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Abstract—In this paper, we propose a new approach
where drones attain accurate localization by fusing infor-
mation from artificial lighting and their embedded inertial
and barometer sensors. Our system is able to provide
accurate drone localization without the use of radios, GPS
or cameras. We evaluate our framework, dubbed Firefly,
with a testbed consisting of four light beacons and a mini-
drone. Our results show that Firefly allows locating the
drone within a few decimeters of the actual position; and
compared to two state-of-the-art positioning methods that
rely solely on lighting information, Firefly can reduce the
localization error by 50% and 80%, respectively.

Index Terms—Visible Light Communication, Drone localiza-
tion, Sensor fusion.

I. INTRODUCTION

Autonomous drones are envisioned for a wide variety of

applications, both indoors [1] and outdoors [2]. However,

making this future a reality faces many challenges in terms

of range, safety and infrastructure support.

Drone operation depends on three key components: GPS,

RF wireless links and cameras [3]. But what if one of these

components fails or its use is prohibited in certain areas? For

example, GPS is known to face limitations indoors and in

urban canyons [4]; RF signals face ever-increasing spectrum

saturation and are prone to interference; and cameras raise pri-

vacy concerns (making them undesirable in various areas [5]).

Vision. Similar to the way old lighthouses provided nav-

igational aid to maritime pilots, standard light bulbs –such

as those present in our buildings, warehouses, roads and

streets – could be transformed into a modern version of those

lighthouses. Light bulbs will play the role of air traffic control

towers, exploiting advances in visible light communication
(VLC) [6] to provide accurate positioning services for drones.

Contributions. The use of VLC for drones is largely

unexplored. There are only a handful of studies investigating

the intersection of those two areas. While various methods

have been proposed to use visible light for localization, our

study is the first to show accurate 3D positioning in scenarios

with six degrees of freedom and without requiring a training
phase. Overall, Firefly provides two main contributions.

Contribution 1: Analytical Framework [Sections III & IV].
We analyze the state-of-the-art contributions on visible light

positioning (VLP) [7], [8], and show that decomposing the 3D

problem into a 2D+H problem (where H stands for height) is

the best alternative [9], [10]. After that, we address the limita-

tions of this approach with sensor fusion, using barometer and

IMU sensors to obtain an accurate height estimation, and VLP

to further obtain the 2D position. Our novel 3D localization

method is simple in terms of hardware (making it scalable),

and does not require any type of training phase.

Contribution 2: Experimental Evaluation [Section V]. We

build a testbed consisting of four light beacons and attach a

single photodiode to a drone. We perform our evaluations in

a realistic mobile scenario with six degrees of freedom where

the drone is exposed to frequent tilting and even ambient

light. Our main result shows that we can achieve location

accuracy of a few decimeters, an improvement of 50% and

80% compared to two available methods in the state-of-the-art.

II. BACKGROUND

In this section, we present the background information

on the Lambertian patterns of LED lights and the basic

localization principles behind this work.

Two types of localization techniques are often used in

visible light positioning. The first type makes use of the

received signal strength (RSS), and the second type makes

use of the angle of arrival (AOA). In this work, we focus on

RSS methods because they are more suitable for drones, as

detailed in Section III.

In VLP with RSS, LED lights are used as anchor points with

known locations, as shown in Fig. 1a. Each LED light (TX1

to TX3) broadcasts a beacon and the receiver measures the

RSS of each signal. The receiver uses the received power to

estimate its distance to the different light sources and obtains

its location through a trilateration or optimization method.

Starting at the transmitter, the propagation of light follows

a Lambertian pattern which is depicted in Fig. 1b.

The main variables affecting the radiation pattern of light are

the irradiance angle ψ at the transmitter, the incidence angle θ
at the receiver, and the Lambertian order m. The Lambertian

order determines the width of the beam from the transmitter.

The Lambertian pattern defines the optical channel between

the transmitter and the receiver, and it is described by the

following equation:
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H(0) =

{
Ar · m+1

2πd2 cosm(ψ) · cos θ for θ ∈ [0,Θc]

0 for θ > Θc

(1)

where d is the distance between the transmitter and the

receiver; Ar is the effective sensing area of the receiver;

and Θc represents the field-of-view (FoV) of the receiver.

