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Bi-hormonal Linear Time-Varying Model Predictive Control
for Blood Glucose Regulation in Type 1 Diabetes Patients

Dylan Kalisvaart, Jorge Bonekamp and Sergio Grammatico

Abstract—We study predictive control for blood glucose reg-
ulation in patients with type 1 diabetes mellitus. We determine
optimal control actions for insulin and glucagon infusion via
linear time-varying model predictive control (LTV MPC) and dy-
namic linerization around the state trajectory predicted. Through
in silico implementation of a comprehensive nonlinear model,
we show that our proposed controller is able to reject meal
disturbances, retain normoglycemia afterwards and significantly
outperform standard linearized MPC.

I. INTRODUCTION

IT was estimated that in 2019 around 463 million people
worldwide suffered from diabetes, from which approxi-

mately 10% consisted of type 1 diabetes mellitus (T1DM)
[1]. Patients with T1DM suffer from a deficiency of insulin
secretion by the pancreas, which causes elevated blood glucose
(BG) levels. Untreated, T1DM results in sustained hyper-
glycemia (BG > 7.8 mmol L−1), which will result in severe
short-term and long-term complications [2]. T1DM patients
depend on external insulin infusion, which typically consists of
a basal insulin infusion and an extra insulin bolus before meal
intake, guided by manual glucose measurements. Infusion of
too much insulin can result in dangerously low glucose levels,
or hypoglycemia (BG < 3.9 mmol L−1), which in turn can
lead to a number of complications and even coma [3]–[5].

Unfortunately, the usual procedure of measuring glucose
levels and manual insulin infusion is inconvenient for patients
suffering from T1DM and it generally does not ensure good
regulation of BG concentration. This has motivated extensive
research on glycemic control strategies, such as the so-called
artificial pancreas. The initial research in the 1970s in [6] and
[7] supported the development of the first glucose controlled
insulin infusion systems. Thereafter, more advanced control
algorithms for the artificial pancreas have been developed, for
example expert PID-type controllers [8]–[10] that require some
form of gain scheduling to simultaneously deal with both BG
regulation and meal disturbance rejection.

The design of an effective controller is further complicated
by the time-delays present in subcutaneous glucose measure-
ments and hormone absorption. On the other hand, the glucose
intake through meals follows a predictable pattern. An oral
glucose absorption model was proposed in [11] and [12],
where the authors concluded that incorporating such a model
in the controllers benefits BG regulation. Consequently, Model
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Predictive Control (MPC) has been recognized as a good
candidate for glucose regulation [13]. In short, MPC is a
control approach that uses a process model to predict the future
system evolution (state trajectory) and iteratively calculates
the optimal control action by minimizing a cost function.
Early studies on the use of MPC in glucoregulatory control
showed promising results and performance [14], [15]. In [16],
an in silico trial has shown that even linearized MPC (namely,
MPC devised from a linear model) achieves significantly
better glucose regulation compared to PID control. The use of
(advanced) MPC strategies has become even more prevalent
in recent studies [17], [18]. Among others, a nonlinear MPC
strategy was proposed in [12] where it was shown that, with a
sufficiently accurate model, MPC has the potential to provide
extremely good BG regulation. However, from a technical per-
spective, nonlinear models generate non-convex optimization
problems within MPC, thus convergence to a global optimum
cannot be guaranteed. In [19], the authors proposed a bi-
hormonal MPC controller that administers both insulin and
glucagon. In particular, it was shown that hypoglycemia is
more easily avoided for aggressive insulin delivery if glucagon
is used as an additional input. In fact, glucagon is a hormone
that has the effect of increasing glucose concentrations. Indeed,
it was shown in [20] that glucagon helps to recover from
hypoglycemia faster. However, glucagon infusion should be
handled carefully, because large glucagon doses may have
adverse effects (e.g. nausea) [20].

In this paper, we use a time-varying linearization of a bi-
hormonal physiological model within MPC. Specifically, we
propose a bi-hormonal version of the Hovorka model [12],
augmented with a glucagon subsystem similar to that in [19].
Via representative numerical simulations, we show that our
proposed approach, a linear-time-varying MPC (LTV-MPC),
significantly outperforms the standard (linear-time-invariant)
MPC approach in terms of glucoregulatory performance.
Moreover, our numerical results show that the use of glucagon
as a control input in our LTV-MPC generates a more effective
meal disturbance rejection while avoiding hypoglycemia.

