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A model predictive scheduling strategy for coordinated inland vessel
navigation and bridge operation

Pablo Segovia1, Vicenç Puig2 and Vasso Reppa1

Abstract— This paper presents the design of a model pre-
dictive scheduling strategy to address the inland waterborne
transport (IWT) problem considering bridges that must open to
enable vessel passage. The main contribution is the formulation
of a control-oriented model of the problem, including proposi-
tional logic expressions that characterize system behavior and
their conversion into (in)equality constraints. The resulting
model is embedded into a predictive scheduling approach to
determine bridge opening timetables and vessel passage times
in a coordinated manner. The effectiveness of the strategy is
demonstrated on a realistic case study based on the Rhine-
Alpine corridor.

I. INTRODUCTION

Freight transportation is an essential process within the
supply chain, as it allows to transfer goods in an efficient
manner and ensure their timely availability at the destina-
tion [1]. While several different transport modes may be
used, inland waterborne transport (IWT) emerges as a cost-
effective and environmentally-friendly alternative to move
large amounts of cargo [2]. Despite the advantages it offers,
IWT only represented 4% of the total goods transported in
the EU-28 in 2016 [3]. This is mainly due to the fact that
reliability of operations is negatively impacted by inaccurate
information at service level and high system congestion, and
thus calls for communication among interested parties [4].

IWT encompasses the simultaneous operation of ves-
sels and infrastructure in cramped areas, which are more-
over characterized by conflicting operational objectives, thus
rendering IWT a challenging problem. While inadequate
solutions may lead to suboptimal navigation and infras-
tructure utilization, the consideration of vessel-to-vessel
(V2V), infrastructure-to-infrastructure (I2I) and vessel-to-
infrastructure (V2I) communication in an agent-based frame-
work has the potential to yield improved solutions, as in-
tentions from one agent can be anticipated by others and
prepared for in advance.

Zooming in on V2I communication, the most common
pieces of infrastructure encountered in waterway networks
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are bridges—movable and fixed—and locks. Vessels must
pass through infrastructure on their way towards destination,
which they aim to do with minimal waiting times. Lock
scheduling has been widely studied, considering both single-
chamber [5], [6] and multiple-chamber [7], [8] serial lock
configurations. Surprisingly enough, scheduling of movable
bridges has not received the same degree of attention despite
the fact that their operation has simultaneous implications for
road, railway and waterborne transport, being [9] one of the
few papers on the topic. However, bridges are considered
to be characterized by predefined opening regimes, and
therefore the approach does not utilize peak and valley
passage demand to adjust openings.

This paper extends the preliminary work carried out in
[9], where the operation timetables were fixed, by consider-
ing dynamic bridge operation. In other words, bridges can
operate on demand and thus adapt their opening regimes to
vessel passage needs, which are provided via V2I communi-
cation. Moreover, a control-oriented model of the process is
designed, together with propositional logic expressions that
govern system behavior. These are translated into (in)equality
constraints and integrated into the design of a model pre-
dictive scheduling strategy, which determines passage times
for every vessel-bridge pair and communicates these plans
to each of the vessels. Moreover, the resulting opening
schedules are shared with the bridges.

The rest of the paper is organized as follows: the dynamic
bridge opening scheduling problem is described in Section II,
and an approach to solve the problem is presented in Sec-
tion III. A case study based on the Rhine-Alpine corridor
serves to test the effectiveness of the approach in Section IV,
allowing to draw conclusions and establish future research
avenues in Section V.

II. PROBLEM STATEMENT

The dynamic bridge opening scheduling problem can be
formulated as follows. A set of vessels V must pass a set of
movable bridges B while sailing from origin to destination,
with |B| = n and |V| = m. A discrete problem setting is
adopted, and thus time is divided into a set of time steps K
of equal length. Furthermore:

• Bridge i, i ∈ {1, ..., n}, is characterized by its nominal
width, b(i) [m], the maximum number of consecutive
time steps it can stay open (so as to limit traffic
disruption on bridge deck), N

(i)
up , and the minimum

number of consecutive time steps it must remain closed
immediately after an open-close switch, N (i)

down, ∀i ∈ B.
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Nup and Ndown can also be referred to as maximum up-
time and minimum down-time, respectively. Bridges are
numbered such that i = 1 and i = n correspond to the
first and last bridge to be passed through, respectively.