Combining the propagation pattern of the transmitter and the

effect of the channel, the received power Pr at the photodiode

(PD) can be written as:

Pr = Pt ·H(0) (2)

where Pt is the transmitted power.

In VLP for drones, the mobile receiver has 6 degrees of

freedom (DoF), as it can move along 3 axes (front/back,

up/down and left/right) and perform rotations about each one

(roll, pitch and yaw). Compared to the setups of state-of-the-

art (SoA) studies, which typically consider static receivers, the

movements of drones introduce important dynamics (tilting)

that affect the irradiance angle ψ and incidence angle θ.

The above effects can have a significant impact on the RSS

(Pr), making the location problem more challenging.

TX1

TX3 TX
2

RX
(a)

surface
normal

surface
normal

light
source

Receiver

(b)

Fig. 1: (a) Basic trilateration; (b) LED propagation properties.

Key takeaway from the Lambertian model for drone
operation. The above equations show that, due to the exponent

m affecting cos(ψ), angular errors at the light source (ψ) are

significantly more detrimental for localization than errors at

the drone’s photodiode (θ). Considering that cos(ψ) = h/d,

where h is the height of the drone, an accurate measurement of

h would improve the estimation of ψ, and as a consequence,

enhance the accuracy of the localization system.

In this study we show that the key limitation of RSS

VLP methods is the adverse effect that tilting has on height

estimation. To overcome this limitation, we exploit the sensors

present in drones to provide an accurate estimation of height.

III. ANALYSIS OF THE STATE OF THE ART

In this section, we analyze various VLP techniques and

identify the ones that have the most potential for drones.

1) A taxonomy of VLP techniques: We introduce the avail-

able VLP techniques in four categories: AOA-based 3D, RSS-

based 3D, RSS-based 2D+H and IMU-enhanced 3D; and we

analyze the feasibility of each category for drone localization

using the following criteria:

• The complexity of the transmitter design, which is critical

to easily transform lighting infrastructure.

• The complexity of the receiver design considering the

limited weight capacity and power budget of drones.

• The complexity of the algorithm, which constraints the

limited processing and memory resources of the drone.

• Whether tilting is considered, since tilting is a fundamen-

tal part of drone mobility, as discussed in Section II.

2) 3D VLP with AOA: In previous studies, AOA-based

methods have shown to be more accurate than RSS-based

methods for 3D VLP. However, AOA-based methods have

considerably higher complexity in terms of the required in-

frastructure, mathematical framework and the computational

requirements. It is common to encounter designs for the

receiver that include multiple PDs arranged at different an-

gles [11], convoluted frameworks that result in long com-

putation times [12], and complex transmitter arrangements

consisting of multiple tilted LEDs [13].

While AOA-based methods can achieve a high accuracy,

they require either complex receiver designs and algorithms,

which are infeasible for small drones; or elaborated and costly

transmitters, which do not scale well.
3) 3D VLP with RSS: Compared to AOA-based methods,

RSS-based methods require considerably less infrastructure

but impose some stringent constraints on the evaluation setup.

A popular assumption in RSS-based methods is that the

receiver and transmitter are parallel to each other [14]–[16].

While effective to simplify the problem, this is not a valid

supposition for scenarios with drones flying.

RSS-based methods have potential for 3D VLP for drones,

as the hardware required is less complex compared to AOA-

based methods. However, its main shortcomings is that the

methods are accurate only with static receivers maintaining a

parallel orientation with the transmitters.
4) 2D+H VLP with RSS (Indirect-H): A promising ap-

proach in using RSS-based methods for 3D VLP is to de-

compose the problem space into 2D+H, where the height

(H) and the 2D position of the receiver are independently

estimated. The studies of [9] and [10] have achieved 3D VLP

with modest infrastructure and algorithmic complexities, and

report favorable results for static receivers that are parallel to

the transmitters. In the study of [10], however, when tilting
is introduced, the positioning error of their method increases
more than 30 times when it is just 5◦. A key problem of 2D+H

methods is that they use an indirect approach to estimate

height (solely through RSS measurements). This approach

works well with parallel and static receivers, but is severely

affected by tilting.
5) 3D VLP with IMUs: To the best of the authors’ knowl-

edge, only one recent study explores the use of visible light for

drone localization [17]. Similar to Firefly, that study combines

information coming from photo sensors and inertial sensors,

but the mechanisms differ significantly. The main advantage

of our approach is that it does not require a training phase.