II. MATHEMATICAL MODEL

In [12] and [21], a nonlinear model of glucose kinetics,
regulated only by insulin, is proposed - see Subsections II-A
and II-B. In [19], the Bergman minimal model [22] is extended
to account for the effect of glucagon on glucose production.
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A. Glucose subsystem

A complete model of the the glucose-insulin dynamics
consists of eight first-order ordinary differential equations [12].
The dynamics of the measurable and non-measurable glucose
mass states, Q1(t) and Q2(t) (mmol kg−1), read as follows:

Q̇1(t) = −F c
01(G(t))− x1(t)Q1(t) + k12Q2(t)− FR(G(t))

+ EGP0(1− x3(t)) + cconvUG(t) + Y (t)Q1(t)
(1)

Q̇2(t) = x1(t)Q1(t)− (k12 + x2(t))Q2(t). (2)

k12 is the transfer rate between the non-measurable and
measurable compartments. EGP0 is the endogenous glucose
production (assumed constant). F c

01 is the insulin-independent
glucose flux and FR is the renal glucose clearance:

F c
01(G(t)) =

{
F01 if G(t) ≥ 4.5 mmol L−1

F01G(t)/4.5 otherwise
(3)

FR(G(t)) =

{
0.003(G(t)− 9)VG if G(t) ≥ 9 mmol L−1

0 otherwise.
(4)

Thus, F c
01(G(t)) and FR(G(t)) are piecewise linear terms

that change value whenever a hyperglycemia or hypoglycemia
occur. These values depend on the BG concentration, G(t)
(mmol L−1), which is directly related to the measurable
glucose mass through the glucose distribution volume, VG:

G(t) = Q1(t)/VG. (5)

The effect of insulin on the glucose mass states x1(t),
x2(t) and x3(t) is discussed in Subsection II-B. The effect
of glucagon on the glucose mass states is modeled through
Y (t). In Subsection II-C, we describe how glucagon dynamics
using exogenous glucagon input can be modeled through the
term Y (t). Next, UG (g min−1) models the gut absorption rate.
Unless specified otherwise, we treat UG as a known exogenous
disturbance. In [12], an expression for UG is derived as

UG(t) =
DGAG

t2max,G

· t · exp (−t/tmax,G). (6)

The constants DG, AG and tmax,G are the amount of car-
bohydrates digested, carbohydrate bio-availability and time-
to-maximum carbohydrate absorption, respectively. Note that
in (1), UG is multiplied by a unit conversion factor cconv,
not explicitly mentioned in [12], in order to directly add
it in the glucose mass concentration dynamics. Specifically,
cconv =

Mg

BW · 103, where Mg (g mol−1) is the molar mass of
glucose and BW (kg) is the patients body-weight.

B. Insulin subsystem

The insulin effect on glucose production is modeled by
three different insulin action states that appear in (1) and (2).
The states x1(t) and x2(t) in (min−1) represent the insulin

effect on glucose distribution and disposal, respectively. The
endogenous glucose production is inhibited by x3(t). Thus:

ẋ1(t) = −ka1x1(t) + kb1I(t) (7)
ẋ2(t) = −ka2x2(t) + kb2I(t) (8)
ẋ3(t) = −ka3x3(t) + kb3I(t). (9)

ka and kb are the deactivation and activation rate constants
of the insulin action states. The activation rate depends on the
plasma insulin concentration, I(t). The plasma insulin concen-
tration can be controlled by administering insulin. However,
the insulin absorption is delayed by a two-compartment chain
model. For the insulin concentration dynamics (mU kg−1) of
the compartments S1(t) and S2(t) we have:

Ṡ1(t) = uI(t)− S1(t)

tmax,I
, Ṡ2(t) =

S1(t)

tmax,I
− S2(t)

tmax,I
. (10)

Here, uI(t) (mU kg−1 min−1) is the insulin administered
in the first compartment through bolus and infusion. The
concentration exponentially decays with time-constant tmax,I ,
which is the time-to-maximum insulin absorption constant.
The plasma insulin dynamics can then be modeled as

İ(t) =
S2(t)

VItmax,I
− keI(t) (11)

where I(t) is the plasma insulin concentration (mU L−1),
VI is the insulin distribution volume and ke is the fractional
elimination rate constant.

