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1 Introduction 

1.1 Motivation 
Congestion is a frequent problem on freeways. Congestion occurs when demand exceeds 

prevailing roadway capacity, or when—e.g. due to incidents or roadworks—the roadway 

capacity is reduced below prevailing demand (Cassidy and Bertini, 1999, Cassidy and 

Rudjanakanoknad, 2005, Daganzo, 2011, Murray-Tuite, 2008). Congestion is often considered 

a major challenge for the operations of road freight transport (ATRI, 2021). Because of 

congestion, trucking companies have been losing billions of dollars worldwide because trucks 

either have to take a detour or come to a standstill (TLN, 2020, Hooper, 2018). Trucks not only 

suffer from congestion but they also contribute to it and in turn affect traffic operations 

(Schreiter, 2013, Sarvi and Kuwahara, 2008, Moridpour et al., 2015). As a result, degradable 

freight and traffic operations on freeways inhibit economic growth and prosperity. 

Understanding driving behavior and on-trip decision-making of truck drivers are critically 

important to design measures that mitigate the impacts of congestion on truck traffic, and vice 

versa, to design measures that mitigate the impacts of truck traffic on congestion. In this respect, 

the on-trip behavior of truck drivers can be decomposed—like driving behavior in general 

(Michon, 1985)—into strategical, tactical, and operational behavior (see Figure 1.1).  

 

Figure 1.1. The hierarchical structure of the on-trip driving behavior (adapted from 

Michon (1985).  
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The strategic level behavior involves routing decisions and may run over periods ranging from 

a few minutes to hours. The tactical level is determined by both the driver’s general goals set 

at the strategic level and the current driving situation. This level depicts short-term path-

planning (e.g. merging, diverging, or lane changing) and is typically executed across an interval 

of seconds. The finest scale of driver behavior is the operational level, which involves automatic 

action patterns (e.g. steering & accelerating of the vehicle) that are executed at a time scale 

ranging from milliseconds to seconds. Research on all three levels will equip us with improved 

knowledge about the complex on-trip behavior of truck drivers and tools to improve both freight 

and traffic operations on freeways. 

 

1.2 Research gaps 
Despite the growing importance of road freight transport and the challenges it faces, there are 

larger gaps in our knowledge when it comes to strategical, tactical, and operational behavior of 

drivers of trucks, in comparison to passenger cars. The modeling and control of these three 

levels for truck drivers is still developing around the use of new datasets, novel traffic 

management and control strategies, and requires significant new research. We introduce these 

needs below. 

 

1.2.1 Strategic driving behavior 

The earlier literature on route choice has used stated preference (SP) surveys and revealed 

preference (RP) GPS data to study how truck drivers select their routes during their trips 

(Arentze et al., 2012, Feng et al., 2013, Hess et al., 2015, Kamali et al., 2016, Knorring et al., 

2005, Oka et al., 2019, Sun et al., 2013, Toledo et al., 2020). Although valuable insights 

regarding route-specific characteristics have been obtained, the studies based on SP datasets 

might have validity issues since they solicit choice behavior in hypothetical situations. 

Although GPS datasets might alleviate the aforementioned limitations, they are often not 

publicly available and expensive to buy from service providers. In contrast to GPS data, there 

are other low-cost alternatives such as Automated Vehicle Identification (AVI) data such as 

camera, Bluetooth, and (freight) travel diaries. The AVI sensors can capture passing vehicles’ 

movements to produce a large sample that is (more) representative of the population. 

Furthermore, these sensors can continuously record vehicles’ movements over several periods 

of the day. However, these datasets are sparse (or unlabeled) as they lack actual route choices 

of drivers and only comprise origin, destination, and experienced travel time for a given trip. 

The lack of appropriate methods that can deal with the sparsity of AVI datasets further inhibits 

us to develop advanced route choice models for road freight, which are fundamental to our 

understanding of how road freight moves and can support the development of appropriate traffic 

and logistics interventions. 

 

1.2.2 Tactical driving behavior 

Tactical driving behavior, necessitated by lane changing, is shown to exert significant influence 

on road capacity (Cassidy and Rudjanakanoknad, 2005) and safety (Li et al., 2014) around 

freeway bottlenecks such as ramps and weaving sections. Whereas modeling of lane change 

behavior for drivers of passenger cars has been extensively studied, (Balal et al., 2016, 

Moridpour, 2017, Toledo et al., 2003, Toledo and Katz, 2009, Ahmed, 1999, Moridpour et al., 

2012), research for drivers of trucks is limited due to the scarcity of empirical trajectory datasets 

(Moridpour et al., 2012). Lane changing is complex driving behavior that comprises several 

elements related to mandatory (merge/diverge) and discretionary (assessing gaps; deciding for 

or against one) lane changes. Although Moridpur et al. (2012) have studied motivations for 
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truck drivers to change lanes within their discretionary activities using limited data of only 39 

trajectories of truck drivers, they do not explore other elements such as merge/diverge 

(mandatory) and gap selection (discretionary). Concerning merging and diverging behavior, the 

previous research shows that inter-driver differences exist within drivers that cannot be captured 

alone by adjusting driver behavior parameters in existing models (Keyvan-Ekbatani et al., 2016, 

Sun and Elefteriadou, 2012, Li, 2018, Li and Sun, 2018). Clearly, with such heterogeneity in 

the merging and diverging behavior of passenger car drivers, there is also large heterogeneity 

within truck drivers that remains to be explored. Moving on to the gap selection process, an 

important stage of the discretionary lane-changing process where drivers explicitly look for a 

suitable and safe opportunity to initiate their desired lane-changing maneuver, long-term 

temporal interdependencies (or the historical driving experience) and the impact of (external) 

topological factors have not yet been considered (Balal et al., 2016, Toledo and Katz, 2009, 

Punzo et al., 2011, Pang et al., 2020). Further, no comparison among gap selection process of 

multiple vehicle classes (passenger cars, delivery vans and truck drivers) is available due to the 

lack of research on datasets comprising the sufficient number of trajectories of those vehicle 

classes. Therefore, new and diverse datasets (van Beinum et al., 2018, van Beinum, 2018) are 

needed to be investigated to improve existing lane changing models in order to realistically 

capture traffic phenomena and accurately conduct traffic and safety assessments.  

Turning now to controlling tactical behavior, research on lane change advisory systems shows 

that traffic efficiency around freeway bottlenecks can be improved (Roncoli et al., 2017, Tajdari 

et al., 2020, Markantonakis et al., 2019). The advisory system intends to balance traffic flow 

distribution on available lanes of a freeway around bottleneck areas. However, it has operated 

on traffic as a whole and not considered vehicle class-specific properties. The previous research 

notes that heterogeneity induced from vehicle class-specific properties can affect traffic 

efficiency (van Lint et al., 2008a, Schreiter, 2013); therefore, it is important to embed multiple 

vehicle classes in the lane-changing advisory framework to develop a generalized control 

scheme where the behavior of each vehicle class can individually be influenced. The 

generalized control schemes can be particularly useful for freeways with a high share of trucks.  

 

1.2.3 Operational driving behavior 

In contrast to the tactical level, control applications for the operational behavior of truck drivers 

has been researched extensively in the form of a truck platooning application (Calvert et al., 

2019, Saeednia and Menendez, 2017, Ramezani et al., 2018, Tsugawa et al., 2016, Wang et al., 

2019, Milanés and Shladover, 2014, Shladover et al., 2006). Although these studies evaluate 

the impact of truck platooning on traffic efficiency using real-world trials and traffic simulation, 

they do not fully capture the uncertainty associated with the traffic and safety impacts caused 

by different truck platooning characteristics (e.g., market penetration, length of the platoon, 

intra-platoon gap spacing, and desired speed) around freeway bottlenecks. These bottleneck 

sites are important to consider from the point of view of the (possible) driving conflict between 

a truck platoon and a vehicle either entering into or exiting the mainline carriageway. This calls 

for detailed sensitivity analysis to comprehensively examine individual and interaction effects 

of truck platooning characteristics on traffic efficiency and safety. Furthermore, situations 

involving truck platoons merging onto mainline carriageway have not yet been considered in 

the impact analysis framework. This would be an important step to support the deployment of 

truck platoons on significant freight corridors. 

 

Thus far, it has been shown that there is a need to obtain new knowledge and insights about the 

on-trip behavior of truck drivers by developing new methods that can harness the potential of 

sparse travel datasets for route choice and investigating newly available trajectory datasets for 

lane changing. Furthermore, traffic management and control strategies need to be generalized 
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by embedding vehicle-class specific properties. Before truck platoons can be deployed in the 

real world, a comprehensive understanding of the uncertainty of their possible impacts on traffic 

operations is required.  

  

1.3  Research aim and questions 
The main aim of this dissertation is: 

 

To develop new mathematical models and control methods for the on-trip behavior of truck 

drivers and thereby improve both freight and traffic operations in terms of safety and efficiency.  

 

Below we detail this overall aim into research questions that pertain to strategical, tactical, and 

operational truck driving behavior, respectively.   

 

I: Strategic driving behavior on a freeway network 

 

Chapter 2: How can characteristics of on-trip route choice behavior of trucks be estimated 

from sparse datasets?  

II: Tactical driving behavior around freeway bottlenecks 

 

Chapter 3: How can merging and diverging strategies of truck drivers be identified?  

 

Chapter 4: What attributes affect the gap selection process of truck drivers within their 

discretionary lane changing, in comparison with other vehicle classes? 

 

Chapter 5: To what extent can a lane changing advisory system for multiple vehicle classes 

improve traffic efficiency?  

III: Operational driving behavior around freeway bottlenecks 

 

Chapter 6: What is the impact of truck platoons with different characteristics on traffic 

efficiency and safety around a freeway bottleneck?  

1.4 Research scope 
This dissertation deals with freeway traffic with or without freeway bottlenecks (e.g., on-ramps, 

off-ramps, weaving sections). Multi-lane freeways are considered in this dissertation. The 

studies are restricted to isolated freeway bottlenecks and multiple interacting bottlenecks are 

beyond the scope of this dissertation. This dissertation considers trucks, passenger cars and 

delivery vans. Other vehicle classes such as two-wheelers and buses are not considered. 

Furthermore, this dissertation concentrates on investigating and managing the on-trip decisions 

of drivers and does not address pre-trip or demand management. Finally, the focus is on 

exploring the effect of control strategies; topics like implementation and enforcement (of such 

strategies) are beyond the scope of this dissertation. 

 

1.5 Research context 
This doctoral research is part of the “ToGRIP-Grip on Freight Trips” project. The project is 

funded by the Dutch Research Council (Nederlandse Organisatie voor Wetenschappelijk 

Onderzoek or NWO) under the grant number 628.009.001 and involves TKI Dinalog, 
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Commit2data, Port of Rotterdam, SmartPort, Portbase, TLN, Deltalinqs, Rijkswaterstaat, and 

TNO as consortium members. The project has focused on a setting geographically located 

around the Port of Rotterdam in the Netherlands. The project has provided two PhD positions 

which were all based at the Delft University of Technology (TU Delft). The overall objective 

of ToGRIP is: 

 

“To develop a data-driven integrated traffic and logistics model that can be used to design 

interventions (executed by the Port, Road and other authorities) to combat travel time 

unreliability and to improve logistics operations.”- Snelder (2016). 

 

Within ToGRIP, two pillars have been identified: pre-trip and on-trip decisions of truck drivers. 

These two pillars are spread over four work packages: empirical analysis; integrated traffic and 

logistics model; interventions and knowledge utilization; and project management. This 

research fits in the second pillar and concerns the on-trip behavior of truck drivers. The first 

pillar is studied by Ali Nadi as a part of his doctoral research (Nadi, 2022).  

 

1.6 Scientific contributions 
This dissertation provides new insights, novel methodologies, and emerging scientific 

applications, which are described as follows.  

 

1.6.1 New insights  

• We show that the on-trip route choice characteristics of drivers can be estimated from 

sparse datasets that lack observations of route choices (Chapter 2).  

• The findings in this dissertation suggest that the on-trip route choice characteristics of 

truck drivers can be best captured by segmenting them into four latent subgroups 

(Chapter 2).  

• There exists a significant inter-driver heterogeneity in the merging and diverging 

behavior of truck drivers. The findings in this dissertation indicate that these truck 

merging and diverging behaviors can be clustered into two and three main strategies, 

respectively (Chapter 3).  

• Systematic differences also exist between drivers of passenger cars, delivery vans, and 

trucks in the gap selection process within their discretionary lane changing activities 

(Chapter 4). 

• A multi-class lane changing advisory system reduces travel times for both mainline and 

ramp vehicles around a merging section by delaying the breakdown of traffic flow and 

suppressing shock waves (Chapter 5).  

• We identify and rank important characteristics of truck platoons concerning their 

impacts on traffic efficiency and safety (Chapter 6). 

• The findings in this dissertation suggest a significance presence of interactions among 

characteristics of truck platoons that causes uncertainty in the traffic and safety impacts 

greater than that of varying each of the characteristics alone (Chapter 6). 

1.6.2 Novel methodologies 

To arrive at new insights, this dissertation develops the following:  
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Novel mathematical models 

• We develop a novel method that combines data fusion and bi-objective optimization to 

estimate route choice models from a sparse dataset that lacks actual route choices of 

drivers. The data fusion step of our method leverages the timestamps of a trip contained 

in a sparse dataset (Chapter 2). 

• We apply the finite mixture modeling technique (Little, 2013) to cluster merging and 

diverging patterns of truck drivers using a feature set that comprises their spatial, 

temporal, kinematic and gap-acceptance attributes (Chapter 3). 

• We apply gated recurrent unit neural networks (Cho et al., 2014) based models to 

investigate the gap selection process of passenger cars, trucks, and delivery vans by 

accounting for long term temporal interdependencies (Chapter 4). 

• We use an explainable artificial intelligence (AI) technique such as gradient-based 

measure (van Lint, 2004, Simonyan et al., 2014) to explain what gated recurrent unit 

neural networks (or so-called black-box models) have learned and whether this learning  

makes sense behaviorally (Chapter 4). 

• We utilize a global level sensitivity analysis technique, Borgonovo importance measure 

(Borgonovo, 2007), to capture the uncertainty associated with the traffic and safety 

impacts of truck platoons (Chapter 6). 

Novel control methods 

• We design a cooperative intelligent transportation system (ITS) based multi-class lane 

changing advisory system that utilizes an optimal linear quadratic regulator (Chapter 5).  

• We develop linear feedback controllers that govern the behavior of truck platoons in 

cooperative adaptive cruise, adaptive cruise, and cruise modes (Chapter 6). 

Novel modules for a microscopic simulation model 

• We develop a module for a multi-class lane changing advisory system and implement it 

in a microscopic simulation model.  The extended simulator is used to assess the 

performance of the proposed advisory system to mitigate congestion around a merging 

section (Chapter 5).  

• We extend a microscopic simulation model with new implementations of controllers 

that govern the behavior of truck platoons in order to evaluate their impacts on traffic 

efficiency and safety (Chapter 6).  

1.6.3 Emerging scientific applications 

The main scientific application of this dissertation lies in the development of a simulation-based 

dynamic multi-class traffic assignment model with the following unique features. 

 

• Vehicle class-specific on-trip route choice models (Chapter 2) 

• Vehicle class-specific lane changing models (merging/diverging and gap selection 

studies from Chapter 3 and 4) 

• Traffic management and control modules (e.g., a multi-class lane changing advisory 

system developed in Chapter 5) 

• Modules to simulate the operations of truck platoons (Chapter 6) 
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This dynamic multi-class traffic assignment model can be used for traffic and safety 

assessments as well as ex-ante evaluations of ITS applications. Moreover, this model can also 

be a good choice to develop an integrated traffic and logistics model that can be used to study 

the impact of port and terminal activities on the traffic system, and vice-versa, to analyze the 

impact of traffic operations on port and terminals.  

 

1.7 Practical contributions 
This dissertation contributes to practice by presenting: 

• A method to estimate route choice characteristics from readily available datasets: This 

tool can be used to estimate route choice models from sparse AVI datasets (e.g., 

Bluetooth, camera) which can be obtained readily from traffic management agencies 

but lack actual route choices of drivers (Chapter 2). 

 

• Insights to improve freeway design guidelines for ramps and weaving sections: Insights 

about the merging and diverging behavior of truck drivers and their contribution to 

turbulence can be used to evaluate and improve freeway design guidelines for ramps 

and weaving sections (Chapter 3). 

 

• Automated gap selection systems for multiple vehicle classes: A data-driven (or 

automated) gap selection system can be used to inform drivers of multiple vehicle 

classes (passenger cars, delivery vans, trucks) whether an available gap should be 

accepted or rejected. This tool can be integrated as an advanced driver assistance system 

application (ADAS) to improve safety during lane-changing and also holds vast 

potential for connected and autonomous vehicles (Chapter 4).  

 

• A cooperative ITS-based multi-class lane-changing advisory system to improve traffic 

efficiency around freeway bottlenecks: This advisory system is generalized to 

distinguish vehicle classes and its positive impact on traffic efficiency is shown. This 

system can leverage the potential of cooperative ITS technology and advises drivers to 

change lanes in order to balance traffic flow over available lanes of a carriageway 

around freeway bottlenecks (Chapter 5).  

 

• Optimal truck platooning configurations around freeway bottlenecks: The case study 

identifies optimal truck platooning configurations that can be deployed in different 

traffic conditions and would not deteriorate traffic operations in terms of efficiency and 

safety (Chapter 6).  

1.8 Dissertation organization 
The structure of the dissertation is presented in Figure 1.2. The research questions are addressed 

in six chapters that form the main body of this dissertation.  

The main body is divided into three hierarchical levels of the on-trip behavior of truck drivers. 

First, Chapter 2 focuses on the strategic behavior of truck drivers by estimating their on-trip 

route choice characteristics. This chapter presents a novel two-step approach that combines data 

fusion and bi-objective optimization. With this approach, their route choice characteristics and 

inter-driver heterogeneity are investigated for a case study on port (of Rotterdam)-to-hinterland 

trips in the Netherlands. 

The next three chapters are dedicated to their tactical driving behavior around freeway 

bottlenecks and focus on three elements: merging/diverging, gap selection process, and lane 
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changing advice. Chapter 3 presents the underlying heterogeneity in the merging and diverging 

behavior of truck drivers around freeway bottlenecks through the finite mixture model based 

clustering analysis. Chapter 4 presents how the gap selection process of truck drivers within 

their discretionary lane changing activities is influenced by three-dimensional feature space that 

includes their kinematic and physical characteristics, their interactions with surrounding 

vehicles, and their perceptions of the road topology by applying gated recurrent neural network 

models and explainable artificial intelligence techniques. Afterward, this process is compared 

with those of passenger car drivers and delivery van drivers to understand the differences in 

multiple vehicle classes. Chapter 5 presents a C-ITS based lane-changing advisory system to 

improve traffic operations and evaluates the performance of this system using a microscopic 

simulation tool. 

Next, Chapter 6 focuses on the operational driving behavior of truck drivers and concentrates 

on the truck platooning application. This chapter presents how characteristics of a truck 

platooning configuration affect traffic operations around a freeway bottleneck using a 

microscopic simulation tool.  

Finally, chapter 7 presents the conclusions of the dissertation. This chapter summarizes the 

main research findings, presents the overall conclusions, and discusses their scientific and 

practical implications. Directions for future research are also discussed in this chapter. 
 

 

Figure 1.2. Outline of the dissertation. 

 



 

 

 
 

  

9 
 

I: Strategic driving behavior on a freeway network 
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2 On-trip route choice behavior of truck drivers 

 

 

Chapter 1 showed the need for understanding the on-trip behavior of truck drivers. One of the 

hierarchical levels within on-trip behavior is the strategic one. The most important element 

within the strategic level to investigate is the on-trip route choices of truck drivers. State-of-

the-art has not explored the usability of sparse automatic vehicle identification (AVI) data to 

estimate route choice characteristics. This chapter contributes to answering the first research 

question of this dissertation and fills this gap. This chapter proposes a novel method based on 

data fusion and bi-objective optimization to deal with the sparsity of AVI datasets. The useful 

of this method is demonstrated to estimate characteristics of on-trip route choices of truck 

drivers from fusing sparse Bluetooth data with loop-detector data.  

 

This chapter is based on the following journal and conference papers: 

 

Sharma, S., van Lint, H., Tavasszy, L. and Snelder, M. 2022. Estimating Route Choice 

Characteristics of Truck Drivers from Sparse AVI Data through Data Fusion and Bi-objective 

Optimization. Transportation Research Record, 2676(12), pp. 280–292. 

 

Sharma, S., van Lint, H., Tavasszy, L. and Snelder, M. 2022. Estimating Route Choice 

Characteristics of Truck Drivers from Sparse Bluetooth Data through Data Fusion and Bi-

objective Optimization. Paper presented in 101st Annual Meeting of the Transportation 

Research Board. 
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2.1 Introduction 
Road transport has been the main choice for inland freight transport within the European Union 

accounting for 76.30% of the modal share in 2019. Especially in the Netherlands where the port 

of Rotterdam generates most of the freight activity, the share of road freight is estimated at over 

50% in 2019 (Eurostat, 2021). This reliance on road transport calls for robust and reliable traffic 

operations. On the one hand, freight transport contributes to congestion and on the other hand, 

trucking companies in the Netherlands have suffered economic damage due to road congestion. 

This economic damage is estimated to be 1.5 billion euros for 2019 and this cost has been 

increasing yearly (TLN, 2020). Therefore, a thorough investigation of on-trip route choices of 

truck drivers is fundamental to our understanding of how road freight moves which in turn can 

support the development of advanced traffic and logistics interventions.  

The estimation of route choice models requires data that is typically collected using either 

stated-preference (SP) or revealed-preference (RP) surveys. The pros and cons of SP and RP-

based approaches are widely known. SP studies solicit choice behavior in hypothetical 

scenarios where the actual choices might be different than the ones stated. RP studies rely on 

rich activity datasets and don't have these validity limitations, however, RP data cannot be 

collected under the same rigorously controlled circumstances as SP data (Hess et al., 2015). 

Nonetheless, there has been a recent shift to study route choices of truck drivers from SP-based 

studies (Arentze et al., 2012, Feng et al., 2013, Peeta et al., 2000, Rowell et al., 2014, Toledo 

et al., 2013) to RP-based studies due to the availability of trajectory (mostly GPS) datasets 

(Hess et al., 2015, Knorring et al., 2005, Oka et al., 2019, Ben-Akiva et al., 2016, Sharma et al., 

2019, Luong et al., 2018, Toledo et al., 2020). Although GPS data are appealing because of 

their spatial (i.e., location) and temporal (i.e., timestamps) richness to investigate route choices, 

few limitations are associated with collection and coverage. These data are often not publicly 

available and are expensive to buy from service providers. Furthermore, they might not capture 

a representative sample of the population over a limited period. In contrast to GPS data, there 

are other low-cost alternatives such as Automated Vehicle Identification (AVI) data. These data 

are collected from fixed-location sensors (e.g., Bluetooth sensors or traffic cameras), which can 

be installed by road authorities on many different strategically chosen locations. These fixed-

location sensors can alleviate the limitations of GPS data in two ways. First, these sensors can 

capture passing vehicles’ movements to produce a large sample that is (more) representative of 

the population. Second, these sensors can continuously record vehicles’ movements over 

several periods of the day. 

Fixed-location sensors have some advantages over mobile sensors (i.e. GPS); however, little 

research effort has been put to harness the potential of such data for route choice modeling (Cao 

et al., 2020). The key reason for that is that these sensors may not fully cover a road network 

sufficiently to make the underlying route choice observable (in the mathematical sense, e.g. Viti 

et al. (Viti et al., 2014)). The result typically is a sparse dataset that comprises origin, 

destination, and experienced travel time for a given trip. This sparse dataset is unlabeled in the 

sense that it lacks actual route choices of drivers, and as such cannot be used to estimate discrete 

choice models. To deal with the sparsity issue, extra information about estimated travel times 

of route alternatives is required to infer the most likely chosen route, i.e. the missing label. A 

possibility is to use another independent dataset (e.g., loop-detector data, floating car data) to 

derive this information. The estimation problem relies on the inference of the most likely chosen 

route, and this inference can be approached from the following two perspectives:  

 

1. The most likely route chosen by a driver will maximize his perceived utility.  
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2. The most likely route chosen by a driver will minimize the deviation between experienced 

and estimated travel times.   

Note that the deviation of travel times is computed from two independent datasets and might 

be associated with some uncertainty (van Lint et al., 2008b). Therefore, a naïve approach that 

assigns missing labels based on the lowest deviation value might produce erroneous estimates 

of model parameters. In contrast, (Cao et al., 2020) combine the aforementioned two 

perspectives into a single objective function, based on the so-called network-free model 

(Bierlaire and Frejinger, 2008), to model route choices using camera (also sparse data) and GPS 

data. Although their approach is promising, it strongly depends on the quality of the available 

GPS data, and how representative they are for the population. Moreover, their method 

incorporates the second perspective through a measurement equation to supply prior beliefs, 

which come from distributional assumptions, about a route present in the choice set.  

Motivated by these issues, we propose an alternative approach that fuses a sparse Bluetooth 

dataset with path travel times derived from densely spaced loop detectors. To estimate how 

long a trip would take on alternative routes, we use a trajectory-based travel time estimation 

approach (Van Lint, 2010). In this way, our approach does not depend on GPS data and their 

variability. In addition, the estimation problem is investigated in a bi-objective optimization 

setting that allows capturing the interdependency between the conflicting perspectives: utility 

maximization and deviation minimization. Therefore, this approach can be used to 

simultaneously infer actual route choices (labels) and estimate the parameters of a route choice 

(discrete choice-based) model under minimal assumptions. As a result, this approach is applied 

to estimate route choice characteristics of truck drivers operating in the Netherlands.    

Turning now to route choice phenomena of truck drivers, existing literature has studied time-

of-day impacts and the latent class segmentation in SP-based contexts (Rowell et al., 2014, 

Feng et al., 2013, Arentze et al., 2012) where full experimental control is exerted by researchers 

and the data may suffer from hypothetical bias. The study of these two effects is particularly 

important for road freight because of two reasons. First, it can provide us with insights into the 

vulnerability of road freight operations, especially in peak hours. Second, latent class choice 

models, unlike mixed logit models (Toledo et al., 2020), do not require the knowledge of any 

mixing distribution, thus making them more useful for policy and decision-makers of logistic 

and traffic sectors. This indicates a need to study these effects using route choices of truck 

drivers observed in real-world situations. This chapter fills this research gap by using a 

Bluetooth dataset. Please not that this chapter does not use data collected from either SP or RP 

surveys. 

This chapter aims to estimate route choices characteristics of truck drivers using a sparse AVI 

or Bluetooth dataset that lacks actual route choices. This chapter contributes to the existing 

literature by: 

1. estimating the route choice characteristics of truck drivers from a sparse AVI dataset, 

where actual route choices are lacking, in combination with loop-detector data through 

bi-objective optimization; and 

2. investigating time-of-day effects and latent segmentation within route choices of truck 

drivers from Bluetooth data that include their decisions in real-world situations. 

This chapter is structured as follows. Section 2.2 will describe an approach to building a 

database of truck drivers and route-specific attributes using a sparse Bluetooth dataset and loop-

detector data. Section 2.3 is concerned with the methodology where the bi-objective 

optimization approach and latent class modeling approach are described. Then, Section 2.4 

presents the modeling results and Section 2.5 discusses key findings. Finally, Section 2.6 

concludes this chapter. Note that route and path are used interchangeably in this chapter. 
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2.2 Data 
This section first describes an approach to building a Bluetooth dataset for truck drivers that 

can be used for modeling their route choices. Afterward, this section presents attributes of route 

alternatives necessary to capture the route choice behavior of truck drivers. 

 

2.2.1 Bluetooth dataset for trucks 

Bluetooth stations record the time stamp and identity of the passing vehicle equipped with a 

Bluetooth sensor. The identity is captured in the form of a media access control address (or 

MAC address). The travel time between two Bluetooth stations can be retrieved by comparing 

the timestamps. For this chapter, the Bluetooth data are provided by the Bluetooth service from 

the port of Rotterdam. It is a query-based service that returns data in the JavaScript Object 

Notation (JSON) format. This service ensures privacy by masking the real MAC address. 

However, Bluetooth data, in general, does not provide information related to vehicle types. This 

chapter uses a three-step approach to prepare a Bluetooth dataset for trucks. First, we identify 

pairs of Bluetooth stations that can be used to identify vehicle types. Second, we prepare a 

database of truck drivers by storing their hashed MAC IDs. Finally, these MAC IDs are used to 

identify a truck trip from Bluetooth data. These trips provide key information (such as origin-

destination (OD) pair, and trip duration) that is necessary to estimate their route choice 

characteristics. 

Identification of Bluetooth stations that can cluster travel time 

Clustering has been used in the past to infer vehicle types by analyzing travel times between 

two Bluetooth sensors (Sharma et al., 2019, Namaki Araghi et al., 2016). In our data, we have 

found 2 pairs of Bluetooth stations near the ring of Rotterdam (A15 and A4) where each pair 

comprised one main Bluetooth station and one ancillary Bluetooth station (Figure 2.1). These 

pairs can cluster travel time observations in both travel directions thus resulting in four sections 

for our analysis.  

 
 

Figure 2.1. Two pairs of Bluetooth stations that can cluster travel times in both traffic 

directions. 
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Identification of truck drivers in the Bluetooth dataset 

The method to extract truck-specific data from the Bluetooth dataset is presented in Figure 2.2. 

For a given day and a pair of Bluetooth stations, congested periods from the dataset are removed 

since vehicles are observed to behave similarly as shown by travel time plots. Afterward, 

outliers are removed using a quartile-based method (Tukey, 1993) Then, we apply the Gaussian 

 

 
 

Figure 2.2. Extracting trucks-specific observations from Bluetooth dataset. 
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mixture model-based technique (Reynolds, 2009) to cluster travel time observations into one of 

the two groups: faster and slower vehicles. Note that the slower vehicle's group might contain 

some of the slower passenger cars. Therefore, we use the regulatory speed limit of trucks on 

motorways in the Netherlands, i.e., 80 km/h as a filter to remove undesired passenger cars and 

label the rest of the vehicles as “likely to be trucks”. We iterate over different days (October 

and November 2017) and one of the four sections that can cluster travel time observations. After 

this process, we label vehicles that are found in the “likely to be trucks” category more than 

90% of the time and are detected at least three times by any pair of the Bluetooth stations as 

“trucks”.  This process results in a database of hashed MAC IDs that represent truck drivers.  

Identification of truck trips 

Having identified truck IDs, we can now turn to obtain truck trip data between an ID pair. In 

this chapter, we consider trips of truck drivers between a port node and a hinterland node (see 

Figure 2.3). Four hinterland nodes, which are strategic in terms of freight flows, are considered 

at shorter and longer distances from the port. A total of eight OD pairs by considering trips in 

both directions for a single OD pair. Since Bluetooth observations lack information about the 

route chosen by a truck driver between an origin-destination pair, we use anchor points to 

alleviate some of the limitations of the Bluetooth dataset. An anchor point is defined as a 

Bluetooth station that lies between an origin and a destination node. Thus, the trips made by 

truck drivers in our data represent journeys over an origin node, an anchor point, and a 

destination node. 

 

In addition, we also filter out anomalies (e.g., long breaks) occurring in the trip data using a 

rule-based approach. Let 𝑇𝑇𝑜𝑏𝑠,𝑛 be the journey time incurred by a truck driver 𝑛 while making 

a trip over an origin node, an anchor point (𝑎𝑛), and a destination node. This travel time is 

retrieved from the Bluetooth dataset. An anchor point allows us to reduce the choice set for a 

 
 

Figure 2.3. Locations of the port node, hinterlands nodes, and anchor points in the 

Netherlands. 
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truck driver 𝑛, i.e., 𝐶𝑛  to a viable subset 𝐴𝑛. All those route alternatives for a truck driver 𝑛 

that pass through the anchor point 𝑎𝑛 are present in 𝐴𝑛. 𝑇𝑇𝑖𝑛 refers to the expected travel time 

over a route alternative 𝑖 for a truck driver 𝑛. Then, the journey time (𝑇𝑇𝑜𝑏𝑠.𝑛) of a truck driver 

𝑛 should lie between the minimum expected travel time and the maximum expected travel time 

among route alternatives present in the viable choice set 𝐴𝑛. A tolerance of 10% is added to the 

minimum and maximum expected travel time. We assume that any trip beyond this threshold 

would have incurred long breaks. Therefore, a continuous trip should satisfy the following 

Equation 2.1: 

  

0.9 ∗ (min
𝑖∈𝐴𝑛

𝑇𝑇𝑖𝑛) ≤ 𝑇𝑇𝑜𝑏𝑠,𝑛 ≤ 1.1 ∗ (max
𝑖∈𝐴𝑛

𝑇𝑇𝑖𝑛)  (2.1) 

  
This step has produced a total of 14928 trips made by truck drivers during October and 

November 2017. Next, we present key attributes that characterize a truck trip. 

 

2.2.2 Attributes of route alternatives 

We consider three attributes: expected travel time, travel distance, and travel time unreliability 

at the time of departure. 

Expected travel time 

We use expected travel time at the time of departure as one of the attributes of route alternatives. 

We use loop-detector data (Regiolab-Delft) and apply the filtered speed-based (FSB) trajectory 

method (Van Lint, 2010) to compute the expected travel time for a truck driver over a path 

between an origin-destination pair. In the Netherlands, loop-detectors are roughly located at 

every 500 m and can densely cover the road network. Between the origin-destination pair shown 

in Figure 2.4, for which route choices are known beforehand, we compared the expected travel 

time with the journey time obtained from Bluetooth data. The t-test shows that journey time 

obtained from the Bluetooth dataset (𝑇𝑇𝑟) and expected travel time computed from the 

trajectory method (𝑇𝑇𝑒) are equal (t-statistic = 11.37, p-value=8.08e-30). The unit of expected 

travel time is in minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Origin destination pair with two known 

routes 

(b) Travel time comparison 

 

Figure 2.4. Travel time comparison between journey time obtained from Bluetooth data 

and expected travel time derived from the FSB trajectory method. 
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Travel distance 

The travel distance of a route alternative between two Bluetooth stations is measured using 

Google Maps API. The unit for travel distance is in kilometers.  

Travel time unreliability at the time of departure 

We use a skewness-based travel-time unreliability indicator (van Lint et al., 2008b). It can be 

interpreted as the likeliness of incurring a very bad travel time relative to median travel time, 

as defined in Equation 2.2:  

 

𝜆𝑠𝑘𝑒𝑤 =
𝑇𝑇90−𝑇𝑇50

𝑇𝑇50−𝑇𝑇10
, (2.2) 

 

where 𝜆𝑠𝑘𝑒𝑤 is the measure of travel time unreliability and 𝑇𝑇𝑥 refers to 𝑥 percentile of travel 

time observations. 𝜆𝑠𝑘𝑒𝑤 is computed for four time periods of a day: morning peak hours 

(06:30-09:30), day (09:30-16:00), evening peak hours (16:00-19:00), and night (19:00-06:30). 

