

B + DQ2∞

]
(28)

the divergence is logarithmic but with a vanishing magnon gap
B → 0 there is now also a logarithmic infrared divergence for
constant magnon spin, which is caused by the discontinuous
magnonic density of states at the band edge. Including the
divergent magnon spin when K > 0, to leading order in a
small Q0 and large Q∞, and for B ↓ Bc

σ (2d )
m → e2τ (2d )

r

kBT

π

[
ln

(√
2D

K
Q∞

)
+

√
K

2D

1

4Q0

]
(29)

The high-momentum divergence is still logarithmic, but the
low-momentum one becomes algebraic. This implies a di-
mensionally enhanced magnon transport around the critical
magnetic field in van der Waals ferromagnets with perpen-
dicular magnetization that as discussed below, should be
experimentally observable.

VI. DISCUSSION

Several processes regulate the enhanced fluctuations that
cause the divergence of the magnon spin reported here,
but should not destroy the predicted enhancement of spin
pumping and spin transport. The situation is reminiscent of
the singular compensation points in the phase diagrams of
collinear ferrimagnets. These points occur when the angular
momentum or magnetization of the magnetic sublattices can-
cel each other out, resulting in, e.g., enhanced domain wall
velocities in their vicinity [21].

The magnon spin of the Kittel mode can be observed by
spin pumping under ferromagnetic resonance. Ando et al. [6]
indeed reported that the ellipticity of the magnetization pre-
cession under ferromagnetic resonance conditions increases
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the spin pumping, a finding that we interpret as evidence
for an enhanced magnon spin. However, the resonance fre-
quency also enters the pumped spin current, and the product
spin×frequency remains well behaved for soft magnons. Sim-
ilarly, the integrand for the spin Seebeck coefficient (25) does
not diverge.

Magnon transport in electric insulators can be measured
by heavy-metal contacts that serve as spin injectors and de-
tectors. The magnon conductivities are accessible when the
injector and detector distance does not exceed the magnon
diffusion length, which requires high magnetic quality. YIG
films can be tuned to a perpendicular magnetization by
doping and epitaxial strain [22]. The hexagonal barium fer-
rite (BaFe12O19) has a perpendicular anisotropy field of 1.7
teslas and damping constant α = 10−3 [23]. Other options
are electrically insulating van der Waals ferromagnets with
perpendicular magnetization such as CrI3 [24]. With minor
adaptions, the present formalism can be used as well for
magnetic films (strips) with an in-plane easy crystal (demag-
netization) anisotropy axis and an in-plane magnetic field
applied at right angles to it.

We estimate the magnitude of the expected effects from
Eqs. (27), (29) by adopting the spin-wave stiffness of YIG
D = 5 · 10−17 Tm2, a perpendicular anisotropy K = 1 T, a
high-momentum cutoff frequency of 1 THz, and an in-plane
anisotropy of 1 mT. This leads to an enhancement of the
magnon conductivity at the soft magnon point of ∼2 for three-
dimensional and ∼5 for two-dimensional magnets.

The divergences reported here occur only in materials with
weak residual anisotropies, i.e., a sufficiently small cutoff Q0.
Moreover, nonparabolicities render the magnon approxima-
tion invalid when the spin-wave amplitudes become large by
large magnon spins and/or numbers. The implied magnon
interactions may act as a brake on the dynamics. The predicted
numbers at the critical points should therefore be taken with a
grain of salt, but the enhancement of the magnon thermal con-
ductivity close to the softening of the magnon modes should
persist even when these factors are taken into account.

VII. CONCLUSIONS

We considered the spin waves of ferromagnetic magnons
as a function of an applied magnetic field, focusing on
the singular points at which the band edges (nearly) vanish.
The more general conclusions such as the relation between the
Hellmann-Feynman theorem for collinear systems also hold
for antiferromagnets. We predict enhanced nonlocal magnon
transport caused by the divergence of the magnon spin for
magnets with a magnetic field applied perpendicular to a
uniaxial magnetic anisotropy, which is stronger in two than
in three dimensions. The effect should contribute to the ob-
servation of magnon transport above and down to the spin-flip
transition at which the spin sublattices are forced to align fer-
romagnetically [17] and we expect enhanced nonlocal signals
carried by the soft acoustic magnon as in case C. However,
more work is necessary to fully understand the experiments
[19].

The present calculations of the transport properties address
the linear response at elevated temperatures, disregarding the
effect of nonlinear terms that are likely to become important.
Higher harmonic generation is easier for floppy magnetic
order but is at vanishing applied fields complicated by spon-
taneous magnetic textures [25,26], which may not interfere
when the soft magnon is shifted to sufficiently large magnetic
fields. It should also be interesting to study the nonlinearities
of propagating soft magnons by microwave spectroscopy [27].
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