• Vessel j, j ∈ {1, ...,m}, is characterized by its width,
v(j) [m], which includes the safety distance between
vessel j and the rest of vessels, and its voyage plans,
represented by earliest and optimal passage instants
through bridge i, τ (i,j)e , τ

(i,j)
o ∈ Z+, respectively, ∀i ∈

B,∀j ∈ V , with Z+ the set of positive integers.
Earliest and optimal passage instants can be computed
considering the maximum speed and the speed that
minimizes fuel consumption, respectively, and inter-
bridge distances, and are known before the start of
vessel journeys.

The assumptions of the problem are listed below:
• Vessels may enter the system at any time instant k ∈ K.

Once they have been scheduled through all bridges, they
are no longer taken into consideration.

• Clearance under bridges (measured from water surface
to bridge underside) is not sufficient for vessels to sail
below bridges while these are closed.

• Multiple vessels may pass a bridge simultaneously
provided that their combined width does not exceed the
nominal width of the bridge.

• Choice of time step size is sufficiently large for vessel
i to pass through bridge j in one time step with zero
dwell time, ∀i ∈ B,∀j ∈ V . This also allows to consider
that bridges are either open or closed.

The objective of this paper is to compute a set of schedul-
ing decisions u

(i,j)
k ∈ {0, 1}, which are defined as follows:

u
(i,j)
k =


1 if vessel j is scheduled to

pass bridge i at instant k,

0 otherwise.
(1)

Binary decisions u
(i,j)
k , which can also be referred to

as manipulated variables or control inputs, appear naturally
in scheduling problems of different nature, e.g., microgrid
operation [10], production plant scheduling [11] and material
allocation [12]. The objective of the dynamic bridge opening
scheduling problem is to determine u

(i,j)
k to satisfy optimal

vessel passage times as much as possible. These decisions
are then communicated to vessels, and are also used to
elaborate bridge opening schedules, which are provided to
bridges. Vessels and bridges are assumed to abide by the
scheduling decisions. Note that decisions that deviate from
optimal passage times may require vessels to adjust voyage
settings to comply with the solution, but this is out of the
scope of the paper.

III. PROPOSED APPROACH

The proposed solution to the dynamic bridge opening
scheduling problem consists of two parts. A control-oriented
model of the IWT problem in the presence of movable
bridges is derived first. Then, the original scheduling problem

is recast as an optimization-based control problem, and
makes use of the control-oriented model to determine optimal
passage decisions.

A. Control-oriented model
The width occupancy evolution of bridge i can be de-

scribed using the following discrete-time equation, ∀i ∈ B:

x
(i)
k+1 = x

(i)
k +

∑
j∈V(i)

k

v(j)u
(i,j)
k

︸ ︷︷ ︸
current resource booking

−
∑

j∈V(i)
k−1

v(j)u
(i,j)
k−1

︸ ︷︷ ︸
delayed resource release

, (2)

where x(i)
k ∈ R [m] represents the width occupancy of bridge

i at time instant k, ∀i ∈ B,∀k ∈ K. This occupancy can be
defined as the amount of bridge width that is utilized by
vessels to sail through at each time instant. Moreover, v(j)

was defined as the width of vessel j in Section II.
Equation (2) can be viewed as a width occupancy bal-

ance, whereby the current occupancy of bridge i, i.e., x(i)
k ,

increases at the next time instant, i.e, x(i)
k+1, as a result of

decisions u(i,j)
k = 1, ∀j ∈ V(i)

k . However, the last assumption
in Section II stated that vessel passage through bridges is
done in a single time step. Therefore, inclusion of delayed
control actions u(i,j)

k−1 , which were determined at the previous
time instant k − 1, accounts for resource release to reset
bridge width occupancy.

The set of vessels V was originally defined as static,
whereas Vk and Vk−1 in Eq. (2) evince a dynamic nature. As
vessels may enter and leave the system at any time instant
k ∈ K, the set of vessels to be scheduled is time-varying
and is therefore denoted as Vk, with |Vk| = mk. Moreover,
Vk can be decomposed into non-overlapping subsets V(i)

k

such that Vk =
n⋃

i=1

V(i)
k , with V(i)

k ≜
{
j : z

(i,j)
k = 1

}
,∀i ∈

B,∀k ∈ K.
In order to track the vessel position in a qualitative manner,

the term z
(i,j)
k is introduced to indicate the next bridge to be

passed by each vessel, ∀i ∈ B,∀j ∈ Vk,∀k ∈ K, and is
defined as follows:

z
(i,j)
k =


1 if bridge i is the next bridge en

route for vessel j at instant k,

0 otherwise.
(3)

Although u
(i,j)
k and z

(i,j)
k might appear somewhat similar,

z
(i,j)
k = 1 indicates that vessel j can pass through bridge
i at time instant k, while u

(i,j)
k = 1 indicates that vessel j

does pass through bridge i at time instant k, ∀i ∈ B,∀j ∈
Vk,∀k ∈ K.