In [17], the system requires an expensive training phase

to obtain fingerprints, but it has two key limitations. First,

218

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 12:50:39 UTC from IEEE Xplore.  Restrictions apply. 



� � � � � �
�	
����������	
����

�

���

���

���

���

�
��
��
���
��
�
��
���
�
�

���
 !!
"���###
$�#�
� 
�%

� �
� �

� �

� �

� �
� �

� �

� �� �

� �

�����	


���

��

��
���

��
��

��

Fig. 2: Accuracy vs LED density for different SoA studies.

The curve represents the trend for static scenarios in the SoA.

the complexity increases exponentially as a function of the

evaluation area and the accuracy requirements. Second, the

system is not resilient to changes in ambient light because the

fingerprints become stale.

6) Summary of the taxonomy analysis: To conclude this

section, we show the performance of the discussed SoA

methods in terms of accuracy (reported positioning error) and

the LED density in Fig. 2. The density of sources is a major

indicator of how well a VLP system will perform and provides

a good basis for comparison [8].

Except for [17], all the studies in the SoA, including

the ones evaluating tilting, consider only static receivers in

their experimental evaluations. While good results have been

demonstrated for those static receivers, localization for mo-
bile receivers remains a challenge. In order to have a high

localization accuracy while keeping the complexity low, we

propose Firefly and compare it against two SoA approaches

in Section V. To capture the improvement brought by Firefly,

in Fig. 2 we use two arrows to show the dramatic decrease in

performance that the two SoA methods experience when we

test them with mobile (6 DoF) drones.

IV. PROPOSED METHOD: FIREFLY

Due to the limitations of the Indirect-H approaches, we

hypothesize that an accurate measurement of height is central

to improve the localization accuracy. In Firefly we design a

direct height estimation method that combines inertial (IMUs)

and barometric (pressure) sensors. Most drones are already

equipped with IMUs and barometers, hence, no additional

hardware is needed beyond the photodiode used for VLP.

A. Reliable height estimation with sensor fusion

To obtain a reliable measurement of the height of a drone

we combine inertial and barometric sensors. IMUs are good at

measuring instantaneous changes in position and orientation,

but their outputs are prone to noise and drift errors, even

over a short period of time. On the other hand, barome-

ters can provide a stable measurement of height over time,

but their output is sensitive to rapid variations in the air

pressure uncorrelated with altitude changes. Considering the

complementary strengths of both kinds of sensors they can be

fused to obtain an improved measurement. When combined

with inertial sensors, barometers can provide accurate height

estimation for drones, for example, with errors less than 15 cm
after 3min [18]. In Firefly, we adopt the complementary filter

from [19] which is simple to implement and specially suitable

for resource-limited UAVs.
Next, we describe how we combine the height estimation

and the photosensor data to provide an accurate location.

B. Drone localization with height & light
Building upon the reliable height estimation, we design the

VLP method for drone localization, named Firefly. As the goal

is to keep the hardware complexity as low as possible, we

consider an infrastructure where each LED transmitter has a

single off-the-shelf light. This maintains the simplicity of the

transmitters, making them easily scalable. Similarly, on the

receiver’s side, the drone is equipped with a single photodiode.

In Fig. 3, we show the reference system for clarity.

h
di

(xi,yi,zi)

a
b g

y

  X

Z

Y

(xr,yr,zr)

Fig. 3: System reference and parameters. Without loss of

generality, we place the LEDs (transmitters) on the ground.