Afterward, morning and evening peak hours were combined into peak hours. Day and night 

constituted off-peak hours. For the computation of travel time unreliability, we select the travel 

times incurred over a path in the previous 10 days. Having discussed the dataset and the 

attributes, the next section presents our methodology to estimate route choice models using 

sparse data.  

2.3 Methods 
This chapter proposes a new model estimation framework to estimate route choice 

characteristics from a sparse AVI or Bluetooth dataset. Figure 2.5 presents this framework that 

accepts truck-specific trip data, obtained through clustering, and travel times of alternative paths 

derived from loop-detectors as inputs.  Subsequently, a bi-objective program is formulated to 

simultaneously infer actual route choices and parameters of a route choice model. Finally, a 

latent class choice analysis is conducted to identify segments with truck drivers’ route choice 

behavior.   

 

 

The rest of the section is divided into three parts. The first part presents the problem formulation 

and solution approach. The second part discusses the decision rules that capture the behavior of 

decision-makers. Finally, the third part describes our approach to generate choice sets.  

 

 
 

Figure 2.5. A framework to estimate route choice characteristics of truck drivers from 

sparse Bluetooth data. 
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2.3.1 Bi-objective optimization approach to simultaneously infer actual 

route choices and estimate the parameters of a route choice model 

Problem description 

This chapter proposes a bi-objective model that simultaneously considers the two objectives. 

On one hand, the proposed model aims at maximizing the log-likelihood of an entire dataset of 

choice observations. Here, the likelihood of an entire dataset is simply the product of individual 

choice probabilities. On the other hand, the model aims at minimizing the total deviation 

between experienced and estimated travel times of a path. The main optimization decisions for 

the proposed model are as actual route choices (labels) and parameter estimates of a route choice 

model.  

Notations 

The mathematical notations used in the chapter are listed in Table 2.1. 

 

Table 2.1 Notations 

Notation  Description  

  

Indices 

𝑖 index of a route alternative 

𝑛 index of a truck driver 

  

Sets 

𝑁 set of truck drivers, 𝑛 ∈ 𝑁 or 𝑁 = {1, . . . , 𝑛} 
𝐶𝑛 set of route alternatives for a truck driver 𝑛  

𝐴𝑛 set of route alternatives for a truck driver 𝑛 passing through an anchor point 𝑎𝑛 

𝑎𝑛 anchor point for a truck driver 𝑛 

  

Parameters 

𝑇𝑇obs,𝑛 experienced travel time for a truck driver 𝑛 retrieved from Bluetooth dataset 

𝑇𝑇𝑖𝑛 estimated travel time for a truck driver 𝑛 over a route alternative 𝑖 
βmin the user-specified minimum value for parameters 𝛽 

βmax the user-specified maximum value for parameters 𝛽 

  

Decision variables 

𝑦𝑖𝑛 binary variable, 1 if a truck driver 𝑛 chooses a route 𝑖, 0 otherwise 

𝛽 coefficients of the utility function  

Mathematical model 

 

𝑀𝑎𝑥 𝐹1 = ∑𝑛∈𝑁 ∑𝑖∈𝐶𝑛 𝑦𝑖𝑛(ln 𝑃𝑖𝑛(𝛽)) (2.3) 

𝑀𝑖𝑛 𝐹2 = ∑𝑛∈𝑁 ∑𝑖∈𝐶𝑛 𝑦𝑖𝑛( 𝑇𝑇𝑖𝑛 −  𝑇𝑇𝑜𝑏𝑠,𝑛)
2
 (2.4) 

Subject to: 
∑𝑖∈𝐴𝑛 𝑦𝑖𝑛 = 1       ∀𝑛 ∈ 𝑁  (2.5) 

𝑦𝑖𝑛 ∈ {0,1}            ∀𝑛 ∈ 𝑁, ∀𝑖 ∈ 𝐶𝑛                                  (2.6) 

βmin ≤ 𝛽 ≤ βmax  (2.7) 

 

The objective function (2.3) maximizes the log-likelihood of the sample. The probability for a 

truck driver 𝑛 choosing a route 𝑖 is expressed by 𝑃𝑖𝑛(𝛽), which depends on the type of decision 
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rule employed. The objective function (2.4) minimizes the squared deviation between the 

experienced travel time obtained from the Bluetooth data and the estimated travel time derived 

from loop-detector data. Constraint (2.5) ensures that truck drivers can be assigned to at most 

one route that is present in the choice set 𝐴𝑛 ∈ 𝐶𝑛. Constraints (2.6) and (2.7) state the type of 

decision variables and their restrictions.  

Solution approach 

In bi-objective optimization problems, there is no single optimal solution that can 

simultaneously optimize all the objective functions. In these cases, decision-makers look for 

the most preferred solution. For these problems, the efficient (or Pareto optimal) solution is the 

solution that cannot improve one objective function without deteriorating at least one of the 

rests. A well-known technique to solve bi-objective optimization problems is the -constraint 

method (Aghaei et al., 2011). This technique optimizes one main objective while other 

objectives act as constraints. In this chapter, our main objective (𝐹1) is to maximize the log-

likelihood of the sample considering 𝐹2 as a constraint (see Equation 2.8).  

 

𝑀𝑎𝑥 𝐹1  

   

subject to 𝐹2    (2.8) 
 

We consider that 𝐹2 is upper bounded by , i.e., the total squared deviation between Bluetooth 

reported journey time and expected travel time computed using the trajectory method should 

not be more than . We vary the value of  from 𝐹2, min to 𝐹2, max using a payoff table (Aghaei 

et al., 2011), which consists of all objective values, when each objective is optimized subject to 

constraints. The set of all obtained solutions for the entire range of  are considered Pareto 

optimal front of the bi-objective optimization problem. Among the obtained Pareto optimal 

solution, the most preferred one is selected by the decision-maker according to the specific 

preference of the application. We use an optimization-specific algebraic modeling language 

AMPL (AMPL, 2019) to code our optimization formulation and use Bonmin solver (Bonmin, 

2019).  

 

2.3.2 Decision rules 

Having formulated the optimization problem formulation, we will now discuss decision rules 

that describe the process used by the decision-maker to choose an alternative. We consider three 

decision rules: multinomial logit, path size logit, and latent class choice models.  

Multinomial logit models 

Random utility theory assumes that drivers are perfectly rational and they have perfect 

discrimination capabilities (Ben-Akiva and Bierlaire, 2003). It is assumed that the utility for a 

driver 𝑛 associated with route alternative 𝑖 in the choice set 𝐶𝑛 is the sum of a deterministic part 

(𝑉𝑖𝑛) and a random part (𝜖𝑖𝑛). We consider a linear utility specification; therefore, we have 

𝑉𝑖𝑛 = 𝛽𝑋. Here, 𝛽 refers to parameters associated with route attributes 𝑋. If we assume that the 

error terms of the utility function are independent and identically Gumbel distributed, the choice 

probability of each alternative 𝑖 can be described in Equation 2.9 as: 

 

𝑃𝑖𝑛 =
𝑒𝜇𝑉𝑖𝑛

∑ 𝑒
𝜇𝑉𝑗𝑛

𝑗∈𝐶𝑛

. (2.9) 

 

Thereby, 𝜇 is a positive scale parameter and is related to the Gumble variable.  
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Path size logit models 

Typically, in route choice modeling, the alternatives are often correlated. Therefore, we use a 

correction factor (Ben-Akiva and Bierlaire, 1999). The path size correction factor quantifies the 

similarity of a route alternative with other route alternatives present in the choice set and its 

values range from zero to one. A distinct route, which is unique and does not overlap with other 

route alternatives in the choice set, has a path size of one. Path size correction for a route 

alternative 𝑖 corresponding to a truck driver 𝑛 is defined in Equation 2.10 as: 

 

𝑃𝑆𝑖𝑛 = ∑ (
𝑙𝑎

𝐿𝑖
)𝑎∈𝑖

1

∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛

, (2.10) 

 

where 𝑎 is a link in the route alternative 𝑖. 𝑖 is the set of links present in the route alternative 

𝑖. 𝑙𝑎 refers to the length of link 𝑎 and 𝐿𝑖 is the length of route alternative 𝑖. ∑ 𝛿𝑎𝑗𝑗∈𝐶𝑛  indicates 

the total number of route alternatives, present in the choice set of a driver 𝑛, sharing link 𝑎. By 

including a path size (𝑃𝑆) correction factor (Ben-Akiva and Bierlaire, 1999), we deal with the 

correlation among route alternatives. Thus, the choice probability for a driver 𝑛 to choose a 

route alternative 𝑖 is given by Equation 2.11: 

 

𝑃𝑖𝑛 =
𝑒𝜇(𝑉𝑖𝑛 + ln𝑃𝑆𝑖𝑛)

∑ 𝑒
𝜇(𝑉𝑗𝑛 + ln𝑃𝑆𝑗𝑛)

𝑗∈𝐶𝑛

 . (2.11) 

Latent class choice models 

Latent class models are used to capture unobserved heterogeneity in the behavior of truck 

drivers (Ben-Akiva and Bierlaire, 1999). The underlying assumption is that heterogeneity may 

be produced by taste variations. The latent class model is given by Equation 2.12:  

 

𝑃𝑖𝑛 = ∑ 𝜋𝑛𝑠𝑃𝑖𝑛(𝛽𝑠)
𝑆
𝑠=1 , (2.12) 

 

where 𝛽𝑠 are class-specific parameter estimates and 𝜋𝑛𝑠 is the probability that driver 𝑛 belongs 

to a segment 𝑠 and can be given by Equation 2.13: 

 

𝜋𝑛𝑠 = 
exp (𝛿𝑠𝛾𝑛)

∑ exp (𝛿𝑠𝛾𝑛)𝑠
, (2.13) 

 

where 𝛿𝑠 is a class-specific constant and to be estimated and 𝛾𝑛 refers to individual-specific 

socio-economic characteristics.   

For model selection, we use the Bayesian information criterion (BIC) (Schwarz, 1978). The 

BIC value is defined mathematically in Equation 2.14: 

 

𝐵𝐼𝐶 = −2 ln (ℒ) + 𝐾 ln (𝑛), (2.14) 

 

where ℒ is the log-likelihood of the model, 𝐾 refers to the number of estimable parameters in 

the model, and 𝑛 denotes the number of observations in the dataset. We compute the BIC value 

for each model under consideration and select the one with the smallest criterion value 

(Burnham and Anderson, 2004).  

 

2.3.3 Choice set generation 

Analyzing individual decision-making requires not only knowledge of what has been chosen, 

but also of what has not been chosen. Therefore, we require a set of available alternatives (also 

termed as a choice set) that an individual considers during a choice process. We use the Breadth-
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First Search on Link Elimination (BFS-LE) method to find repeated least-cost paths between 

an origin-destination pair (Rieser-Schüssler et al., 2013). This algorithm is a link-elimination 

approach where links of the current least-cost path are removed one at a time to calculate 

subsequent least-cost paths. We check the commonality of generated least-cost paths and only 

store unique paths in the route choice set by using travel time as our cost function. A maximum 

number of 30 unique paths between an origin-destination pair served as the termination criteria. 

This value is set as a target choice set size considering the computational tractability of the bi-

objective optimization program. 

 

2.4 Results 
This section first presents the results of an optimization model that is used to simultaneously 

estimate route choices and parameters of a route choice model. Then, this section presents 

segments of truck drivers using the latent class choice model.  

 

2.4.1 Simultaneous inference of actual route choices and estimation of 

parameters of route choice models 

The Pareto curve captures the trade-off between the two conflicting objectives considered in 

this chapter. Figure 2.6 illustrates the Pareto curves for the multinomial and path size logit 

models. The solution ‘a’ is obtained when the deviation is minimized, whereas the solution ‘b’ 

is obtained when the utilities of drivers are maximized. Among the obtained solutions that lie 

on the Pareto curve, we select the solution ‘c’ where the value of  refers to a reasonable 

estimate of the total squared deviation for sample data. For the origin-destination (OD) pair 

shown in Figure 2.4, the mean squared deviation is computed as 5.43 square minutes over an 

average distance of 31.20 km between the same OD pair. This average distance is the 

mathematical average of the length of all route alternatives between an OD pair. Note that that 

the mean squared deviation is assumed to increase linearly over longer distances due to errors 

in loop-detector data or the inability of Bluetooth observations to detect vehicle activity in 

between.  The value of  for sample data is computed to be 196833.64 square minutes.  

Table 2.2 shows the model fit of the multinomial logit and path size logit models. For both the 

models, all the parameters are significant, and they have expected signs except the travel time 

unreliability in off-peak hours. The path size logit model outperforms the multinomial logit 

  
(a) Path size logit model (b) Multinomial logit model 

 

Figure 2.6. Bi-objective optimal Pareto-curve for Likelihood and deviation objectives 

for two different decision rules. The preferred solution is ‘c’ where the deviation is 

196833.64 square minutes. 
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model based on the likelihood ratio test (p-value < 0.01). The path size logit model not only 

improves the model fit but can also correct the correlation among route alternatives. The path 

size logit model shows that truck drivers negatively value the travel time, travel distance, and 

travel time unreliability in peak hours. The path-size parameter estimate's positive coefficient 

is consistent with the findings of (3). A positive estimate for path correction term denotes that 

truck drivers prefer unique routes (i.e., routes with less overlap). We test truck drivers' 

preferences concerning the travel time unreliability in peak and off-peak hours. During peak 

hours, truck drivers, in general, stay away from unreliable routes. However, during off-peak 

hours, they are more likely to make risky route choices. If we now turn to heterogeneity in the 

route choice behavior of truck drivers, we will present the results of latent class choice models. 

 

Table 2.2 Route choice models for truck drivers 

Parameters Path size logit model Multinomial logit model 

 Value Rob. std. 

error 

Rob. t-test Value Rob. std. 

error 

Rob. t-test 

Natural log of path size 

based on travel distance 
0.492 0.067 7.31    

Travel distance (km) -0.097 0.002 -47.70 -0.090 0.002 -44.00 

Expected travel time (min) -0.023 0.002 -13.30 -0.025 0.001 -13.90 

Travel time unreliability if 

departing in off-peak hours 
0.072 0.003 18.40 0.063 0.003 18.00 

Travel time unreliability if 

departing in peak hours 
-0.046 0.004 -11.30 -0.035 0.003 -9.72 

       

Number of observations   14928   14928 

Initial log-likelihood   -25655.720   -25655.272 

Final log-likelihood   -17966.610   -17989.800 

Adjusted Rho-square   0.299   0.298 

Likelihood ratio (LR) test 

with respect to the 

multinomial logit model 

  46.38 

 

  

p-value of LR test   <0.01    

 

2.4.2 Latent class choice models 

We use the solutions of the optimization problem generated from the path size logit model as 

actual route choices of truck drivers to segment truck drivers. We estimate a latent class choice 

model using the PandasBiogeme (Bierlaire, 2020). Using the BIC criterion, we find that the 

model with 4-segments performs best as it has the least value for the BIC criterion (see Table 

2.3). The proportions of truck drivers belonging to the 4-segment model are 15.41%, 37.05%, 

39.82%, and 7.72%. The signs of parameter estimates for travel time are negative as expected. 

Similarly, the signs of parameter estimates for travel distance are negative except for segment 

4. The parameters for the route choice model show that truck drivers value path 

overlap/correction factor and travel time unreliability differently. 
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Table 2.3 Comparison of latent class models for different number of segments 

Parameters Latent segments 

 1 2 3 4 5 

Final log-likelihood -17966.61 -17054.19 -17029.96 -16756.74 -16860.90 

Adjusted Rho-squared 0.299 0.334 0.335 0.346 0.341 

Segment proportions (%) 100.00 37.61 33.91 15.41 1.72 

  62.39 3.61 37.05 24.55 

   62.48 39.82 10.39 

    7.72 43.84 

     19.50 

Estimated parameters 5 11 17 23 29 

AIC 35943.22 34130.37 34093.92 33559.48 33779.80 

BIC 35981.27 34214.09 34223.30 33734.53 34000.52 

 

Table 2.4 shows that segments 2 and 3 constitute three-fourth of truck drivers. A majority of 

truck drivers belong to segment 3, and they seem to prefer the shortest distance and shortest 

time routes. Their preference to choose routes with high overlaps makes them more flexible in 

unexpected situations such as congestion. However, they show risky behavior during both peak 

and off-peak hours by having a likeliness for routes with unreliable travel times. Compared to 

segment 3, truck drivers belonging to segment 2 form a second majority and they are less 

sensitive to prefer the shortest distance and shortest time routes. Unlike segment 3, truck drivers 

in segment 2 show a preference for routes with less overlap. Their preference to select a unique 

route is in contrast to the behavior shown by a majority of truck drivers. However, they are 

concerned about the reliability of travel times during peak hours which prompts them to make 

informed routing decisions and decreases the possibility to incur longer travel times. Around 

one-fourth of truck drivers belong to segments 1 and 4. Truck drivers belonging to segment 1 

behave more like segment 3 except for their sensitivities to the unreliability of travel times. 

Their sensitivities to travel time and distance are similar to other segments, i.e., they negatively 

value longer time or distance routes. However, they are prone to choose unreliable routes during 

peak hours. Truck drivers in segment 4 account for only 7.72%. They value shortest time routes 

but they have an unexpected affinity for longer distant routes. It can be explained by their 

preference to choose a route with high overlaps. In doing so, they travel longer distances 

between an OD pair. Also, they are more likely to choose an unreliable route since they are not 

significantly affected by the unreliability of travel times during peak hours.  

 

2.5 Discussion 
This section first begins with discussing the plausibility of route choice characteristics of truck 

drivers estimated from a sparse Bluetooth dataset. Then, this section elaborates on the 

advantage and limitations of our estimation approach from an application's perspective. Finally, 

we provide implications of our findings to designing policies.  

This chapter found that truck drivers can be segmented into four groups based on their 

preferences to travel distance, expected travel time to destination, the unreliability of travel time 

on a route at the time of departure. The number of segments is more compared to the previous 

research (Rowell et al., 2014, Feng et al., 2013). A possible explanation for this might be that 

the previous research (Rowell et al., 2014, Feng et al., 2013) used data from SP surveys. 

Whereas, this chapter has used empirical data that include choices in real-world situations. 

Another possible explanation is that previous research focused on different business and 

demographic needs (urban logistics in the Netherlands (Feng et al., 2013) and regional logistics 

in Washington state, USA (Rowell et al., 2014)) compared to the port logistics. 
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Another significant aspect of our findings is that a majority of truck drivers prefer paths with a 

high degree of overlaps, which indicates that they value the availability of a large number of 

alternatives to minimize the risks during their trips. These results corroborate the findings of 

Anderson et al. (Anderson et al., 2017). In addition, truck drivers seem to prefer paths with 

unreliable travel times during peak hours. This outcome is contrary to a previous study that 

suggests that truck drivers value reliability (Bogers and Van Zuylen, 2004). Our results seem 

to be consistent with Luong et al. (Luong et al., 2018). These results are likely to be related to 

the behavior of short-haul truck drivers or the ones departing in the off-peak hours who may 

take a chance to reach their destination by choosing an unreliable path.  

Let us now turn to our estimation approach, which is formulated as a bi-objective optimization 

program. Our study raises the possibility that passive data sources (Bluetooth data and loop-

detector data) can be used to estimate route choice models. This approach might alleviate the 

need to perform expansive data collection from SP or RP surveys to understand driving 

behavior. Different types of fixed-location sensors other than Bluetooth such as cameras, Wi-

Fi sensors, mobile phone towers can be used as input. This formulation can also be applied to 

freight-specific sparse datasets such as freight trip diaries, which also lack actual route choice 

observations – with these we could develop advanced commodity-specific route choice models. 

In this way, the estimation approach opens new possibilities to use sparse datasets in generating 

insights about route choice behavior of drivers. Limitations of the approach are the following. 

First, loop-detectors in other regions may not be densely located due to high costs of 

installation. We recommend considering the use of other data (e.g., floating car data) in such 

cases. Second, clustering of vehicles based on speed works well for the Netherlands but may 

not deliver promising results in countries with low speed limit compliance or different driving 

policies in place (e.g. keep-your-lane policy). Here, further research on mode identification 

from a sparse dataset would be recommended.  

In terms of implications for practice, our model indicates that few truck drivers prefer less 

reliable routes during peak hours. There could be a benefit in including reliability of travel time 

in route planning or navigation systems, to support companies in making the trade-off between 

travel time, costs and reliability. Further research should be undertaken to investigate the 

objective of truck drivers behind choosing unreliable routes. Also, the model could inform the 

design of interventions by traffic management agencies, such as peak-hour congestion charging 

or segment-specific route guidance.   

 

2.6 Conclusions 
This chapter estimates route choice characteristics of truck drivers using sparse automatic 

vehicle identification (AVI) data. A novel method that uses data fusion and a bi-objective 

optimization program is proposed to deal with the sparsity of the AVI dataset, which lacks 

actual route choices (labels). This method can simultaneously estimate the actual route choices 

and the parameters of a route choice model. This method is successfully applied on a sparse 

Bluetooth dataset of truck drivers making trips from and to the port of Rotterdam in the 

Netherlands. The resulting models can identify four latent segments within the route choice 

behavior of truck drivers and capture the effects of time of day (peak and off-peak hours).  

In future investigations, it might be possible to incorporate panel effects (or repeated choices 

made by a driver) within the current framework. Despite the usefulness of our estimation 

method in delivering behaviorally consistent findings, future work is required to establish the 

validity of this method. A possible approach is to conduct a driver survey that can supply the 

ground truth in addition to a sparse dataset. A further study on investigating route choice 

behavior of car drivers and its comparison with this study can provide useful insights towards 

managing significant freight corridors. 
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II: Tactical driving behavior around freeway 

bottlenecks 
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3 Merging and diverging strategies of truck drivers 

 

Previous chapter showed how truck drivers make decisions at the strategic level and choose a 

route during their trips. After deciding on a route, truck drivers often encounter congestion 

around freeway bottlenecks located on a particular route. Around these bottlenecks, it is worth 

investigating their lane changing behavior. One of the elements within lane changing is to 

understand how truck drivers merge or diverge around these locations. Previous literature lacks 

an understanding of which strategies truck drivers employ to merge or diverge around ramps 

and weaving sections. To address this gap, this chapter aims to identify key merging and 

diverging strategies of truck drivers and contributes to answering the second research question 

of this dissertation. This chapter applies a finite mixture modeling-based clustering approach 

on a large trajectory dataset that contains 298 merging and diverging maneuvers of truck drivers 

around ramps and weaving sections.  

 

This chapter is based on the following published journal and conference papers: 

 

Sharma, S., Snelder, M., Tavasszy, L. and van Lint, H. 2020. Categorizing merging and 

diverging strategies of truck drivers at motorway ramps and weaving sections using a trajectory 

dataset. Transportation Research Record, 2674(9), pp. 855-866. 

 

Sharma, S., Snelder, M., Tavasszy, L. and van Lint, H. 2020. Categorizing merging and 

diverging strategies of truck drivers at motorway ramps and weaving sections using a trajectory 

dataset. Paper presented in 99th Annual Meeting of the Transportation Research Board. 
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3.1 Introduction 
Driving behavior is generally captured using a combination of longitudinal and lateral behavior 

models. Whereas the longitudinal model is used to capture inter-vehicle interactions such as car 

following at a lane level, the lateral model governs switching between lanes and all the tasks 

associated with it (e.g., assessing gaps, deciding for or against one and executing this decision). 

Previous research has shown that significant differences exist between the lane changing 

characteristics of different classes of vehicles such as passenger cars and trucks (Aghabayk et 

al., 2011, Moridpour et al., 2012). However, driver behavior, especially for lane changing, for 

trucks is an overlooked research area compared to passenger cars (Moridpour et al., 2012, 

Rahman et al., 2013). Even within a single class of vehicles, Ossen et al. (2006) reported that 

inter-driver differences exist that cannot be captured alone by adjusting driver behavior 

parameters in existing models. The heterogeneity these authors found in car following 

encompasses the differences in driving styles that can best be described by a (dynamic) 

distribution of car-following models with a distribution of parameters. Clearly, with such 

heterogeneity in the car-following behavior, there is also large heterogeneity in the lane-

changing behavior. A deeper understanding of this heterogeneity in the lane-changing behavior 

(of multiple road user-classes) is essential to better capture real-world phenomena. 

Motorway bottlenecks such as ramps, weaving sections, or lane drops present significant 

obstacles to vehicles and are a major source of travel delays (Taale and Wilmink, 2016). For 

truck-dominated motorways, the bottlenecks can cause unreliable traffic operations, thus 

introducing uncertainty in the logistics system. As a result, freight tour planning and terminal 

operations can also be affected. In the vicinity of these bottlenecks, the lane-changing behavior 

is shown to affect traffic throughput, safety, and turbulence (van Beinum et al., 2018, Tilg et 

al., 2018, Cassidy and Rudjanakanoknad, 2005, Chen and Ahn, 2018, Laval and Daganzo, 2006, 

Golob et al., 2004, Kondyli and Elefteriadou, 2012). A limited body of research has shown that 

heterogeneity exists within the merging and diverging behaviors of drivers (Keyvan-Ekbatani 

et al., 2016, Li, 2018, Li and Sun, 2018). However, they do not take into account the behavior 

of truck drivers who are a significant part of traffic on truck-dominated motorways. 

Consequently, the main objective of this chapter is to identify heterogeneity in the merging and 

diverging behavior of truck drivers. Using recent data collection efforts by van Beinum (2018), 

we have a detailed trajectory dataset for motorway ramps and weaving sections, located in the 

Netherlands, which we have used in this chapter to explore and cluster heterogeneity in the 

lane-changing behavior of trucks. The contributions of this chapter are two-fold. First, this 

chapter categorizes truck drivers in accordance with their merging and diverging behavior using 

the trajectory dataset. Second, this chapter analyzes and presents the contributions of truck 

drivers to the turbulence in the vicinity of motorway bottlenecks. 

This chapter is structured as follows. First, Section 3.2 presents a literature review on the 

heterogeneity of drivers with respect to their lane-changing maneuvers and inefficiencies 

caused owing to lane-changing phenomena. Next, Section 3.3 describes the trajectory dataset, 

presents descriptive data statistics related to the merging and diverging maneuvers of truck 

drivers, and explains the finite mixture modeling technique to categorize these maneuvers. 

Afterward, Section 3.4 presents the merging and diverging strategies of truck drivers and shows 

the role of truck drivers’ merging and diverging strategies in causing turbulence at motorway 

bottlenecks. Then Section 3.5 discusses the results and presents limitations. Lastly, Section 3.6 

concludes this chapter. 
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3.2 Literature review 
This section presents a literature review on identifying drivers’ heterogeneity with respect to 

their lane-changing maneuvers and highlighting the role of lane-changing in causing 

inefficiencies around motorway bottlenecks. 

 

3.2.1 Drivers’ heterogeneity with respect to their lane change maneuvers 

Sun and Elefteriadou conducted a focus group study with 21 participants to identify four types 

of drivers using clustering for urban streets and developed a utility-based lane change model 

(Sun and Elefteriadou, 2011). Later, Sun and Elefteriadou conducted a test-drive with an 

instrumented vehicle for 40 participants (Sun and Elefteriadou, 2012). Their results show that 

the drivers’ lane change behavior can be classified into three to four clusters, and the clusters 

are consistent between drivers’ background-based and driver’s behavior-based analysis. 

Although the studies focus on an urban setting, the results emphasize drivers’ heterogeneity in 

their lane changing decisions. 

Keyvan-Ekbatani et al. looked at the lane-change decision process as an integrated task which 

also involves car-following or longitudinal actions (Keyvan-Ekbatani et al., 2016). They con- 

ducted both interviews and field tests on 10 participants. They reported that drivers use several 

strategies for merging and diverging maneuvers. However, the sample was too small to draw 

any statistical inferences. Li and Sun analyzed 370 merging maneuvers from the NGSIM data- 

set and reported four categories based on  clustering: early merging drivers at high speed, early 

merging drivers at low speed, late merging drivers at low speed and late merging drivers at high 

speed (Li and Sun, 2018). However, they do not consider gap selection in the decision process. 

Li classified the merging maneuvers of 374 vehicles into two classes based on finite mixtures 

of logistic regression: risk-rejecting (who try to merge as soon as possible and will accept a 

larger gap) and risk-taking (who are less sensitive to the gap size and pay more attention to the 

surrounding traffic conditions to save travel time) drivers (Li, 2018). 

The aforementioned studies have shown that motivations and reasoning for lane-changing vary 

between drivers. However, there exists a gap in our understanding of heterogeneity with respect 

to the lane change phenomena of truck drivers. 

 

3.2.2 Inefficiencies owing to lane-changing 

At motorway bottlenecks, local phenomena such as lane changes, speed, and headway 

variabilities affect traffic throughput and safety (Cassidy and Rudjanakanoknad, 2005, Chen 

and Ahn, 2018, Kondyli and Elefteriadou, 2012, Laval and Daganzo, 2006, Golob et al., 2004, 

Lee et al., 2003a, Lee et al., 2003b). van Beinum et al. showed that lane change maneuvers in 

the vicinity of motorway ramps and weaving sections are primary contributors to the turbulence 

(van Beinum et al., 2018). It has also been suggested that  the  concentration of lane changes at 

the beginning of a weaving section decreases the overall capacity of the bottleneck (Lee and 

Cassidy, 2008, Sulejic et al., 2017). The behavior of trucks might have serious effects on the 

surrounding traffic owing to their lane change maneuvers, especially under heavy traffic 

conditions (Pan et al., 2016). Although previous studies have identified inefficiencies owing to 

the lane-change process, these works have not explicitly examined the role of truck drivers’ 

lane change characteristics in causing turbulence at motorway bottlenecks. 

 

3.3 Data and methods 
This section first describes the trajectory dataset. Then, we present a method to identify the lane 

change maneuvers of truck drivers from this dataset. Our hypothesis is that merging and 

diverging maneuvers relate to the behavioral characteristics of truck drivers, and these 
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behavioral characteristics can be grouped to capture the underlying heterogeneity among truck 

drivers. To this, we present a theoretical background of the finite mixture modeling approach 

to test our hypothesis. Lastly, we present descriptive statistics of the data collected for finite 

mixture modeling. The relevant MATLAB and R codes used in this chapter can be accessed at 

https://github.com/salilrsharma/truck_trajectory. 

 

3.3.1 Trajectory dataset 

This chapter utilizes trajectory datasets from four locations in the Netherlands as shown in 

Figure 3.1 (van Beinum, 2018). Overall, we consider one on-ramp, one off-ramp, and five 

weaving sections. Each location comprises two bottleneck sites on each side of a bi-directional 

motorway. We considered the following bottleneck sites to have a sufficient number of lane 

changes performed by truck drivers in this chapter. In parentheses, we denote the ramp or 

weaving segment length of each bottleneck site. 

 

• Zonzeel-north: On-ramp (340 m) 

• Zonzeel-south: Off-ramp (230 m) 

• Klaverpolder-north: Weaving (610 m) 

• Klaverpolder-south: Weaving (530 m) 

• Ridderkerk-north: Weaving (740 m) 

• Princeville-east: Weaving (1000 m) 

• Princeville-west: Weaving (1130 m) 

 

The above sites have a three-lane mainline carriageway and one auxiliary lane except for the 

Klaverpolder site which has a two-lane mainline carriageway and one auxiliary lane. This 

dataset was collected using a high-resolution camera attached to a hovering helicopter. The sites 

represent isolated discontinuities and their lengths are at most 1100 m meaning that the 

trajectories can be captured using the helicopter method.   

 
 

Figure 3.1. Locations of freeway ramps and weaving sections considered for collecting 

trajectory data in the Netherlands.  
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For each site, 30 min of the video feed was collected at the onset of evening congestion, that is, 

between 14:00 and 17:00 h. For further information about the data collection, the reader may 

refer to van Beinum et al. (van Beinum et al., 2018). The processed empirical trajectory dataset, 

in the form of MATLAB files and video feed, is available online (van Beinum, 2018). This 

trajectory dataset contains the position of every vehicle at every time step. Every vehicle is 

tagged along with the length and width of the vehicle. To infer trucks from the empirical 

trajectory dataset, we used the vehicle length as the primary criterion. Vehicles longer than 12 

m in length are labeled as trucks. 

 

3.3.2 Identifying truck driver’s merging and diverging maneuvers from 

trajectory data 

The lane-changing process for a vehicle begins when it starts to drift laterally and ends when it 

stabilizes its lateral position after changing to a neighboring lane. The time instances are marked 

as lane change initiation and lane change completion, respectively. Figure 3.2 shows an 

example of a truck driver performing a merging maneuver in which a relative increase in the 

lateral position of a vehicle with respect to time is marked as the initiation and the time instant 

after which the lateral position stabilizes as completion. Lane change duration can be defined 

as the time difference between the lane change completion and lane change initiation process. 

 

3.3.3 Finite mixture modeling 

We assume that the overall population heterogeneity results from the underlying two or more 

distinct homogeneous subgroups or latent classes of individuals. The components in these 

models are not directly observed and lie latent for some or all of the individuals in the 

population. Therefore, the mixture models express the overall population distribution as a finite 

 

 

 
 

Figure 3.2. Lateral movement of a truck driver during the merging process. 
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mixture of some fixed number of components (Little, 2013). In these models, there are two 

main types of variables: latent variables (e.g., a latent class variable which is not directly 

observed) and manifest or indicator variables (e.g., observable response variables). The 

observed values of indicator variables refer to imperfect indications of an individual’s true 

underlying latent class membership. For a finite mixture model, there are two parts: the 

measurement model and the structural model. The measurement model specifies the 

relationship between the underlying latent variable and the corresponding manifest or indicator 

variable. Whereas the structural model specifies the distribution of the latent variable in the 

population (Little, 2013). 

For model selection, we used the Bayesian information criterion (BIC). The BIC value has been 

derived by Schwarz (1978), and mathematically it can be defined in Equation 3.1. 

 

BIC = −2 ln(ℒ) + 𝐾 ln(𝑛) (3.1) 

 

where ℒ is the log-likelihood of the model, 𝐾 refers to the number of estimable parameters in 

the model, and 𝑛 denotes the number of observations in the dataset. We computed the BIC value 

for each model under consideration and selected the one with the smallest criterion value 

(Burnham and Anderson, 2004). 

 

3.3.4 Data preparation for finite mixture modeling 

We assumed that the topology or the type of bottleneck affects the mandatory lane-changing 

maneuvers of truck drivers; therefore, we grouped sites into three categories. 