C. Glucagon subsystem

We include glucagon as an exogenous input. The effect
of glucagon on the glucose mass can be described through
a stand-alone subsystem, consisting of four linear ordinary
differential equations [19]. Thus, we extend the glucose-insulin
model of subsections II-A and II-B via a similar stand-alone
subsystem. Similarly to that of insulin, it consists of a two-
compartment absorption chain, described by the states Z1(t)
and Z2(t) (ng kg−1). Infusing glucagon leads, via the two-
compartment chain, to an elevated glucagon concentration
state, N(t) (pg mL−1). In turn, this state has an effect on
the glucose concentration through the glucagon action state,
Y (t) (min−1). In the following, Equations (12)-(13) describe
the glucagon absorption model and Equation (14) represents
the glucagon action on the glucose production:

Ż1(t) = uN (t)− Z1(t)

tmax,N
, Ż2(t) =

Z1(t)

tmax,N
− Z2(t)

tmax,N
(12)

Ṅ(t) = −kN (N(t)−Nb) +
Z2(t)

VN tmax,N
(13)

Ẏ (t) = −pY (t) + pSN (N(t)−Nb). (14)

uN (t) is the glucagon input (ng kg−1 min−1) and tmax,N is the
time-to-max glucagon absorption constant. In (13), kN is the
glucagon elimination rate constant. The basal glucagon plasma
concentration is given by Nb and the glucagon distribution
volume by VN . p is the rate constant of the glucagon action
dynamics and SN is the glucagon sensitivity.
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D. Nonlinear state-space model

Let us conclude the section by collecting the equations de-
scribed in the previous subsections into a nonlinear state-space
model, which can be used for control-oriented simulations:

ẋ(t) =
[
Q̇1(t) Q̇2(t) ẋ1(t) ẋ2(t) ẋ3(t) Ṡ1(t) Ṡ2(t)

İ(t) Ż1(t) Ż2(t) Ṅ(t) Ẏ (t)
]>

= f(x(t),u(t))
(15a)

y(t) = G(t) = h(x(t),u(t)) (15b)

In Equation (15), ẋ(t) is the derivative of the state vector,
consisting of the states described in Subsections II-A to
II-C. The input vector is defined by insulin and glucagon
infusion: u(t) = [uI(t), uN (t)]>. The nonlinear vector func-
tion f(x(t),u(t)) consists of the corresponding differential
equations from Equations (1), (2) and (7)–(14), respectively.
The output, y(t), is the BG concentration and therefore
h(x(t),u(t)) is defined by Equation (5).

III. MODEL PREDICTIVE CONTROL DESIGN

The glucose intake through meals follows a relatively
predictable pattern which motivates the use of MPC. In the
following, with linearized MPC (LIN-MPC), we mean that
a linearization of the nonlinear system dynamics is used to
generate a prediction. Unfortunately, with a static linearization
of the nonlinear dynamics, model accuracy (and therefore,
closed-loop performance) is lost in practice. To mitigate that,
the linearization used in each time step of the optimal control
problem can be updated, based on the simulated trajectory
of the previous iteration. This is the main principle of linear
time-varying MPC (LTV-MPC) [23].

A. Linearized model predictive control

Let us consider a zero-order-hold discretization with sam-
pling time h = 15 min as used in [12]:

x∆(k + 1) = Ax∆(k) +Bu∆(k) +BdUG(k) (16a)
y∆(k) = Cx∆(k) +Du∆(k) +DdUG(k), (16b)

where x∆(k) = xL(k) − x̄, u∆(k) = u(k) − ū and
y∆(k) = yL(k)− ȳ denote the deviations of linearized states
xL, inputs u and linearized outputs yL from the point around
which the process of Equation (15) is linearized, respectively.
The matrices Bd and Dd denote the influence of the gut
absorption rate UG (considered to be an exogenous disturbance
input) on the states and output, respectively.