General framework. A main advantage of Firefly is that

the parameters required by our method are available in the

data sheets of LEDs and PDs. Therefore, with the received

power (Pr,i) from each transmitter i, the distance di between

a transmitter and the drone can be derived from Eq. 2 as:

d2i =
Pt

Pr,i
· cosm(ψi) · cos(θi) · c (3)

where c = (m+1)Ar

2π is a constant.
Note that, except for the irradiance angle ψi and incidence

angle θi, all the other parameters and variables are known.
Irradiance angle. Given that the LEDs are on the same

plane, and that the irradiance angle ψi is not affected by the

receiver’s tilt, the following equality holds: cosψi =
h
di

.
Incidence angle. The 3D orientation of the receiver deter-

mines the incidence angles θi. We can obtain this information

using rotation matrices. Denoting (xr, yr, zr) as the unknown

location of the drone, (xi, yi, zi) as the known locations of the

LEDs, and (α, β, γ) as the yaw, pitch and roll of the drone

(provided by the IMU), the incidence angle θi is determined

in the following steps:
Step 1: We start with a vector normal to the surface of the

PD: �npd =
[
0 0 −1

]T
, with zero roll and pitch angles.

Step 2: We insert the orientation of the drone applying the

following rotation matrices to �npd:

�npd,rot = Rz × (Ry × (Rx × �npd)) (4)
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where Rx, Ry and Rz are the rotation matrices according to

the reference system defined in Fig. 3.

Step 3: We calculate the incident angle θi between �npd,rot

and �di, where �di is the vector from the estimated location

of the drone to the location of each transmitter: �di = [xr −
xi, yr − yi, zr − zi]. Given that the height is already estimated

(h = zr − zi), the only unknowns left are (xr, yr).

Numerical optimization. Replacing the irradiance angle ψi

and the incidence angle θi in Eq. 3, all the transmitter-receiver

distances can be combined into the cost equation below:

C(xr, yr) =

1

n

n∑
i=1

∣∣∣∣d3+m
i − (θx,i + θy,i + θz,i) · hm · Pt · c

Pr,i

∣∣∣∣ (5)

where based on the rotation matrix:

θx = (xr − xi)cos(α)sin(γ)(sin(β) + (cos(β))

θy = (yr − yi)sin(α)sin(γ)(sin(β) + (cos(β))

θz = (zr − zi)cos(γ)(sin(β) + (cos(β))

Minimizing this cost function, we can obtain the 2D position

of the receiver (xr, yr) that minimizes the mean error to

each transmitter. This optimization problem can be solved via

nonlinear programming methods.

V. EXPERIMENTAL VALIDATION

To evaluate Firefly against SoA methods in an indoor

testbed, we select two methods as reference: the 3D VLP with
RSS method in [16] and the 2D+H VLP with RSS method in

[9] which have reported favorable results, with errors below

10 cm, as previously shown in Fig. 2.

A. Overview of the testbed

We build a testbed in a 2 x 2 x 2 m indoor environment

as shown in Fig. 4a. The testbed has three main components:

1) 4 transmitting LED sources located at fixed positions, 2)

the drone, and 3) a ground truth system to determine and

control the drone’s position during flight. The connection

between these components and the schematic overview of

their functionalities are shown in Fig. 4b. All the optical

parameters (Pt,m,Ar) are obtained directly from data sheets.

In our testbed: Pt = 2.7W (50% duty cycle), m = 14 and

Ar =5.2mm2.

It is important to note that the lights can be placed at any

point (floor or ceiling) since Firefly can infer its location based

on the position broadcasted by the LEDs. To transmit the

information, we use the frequency division multiple access

(FDMA) scheme from [20]. In our setup, the LEDs transmit

data simultaneously in their unique frequency IDs, and the

combined signal is sampled by the PD in the receiver. In the

drone, the signal is decomposed with a Fast Fourier Transform

(FFT) to obtain the RSS (Pr) of each light source. With

this scheme, Firefly is resilient to high frequency noise as

well as the constant DC component of ambient light. This

allows Firefly to work in dark and illuminated environments

with a simple implementation (i.e. no synchronization and no

additional protocol is required by FDMA). To showcase its

robustness, our experiments were carried under the presence

(interference) of externals sources of artificial and natural light.