 

1. On/off-ramp 

2. Short weaving section 

3. Long weaving section 

For weaving sections, 1000–1100 m long sections are classified as long weaving and 500–700 

m long sections as short weaving. In one case (short weaving with merging maneuver), we 

grouped two similar sites so we could increase the data available for modeling. Next, we present 

indicator variables for categorizing merging and diverging maneuvers. 

 

3.3.5 Indicator variables 

We considered the spatio-temporal and gap-acceptance characteristics of the lane-changing 

process. Figure 3.3 illustrates the vehicles involved in the lane-changing process and presents 

the related indicator variables. 

Spatio-temporal aspects of lane change 

We consider location as where a truck driver initiates the lane change maneuver and duration 

to complete that maneuver. We fixed the origin at the beginning of a bottleneck section and the 

location variable increases in the driving direction. For merging maneuvers, a relative value is 

used with respect to the total length of the bottleneck so that we can combine similar sites. 

Whereas, for a diverging maneuver, an absolute value of longitudinal position is used. 
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Kinematic behavior during lane change 

We consider the instantaneous speed of truck driver as the point he/she initiates the lane change 

maneuver as a representation of vehicle kinematics. 

Gap acceptance behavior 

We consider the interactions of a lane-changing vehicle using the lead (predecessor) and lag 

(follower) vehicles in the target lane. Therefore, we use accepted lead and lag gap spacing as 

indicators. We use a default value of 250 m for the lag and lead gap spacing in case no vehicle 

(lag or lead vehicle) is in sight when a truck driver initiates a lane change maneuver.  A higher 

value such as 250 m also suggests that a lane-changing vehicle is not affected by a leader or 

follower in the target lane. During the data collection, the camera captures more of the area than 

just the bottleneck section; therefore, 250 m is a justified assumption in this respect. 

We consider categorical variables to indicate whether a truck driver has accepted largest avail- 

able lead or lag gap spacing. We first store all the available lead/lag gaps for a truck driver in a 

list until the time of lane change initiation. We compare the chosen lead/lag gap with the 

maximum available lead/lag gap. For the comparison, we assume that truck drivers are 

indifferent toward small gains and choose a threshold of 10 m. If the chosen gap and maximum 

available gap differ more than the threshold, we say that a truck driver has intentionally chosen 

a smaller gap. We ensure that the categorical variable will take a value of 1 in this case and 0 

in all other cases.  

Next, we present descriptive statistics of data collected for merging and diverging maneuvers. 

 

3.3.6 Descriptive statistics of merging maneuvers 

In Table 3.1, we present descriptive statistics of the merging maneuvers of truck drivers. Aside 

from the categorical gap acceptance indicator, all other indicators are assumed to be a mixture 

of Gaussian distribution. Relative location of lane change initiation can be converted to a 

censored Gaussian distribution as lane changes will only initiate from the beginning of the 

bottleneck section. 

 
 

 

Figure 3.3. Vehicles involved in a lane change process and related indicator variables. 
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Table 3.1. Descriptive statistics of data collected for merging maneuvers  

Parameter Type Mean SD Min. Max. 

      

On-ramp: Zonzeel-north (340 m) 

Number of observations  50    

Relative location of lane change initiation Gaussian 0.07 0.16 0.00 0.82 

Lane change duration (s) Gaussian 9.76 3.07 5.20 18.10 

Speed at merge initiation (km/h) Gaussian 81.94 4.98 72.21 97.32 

Accepted lag gap spacing (m) Gaussian 104.86 91.97 1.34 405.54 

Accepted lead gap spacing (m) Gaussian 113.63 124.69 2.03 555.59 

Accepted largest lag gap Binomial 0.06 0.23 0.00 1.00 

Accepted largest lead gap Binomial 0.04 0.19 0.00 1.00 

      

Short weaving: Ridderkerk-north (740 m) and Klaverpolder-north (610 m) 

Number of observations  30    

Relative location of lane change initiation Gaussian 0.09 0.18 0.00 0.59 

Lane change duration (s) Gaussian 8.86 3.97 4.40 23.20 

Speed at merge initiation (km/h) Gaussian 85.30 10.14 62.25 97.09 

Accepted lag gap spacing (m) Gaussian 122.95 79.785 16.09 250.00 

Accepted lead gap spacing (m) Gaussian 103.10 92.970 2.96 431.99 

Accepted largest lag gap Binomial 0.13 0.34 0.00 1.00 

Accepted largest lead gap Binomial 0.06 0.25 0.00 1.00 

      

Long weaving: Princeville-west (1130 m) 

Number of observations  48    

Relative location of lane change initiation Gaussian 0.03 0.07 0.00 0.32 

Lane change duration (s) Gaussian 8.86 2.79 4.60 16.80 

Speed at merge initiation (km/h) Gaussian 83.93 4.98 69.90 99.83 

Accepted lag gap spacing (m) Gaussian 176.23 94.84 10.75 250.00 

Accepted lead gap spacing (m) Gaussian 134.19 102.38 1.23 351.75 

Accepted largest lag gap Binomial 0.06 0.24 0.00 1.00 

Accepted largest lead gap Binomial 0.02 0.14 0.00 1.00 

 

Note: SD = standard deviation; Min. = minimum; Max. = maximum. 

 

3.3.7 Descriptive statistics of diverging maneuvers 

In Table 3.2, we present descriptive statistics for the data related to the diverging maneuvers of 

truck drivers. We observe that the bottleneck sites do not feature a real conflict for diverging 

truck drivers as the mean value of the accepted lag/lead gap spacing is more than 190 m. It also 

signifies that the initiation of diverging maneuvers is unaffected by the presence of a lag/lead 

vehicle in the target lane. Therefore, we did not consider indicator variables related to gap 

acceptance behavior for finite mixture modeling to categorize diverging maneuvers. In the next 

section, we discuss the results of finite mixture modeling to categorize the lane-changing 

maneuvers of truck drivers. 
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Table 3.2. Descriptive statistics of data collected for diverging maneuvers  

Parameter Type Mean SD Min. Max. 

      

Off-ramp: Zonzeel-south (230 m) 

Number of observations  47    

Location of lane change initiation (m) Gaussian –65.27 44.78 –230.34 17.46 

Lane change duration (s) Gaussian 9.93 2.52 5.00 18.80 

Speed at diverge initiation (km/h) Gaussian 80.49 4.80 66.13 94.77 

Accepted lag gap spacing (m) Gaussian 250.00 0.00 250.00 250.00 

Accepted lead gap spacing (m) Gaussian 245.27 32.39 27.93 250.00 

      

Short weaving: Klaverpolder-south (530 m) 

Number of observations  80    

Location of lane change initiation (m) Gaussian 13.12 48.51 –38.64 159.82 

Lane change duration (s) Gaussian 8.48 2.33 5.30 14.70 

Speed at diverge initiation (km/h) Gaussian 83.13 3.58 73.01 92.08 

Accepted lag gap spacing (m) Gaussian 230.52 63.59 1.93 250.00 

Accepted lead gap spacing (m) Gaussian 195.29 82.62 4.12 250.00 

      

Long weaving: Princeville-east (1000 m) 

Number of observations  43    

Location of lane change initiation (m) Gaussian 63.45 166.58 –23.57 756.76 

Lane change duration (s) Gaussian 8.64 2.52 4.00 16.00 

Speed at diverge initiation (km/h) Gaussian 82.57 5.70 72.43 97.49 

Accepted lag gap spacing (m) Gaussian 218.30 75.22 1.93 250.00 

Accepted lead gap spacing (m) Gaussian 216.47 69.41 0.78 250.00 

 

Note: SD = standard deviation; Min. = minimum; Max. = maximum. 

 

3.4 Results 
The finite mixture models are estimated using the depmixS4 package in R (Visser and 

Speekenbrink, 2010). To avoid locally optimal solutions, the models are estimated 500 times 

for each class and then the model with the lowest value of BIC is selected for that class. The 

proportion of truck drivers 𝑃 accepting the largest available lead/lag gap is computed at the 

zero-value of covariate from the parameter estimate 𝛿, as shown in Equation 3.2. 

 

𝑃 =
exp(0)

exp(0)+exp(𝛿)
=

1

1+exp(𝛿)
  (3.2) 

 

Next, we present the categories of truck drivers with respect to their merging and diverging 

maneuvers. 

 

3.4.1 Merging strategies of truck drivers 

Figure 3.4 presents the fit of finite mixture models with respect to the BIC statistic. Based on 

the BIC statistic (being lowest in the 2-component finite mixture model), two latent classes of 

truck drivers are considered with respect to their merging maneuvers over different topologies.  
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Table 3.3 presents the profile of two-classes of truck drivers. Class I is the largest class and is 

characterized by a truck driver’s affinity to initiate merging maneuvers as early as possible after 

reaching the acceleration lane. The proportion of truck drivers belonging to class I is 61.02%, 

69.90%, and 65.21% for the on-ramp, short weaving, and long weaving section, respectively. 

Truck drivers initiate the merging process at a mean longitudinal position of 1.7 m, 2.8 m, and 

2.26 m after the beginning of on-ramp, short weaving, and long weaving sections, respectively. 

Truck drivers belonging to this class show a tendency to accept a gap from a set of the initial 

few gaps available to them. The urge to merge at the earliest possible opportunity prompts a 

truck driver to accept the largest gap spacing from that initial set of available gaps. 

Class II is the smallest class and comprises truck drivers who either could not find a suitable 

gap earlier, or intentionally accept a smaller gap later on. The proportion of truck drivers 

belonging to class II is 38.98%, 30.10%, and 34.79% for the on-ramp, short weaving, and long 

weaving section, respectively. Truck drivers in class II initiate the merging process within a 

mean longitudinal position of 75.82 m, 205.80 m, and 115.26 m after the beginning of the on-

ramp, short weaving, and long weaving sections, respectively. The proportion of truck drivers 

belonging to class II who reject the largest available lag gap and accept a smaller one is 16%, 

45%, and 18% for the on-ramp, short weaving and long weaving sections, respectively. 

Although 11% and 23% of truck drivers belonging to class II reject the largest available lead 

gap spacing for on-ramp and short weaving sections, respectively. 

 

3.4.2 Diverging strategies of truck drivers 

Figure 3.5 presents the fit of finite mixture models with respect to the BIC statistic. Based on 

the BIC statistic (being lowest in the 3-component finite mixture model), three latent classes of 

truck drivers are considered with respect to their diverging maneuvers over different topologies. 

Table 3.4 presents the profile of three-classes of truck drivers. The classes are characterized by 

the location of lane change initiation, instantaneous speed of a truck, and lane change duration. 

For an off-ramp, the proportion of truck drivers belonging to class I, II, and III is 19.30%, 

46.85%, and 33.85%, respectively. Truck drivers belonging to class I start the diverging 

maneuver 136.09 m before the beginning of the bottleneck and some of them might utilize the  

 

 
 

Figure 3.4. Categorizing the merging maneuvers of truck drivers. 

Note: BIC = Bayesian information criterion. 
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hard shoulder, which is also confirmed by the video feed (van Beinum, 2018). Whereas truck 

drivers belonging to class II and III start their diverging maneuvers 64.79 m and 25.56 m before 

the beginning of a bottleneck, respectively. The closer to the beginning of a bottleneck a truck 

driver starts diverging, the shorter will be the lane change duration; truck drivers belonging to 

class III have 7.57 s of mean lane change duration. 

For a short weaving section, the proportion of truck drivers belonging to class I, II, and III is 

75.00%, 7.50%, and 17.50%, respectively. Class I truck drivers, being the largest group, start 

the diverging maneuver 9.08 m before the beginning of a bottleneck. However, truck drivers 

belonging to class II and III start their diverging maneuvers 9.34 m and 109.91 m after the 

beginning of the bottleneck, respectively. 

For a long weaving section, the proportion of truck drivers belonging to class I, II, and III is 

52.89%, 32.56%, and 14.55%, respectively. Similar to the short-weaving section, class I truck 

drivers, being the largest group, start the diverging maneuver 17.09 m before the beginning of 

the bottleneck. Truck drivers belonging to class II and III start their diverging maneuvers 40.42 

m and 408.91 m after the beginning of the bottleneck, respectively. 

The mean speed of truck drivers at lane change initiation is around 80 km/h in all cases. In 

Table 3.2, descriptive data statistics show that the presence of a lead or lag vehicle in the target 

lane does not affect the diverging maneuver. Therefore, class III truck drivers over short and 

long weaving sections have a preference to diverge later than the majority of truck drivers 

belonging to class I and II. Next, we discuss the contribution of truck drivers’ lane change 

behavior in the vicinity of a bottleneck to the turbulence. 

 

3.4.3 Contribution of truck driver’s lane-changing behavior to turbulence 

Lane-change maneuvers in the vicinity of motorway ramps and weaving sections are primary 

contributors to turbulence (van Beinum et al., 2018). To identify the contributions of truck 

drivers to turbulence, we considered the following six sites with significant truck-related 

merging or diverging maneuvers. We excluded Ridderkerk-north from this analysis as only 

eight trucks merged onto the mainline motorway at this site. 

 

• Zonzeel-north: On-ramp (merging) 

 
 

Figure 3.5. Categorizing the diverging maneuvers of truck drivers. 

Note: BIC = Bayesian information criterion. 
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• Klaverpolder-north: Short weaving section (merging) 

• Princevile-west: Long weaving section (merging) 

• Zonzeel-south: Off-ramp (diverging) 

• Klaverpolder-south: Short weaving section (diverging) 

• Princeville-east: Long weaving section (diverging) 

In addition to trucks, we also considered other vehicles present in the traffic. The vehicles are 

further classified based on their lengths. 

 

• Category 1: Vehicle’s length smaller than 5.6 m (e.g., passenger cars) 

• Category 2: Vehicle’s length in between 5.6 and 12 m (e.g., busses, vans, etc.) 

• Category 3: Vehicle’s length longer than 12 m (e.g., trucks) 

In Figures 3.6 and 3.7, we show a comparison of spatial distribution of lane changes performed 

by different categories of vehicles. For these figures, the longitudinal position of the lane-

changing maneuver refers to the one in which a vehicle crosses the lane boundary. It can be 

observed that at least 50% of lane changes occur within the initial 25% of the ramp or weaving 

segment length. 

 
 

Figure 3.6. Concentration of merging maneuvers at on-ramp, short weaving and long 

weaving sections. 
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Within the initial 25% of the ramp or weaving segment length, the proportion of truck drivers 

performing merging maneuvers is 25.49%, 87.50%, and 94.91% for the on-ramp, short weaving 

and long weaving sections, respectively. Furthermore, 76.47% of truck drivers can merge at the 

on-ramp (Zonzeel-north site) within the initial 50% of the ramp length. It can be inferred that 

truckdrivers require a certain minimum distance on the acceleration lane (i.e., around 150 m) 

to change lanes. 

Similarly, within the initial 25% of the ramp or weaving segment length, the proportion of truck 

drivers performing diverging maneuvers is 80.39%, 80.00%, and 78.43% for the on-ramp, short 

weaving and long weaving sections, respectively. The findings indicate that a high proportion 

of truck drivers change lanes within the initial 25% of the ramp or weaving segment length; 

these actions lead to turbulence at the beginning of a motorway bottleneck. 

 

 

 

 
 

Figure 3.7. Concentration of diverging maneuvers at off-ramp, short weaving and long 

weaving sections. 
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3.5 Discussion 

3.5.1 Discussion of findings 

Our main finding is that truck drivers can be categorized with respect to their merging and 

diverging strategies into two and three categories, respectively. Previously, similar results have 

been reported for the driver population as a whole in previous research focused on lane-

changing (Li, 2018, Li and Sun, 2018, Sun and Elefteriadou, 2011, Sun and Elefteriadou, 2012). 

The number of categories with respect to either merging/diverging is consistent over different 

topologies. We also found that the lane change locations of truck drivers are heavily right-

skewed. Similar to our findings, a strongly right-skewed distribution of lane-changing positions 

has previously been reported for weaving  sections by Menendez and He (2017). However, they 

have not considered individual vehicle categories. In that respect, our findings can be used in 

multi-class models in which distributions related to lane-changing characteristics of truck 

drivers (e.g., lane-change position, lane-change duration, etc.) can be supplied as exogenous 

inputs to such models.   

The right-skewed distribution of lane-changing positions also explains the contribution of truck 

drivers to the turbulence we usually observe in the vicinity of freeway bottlenecks. Similar 

findings are reported in van Beinum et al., but they did not look at the spatial distribution of 

lane changes for different categories of vehicles (van Beinum et al., 2018). Truck drivers who 

make use of longer distances are the ones who either select a suitable gap or intentionally accept 

a smaller gap to merge onto the mainline carriageway. Whereas gap acceptance does not seem 

to be a primary factor in the diverging strategies of truck drivers, still, around 15% of truck 

drivers are observed to take an exit at a longer distance over weaving sections. The findings 

seem to suggest that truck drivers do not fully utilize the available ramp and weaving segment 

length. Near the beginning of these areas, a raised level of turbulence has serious implications 

for traffic efficiency and safety. Our findings indicate that motorway design guidelines should 

give due attention to the multi-class nature of traffic. For instance, motorways with a high 

percentage of trucks require longer acceleration and deceleration lanes. 

 

3.5.2 Limitations 

The internal preferences which truck drivers may have in their mind while performing their 

mandatory lane-changing maneuvers and their socio-economic characteristics cannot be 

observed from the trajectory dataset. Stated-preference surveys or driving simulator 

experiments can be used to gain insights into those internal mechanisms. The findings presented 

in this chapter are valid for truck drivers operating in the Netherlands. We expect that these 

findings may apply to other European countries with similar driving regulations. For other 

countries, similar studies should be performed so that findings related to merging and diverging 

strategies of international truck drivers can be compared. A comparison of this scale would 

allow us to design tools to not only improve current models, but also perform improved traffic 

and safety assessments. 

 

3.6 Conclusions 
This chapter uses a trajectory dataset, collected for ramps and weaving sections located in the 

Netherlands, to identify heterogeneity within truck drivers with respect to their merging and 

diverging strategies. We use finite mixture models to categorize truck drivers using their spatial, 

temporal, kinematic, and gap acceptance attributes of lane changing. The results indicate that 

we can classify truck drivers into two with respect to their merging strategies and into three 

with respect to their diverging strategies. The findings of this chapter can be implemented into 

microscopic simulation packages to better replicate the lane-changing behavior of truck drivers 
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at motorway ramps and weaving sections. The categorization helps us to infer the spatial 

distribution of lane changes performed by truck drivers. For both merging and diverging, the 

majority of truck drivers show an affinity to initiate the lane change process at the earliest 

opportunity which is characterized by a right-skewed distribution. This behavior leads to a 

higher number of lane changes being performed at the beginning of a motorway bottleneck 

section. In this respect, the effect on traffic efficiency and safety near these areas owing to 

different merging and diverging strategies adopted by truck drivers should be evaluated. For 

future work, control strategies can be designed to reduce the effect of lane changes in the 

vicinity of motorway bottlenecks. A promising direction could be to optimize the spatial 

distribution of mandatory lane changes for multiple user classes of motorway traffic.  
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4 Gap selection process during discretionary lane 

changing  

 

The previous chapter showed inter-driver heterogeneity by identifying merging and diverging 

strategies of truck drivers. The second element within lane changing focuses on how truck 

drivers traveling on the mainline carriageway would select gaps around ramps and weaving 

sections. A lack of understanding of how truck drivers select available gaps to execute 

discretionary lane changes arises primarily due to the scarcity of truck-specific data. To fill this 

gap, this chapter aims at obtaining insights into the gap selection process of truck drivers and 

drivers of other vehicle classes (e.g., passenger cars and delivery vans) and contributes to 

answering the third research question of this dissertation. This chapter applies gated recurrent 

unit neural network models on a large trajectory dataset to unravel the gap selection process of 

multiple vehicle classes within their discretionary lane changes.  

 

This chapter is based on the following journal and conference papers: 

 

Sharma, S., van Lint, H., Tavasszy, L. and Snelder, M. 2022. Unraveling Gap Selection Process 

during Discretionary Lane Changing by Vehicle Class. IEEE Access, 10, pp. 30643-30654. 

 

Sharma, S., van Lint, H., Tavasszy, L. and Snelder, M. 2022. Unraveling the Gap Selection 

Process of Truck Drivers within Their Discretionary Lane- changing through Gated Recurrent 

Unit Neural Networks. Paper presented in 101st Annual Meeting of the Transportation Research 

Board. 
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4.1 Introduction 
Lane-changing is an important aspect of driving behavior that has a significant influence on 

road capacity (Cassidy and Rudjanakanoknad, 2005), safety (Li et al., 2014), and emissions (Li 

and Sun, 2017). Two main categories of lane changing can be distinguished: mandatory and 

discretionary. Mandatory lane changes arise from either infrastructural or traffic control related 

constraints, or from the drivers’ need to follow a path that leads to his or her—for brevity, we 

will use male adjectives in the ensuing—destination. Discretionary lane changes are associated 

with the driver’s desire to improve his current driving conditions. Discretionary lane-changing 

(DLC) is typically structured as a hierarchical process (Moridpour et al., 2012, Balal et al., 

2016) where a driver (1) makes a decision-in-principle (that driving conditions on the current 

lane are below some desired level and can be improved by shifting to another lane); assesses 

(2) the options for this lane change (which target lane to move to) and (3) the necessary 

conditions ( the suitability of available gaps on potential target lane(s)); and then finally (4) 

takes action (initiates and executes the lane change) or not (rejects available gaps, or even 

abandons the entire lane change maneuver).  

Gap selection is an important stage of the lane-changing process where drivers explicitly look 

for a suitable and safe opportunity in order to initiate their desired lane-changing maneuver. 

This stage has been extensively studied for passenger car drivers (Ahmed, 1999, Toledo et al., 

2003, Balal et al., 2016, Pang et al., 2020, Xie et al., 2019) whereas other vehicle classes such 

as trucks or delivery vans have not received any attention. Although previous research 

(Saeednia and Menendez, 2017, Laval and Daganzo, 2006) shows that trucks seem to 

significantly affect traffic operations, only the first two steps of the hierarchical model for DLC 

decisions of truck drivers have been investigated (Moridpour et al., 2012). Inter-vehicle 

interactions during lane change have been shown to affect traffic operations; therefore, it is of 

vital importance to investigate and compare the lane change behavior of multiple vehicle classes 

to ensure reliable, efficient, and safe traffic operations. To the best of our knowledge, this 

chapter is the first that focuses particularly on the third step of this hierarchy, studies the gap 

selection process of delivery van and truck drivers within their DLC maneuvers, and compares 

it with that of passenger car drivers.  

The gap selection behavior of vehicles can be formulated as a binary decision problem with two 

outcomes: lane-changing (accept) and lane-keeping (reject). This problem is solved using a 

wide range of techniques in the existing literature: rule-based (Gipps, 1986), statistical (Toledo 

et al., 2003, Ahmed, 1999), econometrical (Pang et al., 2020), and artificial intelligence (AI) 

models (Balal et al., 2016, Xie et al., 2019). Most of the earlier works assume instantaneous 

decision-making in the sense that only features or variables at a specific time instant affect the 

gap selection decision process. Typically, this time instant is taken just before a vehicle starts 

shifting laterally, which is an indication that a gap has been accepted (Balal et al., 2016, Punzo 

et al., 2011). Although some literature (Pang et al., 2020, Toledo and Katz, 2009, Tang et al., 

2020) shows that historical data may also influence the gap selection process, such long-term 

interdependencies are typically not considered. In this chapter, we consider the long sequences 

(or trajectories) of up to 20 sec to fill this gap.  

The objective of this chapter is to obtain insights into the gap selection process of multiple 

vehicle classes in their DLC maneuvers using AI. To this end, we frame the gap selection 

process of truck drivers as a many-to-one sequence classification problem and train a gated 

recurrent unit neural network (GRUNN) model to learn and model such temporal dependencies 

over longer periods. To assess what this neural network, in the end, has learned—and whether 

this makes sense behaviorally, we apply explainable AI techniques such as a gradient-based 

technique (Simonyan et al., 2014) and variable importance. 
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Most previous research works calibrate and validate their gap selection models using data from 

a specific type of topology (e.g., a weaving section (Toledo et al., 2003, Balal et al., 2016, Pang 

et al., 2020, Xie et al., 2019)). In this chapter, we use a larger trajectory dataset that covers 

many different topologies situated around 14 different bottlenecks in the Netherlands including 

on-ramps, off-ramps, and weaving sections (van Beinum, 2018, van Beinum et al., 2018). We 

incorporate these different topologies in the gap selection model as part of the feature set fed to 

the GRUNN model and consider for example type of topology, length of the freeway 

bottleneck, and the number of lanes on the mainline carriageway.   

This chapter contributes to the existing literature by: 

1. building gated recurrent unit neural network models to capture the gap selection process 

of multiple vehicle classes (passenger cars, delivery vans, and trucks) during their 

discretionary lane changing;  

2. considering historical sequential data and external factors arising from topologies in the 

modeling framework of the gap selection process; and 

3. comparing the gap selection process of multiple vehicle classes (passenger cars, delivery 

vans, and trucks) by unraveling their latent gap selection mechanisms and identifying key 

features that impact their gap selection through explainable AI techniques.  

This chapter is organized in the following way. First, section 4.2 provides a theoretical 

background on GRU neural networks and related techniques to interpret their predictions. 

Subsequently, section 4.3 describes the data generation process. Next, section 4.4 presents an 

experimental setup to model the gap selection process of truck drivers. Subsequently, section 

4.5 presents the model performance and its interpretability. Afterward, the findings and their 

implications are discussed in section 4.6. Finally, this chapter concludes in section 4.7.  

 

4.2 Related background 
A gated recurrent unit neural (GRU) network model is selected in this chapter to model the gap 

selection behavior of multiple vehicle classes (passenger cars, delivery vans, and trucks). A 

major advantage of this approach over other approaches (e.g., rule-based, econometrical, 

statistical, fuzzy-logic) is that it can learn long-term temporal interdependencies. The first part 

of this section discusses the inner workings of GRU neural networks. The second part presents 

strategies to handle class imbalance which is often a case in real-world trajectory datasets. To 

interpret predictions and learn more about the gap selection behavior, the third part of this 

section presents explainable AI techniques.  

 

4.2.1 Gated recurrent unit neural networks 

A recurrent neural network (RNN) is a widely used method that can handle time-series data for 

prediction purposes. However, an RNN suffers from well-known problems of vanishing and 

exploding gradients during backpropagation and is not very good at capturing very long-term 

dependencies. To overcome these obstacles, long short-term memory (LSTM) neural networks 

were proposed (Hochreiter and Schmidhuber, 1997). Cho et al. (Cho et al., 2014) proposed a 

GRU neural network or GRUNN, which is a variant of LSTM. Compared to LSTM, GRUNNs 

have simplified connections and a reduced number of parameters. While LSTM contains three 

gates (input gate, forget gate, and output gate), the GRU comprises two gates, namely the update 

gate and the reset gate. The update gate controls the extent to which the state information of the 

previous moment is passed to the current state. While the reset gate controls how much 

information of the previous state is stored in the current candidate state ℎ̃𝑡. In this way, GRU can 



 On-trip Behavior of Truck Drivers on Freeways: New mathematical models and control methods 

 

 

 

50 

improve upon the training efficiency by relying on the memory ability of neurons and fewer tensor 

operations. The architecture of a GRU cell is shown in Figure 4.1. 

The forward propagation process of GRU is as follows (see Equations 4.1-4.4): 

 

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (4.1) 

 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (4.2) 

 

ℎ̃𝑡 = tanh(𝑊ℎ ∙ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (4.3) 

 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 (4.4)

  

where 𝑥𝑡 denotes the input vector at time 𝑡. ℎ𝑡 denotes the state of the system at time 𝑡. ℎ̃𝑡 
denotes the current candidate state. 𝑧 and 𝑟 denote the update gate and reset gate, respectively. 

σ denotes the Sigmoid function. 𝑊𝑧, 𝑊𝑟, and 𝑊ℎ refer to weight matrices. 𝑏𝑧, 𝑏𝑟, and 𝑏ℎ refer 

to bias vectors. 

 

4.2.2 Relevance of class imbalance to understanding lane-changing 

behavior  

Most of the current research on lane-changing does not address the problem of class imbalance. 

However, there seems to be a large gap between the number of lane-changing trajectories and 

lane-keeping trajectories in most of the collected datasets (Balal et al., 2016). This results in 

class imbalance because of an unequal distribution of instances belonging to target classes. The 

performance of traditional classifiers is likely to be affected if they are trained on imbalanced 

datasets. To handle this problem, previous research has used several techniques: data-level 

methods, algorithmic modifications, and ensemble methods (Choudhary and Shukla, 2021). In 

this chapter, we use cost-sensitive learning (an algorithmic approach) and an ensemble method 

which are particularly useful in imbalanced classification problems.  

Cost-sensitive learning  

It is an algorithmic method where we specify different misclassification costs for instances 

belonging to different classes. Class-specific weights are computed in Equation 4.5.  
 

 

Figure 4.1. Architecture of a GRU cell (adapted from (Cho et al. (2014)). 
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𝑊𝑖 =
𝑁

𝐶∗𝑛𝑖 
  (4.5) 

 

where 𝑊𝑖 denotes the weight for class 𝑖, 𝑁 denotes the total number of instances, 𝐶 denotes the 

total number of classes, and 𝑛𝑖 denotes the number of instances belonging to the class 𝑖.  

Ensemble method  

This approach incorporates the strengths of random under-sampling (RUS) and bagging 

(Choudhary and Shukla, 2021). RUS is a form of data sampling that randomly selects majority 

class instances and removes them from the dataset until the desired class distribution is achieved. 

In this way, several balanced training subsets are created by RUS of the majority class. Each 

subset contains all the minority class instances and an equal number of randomly selected 

majority class instances. The number of training subsets i.e. 𝑀 can be chosen equal to the 

imbalance ratio (Choudhary and Shukla, 2021). In this way, we train 𝑀 different models and 

aggregate their output using the majority voting approach to determine the final prediction. 

 

4.2.3 Interpreting a trained GRU neural network model  

The interpretability of AI models is a challenging problem that has been gaining increasing 

attention for the last few years. In this chapter, we consider a gradient-based technique (Simonyan 

et al., 2014, van Lint, 2004) to interpret the trained model. The advantages of this technique over 

other methods (e.g., Shapely values) are the ease of implementation and faster processing time.  

The backpropagation-based approach (Simonyan et al., 2014, van Lint, 2004) is used to compute 

the attributions for all input features in a single forward and backward pass through the network 

and adapted for our use. Given a single target output, the goal is to determine the contribution of 

each input to the output. Let’s define N as the total number of instances in the test dataset, and 

the input has a shape of (𝑇 × 𝐹). Here, 𝑇 denotes the total number of time steps and 𝐹 denotes 

the total number of features. Equation 4.6 presents the contribution of input 𝑥𝑡𝑓
𝑛  to the output 

𝑆(𝑥𝑛) for a single instance 𝑛.   

 

𝑔𝑡𝑓
𝑛 = |

𝜕𝑆(𝑥𝑛)

𝜕𝑥𝑡𝑓
𝑛 |           ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (4.6) 

 

where 𝑔𝑡𝑓
𝑛  denotes attributions (or contributions) that are of the same shape as that of input 𝑥𝑡𝑓

𝑛 .  

Then, we run over all the instances present in the test dataset and compute the global-level 

attribution 𝑔𝑡𝑓 using Equation 4.7.  

 

𝑔𝑡𝑓 =
1

𝑁
∑ 𝑔𝑡𝑓

𝑛𝑁
𝑛=1          ∀𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (4.7) 

   

The matrix 𝐺 ∈ ℝ𝑇×𝐹 is composed of 𝑔𝑡𝑓 elements that contain the average value of absolute 

gradient. A heat map or attribution map generated from the matrix 𝐺 can reveal the dynamics 

behind the gap selection process of drivers. Higher values of the elements of the matrix 𝐺 imply 

greater importance on the prediction output. Further, we can derive feature importance (𝐺𝑓) and 

time-step importance (𝐺𝑡) using Equations 4. 8 and 4.9. 

 

𝐺𝑓 =
1

𝑇
∑ 𝑔𝑡𝑓
𝑇
𝑡=1        ∀𝑓 ∈ 𝐹 (4.8) 

 

𝐺𝑡 =
1

𝐹
∑ 𝑔𝑡𝑓
𝐹
𝑓=1        ∀𝑡 ∈ 𝑇 (4.9) 
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4.3 Data preparation to model gap selection using GRU 

neural network models 
This section is composed of three parts. The first part presents the characteristics of the 

trajectory dataset. Afterward, the second section describes the feature set used to build gap 

selection models. Finally, the third section elaborates on creating datasets for training and 

testing the models.  

 

4.3.1 Trajectory data 

In this chapter, a trajectory dataset is used to develop the gap selection decision models for 

multiple vehicle classes (van Beinum, 2018). This dataset is a freely available resource that has 

been used in research before to understand driving behavior (van Beinum et al., 2018, Sharma 

et al., 2020). The data comprise vehicle trajectories obtained through aerial imaging in the 

vicinity of 14 freeway bottlenecks located in the Netherlands, which include 3 on-ramps, 3 off-

ramps, and 8 weaving sections (see Figure 4.2).  

This dataset was collected using a high-resolution camera attached to a hovering helicopter. 

The sites represent isolated discontinuities and their lengths are at most 1100 m meaning that 

the trajectories can be captured using the helicopter method. For each site, 30 min of the video 

feed was collected at the onset of evening congestion, that is, between 14:00 and 17:00 h. These 

14 bottleneck sites included in this dataset sites either have a three-lane or a two-lane mainline 

carriageway with one auxiliary lane. For further information about the data collection, the 

reader may refer to van Beinum et al. (van Beinum et al., 2018). Note that traffic operates under 

keep-right regulations in the Netherlands. Further, trucks are forbidden to drive on the left lane 

on carriageways with more than 2 lanes, except in the case of 2 × 2 weaving sections (where 

they are allowed to drive on the left-most lane). 

The trajectory dataset is processed as follows. 

1. We label vehicles shorter than 5.6 m as cars and longer than 12 m as trucks. Vehicles that 

fall in between are labeled as delivery vans. 

2. Vehicles traveling on mainline carriageways are considered; vehicles entering onto a 

mainline carriageway from an on-ramp or exiting a mainline carriageway through an off-

ramp are not considered since these two maneuvers fall under mandatory lane changing.  

 

Figure 4.2. Locations where the trajectory dataset is collected (each location 

comprises two bottleneck sites on each side of a bi-directional motorway). 
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3. Vehicles making multiple lane changes on the mainline carriageway are excluded since 

these are more likely to be mandatory lane changes. Similar consideration is also made in 

a previous study (Balal et al., 2016). 

4. Only vehicles changing lanes from right to left on mainline carriageways are considered. 

Vehicles changing lanes to the right side are excluded because traffic operates under keep-

right regulations in the Netherlands.  