Next, we construct a cost function suited for glucoregulation
with two requirements for safe BG control. First, a steady-
state intravenous glucose level of 6 mmol L−1 is gener-
ally considered “optimal” [13]. Thus, we solve the steady-
state problem for the continuous-time nonlinear dynamics of
Section II with G(t) = 6 mmol L−1 to determine a state
and input references, xr and ur (basal insulin and glucagon
infusions). In turn, the cost function should penalize deviations
from these references, so to keep the BG level close to
G(t) = 6 mmol L−1. Secondly, hypoglycemia should be
avoided [24], hence it should be penalized strongly by the cost

function, especially to avoid scenarios where hypoglycemia is
preferred over hyperglycemia. To incorporate this idea into the
objective function, we design an asymmetric term, such that
hypoglycemic BG concentrations are penalized more heavily.
Specifically, we add max{0, Gr−G} as a convex asymmetric
term in the cost function, to penalize trajectories below Gr = 6
mmol L−1. Overall, our proposed cost function reads as

JN (i) = 1
2

i+N−1∑
k=i

(‖xL(k + 1|i)−xr‖2Q + ‖u(k|i)−ur‖2R

+ c max{0, Gr −G(k|i)}),
(17)

where the index (k|i) denotes the prediction of a certain
variable (e.g. state variable) at time step k, given the value of
the known variables (e.g. states and inputs) at time i (k ≥ i).
At each time step, LIN-MPC solves the following optimization
problem to compute the control input:

min JN (i)
s.t. (16) holds, ∀k ∈ {i, i+ 1, . . . , i+N − 1}

xmin ≤ x(k + 1|i) ≤ xmax,
∀k ∈ {i, . . . , i+N − 1}

umin ≤ u(k|i) ≤ umax,
∀k ∈ {i, . . . , i+N − 1}

(18)
where the minimum is taken over the control inputs

u(i|i),u(i+ 1|i), · · · ,u(i+N − 1|i). In Equation (18), i is
the current discrete time, xmin and umin, xmax and umax

denote lower and upper bounds on the states and inputs. The
measured current state x(i) is used as the initial condition for
the current prediction. Let {u∗(i|i),u∗(i+ 1|i), . . . ,u∗(i +
N−1|i)} denote the optimal control input sequence that solves
the optimization problem in (18). As usual in MPC, only the
first input u∗(i|i) is applied to the dynamical system.

B. Linear time-varying model predictive control strategy

In this paper, we propose to use LTV-MPC for glucose
regulation. Essentially, a sequence of linear process models
is found at each time step by linearizing the dynamics (15)
around the simulated trajectory and inputs obtained from the
previous iteration [23]. This improves the accuracy of the
process model used for control, thus resulting in better glucose
disturbance rejection with respect to linearized MPC.

For the initial iteration, no prior knowledge on states or
input is available, so at first the linearized MPC strategy is
used. Solving the optimal control problem in (18) results in
a sequence of optimal inputs {u∗(0|0),u∗(1|0), . . . ,u∗(N −
1|0)}. While the first input is applied to the process, re-
sulting in state x(1), all other inputs are supplied in sil-
ico to the dynamics (15), resulting in simulated states
{x(2|0),x(3|0), . . . ,x(N + 1|0)}. Let us define the tail of
the trajectory at time 0 as:{

{x(1),x(2|0), . . . ,x(N + 1|0)},
{u∗(1|0),u∗(2|0), . . . ,u∗(N − 1|0),u(N |0)}.

(19)
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In each subsequent iteration i, the tail of the trajectory at
time i − 1 is used to obtain a time-varying linearization of
the dynamics. Specifically, to obtain the linearized dynamics
at time k during iteration i, the continuous-time state space
model (15) is linearized analytically around the corresponding
state-input pair (x(k|i − 1),u(k|i − 1)) from the tail of the
trajectory at time i−1. To evaluate the matrices governing the
linearization, we use the following partial derivatives:

Acont(k|i− 1) =
∂f(x,u)

∂x
(x(k|i− 1),u(k|i− 1)) (20a)

Bcont(k|i− 1) =
∂f(x,u)

∂u
(x(k|i− 1),u(k|i− 1)) (20b)

Bd,cont(k|i− 1) =
∂f(x,u)

∂UG
(x(k|i− 1),u(k|i− 1)) (20c)