To capture bridge-vessel passage operations in more detail,
two additional variables ω

(j)
k and s

(i)
k are introduced. On

the one hand, ω
(j)
k ∈ {0, 1} denotes whether vessel j has

been scheduled through the last bridge before reaching the
destination, ∀j ∈ Vk, and is defined as follows:

ω
(j)
k =


1 if vessel j has been scheduled

through last bridge at instant k,
0 otherwise.

(4)
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On the other hand, s(i)k ∈ {0, 1} indicates whether bridge i
is open or closed at time instant k, and is defined as follows:

s
(i)
k =

{
1 if bridge i is open at instant k,
0 otherwise.

(5)

Variable s
(i)
k is introduced to simplify the design of certain

constraints, but is in fact linked to u
(i,j)
k . Although this is

discussed later on in this section, it is convenient to note here
that bridge i should only be open if and only if at least one
vessel is scheduled through bridge i at that time instant.

It should be apparent at this point that the scheduling
problem should be designed in such way that logical in-
compatibilities are forbidden. To clarify this, suppose that
z
(i,j)
k = 1 for a certain bridge i and vessel j at time

instant k. Then, the scheduling problem should be endowed
with a mechanism that necessarily sets u

(l,j)
k equal to 0 for

l ̸= i. Note also that u
(i,j)
k may or may not be set equal

to 1 depending on other factors, e.g., τ (i,j)e , τ (i,j)o and other
operational constraints provided hereunder.

Logic rules involving the variables defined in Eqs. (1),
(3)–(5) can be described by means of linear equations and
(in)equalities [13]. Several propositional logic expressions
that characterize the correct operation of the system are
identified below for the dynamic bridge opening scheduling
problem. Then, the systematic approach detailed in [14,
Eqs. (5)–(8)] allows to transform a logic expression into
its equivalent conjunctive normal form. Conversion of the
resulting conjunction of clauses into linear (in)equalities is
then straightforward, see [14, Table 1]. Then, the following
logic rules can be stated for all bridges i ∈ B, vessels j ∈ Vk
and time instants k ∈ K:

• If bridge i is not the next bridge en route for vessel
j at time instant k, then vessel j cannot be scheduled
through bridge i at time instant k. This can be formally
stated as:

(
z
(i,j)
k = 0

)
→

(
u
(i,j)
k = 0

)
. The equivalent

constraint is

z
(i,j)
k − u

(i,j)
k ≥ 0, ∀i ∈ B,∀j ∈ Vk,∀k ∈ K. (6)

• At time instant k, vessel j either has a single bridge
immediately en route or has already been assigned to all
bridges. This can be formally stated as:

(∑n
i=1 z

(i,j)
k

)
⊕

ω(j), where ⊕ denotes the logical XOR operation. The
equivalent constraint is

n∑
i=1

z
(i,j)
k + ω

(j)
k = 1, ∀j ∈ Vk,∀k ∈ K. (7)

• If bridge i is the next bridge en route for vessel j at time
instant k and vessel j is not scheduled through bridge i
at time instant k, then bridge i will be the next bridge
en route for vessel j at time instant k + 1. This can be

formally stated as:
((

z
(i,j)
k = 1

)
∧
(
u
(i,j)
k = 0

))
→

(
z
(i,j)
k+1 = 1

)
. The equivalent constraint is

−z(i,j)k + u
(i,j)
k + z

(i,j)
k+1 ≥ 0, ∀i ∈ B,∀j ∈ Vk,∀k ∈ K.

(8)
• If vessel j is scheduled through bridge i at time instant

k and bridge i is not the last bridge, then bridge i+1 will
be the next bridge en route at time instant k+1. This can
be formally stated as:

(
u
(i,j)
k = 1

)
→

(
z
(i+1,j)
k+1 = 1

)
.