5. In this way, two types of trajectories are considered: lane keeping (drivers do not change 

lanes) and lane changing (drivers change lanes to their left).  

6. The trajectory data contain noisy speed and acceleration estimates. We use a Savitzky–

Golay filter (Ahn et al., 2013) to improve these estimates. 

7. Concerning lane keeping trajectories, only trajectories pertaining to drivers who show 

normal or relaxed car following behavior are included. Any aggressive car following 

behavior, if detected, is used to exclude that trajectory. Aggressiveness in the car-

following behavior is assessed through a time-to-collision-based (TTC) indicator. The 

aggressiveness is assumed to be present if the TTC value is less than 4 s, which is also 

used in previous research (Horst, 1991, Faber et al., 2020). 

8. To account for the effect of historical information, a maximum span of 20 s is considered 

to analyze the gap selection decision process since more than 95% of truck drivers are 

observed to changes lanes within the first 20 s in the trajectory dataset. 

9. For every vehicle in the trajectory dataset, we have position (lateral and longitudinal 

coordinates), length, dynamics (speed, acceleration), relative measurements with the 

surrounding vehicles (distance gap and relative speed) available at a resolution of 10 

frames/second.  

10. Relevant data are sampled at a frequency of 0.5 s which means we collect two data points 

per second. The average parameter values for a sampling instant 𝑡 are computed by 

averaging data for the interval [𝑡 − 0.4, 𝑡] (Balal et al., 2016). The reasons for taking the 

average value over 0.5 s are (a) to maintain consistency with the previous research (Balal 

et al., 2016, Moridpour et al., 2012, Toledo et al., 2003, Siuhi and Kaseko, 2010); (b) to 

reduce the error caused by using instantaneous values in the trajectory data; and (c) to be 

in line with driver’s perception time (Balal et al., 2016). 

11. The lane-changing process for a vehicle begins when it starts to drift laterally and ends 

when it stabilizes its lateral position after changing to a neighboring lane. The time 

instances are marked as lane change initiation and lane change completion. For a lane 

changing vehicle, the lane change initiation point is termed as 𝑇 which refers to a relative 

increase in the lateral position of a vehicle with respect to time. 40 data points within a 

span of [ 𝑇 − 19.5, 𝑇] are considered for a lane changing trajectory as shown in Figure 

4.3. 

12. For a lane keeping vehicle, T refers to the last point in its observed or recorded trajectory. 

As shown in Figure 4.3, 40 data points are considered within a span of [ T-19.5,T]. 

 

A total of 3,647 trajectories of passenger car drivers are obtained out of which 2,803 are lane-

keeping and 844 are lane-changing trajectories. For delivery van drivers, a total of 1,080 

trajectories are extracted out of which 898 are lane-keeping and 182 are lane-changing 

trajectories. A total of 2,226 trajectories of truck drivers are obtained out of which 2,103 are 

lane-keeping and 123 are lane-changing trajectories. Further, vehicle class-specific datasets 

suffer from class imbalance due to the presence of fewer lane-changing labels compared to the 

dominant lane-keeping labels. 
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4.3.2 Feature selection 

Trajectories can be viewed as sequences of decisions (lane-changing/lane-keeping) taken by 

drivers over time. At each time step, drivers can consider different features to make a decision. 

A typical gap selection scenario at a specific instant of time is presented in Figure 4.4. Here, 

the subject vehicle (SV) is trying to move to the target lane from his current lane. During this 

process, the SV might be involved in interactions with up to four vehicles in its surroundings, 

as also considered by Balal et al. (Balal et al., 2016). In the current lane, the SV interacts with 

its current leader (CL) and current follower (CF). Whereas in the target lane, its interactions are 

with the future leader (FL) and future follower (FF).  

In this chapter, we consider three dimensions that are hypothesized to affect this decision 

process. These capture the characteristics of the subject vehicle, its interaction with surrounding 

vehicles, and its perception of a topology (see Table 4.1). Typically, only the first two 

dimensions are considered in previous research works (Pang et al., 2020, Xie et al., 2019, Balal 

et al., 2016, Ahmed, 1999, Toledo et al., 2003). 

Please note that it might not always be the case for the SV to be involved with four other 

vehicles during its lane changing process. For such situations where a surrounding vehicle is 

 
(a) Lane-changing trajectory 

 

 
(b) Lane keeping trajectory 

 

Figure 4.3. Figure showing span and data sampling for (a) lane-changing and (b) 

lane-keeping trajectories of drivers (Note: * denotes a data sampling instant at a 

resolution of  0.5 s.). 

 
 

Figure 4.4. A driver during the gap-selection process.  

(Note: SV: subject vehicle; CL: current leader; CF: current follower; FL: future 

leader; and FF: future follower)  
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not observed or recorded in the trajectory dataset, we use a default value of 250 m for the 

distance gap spacing. A higher value such as 250 m also suggests that a vehicle is not affected 

by an unobserved surrounding vehicle. During the data collection, the camera captures more of 

the area than just the bottleneck section; therefore, 250 m seems to be a justified assumption in 

this respect. Similarly, for the speed of an unobserved surrounding vehicle, we assume its speed 

to be 0 m/s to compute the speed difference with the SV.  

 

4.3.3 Constructing data for training and testing 

Having identified key features, we will now prepare data for our GRUNN model. 

Data split  

We split the whole dataset into three parts: 80% training dataset, 10% validation dataset, and 

10% test dataset. Table 4.2 shows the instances belonging to lane-keeping and lane-changing 

classes for every considered split and every vehicle class. The model is trained on the training 

dataset. Hyperparameters of the model are tuned using the validation dataset. Finally, the 

performance of the model is tested on a test dataset.  

Table 4.1. Features describing vehicle’s interaction during lane-changing 

Features Unit  Description  

   

Dimension 1: Characteristics of the subject vehicle 

𝑣SV  m/s Speed of the vehicle SV 

𝑎SV  m/s2  Acceleration of the vehicle SV 

𝑙SV m  Length of the vehicle SV 

   

Dimension 2: Interaction of the subject vehicle with surrounding vehicles 

𝑑CL m Distance gap between the vehicle SV and the vehicle CL 

𝑑CF m Distance gap between the vehicle SV and the vehicle CF 

𝑑FL m Distance gap between the vehicle SV and the vehicle FL 

𝑑FF m Distance gap between the vehicle SV and the vehicle FF 

Δ𝑣CL m/s The speed difference between the vehicle SV and the vehicle CL, i.e. 

𝑣SV − 𝑣CL 

Δ𝑣CF m/s The speed difference between the vehicle SV and the vehicle CF, i.e. 

𝑣SV − 𝑣CF 

Δ𝑣FL m/s The speed difference between the vehicle SV and the vehicle FL, i.e. 

𝑣SV − 𝑣FL 

Δ𝑣FF m/s The speed difference between the vehicle SV and the vehicle FF, i.e. 

𝑣SV − 𝑣FF 

𝑡CL - Type of the vehicle CL (truck or non-truck) 

   

Dimension 3: Subject vehicles’ perception of a topology  

𝑛lanes  -  Number of lanes on the mainline carriageway (2 or 3) 

𝑙top  m  Length of the topology 

𝑡top -  Type of the topology (on-ramp, off-ramp, weaving section) 
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Feature engineering 

We consider 12 continuous and 3 categorical features (see Table 4.1). To support faster learning, 

the continuous features are standardized (Zheng and Casari, 2018) where the values of each 

feature vector component 𝑥𝑖 are centered around the mean with a unit standard deviation (see  

Equation 4.10): 

 

�̃�𝑖 =
𝑥𝑖−𝜇𝑥𝑖

𝑠𝑥𝑖
 (4.10) 

 

where �̃�𝑖 depicts the normalized feature vector component, and 𝜇𝑥𝑖 and 𝑠𝑥𝑖 the mean and standard 

deviation of 𝑥𝑖.  
Categorical features are converted into numerical forms via one-hot encoding (Zheng and Casari, 

2018), which represents categorical features in 𝑘 possible categories as a binary feature vector of 

length 𝑘. The binary vector marks the class label with a value of 1 and all other positions with a 

value of 0. Consequently, a total of 19 features are considered in this chapter. The target is a 

binary variable that comprises two labels: lane-changing (LC) and lane-keeping (LK). These 

labels are encoded as integer variables where 1 and 0 refer to lane-changing and lane-keeping, 

respectively. First, we learn a standardization function on the training dataset. Then, we transform 

validation and test datasets using the already learned standardization function to ensure that the 

model is not peaking at these two datasets.  

Padding the trajectory data 

When processing sequence data, it is common for individual samples to have different lengths. 

In our case, not all trajectories contain sufficient data for the desired span of 20 s. This is where 

padding is used to make all sequences in a batch of a given standard length (i.e., 40 time steps in 

our case) before one starts training the network. In this chapter, trajectories are pre-padded so that 

they all are of the same size, i.e., 40 time steps.  

 

4.4 Experimental setup 
This section begins by specifying the evaluation metric that is used to assess the model 

performance. Subsequently, the architecture of the proposed GRUNN model and its parameters 

that need to be optimized are presented. 

 

4.4.1 Evaluation metric 

The confusion matrix is widely used to evaluate the performance of a classifier as shown in 

Table 4.3. For the binary classification, a confusion matrix is represented as a 2 × 2 matrix, 

Table 4.2. Data split for vehicle classes 

Vehicle class Label Training 

dataset (80%) 

Validation 

dataset (10%) 

Test dataset 

(10%) 

Passenger 

cars  

Lane-changing 675 84 85 

 Lane-keeping 2242 280 281 

Delivery 

vans 

Lane-changing 158 20 20 

 Lane-keeping 705 88 89 

Trucks Lane-changing 98 12 13 

 Lane-keeping 1682 210 211 
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which comprises four elements: TP (true positives), the number of correctly predicted positive 

instances; TN (true negatives), the number of correctly predicted negative instances; FP (false 

positives), the number of incorrectly predicted negative instances; and FN (false negatives), the 

number of incorrectly predicted positive instances.  

These elements are used to derive traditional evaluation metrics such as accuracy 

(=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
). Having discussed previously that our dataset is an imbalanced dataset with 

more instances of lane-keeping (majority or negative class) than lane-changing (minority or 

positive class) ones, traditional evaluation metrics might provide biased results (Peng et al., 

2020, Elamrani Abou Elassad et al., 2020). Therefore, we consider geometric mean accuracy 

or G-mean that integrates recalls of both classes and is used in previous research to classify 

imbalanced datasets. G-mean can be expressed by Equation 4.11: 

 

G-mean = √𝑇𝑃𝑅 ∙ 𝑇𝑁𝑅 (4.11) 

 

where 𝑇𝑃𝑅 (=
𝑇𝑃

𝑇𝑃+𝐹𝑁
) denotes true positive rate or accuracy on the minority class and 

𝑇𝑁𝑅 (=
𝑇𝑁

𝑇𝑁+𝐹𝑃
) denotes true negative rate or accuracy on the majority class. G-mean tries to 

maximize the accuracy of each class while keeping these accuracy values balanced. Thus, a 

higher G-mean value indicates that the comprehensive performance of a classifier is better. 

 

4.4.2 Model specification 

The model is specified using several layers which take an input, i.e., a trajectory, and outputs the 

target; i.e., a label denoting either a lane-changing or lane-keeping decision. The following layers 

are considered in this chapter.  

 

1. Input layer: The input is of the shape (time steps, number of features). For this chapter, the 

input is of the shape (40, 19). 

2. Masking layer: A masking layer is added on top of the input layer so that model knows that 

missing time steps of an input should be skipped when processing the data. These missing 

time steps can be identified using the padded values which we have described earlier during 

data processing.  

3. A gated recurrent (GRU) layer: A GRU layer followed by a dropout layer is added on top 

of the masking layer. The dropout layer is used to avoid overfitting and can subsequently 

improve the model generalization. The GRU layer can memorize previous information and 

feed the same to next time-steps using the activation function. In the case of a multi-layered 

GRUNN, more GRU layers can be stacked here. Each of which is followed by a dropout 

layer. 

4. Dense layer: The output of the (final) GRU layer is collected at the latest time-step 𝑇 using 

a dense layer. We use the Sigmoid activation function here to output the probability of 

classifying a trajectory as a lane-changing one.  

 

Table 4.3. Confusion Matrix 

  Predicated class 

  Positive Negative 

Actual class Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 
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4.4.3 Selection of model parameters 

In this section, we discuss the model parameters of our GRUNN model that include 

hyperparameters of the GRUNN model and a choice of strategy to deal with class imbalance. A 

selection of optimal hyperparameters is shown to improve the GRUNN model performance 

(Zhang et al., 2020). Therefore, the following hyperparameters are considered in this chapter. 

1. The number of hidden layers: The multi-layer neural network architectures are shown to 

improve model performance and can achieve better realization than a single-layer 

architecture (Utgoff and Stracuzzi, 2002). Therefore, we investigate the model performance 

with more than one hidden layer. 

2. The number of units: The number of hidden units is a very important parameter of our 

GRUNN model, as the different number of hidden units may greatly affect the prediction 

precision. To choose the best value, we experiment with different hidden units and select 

the optimal value by comparing the predictions. 

3. Dropout rate:  Dropout is a technique to reduce overfitting. Its central idea is to take a model 

that is overfitting and train sub-models derived from it by randomly removing units for each 

training batch. The number of units to retain is controlled by a hyperparameter known as 

the dropout rate.  

4. Learning rate: Learning rate is a parameter related to the optimization algorithm used while 

training the neural network. It controls how quickly the algorithm updates the weights at 

each iteration. A larger learning rate makes the model learn faster.  

5. Batch size: A neural network is trained in batches. A batch is defined as the number of 

samples used for each iteration during the training process. Therefore, it is important to find 

the optimal batch size to achieve a good model performance.  

Two strategies are used to handle the class imbalance problem in our case where the majority 

class (LK) contains 17 times more instances than the minority class (LC). The first strategy 

deals with class imbalance by assigning different classes with different weights, which are in 

proportion to their corresponding misclassification costs. The second strategy deals with 

training a model on a balanced dataset that has equal distribution of both majority (or LK) and 

minority (or LC) classes. An ensemble classifier is developed which aggregates the results by 

training models on several balanced datasets. The number of balanced datasets is equal to the 

proportion of instances in the majority class to the minority class.  

In this chapter, the grid-search method is used to search for the optimal values of parameters. 

As shown in Table IV, the tuning range is the range out of which the most appropriate value is 

selected. For each combination of hyperparameters and a choice of strategy to deal with class 

imbalance, we train the GRUNN on the training dataset. The proposed model uses the Adam 

algorithm (Kingma and Ba, 2015) as our optimizer. The maximum number of epochs is set as 

100 and the early stopping criterion is adopted to prevent overfitting. In this process, the training 

is stopped if its performance does not improve over 10 consecutive epochs. All the experiments 

are coded with Keras 2.4.0, TensorFlow 2.3.0, scikit-learn 0.24.1, NumPy 1.19.2, and pandas 

1.2.3 in python 3.8.5.  

Three separate GRUNN models are built: GRUNN-PC (passenger cars), GRUNN-DV (delivery 

vans), and GRUNN-T (trucks). After comparing the model’s performance (or G-mean) on the 

validation dataset under different parameter values, the optimal values of hyperparameters are 

selected. Table 4.4 shows the selected hyperparameters for these three models.  
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4.5 Results 
Having identified the best model parameters, this section will focus on applying these models 

to respective test datasets. The performance of the trained GRUNN models (GRUNN-PC, 

GRUNN-DV, and GRUNN-T) are evaluated on the respective test datasets that have been kept 

aside. This section is further divided with respect to the vehicle classes considered in this 

chapter. In each subsection, the prediction performance of models is discussed in the first part. 

After that, model interpretability (or explainable AI) techniques are used to explain what models 

have learned to gain insights into the gap selection process.  

 

4.5.1 Passenger cars 

Table 4.5 shows the performance of the trained GRUNN model for passenger cars, i.e., 

GRUNN-PC. It can be observed that this model achieves the G-mean of 88.35%. This model 

can accurately predict 87.05% of LC and 89.67% of LK trajectories.  

Now, we will use model interpretability (or explainable AI) techniques to discover new 

knowledge about the gap selection process of passenger cars. Figure 4.5 shows the dynamics 

behind the gap selection process of passenger cars by using a heat map. This heat map is a 2D 

representation, consisting of average absolute gradient values, that can be used to determine 

what parts of the input contribute to the classification, and how important are these parts to the 

result. It can be observed that passenger car drivers seem to dynamically vary their attention 

Table 4.4. Parameter Selection for GRUNN Models 

Model 

parameters 
Tuning range 

Selected value 

Passenger cars Delivery vans  Trucks 

  GRUNN-PC GRUNN-DV GRUNN-T 

     

Hyperparameters of the GRUNN model 

Number of 

hidden 

layers 

1, 2 2 2 2 

Number of 

units 

32, 64, 128 128 64 64 

Dropout rate 0.1, 0.2, 0.3, 

0.4, 0.5 

0.1 0.1 0.3 

Learning 

rate 

0.01, 0.005, 

0.001, 0.0005, 

0.0001 

0.001 0.01 0.0005 

Batch size 32, 64, 128, 

256, 512 

256 128 64 

     

Handling class imbalance 

Approach Cost-sensitive 

learning, 

ensemble 

learning 

Cost-sensitive 

learning (LC 

weight: 2.16, LK 

weight: 0.65) 

Cost-sensitive 

learning (LC 

weight: 2.74, LK 

weight: 0.61) 

Cost-sensitive 

learning (LC 

weight: 9.11, LK 

weight: 0.53) 
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over the feature set. For instance, they seem to consider their characteristics (speed and 

acceleration) to be more important than other features at the time instant 𝑇 − 0.5 s. On the 

contrary, at the time instant 𝑇, which is closer to the instance of their decision-making, they 

seem to shift their attention to their interactions with surrounding vehicles (distance gap of the 

vehicle SV with the vehicle CL (𝑑CL) and the speed difference between the vehicles SV and FL 

(Δ𝑣FL)) and topological related features (the type of topology (𝑡top = Off-ramp)). 

Let us now turn to the variable importance, which captures its contribution to the target 

activation using gradient values. The higher the value of the gradient, the higher will be the 

contribution of that variable on the target activation. We consider both feature importance and 

time importance, at a global level, to explain the gap selection process of passenger car drivers 

(see Figure 4.6). Looking at the feature importance, the three features that contribute most to 

the target activation are a passenger car driver’s speed (𝑣SV), his acceleration (𝑎SV), and the 

speed difference with the vehicle FF (Δ𝑣FF). Their reliance on their interactions with their 

respective future followers might indicate that they consider safety during lane changing. The 

feature importance plot suggests that topological features might not play a significant role in 

the gap selection process of passenger car drivers since their characteristics and their 

interactions with surrounding vehicles seem to dominate their gap selection process. If we now 

consider the time importance, it is observed that around three-fourths of the contribution can be 

captured by the time interval [𝑇 − 1.5, 𝑇]. This suggests that passenger car drivers do not rely 

only on instantaneous information at 𝑇 rather they also consider historical information when it 

comes to gap selection. Nevertheless, a large value of the average gradient at the time instance 

𝑇 indicates the passenger car drivers seem to place higher weights on the instantaneous 

information to decide whether to accept or reject gaps. 

 
 

 

 
 

Figure 4.5. Heat map showing the dynamic gap selection process of passenger cars. 

 

 

 

Table 4.5. Model Performance on the Test Dataset for Passenger Cars (GRUNN-PC) 

  Predicated class Classification  

accuracy (%)   LC LK 

Actual class LC 74 11 87.05 

LK 29 252 89.67 
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4.5.2 Delivery vans 

Table 4.6 presents the model performance for delivery vans. The GRUNN-DV model is able to 

achieve the G-mean of 84.06%. The accuracies with which this model can predict LC and LK 

trajectories are balanced. The model can accurately predict 85% of LC and 83.14% of LK 

trajectories. 

Figure 4.7 shows the dynamics behind the gap selection process of delivery van drivers by using 

a heat map. It can be observed that delivery van drivers also seem to dynamically vary their 

attention over the feature set similar to passenger car drivers. However, noticeable gradients for 

delivery van drivers encompass more time instants than passenger car drivers. This suggests 

that delivery van drivers utilize more historical information than passenger car drivers towards 

selecting gaps.  

Let us now turn to the variable importance, which captures its contribution to the target 

activation using gradient values. We consider both feature importance and time importance, at 

a global level, to explain the gap selection process of delivery van drivers (see Figure 4.8). 

Looking at the feature importance, the three features that contribute most to the target activation 

 

  
(a) Feature importance (b) Time importance 

 

Figure 4.6. Variable importance for passenger cars.  

 

Table 4.6. Model Performance on the Test Dataset for Delivery Vans (GRUNN-DV) 

  Predicated class Classification  

accuracy (%)   LC LK 

Actual class LC 17 3 85.00 

LK 15 74 83.14 
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are the interactions of delivery van drivers with surrounding vehicles, captured by the distance 

gap with the vehicle CL (𝑑CL) and the vehicle FL (𝑑FL), and type of topology (𝑡top = Off-ramp). 

The feature importance suggests that delivery van drivers consider their interactions and their 

perception of a topology more salient than their characteristics. Further, their reliance on their 

interactions with the current leader and future leader might indicate they consider them as a 

trade-off to evaluate traffic conditions and maneuverability on both lanes. If we now consider 

the time importance, it is observed that around three-fourths of the contribution can be captured 

by the time interval [𝑇 − 3, 𝑇]. Interestingly, most of the effect is produced by the gradient 

values computed at the time instance 𝑇 as also highlighted in the heat map. This suggests that 

 

 
 

Figure 4.7. Heat map showing the dynamic gap selection process of delivery vans. 

 

 

  
(a) Feature importance (b) Time importance 

Figure 4.8. Variable importance for delivery vans. 
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delivery van drivers not only consider historical information from previous time-steps but also 

rely on current information to decide on the gap selection. 

 

4.5.3 Trucks 

Third, the performance of the model for trucks (GRUNN-T) is discussed in Table 4.7. This 

model can achieve the G-mean of 87% on the respective test dataset of trucks. Further, the 

model can accurately predict 92.31% of LC and 82% of LK trajectories.  

 

Figure 4.9 shows the dynamics behind the gap selection process of truck drivers by using a heat 

map. Truck drivers, similar to passenger car and delivery van drivers, dynamically vary their 

attention on the considered feature set. Yet, truck drivers differ in the manner how salient they 

consider historical information. The heat map in Figure 4.9 indicates that they seem to be more 

anticipatory (Zheng, 2014) than passenger car or delivery van drivers as noticeable gradient 

values cover more time span than passenger car and delivery van drivers.  

 

 

Moving to the variable importance (Figure 4.10), the three features that contribute most to the 

target activation are the truck driver’s speed (𝑣SV), the distance gap he maintains with the 

vehicle CL (𝑑CL), and the type of topology he is driving on (𝑡top = Off-ramp). These top three 

features also encompass all three dimensions (subject vehicle’s characteristics, its interaction 

with surrounding vehicles, and its perception of the topology) considered while developing the 

feature set and thus showing entirely different behavior than both passenger car and delivery 

van drivers. Consequently, these features have much more impact on the classification score 

Table 4.7. Model Performance on the Test Dataset for Trucks (GRUNN-T) 

  Predicated class Classification  

accuracy (%)   LC LK 

Actual class LC 12 1 92.31 

LK 38 173 82.00 

 

 

 
 

Figure 4.9. Heat map showing the dynamic gap selection process of trucks. 
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than other features. If we now consider the time importance, it is observed that around three-

fourths of the contribution can be captured by the time interval [𝑇 − 6, 𝑇]. This suggests that 

truck drivers do not rely only on instantaneous information at 𝑇 rather they also consider 

previous time-steps or historical information when it comes to gap selection.  

 

4.6 Discussion 
The discussion section is composed of four parts. In the first part, the uniqueness of the 

trajectory dataset is described. Next, the gap selection behavior of multiple vehicle classes is 

compared. Then, the performance of our models (GRUNN-PC, GRUNN-DV, and GRUNN-T) 

is compared with the state-of-the-art. The last part discusses the implications and possible 

applications of our models.  

This chapter has used a large trajectory dataset that contains multiple vehicle classes. 3,647 

trajectories of passenger car drivers, 2,226 trajectories of truck drivers, and 1,080 trajectories 

of delivery van drivers are present in this dataset. Unlike the widely used NGSIM dataset 

(Coifman and Li, 2017), our dataset contains significant numbers of trucks and delivery vans. 

This has a significant advantage over the earlier study focused on modeling lane-changing 

motivations of trucks (Moridpour et al., 2012), which used limited data of only 39 trajectories 

of truck drivers. Moreover, this dataset is also unique in terms of analyzing the behavior of 

delivery van drivers as other available trajectory datasets (e.g., NGSIM (Coifman and Li, 2017) 

and highD (Krajewski et al., 2018)) may not contain delivery vans. 

Three GRUNN models are proposed in this chapter: GRUNN-PC (passenger cars), GRUNN-

DV (delivery vans), and GRUNN-T (trucks). These three models show that there exist 

significant differences with respect to the gap section process among these three vehicle classes 

(see Table 4.8). Passenger car drivers seem to be more concerned about their kinematic features 

 

  
(c) Feature importance (d) Time importance 

Figure 4.10. Variable importance for trucks. 
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and the motion of the lag vehicle in the target lane during gap selection. Whereas delivery van 

drivers give more weight to the traffic conditions in the current and target lane by looking at 

their gap spacing with the respective leading vehicles along with their perception of the 

topology. Truck drivers, on the other hand, consider a three-dimensional view that includes 

their vehicle kinematics (speed), their interactions with the surroundings (gap spacing with the 

current leader), and their perception of topology. Our findings demonstrate that topological 

factors are important to consider while analyzing the lane-changing behavior especially of 

commercial vehicles such as delivery vans and trucks. This fills a gap in the literature, as 

highlighted by Rahman et al. (Rahman et al., 2013). An advantage of our models is that they 

can be used on a general road network consisting of multiple topologies (e.g., on-ramps, off-

ramps, and weaving sections). If we compare the time importance for multiple vehicle classes, 

we observe that gap selection is not an instantaneous process but a sequential one. This finding 

is consistent with previous research (Balal et al., 2016, Punzo et al., 2011, Xie et al., 2019) 

which noted that passenger car drivers seem to consider lagged information for a specific time 

instant in their gap selection process. We show that the effect of memory or historical 

information is more salient for trucks than passenger cars or delivery vans. Especially, the last 

6 seconds largely influence the gap selection process of truck drivers. Time importance plots 

also suggest that historical information generally has a fading effect on the gap selection process 

of vehicles which means that memory is not always constant. Previous research has also noted 

similar fading effects for the car following behavior (Huang et al., 2018).  

This chapter used imbalanced datasets to analyze the gap selection behavior of multiple vehicle 

classes. A large body of research is concentrated on passenger cars where most of these works 

built balanced datasets retrieved from widely used NGSIM data. In lieu of any reference study 

on the gap selection behavior of delivery van and truck drivers, the performance of our three 

models is compared with previous research on passenger car drivers which uses imbalanced 

datasets (Balal et al., 2016, Ng et al., 2020, Zheng et al., 2014, Tang et al., 2020). These studies 

report G-mean in the range of 66.39-90.50% which is in accordance with the performances of 

our models. It is also encouraging to compare the performance of our models with other traffic-

related studies (Elamrani Abou Elassad et al., 2020, Peng et al., 2020) on imbalanced 

classification which report G-mean in the range of 70.40-88.50%. It seems that the performance 

of our models (GRUNN-PC, GRUNN-DV, and GRUNN-T) is on par with these earlier studies.  

Due to the dataset used, the empirical findings presented in this chapter seem to be valid for 

drivers operating in the Netherlands. We expect that these findings may apply to all European 

countries with similar driving regulations. For other countries with different driving rules, 

further research is recommended so that the gap selection process of international drivers can 

be compared. This chapter is an important step in improving our understanding regarding the 

 

Table 4.8. Comparison of the gap selection process of multiple vehicle classes 

Vehicle class Salient time 

span (s) 

Salient dimensions (features) 

SV characteristics Interaction of SV 

with surrounding 

vehicles 

Perception of 

topology 

Passenger 

cars 

[T-1.5, T] ++ + o 

Delivery vans [T-3.0, T] o ++ + 

Trucks [T-6.0, T] + ++ + 

 

Note: SV: Subject vehicle;  

Feature importance scale: ++ very important; + important; o less important 
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microscopic phenomena of multiple vehicle classes that give rise to macroscopic or observable 

effects. Overall, these findings hold the potential to improve current models, to perform 

improved traffic and safety assessments, and eventually to support the design of advanced 

autonomous systems, for example aiming at guidance for the lane changing process. These 

advanced systems may use sensors instrumented in the subject vehicle or vehicle-to-vehicle 

(V2V) communication technology to feed inputs to the GRU neural network model. The 

variables related to the perception of a road topology may be transmitted via digital mapping 

services. 

 

4.7 Conclusions 
Gap selection is an important part of the discretionary lane changing activity. To understand 

and unravel the latent gap selection mechanisms of multiple vehicle classes, we use gated 

recurrent unit neural network (GRUNN) models on a large and unique trajectory dataset, 

collected for the Netherlands, that comprises lane changing trajectories of passenger cars, 

delivery vans, and trucks. The proposed vehicle class specific models are able to handle the 

class imbalance observed in the trajectory dataset. Moreover, these models can capture temporal 

interdependencies, by incorporating historical information, and the effect of external factors 

arising from the perception of a road topology.  

The proposed models are interpreted using explainable AI techniques in order to obtain insights 

into the gap selection process of multiple vehicle classes. We show that gap selection is a 

sequential process governed by the impact of historical information or decisions and this impact 

fades over time. Passenger cars and delivery vans mostly utilize up to 3 seconds of recent 

driving experiences towards selecting gaps in contrast to trucks which rely on a longer duration 

of nearly up to 6 seconds. Using feature importance, we find that the most important factors 

associated with gap selection differ by vehicle classes. Passenger cars focus on their kinematic 

features (speed, acceleration) and their interactions with surrounding vehicles (the speed 

difference with the lag vehicle in the target lane). Whereas delivery vans utilize their 

interactions (gap spacing with current and future leading vehicles) and the type of topology. 

Trucks, on the other hand, consider a three-dimensional view that includes their kinematics 

(speed), their interactions with the surroundings (gap spacing with the current leading vehicle), 

and their perception of topology during their gap selection process. 

The issue of lane-changing is an intriguing one that could be usefully explored in further 

research by using recent advances in AI and newly available trajectory datasets. Future research 

might explore the lane-changing execution of multiple vehicle classes. More broadly, a further 

study could also build integrated models, by also accounting for the inter-driver difference, to 

capture full lane-changing dynamics. 
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5 A multi-class lane changing advisory system  

 

Previous chapters focusing on lane changing at the tactical level presented insights into several 

elements such as merging, diverging, and gap selection. This chapter investigates how lane 

changing behavior around freeway bottlenecks can be influenced to improve traffic efficiency. 

Current lane changing advisory systems operates on the traffic flow as a whole and disregard 

different vehicle classes of which it is composed. To address this gap, this chapter proposes a 

multi-class lane changing advisory system that embeds vehicle class-specific properties 

contributes to answering the fourth research question of this dissertation. This chapter further 

applies the proposed advisory system on a merging section to evaluate its performance. 

 

This chapter is based on the following journal and conference papers: 

 

Sharma, S., Papamichail, I., Nadi, A., van Lint, H., Tavasszy, L. and Snelder, M. 2022. A Multi-

class Lane-changing Advisory System for Freeway Merging Sections Using Cooperative 

ITS. IEEE Transactions on Intelligent Transportation Systems, 23(9), pp. 15121-15132. 

 

Sharma, S., Papamichail, I., Nadi, A., Van Lint, H., Tavasszy, L. and Snelder, M. 2021. A 

Multi-class Lane-changing Advisory System for Freeway Merging Sections. Paper presented 

in 16th IFAC Symposium on Control in Transportation Systems. IFAC-PapersOnLine, 54(2), 

pp. 93-98. 

 

 



 On-trip Behavior of Truck Drivers on Freeways: New mathematical models and control methods 

 

 

 

 
 

68 

5.1 Introduction 
Traffic congestion on freeways causes large delays and therewith high societal costs. Freeway 

bottlenecks (e.g., merging sections, lane-drops, work zones, etc.) locally cause congestion that 

may spill back to other parts of the network. When traffic demand exceeds the capacity of a 

merging section, it becomes an active bottleneck which results in the formation of a queue on 

the near-side lane of a mainline carriageway. The queue then spreads laterally to other lanes 

and triggers a drop in the discharge flow or a phenomenon known as capacity drop (Cassidy 

and Bertini, 1999, Cassidy and Rudjanakanoknad, 2005). Data from several studies suggest that 

traffic flow is unevenly distributed over available lanes of a freeway (Knoop et al., 2010, Wu, 

2006, Amin and Banks, 2005). Around a merging section, unbalanced flow distribution might 

also contribute to traffic breakdown on a heavily used lane (i.e. near-side lane) while there is 

spare capacity available on the other lanes.  

In recent years, technological breakthroughs in communication and automation have enabled 

us to research and develop new cooperative intelligent transportation system (C-ITS) solutions 

to help tackle the problem of congestion. This system enables vehicles to exchange relevant 

information with other vehicles (V2V) or with the road infrastructure (V2I or I2V) using 

communication technology in order to create in-vehicle and cooperative systems (Sjoberg et 

al., 2017). Using C-ITS, this chapter presents an in-vehicle lane-changing advisory system that 

aims at improving traffic efficiency by balancing the distribution of traffic flow around merging 

sections. 

Existing research has recognized that the traffic situation in the vicinity of freeway bottlenecks 

can be improved by efficiently assigning traffic flow to available lanes on freeways. Rule-based 

approaches are proposed in (Zhang and Ioannou, 2017, Schakel and van Arem, 2014) where 

vehicles are advised a suitable lane in the vicinity of bottlenecks. Although these approaches 

can be applied in real-time, they require enough knowledge about the traffic system to generate 

a set of instructions. In (Ramezani and Ye, 2019, Zhang et al., 2019, Subraveti et al., 2020), the 

lane assignment problem is treated as an optimization program. However, the inherent 

computational processing time associated with these approaches might hinder their real-time 

applicability. In contrast to the above approaches, several approaches based on the optimal 

control theory have been proposed in (Markantonakis et al., 2019, Roncoli et al., 2016, Roncoli 

et al., 2017, Tajdari et al., 2019, Tajdari et al., 2020). These approaches can be implemented in 

real-time and do not require a set of rules for operations, thus alleviating the limitations of rule-

based and optimization-based approaches. However, previous studies solely focus on passenger 

cars and do not embed multiple vehicle classes in the lane-changing advisory framework. 