C(k|i− 1) =
∂h(x,u)

∂x
(x(k|i− 1),u(k|i− 1)) (20d)

D(k|i− 1) =
∂h(x,u)

∂u
(x(k|i− 1),u(k|i− 1)) (20e)

Dd(k|i− 1) =
∂h(x,u)

∂UG
(x(k|i− 1),u(k|i− 1)) (20f)

Then, we discretize this time-varying linearization via a
zero-order hold with sampling time h = 15 min:

x∆(k + 1|i) = A(k|i− 1)x∆(k|i) +B(k|i− 1)u∆(k|i)
+Bd(k|i− 1)UG(k)

(21a)
y∆(k|i) = C(k|i− 1)x∆(k|i) +D(k|i− 1)u∆(k|i)

+Dd(k|i− 1)UG(k)
(21b)

For the LTV-MPC problem, we design a cost function that is
similar to that in (17), where the state predictions are replaced
with their time-varying counterparts:

JN (i) = 1
2

i+N−1∑
k=i

(‖xLTV(k + 1|i)− xr‖2Q + ‖u(k|i)− ur‖2R

+ cmax{0, Gr −G}).
(22)

The optimal control problem has then the same form as in
(18), with the sole difference that the model dynamics now
vary at each iteration and at each time step.

C. Controller tuning

Control guidelines for proper and safe intravenous glucose
level regulation are established in [25]. First of all, the time
spent in hyperglycemia should be minimized [26] and hypo-
glycemia should be avoided to ensure that patients do not fall
into coma [24]. Secondly, a steady-state intravenous glucose
level of 6 mmol L−1 is considered optimal, with glucose levels
between 3.9 mmol L−1 and 7.8 mmol L−1 (normoglycemia)
being considered safe [13]. Furthermore, the hyperglycemic
peak, i.e. the maximum of the intravenous glucose level during
hyperglycemia, should be small [26]. Lastly, minimal amounts
of both insulin and glucagon should be applied. For insulin,
this is done to avoid hypoglycemia as much as possible;

instead, application of glucagon in high doses may result in
nausea [20] and hence it should be avoided.

Tuning the MPC can be done through the weights Q, R
and c, to be chosen in view of the mentioned three guidelines.
Thus, based on in silico numerical experience, we have se-
lected a state-weight Q11 = 3 · 104 which acts only on the
intravenous glucose mass state Q1. In this way, the controller
strongly penalizes hyperglycemia, which results in a very
small hyperglycemia duration and a very small hyperglycemic
peak. To avoid overly aggressive control actions, weights are
placed on both the insulin and glucagon infusion. Importantly,
we use off-diagonal input weights to discourage the controller
from using insulin and glucagon simultaneously. The resulting
input weighting matrix is then R = 104 · [ 8 2

2 100 ].
Based on numerical experience, we have chosen the asym-

metric cost weight c = 5 · 107 such that plasma glucose
concentrations below 6 mmol L−1 are significantly penalized.
Finally, we choose state and input constraints such that all
states and inputs are non-negative, as negative states or inputs
are not physically possible. Furthermore, the maximum insulin
infusion is chosen as 4 U h−1 and the maximum glucagon
infusion is chosen as 15 µg kg−1 h−1. In fact, we prefer
not to constrain the states any further, as this could result
in numerical feasibility and convergence problems.

IV. NUMERICAL EXPERIMENTS

We simulate the system dynamics under the LIN-MPC and
LTV-MPC strategies. The aim is to evaluate if the designed
controller satisfies the performance requirements. Namely,
hypoglycemia should be avoided, the hyperglycemic peak and
duration should be minimal, a steady-state value of G(t) = 6
mmol L−1 should be attained quickly and minimal amounts of
insulin and glucagon should be infused. As these requirements
are inherently conflicting (e.g. not infusing insulin results
in a higher hyperglycemic peak and duration), we perform
some parameter tuning to assess if the proposed controller is
able balance out the performance requirements properly. In
particular, we tune the control horizon to N = 12.