The equivalent constraint is

z
(i+1,j)
k+1 − u

(i,j)
k ≥ 0, ∀i ∈ B \ {n},∀j ∈ Vk,∀k ∈ K.

(9)
• If vessel j is scheduled through bridge i at time instant

k and bridge i is the last bridge, then vessel j has been
completely scheduled at time instant k+1. This can be
formally stated as:

(
u
(i,j)
k = 1

)
→

(
ω
(j)
k+1 = 1

)
. The

equivalent constraint is

ω
(j)
k+1 − u

(i,j)
k ≥ 0, i = n,∀j ∈ Vk,∀k ∈ K. (10)

• If earliest passage time of vessel j through bridge i
is greater than time instant k, then vessel j cannot be
scheduled through bridge i at time instant k. This can be
formally stated as:

(
k ≤ τ

(i,j)
e − 1

)
→

(
u
(i,j)
k = 0

)
.

The equivalent constraint is

k ≥ u
(i,j)
k

(
τ (i,j)e − 1

)
+ 1, ∀i ∈ B,∀j ∈ Vk,∀k ∈ K.

(11)
• Bridge i should only be open at time instant k if

and only if at least one vessel is scheduled through
bridge i at time instant k. This can be formally stated
as:

(
s
(i)
k = 1

)
←→

(∑
j∈Vk

u
(i,j)
k ≥ 1

)
. The equivalent

constraint is

s
(i)
k ≤

mk∑
j=1

u
(i,j)
k ≤ mks

(i)
k , ∀i ∈ B,∀k ∈ K, (12)

and mk is the number of vessels to be scheduled at time
instant k.

• If bridge i was open at instant k − 1 and closes at
instant k, then bridge i must remain closed during
at least N

(i)
down consecutive time instants. This can be

formally stated as:
(
s
(i)
k−1 − s

(i)
k = 1

)
→

(
s
(i)
l = 0

)
.

The equivalent constraint is

s
(i)
k−1−s

(i)
k ≤ 1−s

(i)
l , ∀i ∈ B,∀j ∈ Vk,∀k ∈ K, (13)

and l = k, ...,min
(
k +N

(i)
down − 1, T

)
, where T is

the scheduling horizon. In a receding horizon control
approach such as the one considered in Section III-B,
T equals the prediction horizon, denoted as Hp.

Equations (11) and (12) are the result of implications be-
tween a variable and an inequality. This requires to introduce
a tolerance ε and a lower (upper) bound c (C): ε can be set
equal to 1 should the coefficients and variables be integers
[15, p. 170], and c (C) can be computed as the lower (upper)
inequality bound [15, p. 171].
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In addition to the previous constraints, the following
physical and operational constraints must also be observed:

• Maximum bridge width capacity must be respected:

0 ≤ x
(i)
k ≤ b(i), ∀i ∈ B,∀k ∈ K. (14)

• Bridge i can remain open during at most N (i)
up consec-

utive time instants:
min(k+N(i)

up ,T)∑
l=k

s
(i)
l ≤ N (i)

up , ∀i ∈ B,∀k ∈ K. (15)

B. Scheduling strategy: design and implementation

The scheduling strategy is designed as an optimization-
based control problem. Therefore, an appropriate perfor-
mance function is required so that its value can be optimized
while fulfilling constraints (2), (6)–(15), yielding optimal
scheduling decisions.

Scheduling error minimization is the operational objective
considered in this work, and can be defined as the sum of
differences between optimal passage times and scheduling
decisions. The quadratic error is chosen to be penalized in
this paper, which can be mathematically expressed as

Jk =

n∑
i=1

mk∑
j=1

(
ku

(i,j)
k − τ (i,j)o

)2

, ∀k ∈ K. (16)

Given the fact that u
(i,j)
k is dimensionless, it cannot be

directly compared to τ
(i,j)
o , which has discrete time units.

Therefore, u(i,j)
k is multiplied by the discrete time instant k.

Then, Jk is minimized when vessel j is scheduled through
bridge i at time instant k = τ

(i,j)
o , ∀i ∈ B,∀j ∈ Vk,∀k ∈ K.