Heterogeneity induced from class-specific properties can affect traffic efficiency (van Lint et 

al., 2008a). This chapter addresses this research gap by incorporating multiple vehicle classes 

by means of passenger car equivalents within a multi-class multi-lane macroscopic traffic flow 

model. We use this traffic flow model to design a multi-class lane-changing advisory system 

based on a linear quadratic regulator (LQR).  

Controllers can be designed in a way to guarantee stability in the sense that they often have 

tunable parameters that affect how the controlled system stabilizes. In this respect, an LQR 

controller contains two weighting matrices that regulate the penalties with respect to state 

variables and control actions. These weights are selected by a designer and affect the behavior 

of the LQR controller. In (Markantonakis et al., 2019, Roncoli et al., 2016, Roncoli et al., 2017, 

Tajdari et al., 2019, Tajdari et al., 2020), these weights are selected using trial-and-error-based 

approaches. Other classical approaches include Bryson’s method (Johnson and Grimble, 1987) 

and pole placement (Saif, 1989). However, these approaches are often time-consuming and 

labor-intensive processes. Some studies have formulated the selection of weighting matrices 

for an LQR controller as an optimization problem and solved it using meta-heuristics (Habib et 
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al., 2017, Das et al., 2013, Hassani and Lee, 2016, Liang et al., 2018). These methods can 

explore the search space in an informed manner and converge to the optimal solutions. 

Compared to optimization-based approaches, the response surface method can reveal 

meaningful information from a small number of experiments. Approximation or meta-models 

can be developed to map the relationship between performance characteristics and design 

variables in order to determine the optimum design parameters (Myers et al., 1997, Ziegel, 

1997). In this chapter, we adopt the response surface method to find these weighting matrices 

that ensure a robust performance for an LQR controller.  

Further, we use microscopic simulation to evaluate the performance of the proposed controller 

around merging sections, in contrast to (Tajdari et al., 2019) and (Tajdari et al., 2020), since a 

microscopic traffic simulator provides a real-world testbed to test an in-vehicle lane-changing 

advisory system.  

To this end, the objective of this study is to propose a multi-class lane-changing controller 

around a merging section to improve its traffic efficiency. To the best of our knowledge, this is 

the first multi-class LQR controller for lane-changing.  This chapter contributes to the existing 

literature by:  

1. developing a multi-class lane-changing advisory system based on a linear quadratic 

regulator (LQR);  

2. performing a response surface-based approach to select the optimal weights of the LQR 

controller; and 

3. evaluating the performance of the LQR controller around a merging section using a 

microscopic traffic simulator.  

This chapter is structured as follows. Section 5.2 formulates a multi-class lane-changing LQR 

controller. Next, section 5.3 describes the approach to implement the proposed controller in 

microscopic simulation software. Then, section 5.4 describes the experimental setup to evaluate 

the proposed controller. In section 5.5, we describe the optimum selection of set points and the 

weights of the LQR controller. We present and discuss our results in section 5.6. Finally, we 

conclude this chapter in section 5.7.  

 

5.2 Formulating a multi-class lane-changing LQR controller  
This section first develops a linear time invariant system based on a multi-class multi-lane 

traffic flow model. Then, we formulate an LQR controller. Lastly, we discuss the possible 

implementation of this LQR controller as a C-ITS based application.  

 

5.2.1 Traffic system dynamics using a multi-class multi-lane traffic flow 

model 

Based on a linear multi-lane traffic flow model proposed in Roncoli et al. (2016), we consider 

a multilane freeway as shown in Figure 5.1. The freeway is divided into 𝑖 = 0, … ,𝑁 segments 

of length 𝐿𝑖. Each such segment is composed of 𝑗 = 𝑚𝑖, … ,𝑀𝑖 lanes, where 𝑚𝑖 and 𝑀𝑖 denote 

the minimum and maximum indices of lanes for segment 𝑖. It is assumed that 𝑗 = 0 corresponds 

to the segment(s) on the rightmost lane. In Fig. 1, 𝑚0 = 0 and 𝑀0 = 2. Each element of the 

resulting grid is termed as a cell with index (𝑖, 𝑗). According to the definition, the total number 

of cells from the origin to segment 𝑖 is 𝐻𝑖 = ∑ (𝑀𝑟 −𝑚𝑟 + 1)
𝑖
𝑟=0 , and the total number of cells 
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for the whole stretch is 𝐻 = 𝐻𝑁. To formulate the model in discrete time, we consider the 

discrete-time step 𝑇, indexed by 𝑘 = 0,1, …, where the time is 𝑡 = 𝑘𝑇.  

First of all, we will focus on defining the dynamics of a multi-class traffic system comprising 

𝑈 number of vehicle classes. For every vehicle class 𝑢, the conservation of vehicles can be 

defined as: 

𝜕𝜌𝑢

𝜕𝑡
+
𝜕𝑞𝑢

𝜕𝑥
= 0,  (5.1) 

where 𝜌𝑢 and 𝑞𝑢 refer to the class-specific density and class-specific flow at time 𝑡 and location 

𝑥, respectively. 

Under assumptions of homogeneous and stationary conditions, class-specific density and flow 

are related, according to the continuity equation, as 

𝑞𝑢 = 𝜌𝑢𝑣𝑢, (5.2) 

where 𝑣𝑢 refers to the class-specific average speed and can be expressed as 𝑣𝑢 = 𝑉𝑢
𝑒(𝜌𝑡𝑜𝑡). 

Here, 𝑉𝑢
𝑒 denotes the class-specific equilibrium speed which is a function of the total effective 

density 𝜌𝑡𝑜𝑡 in pce/km. 𝜌𝑡𝑜𝑡 is described by a function of the class-specific densities (𝜌𝑢) and 

the dynamic pce values (𝜂𝑢) and reads 𝜌𝑡𝑜𝑡 = ∑ 𝜂𝑢𝜌𝑢𝑢 . This dynamics shows in a simple way 

that controlling (effective) densities of user class 𝑢 naturally affects the speed and in turn the 

(effective) densities of all other classes (van Lint et al., 2008a). 

Now, the evolution of density for every vehicle class 𝑢 in a cell (𝑖, 𝑗), proposed in (1), can be 

cast in discrete form as  

𝜌𝑢
𝑖,𝑗(𝑘 + 1) = 𝜌𝑢

𝑖,𝑗(𝑘) +
𝑇

𝐿𝑖
(𝑞𝑢

𝑖−1,𝑗(𝑘) − 𝑞𝑢
𝑖,𝑗(𝑘)) +

𝑇

𝐿𝑖
(𝑓𝑢

𝑖,𝑗−1(𝑘) − 𝑓𝑢
𝑖,𝑗(𝑘)) +

𝑇

𝐿𝑖
𝑑𝑢
𝑖,𝑗(𝑘),  

 (5.3) 

where 𝜌𝑢
𝑖,𝑗(𝑘) is the density of vehicle class 𝑢 in a cell (𝑖, 𝑗) at time instant 𝑘𝑇; 𝑞𝑢

𝑖,𝑗
(𝑘) is the 

longitudinal flow of vehicle class 𝑢 leaving cell (𝑖, 𝑗) and entering cell (𝑖 + 1, 𝑗) during the time 

interval [𝑘𝑇, (𝑘 + 1)T); 𝑓𝑢
𝑖,𝑗(𝑘) is the  net lateral flow of vehicle class 𝑢 leaving cell (𝑖, 𝑗) and 

entering cell (𝑖, 𝑗 + 1) during time interval [𝑘𝑇, (𝑘 + 1)T); and 𝑑𝑢
𝑖,𝑗
(𝑘) is the external flow of 

vehicle class 𝑢 entering the network in cell (𝑖, 𝑗) either from mainline or an on-ramp during the 

time interval [𝑘𝑇, (𝑘 + 1)T). 
The discretization should also satisfy the following Courant–Friedrichs–Lewy CFL condition: 

 
 

Figure 5.1. A hypothetical freeway stretch with an on-ramp. 
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𝐿𝑖

𝑇
≥ max{𝑣𝑢

𝑖,𝑗
}
𝑢=1,…,𝑈

 (5.4) 

Since each cell has a mix of vehicle classes, the effective density of a cell (𝑖, 𝑗) can be defined 

using passenger car-equivalents (pce) of vehicle classes:  

𝜌𝑡𝑜𝑡
𝑖,𝑗
(𝑘) = ∑ 𝜂𝑢

𝑖,𝑗(𝑘)𝜌𝑢
𝑖,𝑗(𝑘)𝑢 ,  (5.5) 

where 𝜌𝑡𝑜𝑡
𝑖,𝑗 (𝑘) is the effective density of a cell (𝑖, 𝑗) at time instant 𝑘𝑇 [pce/km]; and 𝜂𝑢

𝑖,𝑗(𝑘) is 

the passenger car equivalent for a vehicle class 𝑢 in a cell (𝑖, 𝑗) at time instant 𝑘𝑇.  

Similarly, total flow in passenger car-equivalents in a cell (𝑖, 𝑗) can be defined as: 

𝑞𝑡𝑜𝑡
𝑖,𝑗
(𝑘) = ∑ 𝜂𝑢

𝑖,𝑗(𝑘)𝑞𝑢
𝑖,𝑗(𝑘)𝑢 ,  (5.6) 

where 𝑞𝑡𝑜𝑡
𝑖,𝑗 (𝑘) is the total longitudinal flow of vehicle class 𝑢 leaving cell (𝑖, 𝑗) and entering 

cell (𝑖 + 1, 𝑗) during time interval [𝑘𝑇, (𝑘 + 1)T) [pce/h]; and 𝜂𝑢
𝑖,𝑗(𝑘) is the passenger car 

equivalent for a vehicle class 𝑢 in a cell (𝑖, 𝑗) at time instant 𝑘𝑇. 

By combining Equations 5.3, 5.5, and 5.6, the evolution of the effective density of a cell (𝑖, 𝑗) 
can be expressed as 

𝜌𝑡𝑜𝑡
𝑖,𝑗 (𝑘 + 1) = ∑ {𝜂𝑢

𝑖,𝑗(𝑘)𝜌𝑢
𝑖,𝑗(𝑘) +

𝑇

𝐿𝑖
(𝜂𝑢

𝑖−1,𝑗(𝑘)𝑞𝑢
𝑖−1,𝑗(𝑘) − 𝜂𝑢

𝑖,𝑗(𝑘)𝑞𝑢
𝑖,𝑗(𝑘)) +𝑢

𝑇

𝐿𝑖
(𝜂𝑢

𝑖,𝑗−1(𝑘)𝑓𝑢
𝑖,𝑗−1(𝑘) − 𝜂𝑢

𝑖,𝑗(𝑘)𝑓𝑢
𝑖,𝑗(𝑘)) +

𝑇

𝐿𝑖
𝜂𝑢
𝑖,𝑗(𝑘)𝑑𝑢

𝑖,𝑗(𝑘)}.  (5.7) 

Depending on the network topology, some terms in the above equation may not be present. 

Lateral flows 𝑓𝑢
𝑖,𝑗

 only exist for 𝑚𝑖 ≤ 𝑗 < 𝑀𝑖. Thus, the total number of lateral flows are 

computed as 𝐹 = 𝑈(𝐻 − 𝑁).  
Recall the relationship between macroscopic traffic flow parameters: 

𝑞𝑢
𝑖,𝑗(𝑘) = 𝜌𝑢

𝑖,𝑗(𝑘) ⋅ 𝑣𝑢
𝑖,𝑗(𝑘).  (5.8) 

Combining Equations 5.7 and 5.8, we get 

𝜌𝑡𝑜𝑡
𝑖,𝑗 (𝑘 + 1) = ∑ {(1 −

𝑇

𝐿𝑖
𝑣𝑢
𝑖,𝑗(𝑘)) 𝜂𝑢

𝑖,𝑗(𝑘)𝜌𝑢
𝑖,𝑗(𝑘) +

𝑇

𝐿𝑖
(𝜂𝑢

𝑖−1,𝑗(𝑘)𝑣𝑢
𝑖−1,𝑗(𝑘)𝜌𝑢

𝑖−1,𝑗(𝑘)) +𝑢

𝑇

𝐿𝑖
(𝜂𝑢

𝑖,𝑗−1(𝑘)𝑓𝑢
𝑖,𝑗−1(𝑘) − 𝜂𝑢

𝑖,𝑗(𝑘)𝑓𝑢
𝑖,𝑗(𝑘)) +

𝑇

𝐿𝑖
𝜂𝑢
𝑖,𝑗(𝑘)𝑑𝑢

𝑖,𝑗(𝑘)}.  (5.9) 

The proposed control actions are intended for usage before the possible onset of congestion, 

aiming to delay or avoid it. In this case, we may assume that the overall traffic flow entering 

the controlled area is bounded as it does not exceed the bottleneck capacity (e.g., using a 

variable speed limit controller for mainline traffic) and the proposed controller itself can avoid 

the creation of congestion. We can put forward the following assumptions to simplify Equation 

5.9.  

1. Average speed in all cells remains at a constant value, i.e. 𝑣𝑢
𝑖,𝑗(𝑘) = 𝑣𝑐𝑟𝑖𝑡∀𝑖, 𝑗, 𝑢, 𝑘. 𝑣𝑐𝑟𝑖𝑡 

also refers to the speed of the slower vehicle class. All vehicle classes travel with the same 

critical speed at the critical density (Schreiter, 2013). Please note that this assumption is 

only made to design a multi-class lane-changing controller. We will later see in a 
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simulation-based case study (Section 5.6) that this assumption does not limit the 

performance of the proposed controller. Due to its robust feedback-based mechanism, the 

controller is able to improve traffic efficiency around a merging section. 

2. Since speed remains at a constant value, we can also assume fixed passenger car 

equivalents.  

Under these assumptions, for two-vehicle classes, cars and trucks, Equation 5.9 can be 

reformulated as follows:  

𝜌𝑡𝑜𝑡
𝑖,𝑗 (𝑘 + 1) =

𝑇

𝐿𝑖
(𝑣𝑐𝑟𝑖𝑡)𝜌𝑡𝑜𝑡

𝑖−1,𝑗(𝑘) + (1 −
𝑇

𝐿𝑖
(𝑣𝑐𝑟𝑖𝑡) ) 𝜌𝑡𝑜𝑡

𝑖,𝑗 (𝑘) +
𝑇

𝐿𝑖
(𝜂𝑐

𝑖,𝑗−1
𝑓𝑐
𝑖,𝑗−1(𝑘) −

𝜂𝑐
𝑖,𝑗
𝑓𝑐
𝑖,𝑗(𝑘)) +

𝑇

𝐿𝑖
(𝜂𝑡

𝑖,𝑗−1
𝑓𝑡
𝑖,𝑗−1(𝑘) − 𝜂𝑡

𝑖,𝑗
𝑓𝑡
𝑖,𝑗(𝑘)) +

𝑇

𝐿𝑖
(𝜂𝑐

𝑖,𝑗(𝑘)𝑑𝑐
𝑖,𝑗(𝑘) + 𝜂𝑡

𝑖,𝑗(𝑘)𝑑𝑡
𝑖,𝑗(𝑘)), 

 (5.10) 

where subscripts 𝑐 and 𝑡 denote cars and trucks, respectively.  

 

Now the above system in Equation 5.10 can be considered as an LTI system 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑑(𝑘) (5.11) 

where 

𝑥 = [𝜌𝑡𝑜𝑡
0,𝑚0 …𝜌𝑡𝑜𝑡

0,𝑀0      𝜌𝑡𝑜𝑡
1,𝑚1 …𝜌𝑡𝑜𝑡

𝑁,𝑀𝑁]
𝑇
∈ ℝ�̅�,  (5.12) 

𝑢 = [𝑓𝑐
0,𝑚0 …𝑓𝑐

0,𝑀0−1     𝑓𝑐
1,𝑚1…𝑓𝑐

𝑁,𝑀𝑁−1              

 𝑓𝑡
0,𝑚0 …𝑓𝑡

0,𝑀0−1     𝑓𝑡
1,𝑚1 …𝑓𝑡

𝑁,𝑀𝑁−1]𝑇 ∈ ℝ𝐹 ,

 
(5.13) 

𝑑 = [
𝑇

𝐿𝑖
(𝜂𝑐

0,𝑚0𝑑𝑐
0,𝑚0 + 𝜂𝑡

0,𝑚0𝑑𝑡
0,𝑚0)…

𝑇

𝐿𝑖
(𝜂𝑐

0,𝑀0𝑑𝑐
0,𝑀0 + 𝜂𝑡

0,𝑀0𝑑𝑡
0,𝑀0)      

𝑇

𝐿𝑖
(𝜂𝑐

1,𝑚1𝑑𝑐
1,𝑚1 +

𝜂𝑡
1,𝑚1𝑑𝑡

1,𝑚1)…
𝑇

𝐿𝑖
(𝜂𝑐

𝑁,𝑀𝑁𝑑𝑐
𝑁,𝑀𝑁 + 𝜂𝑡

𝑁,𝑀𝑁𝑑𝑡
𝑁,𝑀𝑁)]

𝑇

∈ ℝ�̅� . (5.14) 

This LTI system in Equation 5.11 can be used to formulate an optimal control problem that is 

aimed at maximizing traffic efficiency by balancing flows among lanes on a freeway. 𝐴 ∈

 ℝ𝐻×𝐻, composed of 𝑎𝑟𝑠 elements, represents the connection between pairs of subsequent cells 

connected by a longitudinal flow and 𝐵 ∈ ℝ𝐻×𝐹, composed of 𝑏𝑟𝑠 elements, reflects the 

connection of adjacent cells connected by lateral flows. These elements are given by: 

𝑎𝑟𝑠 =

{
 

 

  

1 −
𝑇

𝐿𝑖
(𝑣𝑐𝑟𝑖𝑡), if 𝑟 = 𝑠 and (𝑖 = 𝑁 or 𝑚𝑖+1 ≤ 𝑗 ≤ 𝑀𝑖+1 )

𝑇

𝐿𝑖
(𝑣𝑐𝑟𝑖𝑡), if 𝑟 > 𝐻0 and 𝑠 = 𝑟 − 𝑀𝑖−1 +𝑚𝑖 − 1

0, otherwise

 (5.15) 
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𝑏𝑟𝑠 =

{
 
 
 

 
 
 

 

𝜂𝑐
𝑖,𝑗 𝑇

𝐿𝑖
, if 𝑗 > 𝑚𝑖 and (𝑠 = 𝑟 − 𝑖)

−𝜂𝑐
𝑖,𝑗 𝑇

𝐿𝑖
,              if 𝑗 < 𝑀𝑖 and (𝑠 = 𝑟 − 𝑖 + 1)

𝜂𝑡
𝑖,𝑗 𝑇

𝐿𝑖
, if 𝑗 > 𝑚𝑖 and (𝑠 = 𝑟 + 𝐻 − 𝑁 − 𝑖)

−𝜂𝑡
𝑖,𝑗 𝑇

𝐿𝑖
, if 𝑗 < 𝑀𝑖 and (𝑠 = 𝑟 + 𝐻 − 𝑁 − 𝑖 + 1)

0, otherwise

 (5.16) 

where 𝑟 = 𝐻𝑖−1 + 𝑗 − 𝑚𝑖. 

 

5.2.2 Optimal control problem formulation 

The optimal control minimizes a cost function to steer a system to the desired state. The 

following quadratic cost function, over an infinite time horizon, has been defined:  

min 𝐽 = ∑ {∑ ∑ 𝛼 �̂�,�̂�(𝜌𝑡𝑜𝑡
�̂�,�̂� (𝑘) − �̂�𝑐𝑟𝑖𝑡

�̂�,�̂�
)
2

�̂��̂� + ∑ ∑ ∑ 𝜑𝑢
𝑖,𝑗
𝑓𝑢
𝑖,𝑗(𝑘)2𝑢

𝑀𝑖−1
𝑗=𝑚𝑖

𝑁−1
𝑖=0 }∞

𝑘 ,  (5.17) 

where (𝑖̂, 𝑗̂) are the targeted cells; �̂�𝑐𝑟𝑖𝑡
�̂�,�̂�

 is the desired set-point; 𝛼 �̂�,�̂� is the weight associated with 

the targeted cell (𝑖̂, 𝑗̂); and 𝜑𝑢
𝑖,𝑗

 is the weight associated with the control actions for a vehicle 

class 𝑢 at a cell (𝑖, 𝑗). The cost function aims to penalize the difference between selected cell 

densities and the corresponding pre-defined set points. In addition, it also penalizes excessive 

lane changes, thus maintaining small control inputs.  

Equation 5.17 can be written in the matrix form as follows: 

min 𝐽 = ∑ {[𝐶 𝑥(𝑘) − �̂�]
𝑇
𝑄 [𝐶 𝑥(𝑘) − �̂�] + 𝑢(𝑘)𝑇𝑅 𝑢(𝑘)} ,∞

𝑘=0  (5.18) 

where 𝑄 = 𝑄𝑇 ≥ 0 and 𝑅 = [
𝜙𝑐𝐼𝐹/2 0𝐹/2
0𝐹/2 𝜙𝑡𝐼𝐹/2

] are the weights associated with tracking and 

control actions, respectively. �̂� refers to a vector of set-points and is of dimension ℝ�̅�. 𝐶 reflects 

the cells that are tracked. The parameters 𝜙𝑐 > 0 and 𝜙𝑡 > 0 penalize fluctuations of car and 

truck-specific lateral flows, respectively.  

The matrix 𝐶 is of dimension ℝ�̅�×𝐻. Each row of matrix C contains a single element that 

corresponds to the cell that is tracked with the value of one, while the rest of the elements are 

equal to zero. Since, in this chapter, we target only cells in section 𝑁, the matrix 𝐶 can be written 

as follows: 

𝐶 = [0�̅�×(�̅�−�̅�) 𝐼�̅�×�̅�].  (5.19) 

The problem defined in Equation 5.18 is subject to the linear dynamics presented in Equation 

5.11. Assuming the system is stabilizable and detectable, we can solve this type of problem 

using a linear quadratic regulator. Since the stabilizability and detectability for such systems 

have been established in (Roncoli et al., 2016) and (Roncoli et al., 2017), the solution to the 

proposed optimal control problem can be given by the following linear feedback-feedforward 

control law: 

𝑢∗(𝑘) = −𝐾𝑥(𝑘) + 𝑢𝑓𝑓 ,  (5.20)  
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where  

𝐾 = (𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃𝐴,  (5.21) 

𝑃 = 𝐶𝑇𝑄𝐶 + 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃𝐴,  (5.22) 

𝑢𝑓𝑓 = (𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝐹 (𝐶𝑇𝑄�̂� − 𝑃𝑑),  (5.23) 

𝐹 = (𝐼 − (𝐴 − 𝐵𝐾)𝑇)−1.  (5.24) 

The feedback gain matrix can be computed offline by solving the Riccati equation. Note that in 

the derivation of LQR, we have assumed that the external flows 𝑑 are constant. For practical 

implementation, we may assume that external flows can be measured. In that case, the feed-

forward term becomes time-varying. Now, we can rewrite Equation 5.20 and 5.23 as follows: 

𝑢∗(𝑘) = −𝐾𝑥(𝑘) + 𝑢𝑓𝑓(𝑘),  (5.25)  

𝑢𝑓𝑓(𝑘) = Φ −ψ𝑑(𝑘),  (5.26) 

where Φ = (𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝐹(𝐶𝑇𝑄�̂�) and ψ = (𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝐹𝑃 may be calculated 

offline. 

 

5.2.3 Transferring the optimal LQR control to a real-world C-ITS based 

multi-class lane-changing advisory system 

The proposed feedback-feedforward control law, given by (25), can effectively be used to 

design a real-world C-ITS based lane-changing advisory system since the computation of 

control inputs depend on the feedback gain matrix 𝐾, the feedforward term comprising matrices 

Φ and Ψ, measurement of state variables and external flows arising from outside the boundary 

of the considered system. For practical applications, the computation of matrices 𝐾, Φ, and Ψ 

may be done once offline. Once we have these matrices, online computation is only limited to 

a few matrix-vector multiplications, as shown in (25) and (26). The measurement of state 

variables or density of each considered cell is required every time step in real-time. To produce 

these measurements, a traffic state estimator (Herrera and Bayen, 2010, Seo et al., 2015, 

Bekiaris-Liberis et al., 2017, Papadopoulou et al., 2018, Yuan et al., 2012, Yuan et al., 2014) 

can be embedded in the control loop.  

The proposed lane-changing advisory system requires an exchange of information between the 

traffic control center and vehicles. Vehicles are required to have connectivity in order to 

facilitate this exchange. Before control inputs or lane-changing advice are sent to the vehicles, 

it is vital to know vehicles’ position (i.e., lane and location) and type (e.g., cars or trucks). We 

might require roadside units (RSUs) to gather position and vehicle type data via V2I 

communications for a particular cell. These data would be processed at the traffic control center 

to know which vehicles are present in a specific cell. With this information, the traffic control 

center can then issue lane-changing advice to a selection of vehicles through I2V 

communications (e.g., via RSUs) to indicate whether they need to change lanes. In practice, the 

selection of vehicles may be based on their destinations known beforehand to improve the 

positive effects arising from the advisory system. This system only advises vehicles to change 

lanes as it does not force them to change lanes. However, any mismatch between the control 

inputs or advised lane changes and actual lane changes due to compliance rate may be balanced 
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by the feedback nature of the proposed controller. Spontaneous lane changes might also arise, 

but it may be reduced by issuing additional lane-keeping advices to drivers not selected earlier.  

Lane-changing advice may be communicated to vehicles using an in-vehicle interface (e.g., 

smartphone application or vehicle’s touchscreen) in the form of text or sound. A number of C-

ITS real-world applications also prefer these modes of issuing advice to drivers (Fukushima, 

2011, Kanazawa et al., 2010). Figure 5.2 shows a C-ITS-based multi-class lane-changing 

advisory framework for a merging section. 

 

5.3 Implementation of the multi-class lane-changing advisory 

system in a microscopic traffic simulator 
The proposed control strategy is tested using the microscopic traffic simulator OpenTrafficSim 

(van Lint et al., 2016), which is a Java-based open-source software package. It combines IDM+ 

as the car-following model (Schakel et al., 2010) and the lane-changing model with relaxation 

and synchronization (LMRS) as the lane-changing model (Schakel et al., 2012). We assume 

that there is no latency in V2I or I2V communication at the controller level. The proposed 

controller requires density measurements for all cells that are considered for the lane-changing 

advisory system and external demand that arise from outside the system boundaries. To realize 

the control actions, we keep individual lists of vehicles (cars and trucks) present in those cells. 

Note that we keep an individual list for every such cell which is of interest to the lane-change 

controller. Since this is a dynamic list, it gets updated every time a vehicle enters or exits that 

cell. Depending on the control action, we randomly select the desired number (requested by the 

controller) of cars and trucks from the list for a specific cell. These vehicles (cars and trucks) 

are instructed to follow the lane-change advisory using the lane-changing model (LMRS). 

Please note that some of the vehicles may not be able to perform lane changes due to the logic 

of the lane-changing model; however, this limited compliance is balanced by the feedback 

nature of the proposed controller. Next, we present the LMRS model. 
 

 

 

Figure 5.2. C-ITS based multi-class lane-changing advisory framework. 
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5.3.1 Lane-changing model 

We have selected the Lane change model with Relaxation and Synchronization (LMRS) as our 

base model (Schakel et al., 2012). The LMRS is based on the desire of a vehicle to change lanes 

that comes from several motivations. The base LMRS model aggregates considered motivations 

as follows:  

𝑑𝑦,𝑧 = 𝑑𝑟
𝑦,𝑧
+ 𝜃𝑣

𝑦,𝑧
(𝑑𝑠

𝑦,𝑧
+ 𝑑𝑏

𝑦,𝑧
),  (5.27) 

where 𝑑𝑦,𝑧 is the total/aggregated desire to change lanes. 𝑑𝑟
𝑦,𝑧

, 𝑑𝑠
𝑦,𝑧

, and 𝑑𝑏
𝑦,𝑧

 refer to the desire 

for following a route, the desire to gain or maintain speed, and the desire to follow a keep-right 

policy, respectively. Here, 𝜃𝑣
𝑦,𝑧

 denotes the weights associated with voluntary motivations. The 

desire toward voluntary motivations (𝑑𝑣
𝑦,𝑧

) comes from 𝑑𝑠
𝑦,𝑧

 and 𝑑𝑏
𝑦,𝑧

. 

The value of the desire to change from lane 𝑦 to lane 𝑧 is 𝑑𝑦,𝑧, and it ranges between -1 and 1, 

where only positive values influence a lane-changing decision. The positive range is divided 

into four areas (0 < 𝑑free < 𝑑sync < 𝑑coop < 1) which determines the way a lane-change is 

performed. In the following, we discuss how a lane-changing is performed if the desire (𝑑) falls 

in one of the four areas.  

 

1. 𝑑 < 𝑑free: the desire is too small for a vehicle to perform a lane change. 

2. 𝑑free ≤ 𝑑 < 𝑑sync: a vehicle performs a lane change if it is possible.  

3. 𝑑sync ≤ 𝑑 < 𝑑coop: if the adjacent gap in the target lane is not feasible, a vehicle aligns its 

speed to that of the leader in the target lane.  

4. 𝑑coop ≤ 𝑑: the follower in the target lane adjusts its behavior to create a suitable gap to a 

lane-changing vehicle.  

We extend this model to implement the LQR controller proposed in this chapter.  

 

5.3.2 Implementing the lane-changing advisory system 

The base LMRS model is essentially a linear-in-parameter formulation that can be extended to 

incorporate several other voluntary motivations. Consequently, we extend this base model to 

accommodate a lane change advisory framework in the following equation: 

𝑑𝑦,𝑧 = 𝑑𝑟
𝑦,𝑧
+ 𝜃𝑣

𝑦,𝑧
(𝑑𝑠

𝑦,𝑧
+ 𝑑𝑏

𝑦,𝑧
+ 𝑑𝑎

𝑦,𝑧
),  (5.28) 

where 𝑑𝑎
𝑦,𝑧

 refers to an additional incentive that is triggered if a vehicle receives lane change 

advice from the control center. This incentive is formulated as follows: 

𝑑𝑎
𝑦,𝑦−1

= {  
𝑑free, if a vehicle receives the lane change advice

0, otherwise
   (5.29) 

𝑑𝑎
𝑦,𝑦+1

= 0,  (5.30) 

where 𝑦, 𝑦 − 1, and 𝑦 + 1 refer to the current lane, left lane, and right lane in the direction of 

driving.  

Once a vehicle gets the lane change advice, it has an additional desire 𝑑free to move to its left 

lane. If the adjacent gap on the left lane is not suitable, the subject vehicle will continue in the 

current lane. Since we assume European driving conditions in our simulations, we expect 
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vehicles to follow the keep-right policy. Therefore, we deactivate the subject vehicle’s 

adherence to the keep-right policy (𝑑𝑏
𝑦,𝑧

) until it passes the merging section so that vehicle 

complies with the advisory issued by the traffic control center.  

 

5.4 Experimental setup 
In this section, we describe the network, demand profile, and model parameters used for 

simulation, scenarios considered, and the performance indicators to assess the performance of 

the LQR control-based lane-changing advisory framework. 
 

5.4.1 Study area 

We consider a merging section for the evaluation of the proposed multi-class lane change 

controller. The merging section (i.e., Ter Heijde) with a 2-lane mainline carriageway is located 

on the A59 freeway in the Netherlands (see Figure 5.3). The acceleration lane is 320 m long. 

The upstream segment of the considered merging section is 2 km long. We consider three 

segments, numbered as 0, 1, and 2 in Figure 5.3, each 500 m long where vehicles will respond 

to lane change advisory issued by the control center. The nominal speed limit is 80 km/h for all 

those segments. This value is also the speed limit for trucks on freeways in the Netherlands. 

 

5.4.2 Demand profile 

We consider a trapezoidal demand profile for mainline and ramp traffic (see Figure 5.4). This 

trapezoidal demand is used to generate vehicles in the network. The generation time of vehicles 

in the network depends on randomly distributed generation time-headways. In this chapter, we 

have assumed exponentially distributed headways. The share of trucks is 15% in the traffic mix. 

All simulations are conducted for 75 minutes of which the first 15 minutes are taken as the 

warm-up time. The purpose of warm-up time is to fill the network so that appropriate effects 

can be analyzed.  

 

 

Figure 5.3. 2-lane mainline carriageway with an on-ramp 
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5.4.3 Simulation model parameters 

Most of the simulation model parameters are equal to the default values which are calibrated 

for a freeway network located in the Netherlands by (Schakel et al., 2012). For trucks, we use 

the desired speed distribution (km/h) obtained from a web-based survey, i.e., 𝑣des, truck =

𝑁(84.14,3.92). The lane-changing duration for truck drivers is obtained from a trajectory 

dataset (van Beinum, 2018, van Beinum et al., 2018). We use this dataset to obtain a normally 

distributed lane-changing duration (s) (i.e., 𝑁(8.32,2.19)) for truck drivers. The simulation 

model parameters are tabulated in Table 5.1. 

 

5.4.4 Scenarios 

We consider two scenarios to evaluate the performance of the LQR control-based lane-changing 

advisory framework.  

1. No-control: In this case, vehicles are not issued lane change advisory.  

2. LQR control: In this case, mainline vehicles are issued lane change advisory every 20 s. 

We assume that 100% of vehicles present in the traffic mix are connected vehicles that 

are able to receive the advisory. For cars, we use a pce value of 1.0. For trucks, we use a 

pce value of 1.61 which is taken from (Schreiter, 2013) where pce values are calibrated 

using a trajectory dataset.  

 

5.4.5 Performance indicator 

We consider the Total Time Spent in the system (TTS in veh∙h) as the performance indicator to 

evaluate the performance of the proposed controller. We do not take warm-up time into account 

to compute the TTS. TTS can be mathematically expressed as: 

TTS = ∑ (𝑡𝑒𝑥𝑖𝑡
𝑖 − 𝑡𝑒𝑛𝑡𝑒𝑟

𝑖 )𝑁
𝑖=1 ,  (5.31) 

where 𝑡𝑒𝑛𝑡𝑒𝑟
𝑖  and 𝑡𝑒𝑥𝑖𝑡

𝑖  refer to the time instant a vehicle 𝑖 enters and exits the network, 

respectively. 𝑁 denotes the total number of vehicles that have passed through the merging 

 

Figure 5.4. Demand profile for the experimental setup 
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section in the simulation period. TTS can be further divided into the Total Travel Time for 

mainline vehicles (TTT) and the Total Waiting Time for ramp vehicles (TWT) to gain insight 

into how the proposed controller affects their efficiency to pass through a merging section.  