A. Linear-time-varying vs linear-time-invariant MPC

We first consider the response of the LTV-MPC controller
to a standardized meal disturbance of 80 g at t = 0 min, as
shown in Fig. 1. The meal disturbance is rejected well by the
LTV-MPC controller, with the disturbance response having a
short hyperglycemia duration of around 2 hours (126 minutes)
and a plasma glucose concentration peak of 14.48 mmol L−1.
At time t = 45 min, the LTV-MPC identifies that the optimal
control action is to start administering glucagon, which allows
for a more aggressive insulin infusion because it ensures no
hypoglycemia occurs. The lowest glucose concentration value
is 4.91 mmol L−1, well within the highlighted region of
normoglycemia. Fig. 1 also compares the response of the LTV-
MPC controller to that of LIN-MPC with the same weights
Q, R and c. Fig. 1 clearly shows that LTV-MPC results in a
better response. The LIN-MPC response shows an undesirable
hypoglycemic dip and duration (2.60 mmol L−1, 207 min).
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Fig. 1. Simulated closed-loop responses with linear time-varying (LTV-MPC)
and linearized (LIN-MPC) model predictive controllers to a standardized meal
disturbance of 80 g at t = 0 min. In the top sub-figure, normoglycemia is
highlighted in grey and the target blood glucose concentration is denoted by
a line at 6 mmol L−1.

B. Tuning the cost weight

Fig. 2 illustrates the influence of the weight matrix Q. For
Q11 = 3·103, we see that the hyperglycemic peak and duration
(17.76 mmol L−1, 208 min) are significantly larger than those
for higher values of Q11, as state deviations from the reference
state are of less importance. This peak and duration do not
satisfy the performance requirements. On the other hand, since
input deviations from the reference input are penalized more
strongly, the infused insulin and glucagon values are small.
The contrary is true for Q11 = 3 · 105, as state deviations
are penalized more than input deviations. The result is a large
initial insulin bolus (3.17 U h−1) and a smaller hyperglycemic
peak and duration (12.90 mmol L−1, 102 min). However, the
simulation for Q11 = 3 · 105 also shows a dip below the
target glucose value (4.30 mmol L−1) and hypoglycemia is
only avoided with a large glucagon infusion, which is against
the performance requirements. For Q11 = 3 · 104, which is
the state weight we have chosen, the hyperglycemic peak and
duration are only slightly larger than those for Q11 = 3 · 105,
while low glucose concentration values are avoided.

C. Bi-hormonal vs insulin only

Fig. 3 compares the proposed bi-hormonal LTV-MPC of
Section III with a LTV-MPC that uses insulin as only control
input. By constraining the glucagon input in the optimization
problem to be zero, the model used for simulation is effectively
the same as in [12] and as defined in Subsections II-A and II-B.
Both simulations show approximately the same state trajectory
initially. This can be expected, as both controllers can infuse
insulin to mitigate the meal disturbance. However, the insulin-
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Fig. 2. Simulated closed-loop response with linear time-varying model
predictive controller (LTV-MPC) to a standardized meal disturbance of 80
g at t = 0 min, for different primary state weights Q11. In the top sub-
figure, normoglycemia is highlighted in grey and the target blood glucose
concentration is denoted by a line at 6 mmol L−1.

only controller reaches a hypoglycemic glucose concentration
3.52 mmol L−1, where the bi-hormonal controller uses the
glucagon input to prevent hypoglycemia. This implies that
the bi-hormonal controller can be tuned more aggressively as
opposed to the insulin-only controller and supports the use of
glucagon in glucoregulatory control indeed.

D. Sensitivity to process parameters

Fig. 4 shows the simulation results of the LTV-MPC, where
the process dynamics use the patient parameters in Table A.
For patients 1 and 2, there is thus a mismatch between the pa-
rameters of the nonlinear process and the process simulated by
the controller. These simulations show that accurate knowledge
of the process parameters is important to properly regulate the
plasma glucose concentration. In particular for the parameters
of patient 1, the peak glucose plasma concentration grows
to 17.31 mmol L−1 and the settling time increases to 310
min. For patient 2, the highest glucose concentration decreases
to 13.58 mmol L−1. Due to the mismatch in parameters the
simulations for patient 1 and 2 both show a steady state error
in the glucose concentration. This implies that they can be
tuned more aggressively if the controller knows an accurate
representation of the model parameters. Online parameter
estimation, such as the approach presented in [12], can thus
result in improved performance.