3

1
2

(a)

Lighthouse deck

BAR

IMU

Radio module

Photodiode deck

60Hz

IR IR

120Hz

LED1 LED3 LED4LED2

FFT

Driver MOSFET Microcontroller

Station 1 Station 2

240Hz 480Hz

log

visible light signal

UAV

Ground truth system

position estimation

Transmiter

(b)

Fig. 4: System overview. (a) Testbed with 1) 4 transmitters; 2)

UAV; and 3) the ground truth system. (b) Schematic overview.

Transmitter. CorePro LEDspot LV lamps are used as

transmitters.

Receiver. We select the Bitcraze Crazyflie 2.1 as the re-

ceiver and attached an OPT101 PD with a custom PCB.

Ground truth system. We use the Lighthouse positioning

system from Bitcraze to control and retrieve the ground truth

location of the UAV. The system can achieve centimeter level

accuracy, but consists of expensive hardware that requires

careful setup and calibration (making it impractical to scale).

B. Evaluation results

We carry out eight automated flight tests where the drone

follows a pre-programmed route with curves and direction

changes. As a result, we are constantly inducing tilting on

the drone to test the VLP methods in a real scenario.

Although Firefly can run in real time in the drone, executing

the three algorithms simultaneously is too demanding. There-

fore, we send the sensor data log to a remote server as shown

in Fig. 4b and use Matlab to compare them.

Location estimation We compare the performance of Fire-

fly against two SoA methods across eight different flight tests.

We label as Indirect-H the method from [9] and as 3D PSO
(from Particle Swarm Optimization) the method from [16]. The
mean error across all tests is 98.53 cm for 3D PSO, 41.04 cm
for Indirect-H, and 20.60 cm for Firefly.

In Fig. 5a we support the previous results qualitatively by

looking into the flight trajectories of both SoA methods used

for comparison. The trajectory plot of 3D PSO displays the

expected circular motion in the x-y plane, but the altitude

estimation is far from the ground truth, resulting in a wide

trajectory. The inaccuracy of 3D PSO can be explained due to
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the parallel assumption between transmitters and receiver in its

model. In our mobile setup we see that small angle variations

can have a significant effect on the measured intensity.

Comparing the flight trajectories of Indirect-H and Firefly

in Fig. 5b, we see that Indirect-H does not capture the full

amplitude of motion of the trajectory. Given that the same

RSS information is used for both Indirect-H and Firefly, the

improvement is mainly due to the accurate height estimation

and the consideration of the receiver’s tilting. In comparison,

Firefly follows the ground truth much closer and improves

the mean error accuracy by 50% against Indirect-H, and 80%

against 3D PSO.

���
����

(a)

���

(b)

Fig. 5: 3D trajectory comparison between (a) Indirect-H and

3D PSO; (b) Firefly and Indirect-H.

Height Estimation. To highlight the importance of our

height estimator, let us take a close look at the results of

Firefly and Indirect-H in Fig. 6a. During the lift-off (timestep

0 to 60) and landing (after timestep 200), Indirect-H is able

to detect the monotonic changes in altitude, but with far less

accuracy compared to Firefly. During the route (timestep 60 to

200), Indirect-H cannot track the variation in height. Firefly,

on the other hand, closely follows the ground truth even when

tilting occurs (Fig. 6b). Considering the height measurements

of all (eight) tests, the mean error for Firefly is less than 14 cm
compared to a mean error of 30 cm for the Indirect-H.

Overall, the significance of our height estimator is that it

translates into an accurate and robust estimation of the drone

location, as hypothesized in Section II.
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Fig. 6: a) Height estimation and b) Tilt in Test 5.

VI. CONCLUSION

This work demonstrates that VLC can be used for accurate

3D positioning of drones in a realistic setup without any

training phase, which is distinguished from the SoA that only

considers static receivers. Our localization method decom-

poses a 3D positioning problem into 2D+H, but provides

two novel contributions. By utilising the on-board sensors

on the drone, we accurately estimate height and account for

tilting of the receiver. As demonstrated by the experimental

results, Firefly achieves a mean position accuracy of 20.60 cm
using off-the-shelf LED lights and low-cost sensors. Under the

same experimental setup, Firefly reduces the localization error

compared to two other SoA methods by around 50% and 80%.

This work serves as a starting point in the design of a visible

light communication platform for drones.
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