 

 

Table 5.1 Simulation model parameters 

Symbol Value Description 

   

Car-following parameters 

𝑎car 1.25  Maximum (desired) car-following acceleration for 

cars (m/s2) 

𝑎truck 0.40  Maximum (desired) car-following acceleration for 

trucks (m/s2) 

𝑏 2.09  Maximum comfortable car-following deceleration 

(m/s2) 

𝑏0 0.50  Maximum adjustment deceleration (m/s2) 

𝑏crit 3.50  Maximum critical deceleration (m/s2) 

𝑓speed 1.00 The speed limit adherence factor for cars and trucks 

𝑠0 3.00  Car-following stopping distance (m) 

𝑇max 1.20  Maximum car-following headway (s) 

𝑇r 0.50  Reaction time (s) 

𝑣des, car 𝑁(123.7,12)  Desired (maximum) speed for cars (km/h) 

𝑣des, truck 𝑁(84.14,3.92)  Desired (maximum) speed for trucks (km/h) 

𝑙car 4.00  Length of cars (m) 

𝑙truck 15.00  Length of trucks (m) 

   

Lane-changing parameters 

𝑑free 0.365 Free lane change desire threshold 

𝑑sync 0.577 Synchronized lane change desire threshold 

𝑑coop 0.788 Cooperative lane change desire threshold 

𝑇min 0.56  Minimum car-following headway (s) 

𝜏 25  Headway relaxation time (s) 

𝑣cong 60  Speed threshold below which traffic is considered 

congested (km/h) 

𝑣gain 50  Anticipation speed difference at full lane change 

desired (km/h) 

𝑥0 295  Look-ahead distance (m) 

𝑡0 43  Look-ahead time for mandatory lane changes (s) 

𝑡𝑙𝑐.𝑐𝑎𝑟 3  Lane change duration for passenger cars (s) 

𝑡𝑙𝑐,𝑡𝑟𝑢𝑐𝑘 𝑁(8.32,2.19)  Lane change duration for trucks (s) 
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5.5 Selection of LQR controller’s parameters 
This section focuses on the selection of the LQR controller’s parameters. First, we present an 

analysis of the choice of set points. Lastly, we present a response-surface-based method to 

optimally select the weights of Q and R matrices.  
 

5.5.1 Reference values of set-points and weights associated with Q and R 

matrices 

For the sensitivity analysis presented in this section, we use reference values for the set-points, 

and weights of Q and R matrices. For the set points, we use the critical density of the lane as 

the reference value. To compute the critical density, we generate fundamental diagrams (see 

Figure 5.5) for the no-control case using data collected from 10 simulation runs. We use 40 

pce/km/lane as the critical density for both the near-side and off-side lanes. With the given 

reference values of the set-points and desire threshold, we use a trial-and-error approach to 

select the reference weights for the Q and R matrices as: 

𝑄 = 102 𝐼2, (5.32) 

𝑅 = 101 𝐼6,  (5.33) 

where 𝜙𝑐 = 𝜙𝑡 = 101. 

 

5.5.2 Selection of set-points 

To assess the impact of set-points on the performance of the LQR controller, we select the 

reference values of the desire threshold and weights of the Q and R matrices. The critical density 

for each lane is computed as 40 pce/km/lane for which the system is able to maintain free-flow 

conditions. This value is taken as a starting point to define set points. We further increase this 

value in steps up to 45 pce/km/lane. Figure 5.6 shows the performance of the LQR controller 

for the considered values of set-points with fixed Q and R matrices for 10 simulation runs. It 

can be observed that the LQR controller results in the best performance in terms of TTS of the 

system for the value of 41 pce/km/lane. We use this value as set points for our experiments. 

  
(a) Near-side lane (b) Off-side lane 

Figure 5.5. Fundamental diagrams for (a) near-side; and (b) off-side lanes for 10 

different simulation runs conducted for the no-control scenario. 
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5.5.3 Selection of weighting matrices (Q and R) 

Now, we analyze the impact of weighting matrices (Q and R) on the performance of the LQR 

controller. The tuning of Q and R matrices presents a trade-off between tracking precision and 

the system’s stability. In this section, we present a response-surface-based approach to select 

optimal weighting matrices of the LQR controller. This technique maps the impact of design 

variables on the processes. The technique can be separated into the following three stages (Baş 

and Boyacı, 2007).  

1. selection of design variables,  

2. selection of experimental design and model fitting, and  

3. visualization of response surface and determination of optimal design parameters. 

Next, we describe these steps in the detail.   

Selection of design variables 

Our design variables are the weighting matrices of the LQR controller. We consider that Q and 

R matrices are diagonal in nature and they can be expressed as follows for our test case: 

𝑄 = 10𝜃1  𝐼2,  (5.34) 

𝑅 = 10𝜃2  𝐼6.  (5.35) 

where 𝜃1 and 𝜃2 refer to the parameters intending to change the weights of the Q and R matrices. 

Here, we assume that 𝜙𝑐 = 𝜙𝑡 = 10
𝜃2 . 

Selection of experimental design and model fitting 

We use the Latin hypercube sampling method to generate a response surface with input 

variables of 𝜃1 and 𝜃2 (McKay et al., 1979). The design range of input variables is considered 

 

Figure 5.6. Influence of set-points (�̂�) on the performance of the LQR controller for 10 

simulation runs. 
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as −5 ≤ 𝜃1, 𝜃2 ≤ 5. We use a two-step approach to produce the response surface. First, we use 

35 design points in the above design range of input variables. Then, we further focus on a 

smaller area (0 ≤ 𝜃1 ≤ 5 and −2 ≤ 𝜃2 ≤ 5) where there might be a higher possibility for a 

minimum to occur. In this area, we sample additional 30 design points. Overall, we use 65 

design points to produce the response surface. The dependent variable is considered as TTS, 

which is obtained as the average TTS from 10 simulation runs. We use Lowess smoothing or 

locally weighted linear regression-based surface fitting procedure to convert the discrete design 

space to a continuous one (see Figure 5.7). Lowess smoothing is a non-parametric technique to 

fit surfaces (Cleveland and Devlin, 1988). The fitting process is estimated locally by using the 

weighted neighborhood points with their distance to the observed point. The proportion of 

neighborhood points in the estimation depends on the span size. After analyzing root mean 

square error (RMSE), we choose a span size of 0.25 (RMSE= 2.53). The produced fit has 𝑅2 = 

0.8990 and adjusted 𝑅2 = 0.8843 which indicates that 89.90% of the total variation can be 

explained by the fitted model.  

Visualization of response surface and determination of optimal design parameters 

The response surface and the contour plot show that multiple combinations of 𝜃1 and 𝜃2 yield 

similar performance. In the dark blue region (see Figure 5.7), the LQR controller is little 

sensitive to the changes in the values of 𝜃1 and 𝜃2. In order to guarantee a stable LQR controller, 

the values of 𝜃1 and 𝜃2 should be selected from the dark blue region shown in the contour plot. 

Next, we present and discuss simulation results in order to discuss the performance of the LQR 

controller at a merging section.  

 

5.6 Results and discussion 
In the scope of this work, we target only cells in segment 2 of the merging section. We use 

fundamental diagrams to find the set points for the LQR controller. For both the near-side and 

off-side lanes at segment 2, we use 41 pce/km/lane as set-points that is closer to their critical 

density values. The weights of the LQR controller are obtained from the contour plot. Q and R 

matrices are selected as 103𝐼2 and 101𝐼6, respectively. The LQR controller gains are computed 

offline and simulations are conducted using those values. In the following, we present a 

quantitative and qualitative evaluation of the performance of the LQR controller. 

 

  

 
(a) 3-D view showing 

points lying above the 

fitted surface 

(b) 3-D view showing 

points lying above and 

under the fitted surface 

(c) 2-D view (contour plot) 

  

Figure 5.7. Response surface generated by varying the weights of Q and R matrices 

(color bar shows TTS values where low TTS values are highlighted in blue) 
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5.6.1 Quantitative evaluation of the performance of the LQR controller 

The performance of the LQR controller, in terms of TTS, is evaluated over 10 simulation runs 

(see Figure 5.8 (a)). We obtain a TTS value of 73.04 veh∙h for the no-control case. In 

comparison to the no-control case, we obtain an average TTS equal to 57.74 veh∙h in the 

controlled case which is around 21% improvement (t-statistic = 4.63, p-value = 0.001). The 

variance is significantly reduced in the control scenario thus indicating the consistent 

performance of the proposed lane-changing advisory system. Next, we discuss how the LQR 

controller affects the travel times of mainline and ramp vehicles.  

Figure 5.8 (b) presents the performance of the LQR controller in terms of TTT over 10 

simulation runs. In the no-control case, an average TTT is computed to be 69.36 veh∙h. When 

the LQR controller is applied, the average TTT is obtained as 55.59 veh∙h which implies 19.85% 

improvement (t-statistic = 4.38, p-value = 0.001) than the no control case. The performance of 

the LQR controller in terms of TWT over 10 simulation runs is shown in Figure 5.8 (c). For 

ramp vehicles, an average TWT is computed to be 3.68 veh∙h for the no-control case. The LQR 

controller is able to improve the average TWT by 41.55% (t-statistic=7.81, p-value=1.77e-5) 

as the average TWT gets reduced to 2.15 veh∙h. 

Overall, the LQR controller is able to improve traffic efficiency for both mainline and ramp 

vehicles thus showing significant improvement at the system level. Next, we present a 

qualitative evaluation concerning the performance of the LQR controller.  

 

5.6.2 Qualitative evaluation of the performance of the LQR controller 

In Figure 5.9, we present an evaluation of the performance of the LQR controller for an average 

scenario in terms of speed-contour plots, density profile, and outflow profile. By looking at 

speed-contour plots, we can observe that the LQR controller is able to suppress shockwaves in 

the system. Furthermore, we can observe that density values for both near-side and off-side 

lanes lie around set-points chosen for the LQR-control case compared to the no-control case. In 

the LQR control case, we observe that the distribution of traffic is more balanced since we 

observe similar density profiles for both lanes at segment 2. Figure 5.9 (d) shows the observed 

outflow at the merging section. In the no-control scenario, the traffic flow on the nearside lane 

breaks down at around 2880 pce/h/lane before reaching its capacity.  

This also triggers a breakdown in the offside lane, before reaching its capacity, where for some 

time windows we observe outflow even lower than 500 pce/h/lane. Whereas in the LQR control 

scenario, we observe that outflow is reaching higher values (i.e., 3060 pce/h/lane) for a longer 

period of time without incurring traffic breakdown.  

Interestingly, we observe a dip in density and outflow  between 35-45 minutes in the LQR 

control scenario. This is We also analyze the performance of the LQR controller by comparing 

the lane-specific fundamental diagrams generated attributed to the demand profile presented in 

Figure 5.10. To generate this demand profile, we have placed loop-detectors at the entrance of 

the mainline and ramp. Figure 5.10 shows a similar dip in traffic demand between 35-45 

minutes. The results suggest that the buildup of density on the near-side and off-side lane 

follows the traffic pattern under the LQR control scenario. The LQR controller recognizes the 

randomly distributed demand (or generation of vehicles in the network) and effectively balances 

the distribution of traffic on both lanes. 
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(a) Total Time Spent in the system (TTS) 

 

(b) Total Travel Time for mainline vehicles (TTT) 

 

(c) Total Waiting Time for ramp vehicles (TWT) 

Figure 5.8. Comparison between no-control and LQR control scenario for system 

(TTS), mainline (TTT) and ramp (TWT) vehicles. 
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 No-control LQR control 

(a) 

  
   

(b) 

  
   

(c) 

  
   

(d) 

  

 

Figure 5.9. Qualitative assessment of the LQR controller’s performance for an average 

scenario (a) speed contour plots for the near-side lane (b) speed contour plots for the 

off-side lane, (c) density profile for near-side and off-side lanes at segment 2, and (d) 

outflow profile for near-side and off-side lanes at segment 2. 
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We also analyze the performance of the LQR controller by comparing the lane-specific 

fundamental diagrams generated for segment 2 from 10 simulation runs. Figure 5.11 shows that 

the LQR controller can improve the traffic efficiency around the merging section and 

successfully prevents the breakdown of traffic.   

 

 

Now we will look at the distribution of lateral flux, from left to right side, over considered three 

segments around the merging section. Figure 5.12 (a) shows that a high amount of lane-

changing activity at segment 2, which is close to the merging section, for the no-control 

scenario. It appears that vehicles react to the congestion only if they can witness any impact 

within their visible range or look-ahead distance. Since the congestion starts to build up at the 

near-side lane after 35 minutes, the lane-changing activity starts to shift upstream to segments 

0 and 1. Figure 5.12 (b) presents the lateral flux advised by the LQR controller. We observe 

that the LQR controller emphasizes proactive lane-changing and advises vehicles to consider 

lane-changing ahead of reaching close to the merging section. In Figure 5.12 (c), we present 

the realized lateral flux in the LQR control scenario. This realization depends on the gap-

seeking behavior of vehicles governed by the LMRS model. Lateral flux is distributed in a way 

 

Figure 5.10. Demand profile generated for an average scenario under the LQR control 

case. 

 

 

 Near-side lane Off-side lane 

(a) 

  
   

(b) 

  

Figure 5.11. Lane-specific fundamental diagrams at segment 2 generated for (a) no-

control and (b) LQR control scenario using data collected from 10 simulation runs. 
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so that vehicles perform most of the lane-changing activity upstream at segment 0. We do note 

a few lane changes at segment 2 which can be attributed to the selection of vehicles and their 

ability to seek gaps. 

 

 

5.7 Conclusions 
This chapter develops a multi-class lane-changing advisory system based on a linear quadratic 

regulator. This system uses V2I and I2V communications and can be viewed as a cooperative 

intelligent transportation systems application. We evaluate the performance of this system using 

microscopic simulation. The results indicate that this system can improve traffic efficiency 

around a merging section. Moreover, it brings substantial travel time benefits for both mainline 

and ramp vehicles. The findings will be of interest to traffic management agencies and logistics 

companies which are especially concerned about the travel time reliability of freight corridors. 

 

(a) Lateral flux in the no-control scenario 

 

(b) Lateral flux advised by the LQR controller 

 

(c) Lateral flux realized in the LQR control scenario 

Figure 5.12. Contour plots of lateral flux in (a) the no-control scenario, (b) advised LQR 

control scenario, and (c) the realized LQR control scenario. 
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In the future, the effectiveness of the proposed framework can be evaluated for a scenario that 

includes truck platoons along with passenger cars and trucks. In addition, a promising research 

direction can be to include automated vehicles in the traffic mix. Furthermore, the lane-

changing controller can be integrated into other local control strategies such as ramp metering.  
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III: Operational driving behavior around freeway 

bottlenecks 
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6 Impacts of a truck platooning application 

 

Previous chapters presented new behavioral insights and a novel control method to improve on-

trip behavior of road freight. This chapter focuses on the lowest layer of the driving behavior 

hierarchy, i.e. operational behavior and presents the impacts of a truck platooning application. 

State-of-the-art has largely focused only on traffic impacts of truck platoons around freeway 

bottlenecks. A key gap results from a lack of understanding about how truck platoons affect 

safety, a key performance criterion, around such bottlenecks. Add to this, these studies do not 

fully capture the uncertainty associated with the traffic and safety impacts caused by varying 

truck platooning characteristics (e.g., market penetration, length of the platoon, intra-platoon 

gap spacing, and desired speed) around freeway bottlenecks. To address this gap, this chapter 

aims at evaluating the effects of varying several truck platoon characteristics on traffic 

efficiency and safety at merging sections and contributes to answering the fifth research 

question of this dissertation. This chapter presents a comprehensive sensitivity analysis to 

identify the impact of truck platoon characteristics around a merging section using microscopic 

simulation. My personal contributions to this chapter are enriching a local level sensitivity 

analysis with qualitative trajectory plots and conducting a global level sensitivity analysis to 

identify and rank the impact of truck platooning characteristics on traffic efficiency and safety. 

 

This chapter is based on the following journal and conference papers: 

 

Faber, T., Sharma, S., Snelder, M., Klunder, G., Tavasszy, L. and van Lint, H. 2020. Evaluating 

traffic efficiency and safety by varying truck platoon characteristics in a critical traffic 

situation. Transportation Research Record, 2674(10), pp. 525-547. 

 

Faber, T., Sharma, S., Snelder, M., Klunder, G., Tavasszy, L. and van Lint, H. 2020. Evaluating 

traffic efficiency and safety by varying truck platoon characteristics in a critical traffic 

situation. Paper presented in 99th Annual Meeting of the Transportation Research Board. 
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6.1 Introduction 
Cooperative adaptive cruise control (CACC) is an emerging technology with automated 

speed controls by using vehicle-to-vehicle (V2V) and/or infrastructure-to-vehicle (I2V) 

communication (Shladover et al., 2012). CACC is shown to be beneficial for road capacity 

improvement (Shladover et al., 2012, Tientrakool et al., 2011), traffic flow stability 

(Schakel et al., 2010, Van Arem et al., 2006), and traffic safety (Li et al., 2017a, Li et al., 

2017b). CACC can be utilized to improve the efficiency and safety of road transport 

operations. The application of CACC to freight transport is known as truck platooning. In 

this system, trucks move together in tight platoons using V2V communication (Bhoopalam 

et al., 2018). Recent practical trials report significant fuel savings and emission reductions 

by  introducing truck platoons (Eckhardt et al., 2016, Lammert et al., 2014), whereas 

simulation-based studies report mixed effects on traffic efficiency (Calvert et al., 2019, 

Mueller, 2012, Wang et al., 2019, Ramezani et al., 2018, Deng, 2016, Mesa-Arango and 

Fabregas, 2017). We use platoons and truck platoons interchangeably throughout this 

chapter. 

The efficient transport of containers to the hinterland is an important part of the global 

supply chain. Grouping trucks together in a convoy might be an interesting proposal for 

port authorities and carriers to move containers out of the port area because of fuel savings, 

efficient use of labor, and safer operations. Yet, little research has been done so far to assess 

the impacts of truck platoons in critical traffic situations which are particularly interesting 

for road transport authorities. One of these situations lies around merging sections. The 

interactions of truck platoons with the surrounding vehicles in the vicinity of merging 

sections are not fully understood, and neither are the effects on safety and efficiency. Port 

terminals might generate a platoon demand through on-ramps in the future, and to the best 

of our knowledge, this chapter is the first to consider this probable scenario. Besides, the 

uncertainties associated with the potential traffic and safety impacts, when considering 

variable platoon characteristics (number of trucks in a platoon, intra-platoon headway, 

desired speed of platoon, market penetration of platoon vehicles, and lane-changing 

policy), call for a detailed sensitivity analysis. 

Consequently, the main objective of this chapter is to evaluate the effects of varying several 

platoon characteristics on traffic efficiency and safety at merging sections. The 

contributions of this chapter are twofold. First, we develop a novel lateral controller in 

combination with an existing longitudinal controller for truck platoons. These controllers 

ensure collision-free, string-stable, and smooth driving behavior of platoon vehicles. 

Moreover, vehicles in a platoon can follow their respective leaders by following a desired 

time-gap policy. Traffic and safety impacts are subjected to the assumptions behind 

longitudinal and lateral controllers. Second, we perform a comprehensive sensitivity 

analysis, both at the local and global levels, to identify the impact of platoon’s 

characteristics on traffic efficiency and safety around merging sections. We consider both 

low and high traffic intensity to identify platoon characteristics that might lead to positive 

or negative impacts on traffic efficiency and safety. 

This chapter is structured as follows. First, section 6.2 presents a literature review on the 

modeling of truck platoons within the microscopic simulation and their effects on traffic 

and safety. Afterward, sections 6.3 and 6.4 present longitudinal and lateral controllers for 

truck platoons, respectively, which we have implemented in the microscopic simulation 

software OpenTrafficSim. Next, section 6.5 presents a case study of a merging section. 

Subsequent sections 6.6 shows the impact of introducing a reference truck platoon 

configuration. Then sections 6.7 and 6.8 discuss the impact of platoon characteristics on 
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traffic efficiency and safety by conducting local and global sensitivity analyses, 

respectively. Section 6.9 discusses the findings and section 6.10 concludes this chapter. 

 

6.2 Literature review 
This section presents a literature review on the modeling of truck platoons and evaluating their 

impact on traffic efficiency and safety. 

 

6.2.1 Modeling of truck platoons 

The longitudinal behavior of trucks in a platoon is controlled using CACC. Most of CACC 

controllers use a constant time-gap (CTG) policy in which the distance between vehicles is 

proportional to the speed (Milanés and Shladover, 2014, Van Arem et al., 2006, Montanaro et 

al., 2014, Ramezani et al., 2018, Deng, 2016). Other approaches mimic truck platooning field 

trials which use a constant distance gap policy (Lu et al., 2002, Shladover et al., 2006). 

Typically, a single leader is used for communicating information to CACC-equipped followers 

(Milanés and Shladover, 2014, Van Arem et al., 2006, Ramezani et al., 2018, Lu et al., 2002, 

Shladover et al., 2006). Other CACC variants report communications with multiple leaders 

(Montanaro et al., 2014, Santini et al., 2016). Previous research has shown that CACC 

controllers based on CTG policy can achieve string stability and collision-free performance in 

most situations. The car-following model such as IDM + has also been used to develop the 

CACC controller for truck platoon (Calvert et al., 2019); however, the IDM + model results in 

a variable time-gap policy in contrast to constant time or distance gap policy used in the 

standard CACC controllers. 

Hsu and Liu (2004) specify lane-changing strategies for platoons. In one case, the leader of a 

platoon signals the followers and all the vehicles change lanes simultaneously. In the other case, 

vehicles become free agents and change lanes individually after the leader. Simultaneous lane 

changing of the truck platoon is also reported in the European truck platooning challenge 

(Eckhardt et al., 2016). However, previous research and practical trials are focused on 

platooning operation on mainline carriageways, and there exists a gap regarding the merging 

strategies of truck platoons. 

 

6.2.2 Impact of truck platoons on traffic efficiency and safety 

There are limited studies to assess the impacts of truck platoons, and most of them focus on 

traffic impacts. Mueller (2012) reports  a  5.5%  increase  in  road  capacity  with CACC-

equipped trucks over a hypothetical 5 km-long three-lane carriageway using simulations. 

However, the test site does not include any discontinuities. Deng (2016) performs simulations 

over a 3.5 km-long two-lane carriageway without any discontinuities, and shows that aver- age 

traffic flow significantly increases whereas space mean speed decreases with an increase in the 

market penetration of platoons. Ramezani et al. (2018) show that CACC-equipped trucks can 

reduce congestion propagation and improve traffic speed on a 15 mile-long I-170 corridor with 

21 on-ramps and 20 off-ramps. 

Wang et al. (2019) study the impact of truck platoons on the traffic operations near a merge 

section using simulation. Their results suggest that truck platooning may increase maximum 

outflow by 19% in congested conditions but has no substantial impact in free-flow conditions. 

However, the authors note that this increase may be attributed to the fact that some vehicles are 

deleted from the simulation if they are unable to merge in time. Mesa-Arango and Fabregas 

(2017) evaluate the impact of truck platoons on travel time and its reliability using VISSIM 

simulation around a motorway exit. Calvert et al. (2019) report negative effects on traffic flow 

under congested conditions when platoons are introduced on a 56.6 km trans-European corridor 
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in the Netherlands. Yang et al. (2019) use microscopic simulations near a merging and a 

diverging area to analyze the impact of truck platooning on traffic efficiency and safety. Their 

findings indicate that truck platooning increases traffic flow even in high traffic intensity. 

However, truck platooning negatively affects merging and diverging of vehicles along with 

traffic safety. To the best of our knowledge, only one study has attempted to investigate the 

safety impacts of truck platooning. This indicates a need to comprehensively study the safety 

impacts of truck platoons. In particular, scenarios involving truck platoons merging onto a 

mainline carriageway from an on-ramp have not been considered in the literature. 

 

6.3 Longitudinal controller for truck platoons 
This section presents a longitudinal controller that governs the car-following behavior of trucks 

in a platoon. We assume that there is no latency in V2V communication at the controller level 

and platoon vehicles do not communicate with the infrastructure. Moreover, vehicles in a 

platoon have homogeneous characteristics. We use a CTG policy and three different controllers 

or modes to simulate longitudinal movement trucks in platoons. 

 

1. Cooperative Adaptive Cruise Control (CACC): In this case, the leader of a CACC-

equipped truck is also a CACC-equipped vehicle, which means the vehicles can 

communicate all relevant dynamic information (headway, speed, acceleration, etc.) 

with each other.   

2. Adaptive Cruise Control (ACC): In this case, the leader of a CACC-equipped truck is 

a non-CACC equipped vehicle. Only headway and speed-related information can be 

exchanged. 

3. Cruise Control (CC): In this case, a CACC-equipped truck has no leader within sight. 

6.3.1 Preliminaries 

An ego truck is a CACC-equipped truck. Let 𝑣des, 𝑟, 𝑣 and 𝑟standstill be its desired speed, its 

current headway spacing from its leader, its current speed and minimum spacing at standstill (3 

m), respectively. Let 𝑣𝑝 and 𝑎𝑝 be speed and acceleration of the leader of the ego truck, 

respectively. 𝑟mode
safe  is the safe following distance required for the ego mode truck (Equation 1). 

It is controller-specific, as it depends on the target time-gap setting, 𝑡mode
system

, in a particular mode. 

We use 0.5 s and 1.5 s for CACC and ACC, respectively. 

 

𝑟mode
safe = 𝑡mode

system
∙ 𝑣 + 𝑟standstill       ∀mode ∈ {CACC, ACC} (6.1) 

 

All three controllers are derived from the works of van Arem et al. (2006) and VanderWerf et 

al. (2001). As the original models were not designed to work in a dynamic traffic situation, we 

have adapted them for platoons by incorporating the following two characteristics. 

 

1. Gap-Closing: The ego truck should be able to maintain the desired headway from its 

leader. If the current headway exceeds the desired headway, an ego truck should 

accelerate to reduce the excess headway. 

2. Acceleration-Following: The ego truck should follow its accelerating leader in a string-

stable manner. 
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The three controllers have the same structure, that is, the control variable (𝑎mode) is bounded 

by the ego truck’s minimum (𝑎min) and maximum acceleration (𝑎max) capabilities. The three 

controllers differ in terms of the information they use to compute 𝑎mode which is based on 𝑎mode
ego

 

and 𝑎mode
lead . Here, 𝑎mode

ego
 is the maximum acceleration based on the desired speed and headway 

setting of controllers and 𝑎mode
lead  is the maximum acceleration based on the interaction with its 

leader.  

 

6.3.2 Cooperative adaptive cruise control 

The ego truck responds to the acceleration of the predecessor, deviations between its current 

speed and the speed of the predecessor, and the deviation between the current distance headway 

and the desired headway. The acceleration of the ego truck (𝑎CACC) can then be computed using 

Equations 6.2-6.4. 

 

𝑎CACC
ego

= 𝑘 ⋅ (𝑣des − 𝑣) + 𝑘𝑑 ⋅ (𝑟 − 𝑟CACC
safe )  (6.2) 

 

𝑎CACC
lead = 𝑘𝑎 ⋅ 𝑎𝑝 + 𝑘𝑣 ⋅ (𝑣𝑝 − 𝑣) + 𝑘𝑑 ⋅ (𝑟 − 𝑟CACC

safe ) (6.3) 

 

𝑎CACC = min (𝑎max, max (min(𝑎CACC
ego

, 𝑎CACC
lead ) , 𝑎min)  (6.4) 

 

By considering the distance headway from its leader, the ego truck can close the gap if it is 

more than the desired headway, as shown in Equation 6.2. In this way, the ego truck can move 

within a platoon configuration by maintaining the desired spacing from its leader. Equation 6.4 

ensures that the ego truck follows its accelerating leader in a string-stable manner. 

 

6.3.3 Adaptive cruise control 

The ego truck responds to the deviations between its deviations between its current speed and 

the speed of the predecessor, and the deviation between the current distance headway and the 

desired headway. The acceleration of the ego truck (𝑎ACC) can then be computed using 

Equations 6.5-6.7. 

 

𝑎ACC
ego

= 𝑘 ⋅ (𝑣des − 𝑣) + 𝑘𝑑 ⋅ (𝑟 − 𝑟CACC
safe )  (6.5) 

 

𝑎ACC
lead = 𝑘𝑣 ⋅ (𝑣𝑝 − 𝑣) + 𝑘𝑑 ⋅ (𝑟 − 𝑟CACC

safe ) (6.6) 

 

𝑎ACC = min (𝑎max, max (min(𝑎ACC
ego
, 𝑎ACC
lead) , 𝑎min)  (6.7) 

 

 

6.3.4 Cruise control 

The ego truck responds to its deviations between its desired and current speed. The acceleration 

of the ego truck (𝑎CC) can then be computed using Equations 6.8-6.9. 

 

𝑎CC
ego

= 𝑘 ⋅ (𝑣des − 𝑣) (6.8) 

 

𝑎CC = min (𝑎max, max (𝑎CC
ego
, 𝑎min)  (6.9) 

 

The values of the controller parameters should be calibrated by considering acceleration-

following, gap-closing, collision-free, and string-stable properties. We use the values of these 
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parameters from the work of van Arem et al. (2006). Here, 𝑘, 𝑘𝑎, 𝑘𝑑, and 𝑘𝑣 are controller 

parameters whose values are chosen as 0.3, 1.0, 0.1, and 0.58, respectively. Besides, the 

parameter values should provide a smooth acceleration response by minimizing overshoot and 

oscillations. The values of 𝑎max and 𝑎min are chosen as 1.25 m/s2 and –5.0 m/s2, respectively. 

The acceleration capabilities of a truck that can be used in a platoon configuration should be 

chosen in consultation with truck manufacturers. 

 

6.3.5 Verification tests for cooperative adaptive cruise control 

We consider a platoon of five vehicles to conduct performance verification tests for our CACC 

controller. Figure 6.1 shows performance of CACC controller under three scenarios. First, we 

consider a stop-and-go scenario where the leader of a platoon first decelerates for 2 s and then 

accelerates again for 2 s. The CACC controller can respond to the changes in the state of its 

 

Figure 6.1. Verification test for CACC controller’s performance: (a) platoon acceleration 

under stop-and-go scenario, (b) gap spacing under stop-and-go scenario (blue line refers 

to the desired gap spacing), (c) platoon acceleration to keep gap spacing close to desired 

spacing, (d) variation in gap spacing as automatic gap closing triggers when current 

spacing exceeds desired spacing, (e) platoon acceleration under emergency braking 

scenario, and (f) gap spacing under emergency braking scenario.  

Note: CACC = cooperative adaptive cruise control.  
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leader and produces a smooth (i.e., oscillation-free) and collision-free behavior. Second, we 

consider a scenario where vehicles in a platoon have a gap spacing more than the desired gap 

spacing at the initial condition when a leading vehicle instantaneously brakes for 2 s. Our 

controller can bring vehicles in that platoon at a safe gap spacing, thus resulting in a string-

stable behavior. Third, we consider an emergency braking scenario where the leader of a 

platoon decelerates for 2 s. Four following vehicles, equipped with the CACC controller, result 

in a safe (or collision-free) driving behavior as the spacing between the vehicles stabilizes after 

some time at around the desired safe following distance (𝑟safe ). We observe that the braking 

action decreases speed of all the vehicles, which in turn reduces the desired safe following 

distance (𝑟safe) in a CTG policy. The controller’s CACC response to emergency braking also 

produces a stable behavior in which the acceleration of four followers stabilizes at 30 s. 

 

6.4 Lateral controller for truck platoons 
The lateral controller for truck platoons governs the lane-changing process of the entire platoon. 

The lane-changing process of truck platoons comprises several logical steps (see Figure 6.2). 

The first step is to check if there exists a desire for a truck platoon to change lanes. The second 

step checks if this value of desire exceeds the fixed threshold of 0.1. A value of 0.1 ensures that 

only necessary and mandatory lane changes are performed. The lane-changing desire is 

 
 

Figure 6.2. Lateral controller governing lane-changing of truck platoons. 
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explained in the following subsection. If a truck platoon has a desire more than the threshold, 

lane-change sequence step is activated that ensures that all trucks in that platoon can change 

lanes. Trucks in a platoon follow a last-vehicle-first principle to change lanes. Finally, a gap is 

accepted or rejected based on the resulting safe deceleration that follows from the car-following 

model and available space in the target lane. Here, the logic checks if space for a platoon to 

change lanes is free, which depends on the number of vehicles in that platoon desiring to change 

lanes. Besides, the deceleration for both the lane-changing platoon vehicle and the new follower 

in the target lane should be larger than some safe deceleration threshold (Schakel et al., 2012). 

The key concepts of the lateral behavioral model of truck platoons are described as follows. 

 

6.4.1 Lane-changing desire 

In this chapter, platoons only perform mandatory lane changes, and it is integrated into the lane-

change model with relaxation and synchronization (LMRS) (Schakel et al., 2012). The LMRS 

is based on the desire to change lanes which is described as a combination of both mandatory 

and voluntary (discretionary) incentives. The desire to change lanes for platoons builds only 

upon the route incentive of the LMRS. Note that a strict keep-right policy is integrated into the 

LMRS, which ensures that platoons move on the rightmost lane of a mainline carriageway. 

The desire to leave any lane 𝑘 is denoted as 𝑑𝑘. The desire to change from lane 𝑖 to lane 𝑗 is 

denoted as 𝑑𝑖𝑗, where 𝑖 denotes the current lane and 𝑗 denotes the target lane. The desire to 

leave lane 𝑘 based on the route 𝑟 is 𝑑𝑟
𝑘, which is either based on the remaining distance to 

change lanes 𝑥𝑘 or on the remaining time to change lanes 𝑡𝑘. If the speed is (relatively) low, 

the remaining distance on lane 𝑘 is the dominant factor in determining the desire. Conversely, 

if the speed of the vehicle is (relatively) high, the time remaining on lane 𝑘 becomes dominant 

in determining the desire to leave the lane. The following equation shows how the desire to 

leave lane 𝑘 is determined: 

 

𝑑𝑟
𝑘 = max (1 −

𝑥𝑘

𝑛𝑘∙𝑥0
, 1 −

𝑡𝑘

𝑛𝑘∙𝑡0
, 0)  (6.10) 

 

The first term in Equation 6.10 refers to the desire based on the remaining distance to perform 

one (or multiple) lane change(s) (𝑛𝑘) within the available look-ahead distance (𝑥0). The second 

term refers to the remaining time needed to perform one (or multiple) lane change(s) (𝑡𝑘), 

calculated as 𝑡𝑘  = 𝑥𝑘 = 𝑣 (𝑣, the current speed of the vehicle), within fixed remaining time 

before the lane ends. 