Fig. 5 shows the simulation results of the LTV-MPC for
multiple meal disturbances, where the time-to-maximum car-
bohydrate absorption was varied in the process dynamics (but
not in the controller). In the simulations, all disturbances are
standardized meals, as described in Equation (6), of 80 gram
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Fig. 3. Simulated closed-loop response with linear time-varying model
predictive controller (LTV-MPC) to a standardized meal disturbance of 100
g at t = 0 min, with and without glucagon input. In the top sub-
figure, normoglycemia is highlighted in grey and the target blood glucose
concentration is denoted by a line at 6 mmol L−1.

0 100 200 300 400 500 600 700 800 900
t (min)

0

10

20

G
 (

m
m

ol
 L

-1
)

Plasma glucose concentration

Controller Patient 1 Patient 2

0 100 200 300 400 500 600 700 800 900
t (min)

0

1

2

u I (
U

 h
-1

)

Insulin infusion

0 100 200 300 400 500 600 700 800 900
t (min)

0

2

4

u N
 (

g 
 k

g-1
  h

-1
) Glucagon infusion

Fig. 4. Simulated closed-loop response with linear time-varying model
predictive controller (LTV-MPC) to a standardized meal disturbance of 80
g at t = 0 min, where the process dynamics use the patient parameters in
Table A. In the top sub-figure, normoglycemia is highlighted in grey and the
target blood glucose concentration is denoted by a line at 6 mmol L−1.

starting at t = 0 min. The time-to-maximum carbohydrate
absorption for these disturbances is tmax,G ∈ {28, 40, 52} min.

For tmax,G = 28 min, we find that the highest glucose
concentration is 18.13 mmol L−1, with a settling time of 120
min. For tmax,G = 52 min, the highest glucose concentration

is 12.12 mmol L−1, with a settling time of 120 min. The
reason for this is that the time-to-maximum carbohydrate
absorption affects both the amplitude and the duration of
the meal disturbance. If the time-to-maximum carbohydrate
absorption increases, the amplitude of the meal disturbance
grows, while the duration of the meal disturbance is reduced.
As the controller does not have an accurate representation of
tmax,G, we also see these effects in the closed-loop response.
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Fig. 5. Simulated closed-loop responses with linear time-varying model
predictive controller (LTV-MPC) to a standardized meal disturbance of 80
g starting at t = 0 min, where the time-to-maximum carbohydrate absorption
is varied in the process dynamics. In the top sub-figure, normoglycemia is
highlighted in grey and the target blood glucose concentration is denoted by
a line at 6 mmol L−1.

V. CONCLUSION

Bi-hormonal linear-time-varying model predictive control is
a promising method for regulating blood glucose concentration
in patients with type 1 diabetes mellitus with much improved
performance compared to standard model-based control. Fu-
ture research should focus on the observability of the state
variables and on the practical applicability of the method.
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APPENDIX A
MODEL PARAMETERS

parameter unit controller patient 1* patient 2*

VG L/kg 0.16 0.18 0.14
k12 min−1 0.0660 0.0343 0.0968
F01 mmol/(kg min) 0.0097 0.0121 0.0119
EGP0 mmol/(kg min) 0.0161 0.0148 0.0213
Ag - 0.8 0.8 0.8
tmax,G min 40 40 40
tmax,I min 55 55 55
VI L kg−1 0.12 0.12 0.12
ke min−1 0.138 0.138 0.138
ka1 min−1 0.0060 0.0031 0.0088
ka2 min−1 0.0600 0.0752 0.0302
ka3 min−1 0.0300 0.0472 0.0118
kb1 · k−1

a1 L/(min mU) 51.2·10−4 29.4·10−4 86.1·10−4

kb2 · k−1
a2 L/(min mU) 8.2·10−4 0.9·10−4 4.7·10−4

kb3 · k−1
a3 L/mU 520·10−4 401·10−4 720·10−4

tmax,N min 15.76 32.46 20.59
kN min−1 0.383 0.620 0.735
VN mL kg−1 29.20 16.06 23.46
p min−1 0.164 0.016 0.074
SN ·10−4 mL/pg min−1 1.45 1.96 1.98
Mg g/mol 180.16 180.16 180.16
BW kg 68.5 68.5 68.5
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