The model predictive scheduling problem can then be
formulated as

min{
u
(i,j)

l|k

}k+Hp−1

l=k

J
(
u
(i,j)
l|k

)
(17)

subject to

constraints (2), (6)–(15), ∀i ∈ B,∀j ∈ Vk,∀k ∈ K,
x
(i)
k|k = x

(i)
k , ∀i ∈ B,

z
(i,j)
k|k = z

(i,j)
k , ∀i ∈ B,∀j ∈ Vk,

ω
(j)
k|k = ω

(j)
k , ∀j ∈ Vk,

with
{
u
(i,j)
l|k

}k+Hp−1

l=k
≜

{
u
(i,j)
k|k , u

(i,j)
k+1|k, · · · , u

(i,j)
k+Hp−1|k

}
,

where k, l and k+ l|k represent the current time instant, the
time instant along the prediction horizon, and the predicted
value of the variable at instant k + l using information
available at instant k, respectively. According to the receding
horizon philosophy, only u

(i,j)
k|k is applied to the system.

Problem (17) is solved again at the next time instant to
utilize updated information, thus transforming the original
open-loop approach into a closed-loop one [16].

Algorithm 1 sketches the main implementation details
to solve the dynamic bridge opening scheduling problem.
Problem initialization is such that all bridges are assumed to

Algorithm 1 Model predictive scheduling implementation

Input: b(i), N (i)
up , N (i)

down, v(j), τ (i,j)e , τ (i,j)o , ∀i ∈ B,∀j ∈ Vk
Output: u

(i,j)
k , ∀i ∈ B,∀j ∈ Vk,∀k ∈ K

1: Set k = 1 and define x
(i)
1 = 0, z(1,j)1 = 1 and ω

(j)
1 = 0,

∀i ∈ B,∀j ∈ V1
2: while mk > 0 do
3: Design and solve problem (17) considering Vk
4: Extract u

(i,j)
k|k and determine x

(i,j)
k+1 , z

(i,j)
k+1 , ω

(j)
k+1 and

s
(i)
k using Eqs. (2), (6)–(15)

5: if ω(j)
k+1 = 1 then

6: Vessel j has been scheduled through last bridge:
delete from the list

7: else
8: Vessel j has not been scheduled through last bridge:

keep in the list
9: end if

10: k ← k + 1
11: Add vessels entering the system at time instant k+ 1

to the list of vessels and initialize as in Step 1
12: Define V(i)

k+1 using the result of Steps 8 and 11
13: end while

be completely available, and all vessels must initially pass
through the first bridge. As mentioned before, the number
of vessels to be scheduled varies over time. Therefore, a
new problem must be created at every time instant for the
vessels present in the system. This process is repeated until
all vessels have been scheduled through all bridges and there
are no new vessels to be scheduled. Execution of Algorithm 1
concludes when this condition is met.

IV. CASE STUDY

The case study presented in [9] is used to test the
scheduling approach presented in Section III. The waterway
is described first, together with the main features of vessels
and bridges. Then, the scheduling solution is discussed.

A. System description

The Rhine-Alpine corridor connects major economic cen-
ters such as Brussels and Antwerp, the Randstad region,
the Rhine-Ruhr and Rhine-Neckar regions, and Milan and
Genoa. It constitutes one of the busiest European freight
routes, joining the Rotterdam and Antwerp ports to the
Mediterranean basin. Furthermore, its throughput represents
19% of EU’s total GDP [17].

The Beneden Merwede is a river stretch within the
Rhine-Alpine corridor that runs between Dordrecht and
Hardinxveld-Giessendam (the Netherlands). A schematic
representation is provided in Figure 1. Data regarding road
and railway movable bridges are provided in Table I. Given
the small inter-bridge distance between the first and second
bridge, these are scheduled as a single bridge, and thus the
results will be identical.

Fifty vessels sail from Dordrecht to Hardinxveld-
Giessendam, passing through the four bridges during nav-

850

Authorized licensed use limited to: TU Delft Library. Downloaded on October 23,2023 at 13:39:36 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
MOVABLE BRIDGES IN THE BENEDEN MERWEDE

Bridge (number and name) Width [m] Maximum up-time [min] Minimum down-time [min] Approx. distance from previous bridge [m]
(1) Traffic bridge Dordrecht 44 10 15 –
(2) Railway bridge Grotebrug 44 10 15 50
(3) Traffic bridge Papendrecht 30 10 10 4500
(4) Railway bridge Baanhoek 30 15 5 2500

 

(1) 

(2) 

(3) (4) 

Fig. 1. Schematic representation of the Beneden Merwede (source:
https://vaarweginformatie.nl/)

igation. Values of vessel widths are aligned with the CEMT
class of the waterway, and earliest and optimal bridge pas-
sage times are generated according to inter-bridge distances.