Now that the desire for any lane (𝑘) can be determined, it is necessary to determine from the 

current lane (𝑖) to the target whether changing lane (𝑗) is desirable (denoted as 𝑑𝑟
𝑖𝑗

) using 

 

𝑑𝑟
𝑖𝑗
=

{
 
 

 
 
𝑑𝑟
𝑖 ,      Δ𝑗 = 1 and 𝑑𝑟

𝑖 > 𝑑𝑟
𝑗

0,        Δ𝑗 = 1 and 𝑑𝑟
𝑖 = 𝑑𝑟

𝑗

−𝑑𝑟
𝑗
,   Δ𝑗 = 1 and 𝑑𝑟

𝑖 < 𝑑𝑟
𝑗

−∞,    Δ𝑗 = 0 and                 

  (6.11) 

 

All cases in Equation 6.11 include a check on whether a route can still be followed on the target 

lane. We use a binary variable (Δ𝑗) which takes the value 1 if the route can be followed on the 

lane 𝑗. To derive the desire to perform the mandatory lane change, the desire to leave the current 

lane and the desire to leave the target lane are compared. If the desire to leave the target lane is 

smaller than the desire to leave the current lane, we use the desire to leave the current lane. If 

they are equal, we assume that there is no desire for a vehicle to perform the mandatory lane 
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change. If the desire to change from the current lane is smaller than the desire to leave the target 

lane, we use the negative value of the desire to leave the target lane to represent an undesirable 

mandatory lane change for a vehicle. In case the route cannot be followed on the target lane, a 

negative infinity desire is used to ensure that a vehicle does not change to the target lane. 

 

6.4.2 Lane-changing sequence 

We use the last-vehicle-first principle for trucks in a platoon configuration to perform 

mandatory lane changes or merging maneuvers. This sequence ensures a safe and smooth lane-

changing maneuver as conflicts between vehicles in a platoon and the surrounding vehicles are 

minimized. The ability of a platoon to change lanes depends on the desire of the last vehicle.  

The first step for the lane-change logic is to assess the desire of the last vehicle in a platoon and 

compare it with a threshold. In the case in which the desire to change lane exceeds the threshold, 

the last vehicle turns on the blinker and looks for a gap in the target lane. The gap-acceptance 

process for the last vehicle in a platoon is similar to LMRS (Schakel et al., 2012) as it depends 

on both spatial availability and acceptable deceleration. Once the last vehicle accepts the gap, 

the rest of the vehicles in that platoon change lanes together once a suitable gap is available for 

them. When there is enough space (or gap) in the target lane, the rest of the vehicles in a platoon 

complete their lane-change maneuver. However, this gap-creation process for the rest of the 

vehicles in a platoon can be made faster by enabling a gap-creation algorithm. An illustration 

of a platoon’s lane-changing sequence is shown in Figure 6.3. 

 

 
 

Figure 6.3. Lane-changing sequence of a truck platoon. 
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6.4.3 Gap-creation ability of truck platoons 

The gap creation is considered here as the ability for a platoon to create a gap so that vehicles 

that are part of the platoon can change lanes. This is done by decreasing the platoon’s speed in 

the case there is a desire to change lanes but one- or multiple vehicles in the platoon are not 

able to merge. For example, this situation may occur when the last vehicle in the platoon has 

changed lanes but the remaining vehicles in that platoon are unable to change lanes because of 

the presence of a vehicle obstructing space in the target lane. Then, the gap- creation algorithm 

is triggered when a platoon vehicle turns on its blinker (see process 3 in Figure 6.2). Depending 

on the gap-creation deceleration, the speed of the entire platoon is reduced by applying a 

deceleration to the leading vehicle in the platoon. As every vehicle in the platoon follows the 

speed of their predecessor, every vehicle essentially follows the speed of the leading vehicle of 

the platoon and the overall speed of the platoon is reduced. As the overall speed of the platoon 

is reduced, a gap is created more rapidly than when no gap-creation deceleration is applied. 

This process of gap creation is repeated until the platoon can merge. The gap-creation trigger 

is outlined in Figure 6.4. A verification test of the gap-creation ability of truck platoons is 

provided in Figure 6.5, where we observe that trucks in a platoon apply a deceleration during 

their lane-change maneuver. 

 

 

 

 
 

Figure 6.4. Logical steps in applying the gap-creation deceleration. 
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6.5 Experimental design 
In this section, we describe the network used for simulation, demand profile, scenarios 

considered, and the performance indicators to assess the impacts of truck platoons. 

 

6.5.1 Network modeling and demand data 

The network used in the simulation represents an on-ramp to the A15 motorway near 

interchange Benelux in the Netherlands. The A15 motorway provides access to the port of 

Rotterdam from the hinterland, and it is one of the significant freight corridors. The simulated 

net- work is a two-lane mainline carriageway with an on- ramp. The length of the acceleration 

lane is 330 m. The total length of the simulated network is 3300 m. The loop detectors are 

installed just after the merging section. We consider two traffic situations, one with the low 

traffic intensity (LTI) and the other with high traffic intensity (HTI). The on-ramp to mainline 

demand ratio is fixed at 25%, and the percentage of trucks in the traffic is taken as 15%. Every 

simulation run has a total duration of 1 h, with a 15 min warm-up period to allow the network 

to be filled. Figure 6.6 shows network and demand profile. 

 

6.5.2 Truck platoon configuration 

We assume that truck platoons are formed before entering the network and they have the 

following variable characteristics. 

 

1. Market penetration rate (MPR): 25%, 50%, 75%, and 100% 

2. Platoon length: 2 trucks, 3 trucks, 4 trucks, and 5 trucks 

3. Headway in a platoon: 0.3 s, 0.9 s, and 1.5 s 

4. Platoon speed: 80 km/h and 100 km/h 

 
 

Figure 6.5. Verification test for the gap-creation deceleration during lane changing of a 

truck pltoon where colors represent deceleration(orange), constant speed (yellow), and 

acceleration (green). 
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5. Gap-creation deceleration: 0 m/s2 (off), 1.5 m/s2 (low), and 3.0 m/s2 (high) 

6. Lane changing: only mandatory lane changing is allowed 

7. Cut-ins: only if intra-platoon headway allows for that 

A reference platoon configuration is chosen to represent a situation that, without further 

analysis, would neither result in the ‘‘worst’’ combination of characteristics nor the ‘‘best’’ 

combination of characteristics in terms of performance and safety. In the reference platoon 

configuration, we consider 50% of market penetration, 3 trucks, 0.9 s of headway, a maximum 

speed of 80 km/h for the platoon, and no gap-creation deceleration. 

 

6.5.3 Scenarios 

We consider the following three scenarios. Each scenario is simulated for both the LTI and 

HTI. 

 

• Base-Case Scenario: Platoons are not present in traffic. 

• Traffic Scenario 1:  Platoons originate from the mainline carriageway and are a part of 

through traffic. 

• Traffic Scenario 2: Platoons originate from the on-ramp and merge onto the mainline 

carriageway. 

 
 

 

 
 

Figure 6.6. Network (top) and demand profile (bottom). 
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We use OpenTrafficSim (van Lint et al., 2016) to simulate above scenarios. OpenTrafficSim 

combines IDM+ car-following model (Schakel et al., 2010) with the LMRS (Schakel et al., 

2012). For non-CACC equipped cars and trucks, we use default parameter settings. The model 

parameters are tabulated in Table 6.1. All the simulations are run 16 times with different random 

seeds, and the results are then averaged. 

 

 

 

Table 6.1 Simulation model parameters 

Symbol Value Description 

   

Car-following parameters 

𝑎car 1.25  Maximum (desired) car-following acceleration for 

cars (m/s2) 

𝑎truck 0.40  Maximum (desired) car-following acceleration for 

trucks (m/s2) 

𝑏 2.09  Maximum comfortable car-following deceleration 

(m/s2) 

𝑏0 0.50  Maximum adjustment deceleration (m/s2) 

𝑏crit 3.50  Maximum critical deceleration (m/s2) 

𝑓speed 1.00 The speed limit adherence factor for cars and trucks 

𝑠0 3.00  Car-following stopping distance (m) 

𝑇max 1.20  Maximum car-following headway (s) 

𝑇r 0.50  Reaction time (s) 

𝑣des, car 𝑁(123.7,12)  Desired (maximum) speed for cars (km/h) 

𝑣des, truck 𝑁(85.00,2.50)  Desired (maximum) speed for trucks (km/h) 

𝑙car 4.00  Length of cars (m) 

𝑙truck 12.00  Length of trucks (m) 

   

Lane-changing parameters 

𝑑free 0.365 Free lane change desire threshold 

𝑑sync 0.577 Synchronized lane change desire threshold 

𝑑coop 0.788 Cooperative lane change desire threshold 

𝑇min 0.56  Minimum car-following headway (s) 

𝜏 25  Headway relaxation time (s) 

𝑣cong 60  Speed threshold below which traffic is considered 

congested (km/h) 

𝑣gain 69.60  Anticipation speed difference at full lane change 

desired (km/h) 

𝑥0 295  Look-ahead distance (m) 

𝑡0 43  Look-ahead time for mandatory lane changes (s) 
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6.5.4 Performance indicators 

We consider average travel time and maximum flow to evaluate traffic efficiency. Time to 

collision and required braking rate are used as surrogate measures to evaluate traffic safety. 

Average Travel Time 

Since the total time spent (𝑇𝑇𝑆) in the network increases with traffic intensity, we use a 

normalized value of 𝑇𝑇𝑆, that is, 𝑇𝑇av which is computed by dividing 𝑇𝑇𝑆 by the total number 

of vehicles generated in the simulation (𝑁): 

 

𝑇𝑇av =
𝑇𝑇𝑆

𝑁
  (6.12) 

 

Maximum Flow 

The maximum flow is only of interest in the HTI because of the presence of congestion and is 

considered as a proxy for merging capacity. The maximum flow, 𝑞max, is calculated by 

continuously extracting a 5 min moving average of the flow, 𝑞𝑡, observed at the loop detectors 

to account for temporary variability, also because of the presence of truck platoons. For every 

minute instance, 𝑡, the following equation 6.13 can be used to compute 𝑞𝑡: 
 

𝑞av,𝑡 =
1

5
∑ 𝑞𝑡
𝑡
𝑡−4        ∀ 𝑡 ∈ {0,… , 𝑇}  (6.13) 

 

𝑞max = max(𝑞av,𝑡)           ∀ 𝑡 ∈ {0,… , 𝑇}  (6.14) 

 

Time to Collision  

The time-to-collision (𝑇𝑇𝐶) measures the time between two vehicles if there is a possibility of 

them colliding on a given trajectory. With vehicle 𝑖 and its predecessor 𝑖 − 1, vehicle’s length 

𝑙𝑖, their positions 𝑥𝑖 and 𝑥𝑖−1, and their speeds 𝑣𝑖 and 𝑣𝑖−1, we compute 𝑇𝑇𝐶𝑖,𝑡 in 

 

𝑇𝑇𝐶𝑖,𝑡 =
𝑥𝑖(𝑡)−𝑥𝑖−1(𝑡)−𝑙𝑖

𝑣𝑖(𝑡)−𝑣𝑖−1(𝑡)
         ∀   𝑣𝑖(𝑡) > 𝑣𝑖−1(𝑡)  (6.15) 

 

for every simulation time-step 𝑡. We only consider critical observations, 𝑇𝑇𝐶obs, which are 

below the threshold value of 4 s (Horst, 1991) as shown in 

 

𝑇𝑇𝐶obs = ∑ ∑ 𝑇𝑇𝐶𝑖,𝑡𝑡𝑖∈𝑁          ∀   𝑇𝑇𝐶𝑖,𝑡 < 4 s  (6.16) 

Required Braking Rate 

To account for the inability of 𝑇𝑇𝐶 to differentiate between severity in speed differences, the 

required braking rate (𝑅𝐵𝑅) is also considered which accounts for all the decelerations 𝑎𝑖(𝑡) a 

vehicle 𝑖 has undergone 

 

𝑅𝐵𝑅𝑖,𝑡 = 𝑎𝑖(𝑡)         ∀ 𝑡 ∈ {0,… , 𝑇}   (6.17) 

 

for every simulation time-step 𝑡. We only consider critical observations, 𝑅𝐵𝑅obs, that exceed 

the threshold of –2.1 m/s2 (Archer, 2005): 

 

𝑅𝐵𝑅obs = ∑ ∑ 𝑅𝐵𝑅𝑖,𝑡𝑡𝑖∈𝑁          ∀   𝑅𝐵𝑅𝑖,𝑡 < −2.1 m/s2   (6.18) 
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6.6 Impact of a reference platoon configuration 
First, we introduce platoons as a part of the traffic demand with reference platoon 

characteristics. We assess the impacts on traffic flow and traffic safety in the LTI and HTI 

scenarios. In the following two subsections, we present the results for two traffic scenarios 

when platoons are introduced on the mainline carriageway (traffic scenario 1) and from an on-

ramp (traffic scenario 2). 

 

6.6.1 Traffic scenario 1: Truck platoons on mainline carriageway 

The first traffic scenario is the one in which truck platoons traverse on the mainline carriageway. 

In this case, other vehicles merging onto the main road could be hindered by the presence of 

truck platoons. Compared with the base-case scenario, truck platoons increase the travel time 

of the system under both LTI and HTI at a significance level of 5% (see Table 6.2). The 

maximum flow rate decreases at a significance level of 10%. The number of critical TTC 

observations increases at a significance level of 5%, whereas the number of RBR observations 

increases under LTI and HTI at a significance level of 5% and 10%, respectively. The more 

time vehicles spend in the network, the higher are the chances that they incur safety-critical 

situations. Overall, it can be inferred that the presence of truck platoons on the mainline 

carriageway is detrimental to both traffic performance and safety. Figure 6.7 presents 

deteriorating effects of platoon on traffic flow. 

Table 6.2. Traffic and Safety Impacts of Introducing the Reference Platoon 

Configuration 

 

Scenario TTav Flow  TTCobs RBRobs 

 (s) (veh/h/lane) (n/veh/h) (n/veh/h) 

Low traffic intensity 

Base-case scenario 117.12 - 0.00 0.76 

Reference platoon configuration on 

mainline carriageway  

(traffic scenario 1) 

119.65** - 0.68** 4.25** 

Reference platoon configuration 

merging onto mainline carriageway 

(traffic scenario 2) 

117.51 - 0.02* 0.60** 

     

High traffic intensity 

Base-case scenario 127.93 1884 27.95 18.44 

Reference platoon configuration on 

mainline carriageway  

(traffic scenario 1) 

149.04** 1682* 65.40** 49.01* 

Reference platoon configuration 

merging onto mainline carriageway 

(traffic scenario 2) 

132.16 1854 26.72 22.17 

 

Note: TTav = average travel time spent in the network; veh/h/lane = vehicles per hour per 

lane; TTCobs = critical time-to-collision observations (TTC<4s); n/veh/h = number of 

critical observations per vehicle per hour; RBRobs = critical braking rate observations 

(RBR<-2.1 m/s2). 

** and *5% and 10% of significance level compared to the base-case scenario, 

respectively. 
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6.6.2 Traffic scenario 2: Truck platoons merging from an on-ramp 

The second traffic scenario is the one in which platoons are merging onto mainline carriageway 

from an on-ramp. In this case, truck platoons may experience the difficulty of merging onto 

mainline carriageway but also affect the other traffic when doing so. Introducing truck platoons 

with reference characteristics does not affect the travel time of the system under both LTI and 

HTI at a significance level of 10% (see Table 6.2). Maximum traffic flow also is not different 

than the base-case scenario at a significance level of 10%. In terms of traffic safety, truck 

platoons merging from an on-ramp do not alter the number of critical RBR observations at a 

significance level of 10% for both low and high traffic intensity situation. Only in HTI, the 

presence of truck platoons lowers the critical TTR observations at a significance level of 5%. 

Overall, it can be inferred that platoons merging from an on-ramp do not affect traffic 

performance and safety. It should be noted that only 25% of platoons are generated in traffic 

scenario 2 compared with traffic scenario 1 because of the fixed on-ramp to mainline demand 

ratio. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

 

Figure 6.7. Fundamental diagrams showing macroscopic impacts of the reference 

platoon configuration: (a) traffic scenario 1 – low traffic intensity, (b) traffic scenario 1 

– high traffic intensity, (c) traffic scenario 2 – low traffic intensity, and (d) traffic 

scenario 2 – high traffic intensity. 
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6.7 Impact of truck platoon’s characteristics 
In this section, we analyze the impact of a platoon’s characteristics on traffic efficiency and 

safety at the local and global levels. First, we discuss one-at-a-time sensitivity analysis (OAT-

SA) which measures the impact of varying a single variable on the outcome (Hamby, 1994). 

For our purpose, we change one characteristic of the platoon at a time by keeping others fixed 

at reference configuration and observe its effect on the output. For OAT-SA, we use a 

significance level of 5% to assess the results compared with the base-case scenario. Second, we 

present a global sensitivity analysis. In addition, we also look at vehicle trajectories at the 

merging section. These trajectory plots illustrate the impact of platoon configuration on traffic 

efficiency and safety. For each scenario, one simulation run that is close to the average of 16 

simulation runs is selected for the purpose of illustration.  

 

6.7.1 Traffic scenario 1: Truck platoons on mainline carriageway 

Figure 6.8 shows the results of OAT-SA for traffic scenario 1. In the subsequent subsections, 

we explain the results. 

Market penetration rate 

An increase in the MPR of truck platoons replaces non-CACC equipped trucks with CACC-

equipped trucks. Conflicts among merging and mainline vehicles increase with an increase in 

the MPR of truck platoons. Therefore, shockwaves are generated at both the mainline 

carriageway and the acceleration lane. This effect is illustrated in Figure 6.9, where we present 

trajectories of both mainline and ramp vehicles. In HTI, ramp vehicles have the most difficulty 

merging onto the mainline carriageway at 100% MPR, whereas in LTI, ramp vehicles have 

limited difficulty as they can find a suitable gap to merge onto the mainline carriageway. As a 

result, we observe an increase in travel time with increasing MPR. Travel time can increase up 

to 2.8% and 16.5% in LTI and HTI, respectively. Maximum flow or merging capacity is only 

significantly affected at 100% MPR: we observe a 5% decrease in capacity compared with the 

base-case scenario. Similar to the impacts on traffic efficiency, an increase in MPR deteriorates 

safety as non-CACC vehicles often find themselves in risky and safety-critical situations as 

captured by TTC and RBR values. For all MPR scenarios, we observe that truck platoons have 

a negative impact on traffic safety compared with the base-case scenario under both LTI and 

HTI. Critical TTC and RBR observations in HTI can increase by a factor of 2.37 and 2.65, 

respectively. 

Platoon length 

As the platoon length increases, the total number of platoons decreases but the potential for a 

critical interaction with merging vehicles increases. It should be noted that the linear increase 

in the platoon length does not result in a linear decrease in the number of platoons. An interplay 

between the platoon length and the number of platoons governs the availability of potential 

gaps for merging traffic, which in turn affects traffic efficiency and safety. As a consequence 

of this interplay, we observe a non-monotonic relationship between the platoon length and 

performance indicators in both LTI and HTI. In HTI, this interplay results in more or less similar 

values of traffic efficiency and safety indicators, as trajectories of ramp vehicles are similar (see 

Figure 6.10). We observe a significant degradation of traffic efficiency and safety compared 

with the base-case. In LTI, changes in platoon length do not significantly affect travel time 

com- pared with the base-case but only for reference configuration with 3 trucks in a platoon.  
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Figure 6.8. One-at-a-time sensitivity analysis for traffic scenario 1. 

Note: B = base-case; TTav = average travel time spent in the network; veh/h/lane = vehicles 

per hour per lane; TTCobs = critical time-to-collision observations (TTC<4s); n/veh/h = 

number of critical observations per vehicle per hour; RBRobs = critical braking rate 

observations (RBR < -2.1 m/s2). 

*Significance at 5%. 
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However, the presence of longer platoons results in more braking actions and an increased 

intensity for merging interactions, which is reflected in significantly worse TTC and RBR 

compared with the base-case. 

Headway in a platoon 

By increasing the intra-platoon headway, we increase the effective length of the platoon. Longer 

platoons on mainline carriageway thus present more obstacles to merging vehicles. Therefore, 

both efficiency and safety decrease. When we increase the intra-platoon headway to 1.5 s, we 

allow enough spacing for cut-ins between two trucks in platoon (see Figure 6.11). In this case, 

the situation results in an improvement to both traffic efficiency and safety compared with the 

platoon configuration with 0.9 s of intra-platoon headway. At very small inter-platoon 

headways of 0.3 s, we do not observe significantly different vehicle trajectories compared with 

the base-case scenario. A platoon configuration with 0.3 s of headway can be allowed in HTI. 

Platoon speed 

Increasing the desired speed of platoon vehicles reduces the speed differences between platoons 

and surrounding traffic. Therefore, an increase in the speed of platoons to 100 km/h improves 

travel time in LTI compared with a platoon configuration with the desired speed of 80 km/h. 

At the high speed of a platoon configuration, we also observe low numbers of safety- critical 

situations. Overall, we observe a limited impact on travel time and safety in LTI. In HTI, vehicle 

trajectory plots (see Figure 6.12) show that conflicts among merging and mainline vehicles are 

present in both cases: 80 km/h and 100 km/h. As a result, we observe a deterioration of traffic 

efficiency and safety in both cases compared with the base-case scenario. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.9. Impact of the market 

penetration of truck platoon on vehicle 

trajectories for the traffic scenario 1. 

 Figure 6.10. Impact of the length of truck 

platoon on vehicle trajectories for the 

traffic scenario 1. 

 

 



 On-trip Behavior of Truck Drivers on Freeways: New mathematical models and control methods 

 

 

 

110 

 

 

6.7.2 Traffic scenario 2: Truck platoons merging from an on-ramp 

Figure 6.13 shows the results of OAT-SA for traffic scenario 2. We explain the results in the 

following subsections. 

Market penetration rate 

An increase in MPR of truck platoons groups individual trucks in several platoons, thus 

reducing the number of individual trucks originating from the ramp. On one hand, trucks in a 

platoon will have to seek one suitable gap to merge onto the mainline. On the other hand, they 

require a longer gap than the normal trucks; they might have to wait for a while on the 

acceleration lane. By looking at vehicle trajectories in Figure 6.14, we observe that truck 

platoons from ramp do not greatly affect traffic conditions either for the ramp or mainline 

vehicles. Irrespective of the merging process of truck platoons, vehicles following a truck 

platoon can merge onto the mainline carriageway if they can find sufficient gaps. As a result, 

the traffic and safety impacts are not significantly different than the base-case scenario in HTI, 

whereas in LTI, we observe the slight deterioration of travel time at 75% MPR than the base-

case scenario. Similar degradation of safety is observed at 100% MPR than the base-case 

scenario. Still, the impacts on both traffic efficiency and safety are limited. 

Platoon length  

As explained in the previous section, an increase in the number of trucks in a platoon 

configuration results in a decrease in the total number of platoons in the system. Longer 

platoons, although small in numbers, present more critical interactions with the surrounding 

vehicles and require a longer time to merge on the mainline carriageway. Therefore, this 

interplay between platoon length and the number of platoons governs traffic efficiency and 

safety. As a result, we observe non- monotonic relationships between performance indicators 

and the length of a platoon. Travel time in both LTI and HTI is not significantly different than 

the base-case scenario. 

 

 

 

 

 

 
Figure 6.11. Impact of intra-platoon 

headway on vehicle trajectories for the 

traffic scenario 1. 

 Figure 6.12. Impact of speed of truck 

platoons on vehicle trajectories for the 

traffic scenario 1. 
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Figure 6.13. One-at-a-time sensitivity analysis for traffic scenario 2. 

Note: B = base-case; TTav = average travel time spent in the network; veh/h/lane = vehicles 

per hour per lane; TTCobs = critical time-to-collision observations (TTC<4s); n/veh/h = 

number of critical observations per vehicle per hour; RBRobs = critical braking rate 

observations (RBR < -2.1 m/s2). 

*Significance at 5%. 
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A platoon configuration with 2 trucks in HTI is shown to increase maximum flow and decrease 

safety-critical interactions. As we increase the number of trucks in a platoon, we observe 

deterioration of traffic efficiency and safety in HTI (see Figure 6.15). Compared with a 4-truck 

configuration, the traffic and safety situation are improved in a 5-truck configuration because 

of the reduction of the number of platoons in the system. In contrast to HTI, longer truck platoon 

configurations (i.e., 5 trucks) slightly deteriorate traffic safety in LTI. 

Headway in a platoon 

An increase in the intra-platoon headway increases the effective length of a platoon. Longer 

platoons will have to seek a larger gap to merge onto the mainline carriageway; therefore, there 

are higher chances for increased conflicts between a platoon and the surrounding vehicles (see 

Figure 6.16). Therefore, shorter intra-platoon headways (i.e., 0.3 s) result in fewer TTC 

observations in HTI. Travel time and maximum flow do not differ significantly by changing 

intra-platoon headways compared with the base-case scenario. However, in LTI intra-platoon 

headways have a limited impact on both traffic efficiency and safety. 

Gap-creation deceleration 

The gap-creation policy is varied among no gap-creation, low gap-creation deceleration (1.5 

m/s2), and   high   gap-creation    deceleration (3.0 m/s2). With higher gap-creation deceleration, 

the time needed by platoons to merge will be shorter (see Figure 6.17). Consequently, a shorter 

lane-change duration minimizes conflicts with the surrounding vehicles and thus improves 

traffic efficiency and safety compared with the base-case. At least, the situation is no worse 

than the base-case when tested at a significance of 5%. Especially in HTI, 1.5 m/s2 of gap-

creation deceleration significantly reduces safety-critical TTC observation by 43.5%. Similarly 

in LTI, mid and high gap-creation deceleration result in fewer RBR critical observations. The 

impact of applying a gap-creation deceleration on travel time and maximum flow is not 

significantly different than the base-case scenario. 

 

 

 

 

 

 

 
Figure 6.14. Impact of the market 

penetration of truck platoon on vehicle 

trajectories for the traffic scenario 2. 

 Figure 6.15. Impact of the length of 

truck platoon on vehicle trajectories for 

the traffic scenario 2. 
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Platoon speed 

With an increased desired speed, the platoon is effectively able to synchronize with the target 

lane (see Figure 6.18). This synchronization helps not only in the gap-searching process but 

also in easing conflict with the surrounding vehicles. Therefore, we observe an improvement in 

traffic efficiency and safety under both LTI and HTI. 

 

 

 

 

 

 

 
Figure 6.16. Impact of intra-platoon 

headway on vehicle trajectories for the 

traffic scenario 2. 

 Figure 6.17. Impact of the gap-creation 

deceleration of truck platoons on vehicle 

trajectories for the traffic scenario 2. 

 

 

 

 

 

 

 

Figure 6.18. Impact of speed of truck platoons on vehicle trajectories for the traffic 

scenario 2. 
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6.8 Global sensitivity analysis 
In the previous OAT-SA, we observe non-monotonic relationships as well as the presence of 

local optima. Furthermore, OAT-SA does not consider the entire input space, as it ignores the 

simultaneous variation of input parameters. We hypothesize that the interactions among platoon 

characteristics mostly affect the output or performance indicators. Therefore, we apply a global 

sensitivity analysis technique, moment-independent measure, as it also accounts for the 

correlations between input variables. Borgonovo’s importance measure, 𝛿𝑖, analyzes the impact 

of input, 𝑋𝑖, uncertainty in the output distribution without any reliance on a specific moment of 

the output (Borgonovo, 2007). The higher the value of 𝛿𝑖, the higher will be the effect of input 

𝑋𝑖 on output. Moreover, the joint importance of all parameters equals unity, 𝛿1,2,…,𝑛 = 1. We 

can use this property to obtain the contribution of model inputs or main effects (∑ 𝛿𝑖𝑖 ) and 

interactions among model inputs (𝛿1,2,…,𝑛 − ∑ 𝛿𝑖𝑖 ) on the output uncertainty. 

Let’s say the model input be 𝑋 =  (𝑋1, 𝑋2, … , 𝑋𝑛) and output be 𝑌. 𝑓𝑌(𝑦) and 𝑓𝑌|𝑋𝑖(𝑦) denote 

the unconditional and conditional probability density functions of the model output, 

respectively. Then, the shift between 𝑓𝑌(𝑦) and 𝑓𝑌|𝑋𝑖(𝑦) can be computed by the area 𝑠(𝑋𝑖) 

 

𝑠(𝑋𝑖) = ∫ |𝑓𝑌(𝑦) − 𝑓𝑌|𝑋𝑖(𝑦)| 𝑑𝑦  (6.19) 

 

The average effect of input 𝑋𝑖 on the whole distribution of the output 𝑌 is given by 

 

𝐸𝑋𝑖[𝑠(𝑋𝑖)] = ∫𝑓𝑋𝑖(𝑋𝑖) [∫|𝑓𝑌(𝑦) − 𝑓𝑌|𝑋𝑖(𝑦)|]𝑑𝑋𝑖  (6.20) 

 

In the following equation, we define moment-independent sensitivity index 𝛿𝑖 
 

𝛿𝑖 =
1

2
 𝐸𝑋𝑖[𝑠(𝑋𝑖)]  (6.21) 

 

For our analysis, we use Latin hypercube sampling to generate a sample of input parameters. 

The range of input parameters is as follows. 

1. Market penetration rate (MPR): 0–100% 

2. Platoon length: 2–5 trucks 

3. Headway in a platoon: 0.3–1.5 s 

4. Platoon speed: 80–100 km/h 

5. Gap-creation deceleration: 0–3.0 m/s2 (only used in traffic scenario 2) 

For every simulation run, we use a fixed random seed to ensure that the output does not change 

as a result of seeds. We generate 100 samples which are later used for assessing the parameter’s 

importance; 400 simulations are run to account for traffic scenarios and traffic intensities. 

Sensitivity analysis is performed for four scenarios using the SALib package (Herman and 

Usher, 2017) in Python 3.7, and the results are shown in Figure 6.19. Based on the values of 𝛿, 

important platoon characteristics can be identified for a given traffic scenario and a traffic 

intensity. 

 

6.8.1 Traffic scenario 1: Truck platoons on mainline carriageway 

In LTI, the platoon’s speed is mostly relevant for TTS. For safety, MPR and length are the two 

most important input parameters, whereas in HTI, MPR, length, and headway affect TTS. Flow 
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is mostly affected by MPR. For safety, MPR and intra-platoon headway are the most important 

input parameters. In LTI, the contribution of model inputs (∑ 𝛿𝑖𝑖 ) on uncer- tainty in TTS, TTC,  

and RBR is 0.20, 0.58, and 0.38, respectively. Similarly in HTI, the contribution of model inputs 

(∑ 𝛿𝑖𝑖 ) on uncertainty in TTS, Flow, TTC, and RBR is 0.23, 0.25, 0.25, and 0.27, respectively. 

The low values of ∑ 𝛿𝑖𝑖  signal that a significant portion of the output uncertainty is explained 

by interaction terms in both LTI and HTI. 

 

6.8.2 Traffic scenario 2: Truck platoons merging from an on-ramp  

In LTI, MPR, length, and gap-creation deceleration are the three most relevant input variables 

for TTS. For RBR, Gap-creation deceleration and speed are the two most important input 

parameters. In HTI, MPR, length, speed, and gap-creation deceleration are relevant for TTS. In 

LTI, we do not perform sensitivity analysis for TTC as it is not affected by platoon 

characteristics and most of the values are zeros. Further the contribution of model inputs (∑ 𝛿𝑖𝑖 ) 

on uncertainty in TTS and RBR is 0.22 and 0.36, respectively. In HTI, the model inputs can 

alone explain changes in TTS since ∑ 𝛿𝑖𝑖  = 0:99. In contrast, the contribution of model inputs 

(∑ 𝛿𝑖𝑖 ) on uncertainty in the maximum flow, TTC, and RBR is 0.31, 0.40, and 0.29, 

respectively. The low values of ∑ 𝛿𝑖𝑖  show that interactions play a major role in output 

uncertainty. 

 

6.9 Discussion 
Our main finding is that truck platooning can be detrimental to traffic efficiency and safety. 

When truck platoons are part of the mainline traffic, traffic efficiency and safety are deteriorated 

in HTI around the merging section. By introducing truck platoons on the mainline carriageway, 

  

  
 

Figure 6.19. Global sensitivity analysis for evaluating the impact of truck platoon 

characteristics on traffic efficiency and safety. 

Note: RBR = required braking rate; TTC = time-to-collision; TTS = total time spent. 
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especially in HTI, we limit the opportunities for the merging traffic and in turn increase the 

complexity of their merging maneuvers, as also reported in previous studies (Calvert et al., 

2019, Wang et al., 2019). However, truck platoons, being a part of merging traffic, have a 

limited effect on traffic efficiency and safety. 

The sensitivity analysis conducted in this chapter has allowed us to design a platoon 

configuration that can have limited negative impacts on traffic efficiency and safety. Allowing 

truck platooning at short headways around merging sections seems to be beneficial. An increase 

in headways may allow merging vehicles to cut-in but it is not better than the short-headway 

policy. Increasing the desired speed of truck platoons on the mainline carriageway is shown to 

increase conflicts with the merging traffic. However, when truck platoons are a part of merging 

traffic and also have a higher desired speed, they are shown to merge smoothly as they can 

better synchronize themselves with the target lane. The length of platoons is shown to have a 

non-linear relation- ship with traffic efficiency and safety indicators as we observe local optima. 

It shows that the number of platoons in the traffic system is also a significant parameter. Gap-

creation deceleration is an important parameter that governs the lane changing of truck platoons. 

Reducing the merging duration of platoons is shown to have a positive impact on traffic 

efficiency and safety. 

Recall that we have used the OAT-SA to capture the effect of individual platoon characteristics 

on efficiency and safety. It falls short of capturing the interactions among platoon 

characteristics. For this, we have used global sensitivity analysis which shows that we cannot 

separate the effects of individual platoon characteristics and analyze them, as interactions 

among platoon characteristics predominantly affect traffic efficiency and safety. These 

interactions also help us to explain non-monotonic relations between the length of a platoon 

and performance indicators governing traffic efficiency and safety. Therefore, several platoon 

configurations, resulting from a combination of platoon characteristics, should be evaluated for 

a comprehensive traffic and safety assessment in critical traffic situations. These situations may 

also include evaluations around off-ramps and weaving sections. 

We have considered TTC and RBR as surrogate measures to identify safety-critical interactions. 

The TTC values depend only on relative spacing (𝑑𝑠) and relative speed (𝑑𝑣), whereas RBR 

values, being the control output of the IDM + car-following model, also depend on the current 

speed of vehicles. Figure 6.20 shows how TTC and RBR measures can capture critical 

interactions on 𝑑𝑠 − 𝑑𝑣 plane; the chances of critical interactions are high in the yellow region.  