B. Results

Passage times of the fifty vessels through the four bridges
are determined by applying Algorithm 1. Results are ob-
tained in Matlab R2020b using Gurobi Optimization 9.1.2
and YALMIP [18]. A time step size of five minutes and
a prediction horizon Hp = 1 hour are selected. Although
discrete times are denoted with integers, these values are
translated into corresponding five-minute time intervals to
simplify result visualization and analysis.

Figures 2, 3 and 4 depict the scheduling results for the
first and second bridges, third, and fourth bridge, respec-
tively. Note that information provided to vessels and the
corresponding bridge is shown in the same figure. On the one
hand, vertical green bars represent time slots during which
bridges are open. On the other hand, earliest, optimal and
scheduled vessel passage times are depicted as red, black and
blue horizontal bars, respectively, and their width equals one
time step, i.e., five minutes. In the event that the scheduled
passage matches optimal vessel plans, the overlap is resolved
by plotting the scheduled passage time.

Analysis of the results shows that vessels are scheduled as
close to optimal passage times as possible while guaranteeing
constraint fulfillment. All vessels are scheduled after their
earliest passage times. No vessel is scheduled outside bridge
opening timetables, and bridges are only open during the
time steps vessels pass bridges. Maximum up-times and min-
imum down-times specified in Table I are respected, which
leads to uneven bar widths in contrast to [9]. Maximum
bridge width occupancy is respected, as shown in Figure 5.
Furthermore, a delay of one sample between scheduling
decisions and width occupancy of bridges can be noticed
upon inspection of Figures 2–5, in accordance with Eq. (2).

Fig. 2. First and second bridges: τ (i,j)e (red), τ (i,j)o (black), u(i,j)
k (blue)

and opening slots (green vertical bars)

Fig. 3. Third bridge: τ (i,j)e (red), τ (i,j)o (black), u(i,j)
k (blue) and opening

slots (green vertical bars)

A quantitative result analysis is carried out on the basis of
the following key performance indicators (KPIs): percentage
of vessels scheduled at their optimal passage time and rela-
tive bridge width occupancy during opening (minimum, max-
imum and average). The values are summarized in Table II.
On the one hand, it is interesting to note that satisfaction of
optimal passage plans for the largest bridges, i.e., bridges
1 and 2, are the lowest. This can be explained—at least
partially—by the fact that these two bridges are characterized
by the strictest maximum up-times and minimum down-
times. On the other hand, relative bridge width occupancy
shows both that no bridge is overcapacitated and that vessel
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Fig. 4. Fourth bridge: τ (i,j)e (red), τ (i,j)o (black), u(i,j)
k (blue) and opening

slots (green vertical bars)

Fig. 5. Width occupancy of all bridges

passage is carried out in a similar manner for all bridges.

V. CONCLUSIONS AND FUTURE RESEARCH

This paper presented the design of a model predictive
scheduling strategy to coordinate inland vessel navigation
and movable bridge operation to render waterborne transport
more competitive. A control-oriented model of the problem
was formulated, paying special attention to logic expressions
that govern system behavior. A systematic approach to
convert the expressions to mathematical (in)equalities was
employed, and the resulting model was used to create a

TABLE II
VALUES OF KEY PERFORMANCE INDICATORS (KPIS)

KPI Value (in percentage)
Bridges 1 and 2 Bridge 3 Bridge 4

Percentage of vessels scheduled
at their optimal passage time 34 48 72

Relative bridge
width occupancy

Minimum 15 16.83 16.83
Maximum 96.14 98 98.83
Average 55.41 49.25 49.16

predictive scheduling strategy that determined vessel passage
times and bridge operation timetables ensuring coordination.

Several research avenues can be explored on the basis
of the results presented in this paper. On the one hand,
vessel voyage plans are characterized by a certain degree
of uncertainty, which may be aggravated by the presence
of vessels that do not perform V2I communication, e.g.,
recreational boats. Robust and stochastic control approaches
will be considered to mitigate the uncertainty. On the other
hand, operational objectives from the standpoint of bridges
will be included in the cost function, and the use of Pareto
optimization will be explored to determine satisfactory trade-
off solutions.
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