Even for the blue region that is marked safe by the TTC indicator, there exists a probability of 

observing critical decelerations. If the current speed of a vehicle is high, that vehicle may be 

involved in critical interactions even at larger ds and smaller dv combinations as shown by the 

  
 

Figure 6.20. Comparison of traffic safety indicators over relative spacing (𝒅𝒔) and 

relative speed (𝒅𝒗) plane (left) time to collision (TTC) (right) probability of occurring 

critical decelerations. 
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RBR indicator. Furthermore, larger decelerations (or RBR values) can also be related to traffic 

instability which could lead to unsafe situations (Treiber et al., 2006). 

 

6.10  Conclusions 
This chapter presents a comprehensive evaluation of traffic efficiency and safety in a critical 

traffic situation, that is, a merging section, with the introduction of truck platoons in the traffic 

system. We propose a novel lateral behavior controller for truck platoons. We implement 

longitudinal and lateral controllers in microscopic simulation software OpenTrafficSim. The 

case study around a merging section near the port of Rotterdam shows that the introduction of 

the reference truck platoon configuration on mainline carriageway deteriorates traffic efficiency 

and safety in both low and high traffic intensity. However, truck platoons, being a part of the 

merging traffic from an on-ramp, do not significantly affect traffic efficiency and safety. We 

use local and global sensitivity analyses to study the impact of platoon characteristics on traffic 

efficiency and safety. The global sensitivity analysis emphasizes that the interactions among 

platoon characteristics contribute more to uncertainty in the performance indicators than the 

individual effects. In general, the results show that the interaction between truck platoons and 

surrounding traffic depends on the combination of platoon characteristics, traffic demand, and 

traffic scenarios. 

Future research should look into improving the modeling of human-driven vehicles by 

incorporating human factors (van Lint and Calvert, 2018). Besides, the control parameters for 

truck platoons should be calibrated with field tests. In the coming years, autonomous vehicles 

(AVs) are likely to be part of the traffic mix. A promising research direction will be to analyze 

the impact of truck platooning in such a traffic mix of human-driven vehicles and AVs. AVs 

are likely to improve the traffic safety and utilization of available road space. However, merging 

conflicts between truck platoons and autonomous ramp vehicles might still cause problems for 

traffic efficiency. Cooperation between vehicles might further improve traffic stability and 

efficiency in critical situations. 

Measures to prevent merging conflicts between truck platoons and merging vehicles can also 

be explored. One solution is to enable truck platoons with discretionary lane changing so that 

they can change lanes in anticipation of possible conflicts with the merging traffic. Future 

research should develop a discretionary lane-change controller for truck platoons which may 

also include other incentives such as gain in speed. This strategy might be effective in HTI to 

improve both traffic efficiency and safety. The other solution may come from highway 

management agencies. They may consider extending the length of the acceleration lane. 

However, such a solution might not be effective, as merging conflicts can still occur if arrival 

times of truck platoons and ramp traffic are synchronous. 

Our findings suggest that truck platooning on mainline carriageways seems to be detrimental 

to traffic efficiency and safety in HTI. On the A15 motorway in the Netherlands with successive 

discontinuities, transporting containers out of the port area in tight platoons seems to be feasible 

in LTI or night hours. Disengagement of platoons near motorway discontinuous might be a 

possibility in HTI. Future research can also leverage the potential of communication and 

technological innovations to alleviate merging conflicts. Besides, a promising research 

direction can be to develop advanced and integrated traffic control measures. For instance, a 

lane-reservation scheme for truck platoons can be designed. It would, however, require a 

detailed analysis to quantify the impacts of reduced capacity and compare those with the gains. 

Another direction can be to utilize an integrated control measure by combining ramp metering 

with mainline traffic controls such as variable speed limits. 
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7 Conclusions 

The final chapter first summarizes the main findings in section 7.1 and presents overall 

conclusions in section 7.2. Next, section 7.3 provides directions for future research. Finally, 

section 7.4 presents recommendations for practical use.  

 

7.1 Main findings 
This section first summarizes the main findings and then presents overall conclusions.  

 

How can characteristics of on-trip route choice behavior of trucks be estimated from sparse 

datasets? (Chapter 2) 

To address this research question, we propose a novel approach based on data fusion and bi-

objective optimization. The estimation approach is framed as a bi-objective optimization 

problem where a (truck) driver is hypothesized to choose a most likely route that will (1) 

maximize his/her perceived utility and (2) minimize the deviation his/her experienced 

(computed from Bluetooth time stamps) and estimated (derived from loop detector data) travel 

times. This approach enables us to jointly estimate route choice characteristics for trucks and 

infer their actual route choices. After applying this approach to the Bluetooth dataset obtained 

from the port of Rotterdam in the Netherlands, we find that truck drivers can be segmented into 

four groups to better capture their route choices regarding their preferences to travel distance, 

expected travel time to destination, the unreliability of travel times at the time of departure, and 

route overlaps. Having captured the time-of-day effects, our findings indicate that not all truck 

drivers are risk-averse as a majority (around 85%) of truck drivers, who belong to the three 

segments, tends to trade-off travel times with its unreliability during off-peak hours. However, 

their route choice decisions improve during peak hours as nearly three-fourths of them, who 

belong to two segments, prefer routes with reliable travel times. Another significant aspect of 

our findings is that around two-thirds of truck drivers prefer routes with a high degree of 

overlaps, which indicates that they value the availability of a large number of alternatives to 

minimize uncertainty during their trips. 
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How can merging and diverging strategies of truck drivers be identified? (Chapter 3) 

This research question is addressed by analyzing a trajectory dataset, collected for the 

Netherlands, that contains a sufficient number of merging and diverging maneuvers of truck 

drivers at ramps and weaving sections. The finite mixture modeling technique is applied to 

cluster truck drivers into distinct homogeneous subgroups with respect to their merging and 

diverging maneuvers on a feature set that includes their spatial, temporal, kinematic, and gap 

acceptance attributes. The clustering analysis reveals that truck drivers can be segmented into 

two and three subgroups based on their merging and diverging strategies, respectively. 

Furthermore, the number of subgroups with respect to merging or diverging is identical over 

different topologies such as ramps and weaving sections. Concerning merging strategies, a 

majority of truck drivers (60-70%) show an affinity to initiate merging maneuvers as early as 

possible by accepting the largest gaps available to them. The minority subgroup, on the other 

hand, comprises truck drivers who either could not find suitable gaps earlier or intentionally 

accept smaller gaps later on. Turning now to diverging strategies, truck drivers belonging to the 

first subgroup start exiting the mainline carriageway before the beginning of a bottleneck. Those 

belonging to the second subgroup initiate diverging just after reaching a bottleneck. These two 

subgroups comprise nearly 80% of truck drivers. In contrast, the remaining 20% of them exit 

at a later stage even though the gap acceptance is not found to be a primary factor in this process. 

Our findings also indicate that merging or diverging at the earliest opportunity is the dominant 

strategy for truck drivers. At least 75% of merging or diverging maneuvers occur, in most of 

the analyzed sites, within the initial 25% of the ramp or weaving segment lengths; these actions 

lead to turbulence at the beginning of a freeway bottleneck.  

 

What attributes affect the gap selection process of truck drivers within their discretionary lane 

changing, in comparison with other vehicle classes? (Chapter 4) 

To answer this research question, we investigate and compare the gap selection 

(acceptance/rejection) process of multiple vehicle classes (passenger cars, delivery vans, and 

trucks) to identify key attributes that impact their selection of gaps within their discretionary 

lane changing activity. For this purpose, we use a comprehensive trajectory dataset that contains 

thousands of driving trajectories of multiple vehicle classes around on-ramps, off-ramps, and 

weaving sections. Further, the feature set is built around three dimensions that include the 

characteristics of a gap-seeking vehicle, its interactions with surrounding vehicles, and its 

perception of the road topology. Having accounted for historical driving experience (long-term 

temporal interdependencies) and class imbalance, gated recurrent unit neural network models 

are respectively trained for each vehicle class. These models can predict their gap selections 

with geometric mean accuracies of 84% or higher. By unraveling the latent gap selection 

mechanism of each vehicle class through explainable artificial intelligence techniques, we learn 

that significant differences exist between vehicle classes in terms of the saliency of historical 

driving experience and the importance of feature dimensions. We find that trucks value a longer 

duration (nearly up to 6 seconds) of recent driving experience, in contrast to passenger cars and 

delivery vans which mostly use up to 3 seconds of their recent driving experiences. By 

computing the feature importance, we find that trucks consider the proposed three-dimensional 

attributes space that includes their kinematics (speed), their interactions with the surroundings 

(gap spacing with the current leading vehicle), and their perception of topology during their gap 

selectin process. In contrast, passenger cars focus on their kinematic features (speed, 

acceleration) and their interactions with surrounding vehicles (the speed difference with the lag 

vehicle in the target lane). Whereas delivery vans value their interactions (gap spacing with 

current and future leading vehicles) and the type of topology to select gaps. 
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To what extent can a lane changing advisory system for multiple vehicle classes improve traffic 

efficiency? (Chapter 5) 

To answer this research question, we propose a lane changing advisory system which aims at 

balancing traffic flow distribution over available lanes by individually controlling lane 

changing behavior of multiple vehicle classes (passenger cars and truck drivers) to improve 

traffic efficiency in the vicinity of a merging section. The lane changing controller uses a multi-

class multi-lane macroscopic traffic flow model and is designed as a feedback-feedforward 

control law based on a linear quadratic regulator. We use a response surface method to fine-

tune the weights of the linear quadratic regulator. This enables us to develop a novel multi-class 

cooperative ITS application that generalizes traffic management and control schemes using 

vehicle-to-everything communication technology. After evaluating the performance of this 

application using a microscopic traffic simulator on a test merging section, our results indicate 

that this application significantly improves the travel time of the system by 21% by suppressing 

shockwaves and reducing the variance of travel times in the system. Furthermore, we find that 

this application generates significant travel time benefits for both mainline and ramp vehicles 

nearly up to 20% and 42%, respectively.  

 

What is the impact of truck platoons with different characteristics on traffic efficiency and safety 

around a freeway bottleneck? (Chapter 6) 

To address this research question, we propose and implement new controllers that govern the 

car following behavior of truck platoons in a microscopic simulation model. Our proposed 

controllers for truck platoons ensure their collision-free, string-stable, and smooth driving 

behavior. Using the simulation model, we evaluate the impact of truck platooning 

characteristics (namely market penetration rate, number of trucks in a platoon, intra-platoon 

headway, and platoon speed) on traffic efficiency and safety in the vicinity of a merging section 

using detailed sensitivity analyses at both local and global levels. Our findings indicate that 

truck platooning, being a part of the mainline traffic, generally deteriorates traffic efficiency 

and safety under high traffic intensity around a merging section. Truck platoons deteriorate the 

travel time of the system and merging capacity by nearly up to 16.50% and 5%, respectively. 

Further, safety-critical events in the presence of truck platoons get increased by around 130%. 

Simulation experiments also suggest that interactions among truck platooning characteristics 

contribute more (around 75%) to the uncertainty in the overall traffic efficiency and safety than 

the individual characteristic effects (around 25%) under high traffic intensity. Having analyzed 

individual contributions, we find that the market penetration of truck platoons in the system 

produces the largest impact on traffic and safety followed by intra-platoon headway and the 

number of trucks in a platoon. In light traffic intensity such as off-peak or night hours, however, 

truck platoons can be promising to deploy as they do not significantly affect traffic efficiency 

and safety around a freeway bottleneck.  

 

7.2 Overall conclusions 
The overall conclusion is that drivers show different on-trip behaviors. These differences not 

only occur between drivers of multiple vehicle classes (e.g., passenger cars, delivery vans, and 

truck drivers) but also within drivers belonging to a single vehicle class. In this respect, inter-

driver heterogeneity is observed in the strategic and tactical behavior of truck drivers and this 

heterogeneity can be useful to explain inefficiencies in their on-trip behavioral decisions. The 

existing traffic models can benefit by acknowledging and modeling vehicle-class specific 

driving behavior as well as incorporating different driver types within one vehicle class. By 

harnessing driver heterogeneity, a multi-class control strategy for the tactical level has been 

shown to improve traffic efficiency in terms of travel times of both mainline and ramp vehicles 
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around a freeway bottleneck. The tactical control method is promising to mitigate bottleneck 

congestion by reducing the variance of travel times. In turn, it will improve the reliability of 

routes that would lead to positively influencing strategic choices of truck drivers. Further, 

operational control in the form of deploying optimal truck platooning configurations can also 

boost traffic efficiency and safety.  

 

7.3 Recommendations for further research 
This section outlines recommendations for further research. In line with the research in this 

dissertation, we subdivide these recommendations in terms of strategical, tactical and 

operational behaviors of truck drivers, and close with a few recommendations pertaining to 

integrated modeling of these. 

 

7.3.1 Strategic driving behavior 

• Estimation of advanced commodity-specific on-trip route choice models: This 

dissertation proposes a novel approach that can be useful to estimate route choice 

characteristics from sparse datasets. This approach has enabled us to understand the 

route choice behavior of trucks where we do not differentiate between commodities. 

This approach can also be used to develop advanced commodity-specific route choice 

models by utilizing (sparse) travel diaries of freight commodities. These advanced 

models would make it possible to unravel how road freight moves on freeways in more 

detail. 

• Comparison of on-trip route choice characteristics of passenger car and truck drivers: 

The Bluetooth dataset used in this dissertation can also be useful to develop on-trip 

route choice models for passenger car drivers. This may enable a comparison of route 

choice characteristics of truck drivers with those of passenger car drivers. This would 

be an important step in developing advanced on-trip route choice models to support 

multi-class traffic assignment to capture realistic traffic dynamics on freeway networks.  

• Improvement of the proposed approach that uses sparse datasets to estimate on-trip 

route choice models by incorporating panel effects: The bi-objective optimization 

program could be improved to account for panel effects since they can capture 

heterogeneity within the route choice behavior of an individual truck driver. This would 

also allow us to compare the results of the latent class route choice model with that of 

a random-effects mixed logit model accounting for panel effects. 

• Development of segment-specific route guidance strategies: Chapter 1 showed that 

truck drivers can be segmented into four groups with respect to their on-trip route choice 

characteristics. A promising research direction would be to develop segment-specific 

route guidance strategies to improve operations of road freight on freeways. 

  

7.3.2 Tactical driving behavior 

• Comparison of heterogeneity between multiple vehicle classes with respect to their 

merging and diverging maneuvers: The trajectory dataset used in this dissertation can 

also be useful to investigate heterogeneity with respect to the merging and diverging 

process of other vehicle classes such as passenger cars and delivery vans. This would 

allow us to develop multi-class driving behavior models to accurately perform traffic 

and safety assessments around freeway bottlenecks. 

• Development of a merge/diverge assistance system for truck drivers: Chapter 3 showed 

that truck drivers tend to merge or diverge at the earliest available opportunity. This 

might cause turbulence at the beginning of freeway bottlenecks. A merge and diverge 
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assistance system could be developed aimed at reducing turbulence by optimizing the 

spatial distribution of merge and diverge maneuvers. 

• Comparison of merging and diverging process of truck drivers with other countries: 

Chapter 3 studies the merging and diverging process of truck drivers operating within 

the Netherlands. A similar study could be performed on data collected for other 

countries with different driving behavior regulations. Such comparison across 

international truck drivers would allow us to design tools to improve current traffic 

models and also to improve traffic and safety assessments.  

• Development of an integrated discretionary lane changing model for truck drivers: 

Truck drivers, in general, follow a structured hierarchy to perform their discretionary 

lane changing from selecting a target lane to executing the required maneuver. Since 

elements of the hierarchy are interconnected, an integrated discretionary lane changing 

model could be developed to realistic capture lane changing phenomenon.  

• Development of autonomous lane changing assistance systems for multiple vehicle 

classes: Chapter 4 develops three gated recurrent unit neural network models to study 

the gap selection processes of multiple vehicle classes. These models can be further 

improved to develop autonomous lane changing assistance systems that are aimed to 

improve traffic safety. 

• Expansion of the case study on lane changing advisory system: The case study of 

Chapter 5 includes two vehicle classes, namely passenger cars and trucks. The 

performance of the lane changing advisory system could be evaluated by incorporating 

other vehicle classes such as delivery vans, automated passenger cars or truck platoons. 

This system could also be useful to mitigate the negative aspects arising from the 

introduction of truck platoons at merging sections as explored in Chapter 6. 

• Analysis of the effects of varying compliance on the performance of the lane changing 

advisory system: The case study of Chapter 5 assumes perfect compliance for road users. 

Analysis of the acceptance of the road users towards multi-class lane changing advisory 

system and therefore the partial compliance of them would lead to more realistic results. 

The study on varying compliance could also be used to reflect on the required 

penetration of connected vehicles to achieve desired performance from the lane 

changing advisory system. 

• Generalization of the lane changing advisory system to other freeway bottlenecks: The 

lane changing advisory system is formulated for the merging section in Chapter 5. The 

formulation could be generalized to account for exiting traffic in order to apply it to 

other freeway bottlenecks such as off-ramps and weaving sections. 

• Development of an integrated lane changing controller: Controls for freeway traffic are 

usually operated independently. A promising extension of Chapter 5 would be to 

integrate the multi-class lane changing advisory system with other control strategies 

such as a multi-class ramp metering system (Schreiter, 2013). Coordination of these two 

multi-class systems could improve traffic situations around merging sections.   

 

7.3.3 Operational driving behavior 

• Expansion of the case study on truck platooning: The case study presented in Chapter 6 

is focused on a merging section. A similar case study could be performed around off-

ramps and weaving sections to evaluate the traffic and safety impacts of the truck 

platooning application. In addition, truck platooning is likely to be deployed alongside 

automated vehicles. The case study could also take into account automated vehicles in 

the traffic mix to realistically capture traffic and safety impacts.   



 On-trip Behavior of Truck Drivers on Freeways: New mathematical models and control methods 

 

 

 

124 

• Evaluation of truck platooning impacts in realistic communication environments: 

Chapter 6 assumes perfect and robust vehicle-to-vehicle communication that enables 

truck platooning application. The case study of chapter 6 would lead to realistic results 

in communication environments that are prone to uncertainties or vulnerabilities. 

Vehicular ad-hoc network simulators such as OTS-Artery (Sharma et al., 2021) could 

be useful to conduct these types of evaluations.  

 

7.3.4 Integrated traffic models 

• Development of a multi-class traffic assignment model: A promising idea for future 

research can be to integrate strategic, tactical and operational behavior models and 

control strategies proposed in this dissertation to develop a multi-class traffic 

assignment model. This model can be useful to accurately reproduce traffic dynamics 

on freeways with a high share of trucks.  

• Integration of a multi-class traffic assignment model with a port terminal model:  A 

multi-class traffic model can be integrated with a port terminal model to replicate the 

truck appointment system (or slot-allocation) and evaluate its impacts on congestion. 

 

7.4 Recommendations for practical use 
This dissertation provides tools to support the decision-making of traffic management agencies, 

trucking companies, and port authorities in order to achieve improved operations of road freight 

on freeways and also to mitigate congestion. Several behavioral models and control strategies 

have been developed in this dissertation; this section provides recommendations for their 

practical use.  

 

• Estimation of route choice models from automatic vehicle identification (AVI) data  

The novel approach proposed in this dissertation to estimate route choice models from 

sparse datasets might open new possibilities to conduct behavioral investigations from 

readily available automatic vehicle identification data (camera, Bluetooth, or travel 

diaries), that too in a cost-effective manner.  

• Opportunity to revisit freeway design guidelines 

Freeway bottlenecks are the main source of congestion. This dissertation showed that a 

majority of truck drivers and also drivers belonging to other vehicle classes merge or 

diverge at the beginning of freeway bottlenecks. The required lengths, prescribed in the 

freeway design guidelines, are seldom used by drivers to change lanes. Creating longer 

weaving sections might not bring any additional benefits. Therefore, guidelines should 

give due attention to the multi-class nature of traffic and it would be worthwhile to 

revisit the required distance for freeway bottlenecks.  

• Development of advanced driver assistance systems 

Lane changing largely influences traffic dynamics and safety around freeway 

bottlenecks. Chapter 4 has presented multi-class gap selection models; Our findings 

could also be of significant interest to technology providers to design advanced driver 

assistance or safety systems to assist lane changing of drivers. 

• Application to simulation packages, real-time traffic management, and strategic 

planning systems 
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Our findings can be implemented in current simulation packages to realistically capture 

traffic phenomena in order to support accurate and realistic traffic and safety 

assessments. In addition, these models could be useful for next-generation real-time 

dynamic traffic assignment systems that support traffic management. Furthermore, the 

route choice model of truck drivers can also be used for strategic planning through its 

implementation in the national model system (LMS) of the Netherlands and a hybrid 

simulation-based model used by the port of Rotterdam. 

• Significant improvement of traffic efficiency around a freeway bottleneck 

To mitigate congestion around a merging section, this dissertation showed that the 

multi-class lane changing advisory system based on cooperative ITS is found to be 

beneficial for both mainline and ramp vehicles. These generalized control schemes 

would be worthwhile to implement on significant freight corridors that witness a high 

share of trucks in the traffic mix. This type of cooperative ITS application requires 

vehicle-to-everything infrastructure to be installed. Once installed, this could also be 

used by numerous other traffic and safety-critical cooperative ITS applications.  

• Criteria necessary for successful market deployment of truck platoons 

We provide criteria such as traffic conditions and optimal truck platooning 

characteristics necessary for the successful market deployment of truck platoons. 

Concerning traffic conditions, this dissertation suggests that truck platooning on 

mainline carriageways is detrimental to traffic efficiency and safety in high traffic 

intensity. On major freight corridors such as A15 in the Netherlands, where successive 

bottlenecks are located, transporting containers out of the port area in tight platoons 

seems to be feasible in light traffic intensity or night hours. Regrading optimal 

characteristics, the results from sensitivity analysis could also be useful to create optimal 

truck platooning configurations by considering their traffic and safety impacts.
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Summary 

Congestion, a frequent problem on freeways, is often considered a major challenge for the 

operations of road freight transport. Trucks, the main choice for road freight, not only suffer 

from congestion but they also contribute to it. Consequently, billions of dollars are lost 

worldwide in trucking operations, which also impedes economic growth and prosperity. 

Understanding driving behavior and on-trip decision-making of truck drivers are critically 

important to design measures that mitigate the impacts of congestion on truck traffic, and vice 

versa, to design measures that mitigate the impacts of truck traffic on congestion. In this respect, 

the on-trip behavior of truck drivers can be decomposed—like driving behavior in general—

into strategical, tactical, and operational behavior, depicting route choice, short-term path-

planning (e.g. merging, lane changing), and the steering & accelerating of the vehicle, 

respectively. Whereas these on-trip behaviors have been studied in-depth for drivers of 

passenger cars, there are larger gaps in our knowledge when it comes to strategical, tactical and 

operational behavior of trucks. Furthermore, our limited insight into the driving behavior of 

truck drivers inhibits the design of appropriate traffic control and management measures. 

To improve freight and traffic operations on freeways, this dissertation focuses on obtaining 

insights into the on-trip behavior of truck drivers and influencing this behavior for congestion 

relief. To this end, this dissertation develops new mathematical models and control methods for 

the strategical, tactical and operational behavior of truck drivers by analyzing emerging datasets 

and designing novel cooperative intelligent transportation system (C-ITS) applications.  

Firstly, this dissertation focuses on the strategical behavior of truck drivers. We develop a novel 

approach to estimate characteristics of route choice behavior using automatic vehicle 

identification datasets that are sparse and lacks actual route choices of drivers (unlabeled). This 

proposed approach, which is based on data fusion and bi-objective optimization, can 

simultaneously infer actual route choices of drivers (labels) and estimate their characteristics. 

This approach is applied to study the on-trip route choice behavior of truck drivers through 

sparse Bluetooth and loop-detector datasets by accounting for inter-driver heterogeneity (i.e. 

taste variations) and time-of-day effects. We conclude that the proposed approach can be used 

to estimate route choice models from readily available sparse datasets.   



 On-trip Behavior of Truck Drivers on Freeways: New mathematical models and control methods 

 

 

 

140 

Secondly, this dissertation investigates the tactical behavior of truck drivers by focusing on 

three elements. The first element is mandatory lane changing (i.e., merging and diverging) of 

truck drivers, a phenomenon observed around freeway bottlenecks and occurs due to a driver’s 

necessity to follow a path leading to his/her destination. By applying finite mixture models on 

a large trajectory dataset, we conclude that inter-driver heterogeneity is observed in the merging 

and diverging behavior of truck drivers. The second element focuses on discretionary lane 

changing where we analyze the gap selection process of truck drivers, which is an important 

part of the lane changing process where a driver explicitly seeks a suitable and safe opportunity 

in order to initiate lane changing maneuver. By using gated recurrent unit neural network 

models, we conclude that truck drivers consider a three-dimensional feature set, which includes 

their kinematic characteristics, their interactions with surrounding vehicles and their perception 

of a road topology,  along with recent driving experience during their gap selection. The neural 

network models, when opened up using explainable artificial intelligence techniques, reveal the 

differences in gap selection between vehicle classes in terms of the saliency of recent driving 

experience and the importance of features. Since lane changing has a significant influence on 

traffic flow, the third element focuses on influencing the lane changing behavior around 

freeway bottlenecks in order to improve traffic efficiency. For this purpose, we propose a multi-

class lane changing advisory system using the linear quadratic regulator (LQR) framework. The 

LQR controller issues personalized lane changing advice to drivers based on their vehicle 

classes using C-ITS technology in order to balance traffic flow distribution over available lanes 

of a freeway. Based on simulation results, we conclude that the proposed advisory system 

improves the travel time of the system by 21% by suppressing shockwaves. This system is 

beneficial to both mainline and ramp vehicles as it improves their travel times by 20% and 42%, 

respectively.  

Thirdly, this dissertation investigates the operational behavioral level of truck drivers by 

analyzing the effects of C-ITS based truck platooning application. By using cooperative 

adaptive cruise control (CACC), this application influences the operational behavior of trucks 

so that multiple trucks can organize themselves into a group of close-following vehicles. We 

conduct a simulation-based sensitivity analysis to identify the effect of characteristics of a truck 

platoon (namely market penetration rate, number of trucks in a platoon, intra-platoon headway, 

and platoon speed) on the uncertainty of traffic and safety impacts around a merging section. 

Based on the results of a sensitivity analysis, we conclude that truck platooning does not 

deteriorate traffic efficiency and safety in low traffic intensity; however, truck platooning 

negatively affects traffic efficiency and safety in high traffic intensity. This effect is mainly 

caused by the following three characteristics: the market penetration of truck platoons in the 

system, intra-platoon headway and the number of trucks in a platoon. These individual effects 

have a minimal contribution (around 25%) to the uncertainty in traffic and safety impacts, as 

indicated by the Borgonovo importance measure. The uncertainty is mainly caused by 

prevailing interactions among truck platooning characteristics.  

In summary, this dissertation provides new insights into the strategical and tactical behavior of 

truck drivers by developing novel behavioral models through analyzing new truck activity 

datasets. In addition, this dissertation creates novel control methods to influence the tactical and 

operational behavior of truck drivers in order to improve traffic efficiency and safety on 

freeways. To conclude, these behavioral investigations and C-ITS applications are useful to 

identify design inefficiencies, develop accurate driving behavior models, and improve system-

wide traffic operations including those of road freight. These tools provide support to a wide 

range of stakeholders and decision-makers, including trucking companies, technology 

providers, road management agencies, and port authorities. 
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Samenvattig 

Congestie wordt vaak beschouwd als een grote uitdaging voor de activiteiten van het 

goederenvervoer over de weg. Vrachtwagens, de belangrijkste keuze voor het goederenvervoer 

over de weg, hebben niet alleen last van files, maar dragen daar ook aan bij. Bijgevolg gaan er 

wereldwijd miljarden dollars verloren aan vrachtvervoer. Het begrijpen van het rijgedrag en de 

besluitvorming van vrachtwagenchauffeurs tijdens de rit zijn van cruciaal belang voor het 

ontwerpen van maatregelen die de impact van congestie op het vrachtverkeer verzachten, en 

omgekeerd, voor het ontwerpen van maatregelen die de impact van het vrachtverkeer op de 

congestie verzachten. In dit opzicht kan het rijgedrag van vrachtwagenchauffeurs – net als het 

rijgedrag in het algemeen – worden ontleed in strategisch, tactisch en operationeel gedrag, 

waarbij routekeuze, routeplanning op korte termijn (bijvoorbeeld invoegen, wisselen van 

rijstrook) en respectievelijk het sturen en accelereren van het voertuig. Hoewel dit rijgedrag 

diepgaand is bestudeerd bij bestuurders van personenauto's, zijn er grotere hiaten in onze kennis 

als het om vrachtwagens gaat. 

Om de vracht- en verkeersactiviteiten op snelwegen te verbeteren, richt dit proefschrift zich op 

het verkrijgen van inzicht in het reisgedrag van vrachtwagenchauffeurs en het beïnvloeden van 

dit gedrag om files te verminderen. Daartoe ontwikkelt dit proefschrift nieuwe wiskundige 

modellen en controlemethoden voor het strategische, tactische en operationele gedrag van 

vrachtwagenchauffeurs door opkomende datasets te analyseren en nieuwe toepassingen voor 

coöperatieve intelligente transportsystemen (C-ITS) te ontwerpen. 

In de eerste plaats richt dit proefschrift zich op het strategische gedrag van 

vrachtwagenchauffeurs. We ontwikkelen een nieuwe aanpak om kenmerken van 

routekeuzegedrag te schatten met behulp van automatische voertuigidentificatiedatasets die 

schaars zijn en feitelijke routekeuzes van bestuurders missen (niet-gelabeld). Deze aanpak, die 

gebaseerd is op datafusie en bi-objectieve optimalisatie, kan tegelijkertijd de daadwerkelijke 

routekeuzes van chauffeurs (labels) afleiden en hun kenmerken inschatten. Deze aanpak wordt 

toegepast om het routekeuzegedrag van vrachtwagenchauffeurs tijdens de rit te bestuderen via 

schaarse Bluetooth- en lusdetectordatasets, door rekening te houden met heterogeniteit tussen 

chauffeurs (dat wil zeggen smaakvariaties) en tijd-van-dag-effecten. We concluderen dat de 
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voorgestelde aanpak kan worden gebruikt om routekeuzemodellen te schatten op basis van 

direct beschikbare schaarse datasets. 

Ten tweede onderzoekt dit proefschrift het tactische gedrag van vrachtwagenchauffeurs door 

zich te concentreren op drie elementen. Het eerste element is het verplicht wisselen van rijstrook 

(d.w.z. invoegen en uitwijken) voor vrachtwagenchauffeurs. Door eindige mengselmodellen 

toe te passen op een grote dataset met trajecten, concluderen we dat heterogeniteit tussen 

chauffeurs wordt waargenomen in het samenvoeg- en divergerende gedrag van 

vrachtwagenchauffeurs. Het tweede element richt zich op het discretionair wisselen van 

rijstrook, waarbij we het selectieproces van vrachtwagenchauffeurs analyseren, wat een 

belangrijk onderdeel is van het rijstrookwisselproces waarbij een bestuurder expliciet een 

geschikte en veilige mogelijkheid zoekt om een rijstrookwisselmanoeuvre te initiëren. Door 

gebruik te maken van gated recurrent unit neurale netwerkmodellen concluderen we dat 

vrachtwagenchauffeurs rekening houden met een driedimensionale kenmerkenset, die hun 

kinematische kenmerken, hun interacties met omringende voertuigen en hun perceptie van een 

wegtopologie omvat, samen met recente rijervaring tijdens hun selectie van gaten. . De 

verklaarbare kunstmatige-intelligentietechnieken brengen ook de verschillen in gap-selectie 

tussen voertuigklassen aan het licht. Omdat het wisselen van rijstrook een aanzienlijke invloed 

heeft op de verkeersdoorstroming, richt het derde element zich op het beïnvloeden van het 

rijstrookwisselgedrag rond knelpunten op snelwegen om de verkeersefficiëntie te verbeteren. 

Voor dit doel stellen we een adviessysteem voor het wisselen van rijstrook met meerdere 

klassen voor, waarbij gebruik wordt gemaakt van het lineaire kwadratische regulator (LQR) 

raamwerk. De LQR-controller geeft bestuurders gepersonaliseerd rijstrookadvies op basis van 

hun voertuigklassen met behulp van C-ITS-technologie om de verkeersstroomverdeling over 

de beschikbare rijstroken op een snelweg in evenwicht te brengen. Op basis van 

simulatieresultaten concluderen we dat het voorgestelde adviessysteem de reistijd van het 

systeem met 21% verbetert door schokgolven te onderdrukken.  

Ten derde onderzoekt dit proefschrift het operationele gedragsniveau van 

vrachtwagenchauffeurs door de effecten van op C-ITS gebaseerde vrachtwagenplatooning-

applicaties te analyseren. We voeren een op simulatie gebaseerde gevoeligheidsanalyse uit om 

het effect van de kenmerken van een vrachtwagenpeloton (namelijk marktpenetratiegraad, 

aantal vrachtwagens in een peloton, volgtijd binnen het peloton en pelotonsnelheid) op de 

onzekerheid van het verkeer en de veiligheidseffecten rond een peloton te identificeren. 

samenvoegende sectie. Op basis van de resultaten van een gevoeligheidsanalyse concluderen 

we dat platooning van vrachtwagens een negatieve invloed heeft op de verkeersefficiëntie en 

veiligheid bij hoge verkeersintensiteit. Dit effect wordt voornamelijk veroorzaakt door de 

volgende drie kenmerken: de marktpenetratie van vrachtwagenpelotons in het systeem, de 

volgtijd binnen het peloton en het aantal vrachtwagens in een peloton. Zoals aangegeven door 

de Borgonovo-belangmaatstaf, wordt de onzekerheid voornamelijk veroorzaakt door de 

heersende interacties tussen de kenmerken van vrachtwagenpelotoning. 

Samenvattend biedt dit proefschrift nieuwe inzichten in het strategische en tactische gedrag van 

vrachtwagenchauffeurs door nieuwe gedragsmodellen te ontwikkelen door nieuwe datasets 

voor vrachtwagenactiviteiten te analyseren. Daarnaast creëert dit proefschrift nieuwe 

controlemethoden om het tactische en operationele gedrag van vrachtwagenchauffeurs te 

beïnvloeden om zo de verkeersefficiëntie en veiligheid op snelwegen te verbeteren. 

Concluderend kunnen deze gedragsonderzoeken en C-ITS-toepassingen nuttig zijn om 

inefficiënties in het ontwerp te identificeren, nauwkeurige modellen voor rijgedrag te 

ontwikkelen en de verkeersactiviteiten in het hele systeem te verbeteren, inclusief die van het 

goederenvervoer over de weg. Deze tools bieden ondersteuning aan een breed scala aan 

belanghebbenden en besluitvormers, waaronder transportbedrijven, technologieleveranciers, 

wegbeheerbureaus en havenautoriteiten. 
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