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Abstract—The majority of computer vision architectures are
developed based on the assumption of the availability of good
quality data. However, this is a particularly hard requirement
to achieve in underwater conditions. To address this limitation,
plenty of underwater image enhancement methods have received
considerable attention during the last decades, but due to the lack
of a commonly accepted framework to systematically evaluate
them and to determine the likely optimal one for a given
image, their adoption in practice is hindered, since it is not
clear which one can achieve the best results. In this paper,
we propose a standardized selection framework to evaluate the
quality of an underwater image and to estimate the most suitable
image enhancement technique based on its impact on the image
classification performance.

Index Terms—computer vision, underwater image enhance-
ment, image processing

I. INTRODUCTION

State-of-the-art image processing methods are gaining trac-
tion rapidly for underwater applications. Advanced tech-
niques are emerging from the latest achievements in the
field of computer vision. Enabled by the latest computer
vision advancements, novel, sophisticated, underwater image
processing methods have been developed, allowing underwater
robotic vehicles to perceive their surrounding environment
in order to achieve particularly complex tasks, such as litter
detection, equipment inspection, fish monitoring, and tracking
of ecosystems. Yet, an interesting paradox hovers over the
development of underwater image processing techniques: the
more approaches emerge, the less straightforward it is to

This work was supported in part by the European Union’s Horizon 2020
Research and Innovation Programme under Grant 871295 (SeaClear), in
part by the European Union under the Horizon Europe Programme (Grant
Agreement 101093822 - SeaClear2.0), and in part by the European Research
Council (ERC) under the European Union’s Horizon 2020 Research and
Innovation Programme under Grant 101018826-CLariNet.

determine which one is the most suitable to be implemented
in each case.

More specifically, the fast pace of computer vision break-
throughs has accelerated the spread of image processing
techniques in underwater applications in order to compensate
for the degraded visibility conditions in the water. In general,
the quality of underwater images is particularly low, due to
various distortions caused by absorption, scattering, and other
characteristics that effect the vision under the water. Due to
the water, which is a particularly complex and inhomogeneous
medium and also due to absorption and scattering of light,
less light can enter a camera during image captioning, in
comparison with an environment without water. An example
to illustrate the degraded underwater visibility conditions is to
consider that knowing the true color of an object underwater is
almost not possible even for humans, since in these conditions,
human vision is distorted as well.

Underwater image enhancement is a key technology in
compensating for the poor visibility conditions and enabling
underwater robots to perform complex tasks autonomously.
However, the degradation variations among different water
environments hinder the process of selecting the enhancement
technique that is most suitable to be implemented in each
case [9]. Furthermore, the currently existing underwater Image
Quality Assessment (IQA) metrics, especially the ones that
do not take into account a reference image (no-reference),
have not yet been validated with respect to their relation to
the performance of computer vision tasks. In other words,
IQA metrics do not evaluate an enhancement method on
the basis of the performance increase they yield for image
classification, which is a fundamental objective of employing
image enhancement approaches.

The aim of this work is to present a standardised analysis of
the impact of image enhancement techniques on underwater

 
 
979-8-3503-3226-1/23/$31.00 ©2023 IEEE

O
C

EA
N

S 
20

23
 - 

Li
m

er
ic

k 
| 9

79
-8

-3
50

3-
32

26
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

O
C

EA
N

SL
im

er
ic

k5
24

67
.2

02
3.

10
24

47
10

Authorized licensed use limited to: TU Delft Library. Downloaded on October 23,2023 at 13:56:57 UTC from IEEE Xplore.  Restrictions apply. 



images as well as to propose an automated framework that
evaluates the quality of an underwater image and estimates
the best image enhancement technique based on the impact of
each technique on the image classification performance. The
potential advantages of this framework are also discussed. Our
analysis is complementary to the existing works in the field
of underwater image enhancement. The key differences are
that (1) our focus is different and is primarily on integrating
the impact on the image classification performance, (2) we
introduce an automated selection approach for categorizing
image enhancement techniques based on the image classi-
fication performance, and (3) we provide valuable insights
about the image enhancement effect during pre-processing and
post-processing of the training data. Specifically, this work
includes five main steps:

• We implement three image enhancement techniques to
raw underwater image data namely Fusion [2], as well as
the neural networks WaterNET [5], and Cast-GAN [8],
and we generate an image dataset for each implemented
technique.

• We evaluate a convolutional neural network (CNN) that
performs image classification on each one of the above-
mentioned generated datasets [15].

• We propose an image quality assessment method based
on the image classification performance of the trained
CNN.

• We analyze the quality of an underwater image in terms
of comparing the performance of human-based image
classification, algorithmic-based image classification, as
well as, in terms of the respective quality rated by
underwater image quality metrics.

• We train an additional supervised classification model
that relates images, their IQA metrics, and the CNN’s
performance with image enhancement techniques.

The paper is organized as follows: Section II presents an
overview of necessary preliminary knowledge. In Section III
the proposed scheme is presented and analyzed. In Section IV
the implementation of the proposed architecture is presented.
Section V demonstrates the results and Section VI gives
concluding remarks and an outlook to future work.

II. PRELIMINARIES

This section presents some background and material with
regards to evaluation metrics and methods that are analysed
within this study.

A. IQA Metrics

Performance validation and comparison among underwater
image enhancement methods remains a largely unexplored
research area. As an alternative to commonly used subjective
tests, IQA metrics are implemented as objective measures
to quantify perceptual quality [9]. Underwater IQA metrics
measure colour and contrast degradation. Then they quantify
the perceived image quality via image attributes related to
the degradation in water and they combine image attributes
to mimic human preferences in the enhanced images. IQA

metrics that are commonly used to assess the quality of
enhanced underwater images are Underwater Image Qual-
ity Measure (UIQM) [11], Underwater Color Image Quality
Evaluation (UCIQE) [16], and Colorfulness, Contrast, and
Fog density index (CCF) [14]. However, it has been reported
that underwater-specific IQA measures do not satisfactorily
rate the quality of enhanced underwater images as it is not
clear whether a high IQA metric value can guarantee high
performance in the achievement of computer vision tasks [9].

B. Underwater Image Enhancement Methods

A number of image enhancement methods for underwater
applications has been applied in this work, including both
physics-based and neural-network-based ones. Fusion [2] is
an effective technique that derives two images from a white-
balanced version of the original, degraded input image and
then it merges them based on a multi scale fusion algorithm.
Cast-GAN [8] develops an underwater image enhancement
method based on a generative adversarial network. Cast-GAN
uses the trained generator to remove the colour cast from
underwater images, without distorting the colour of water
regions. Finally, WaterNET [5] proposes an enhancement
framework based on a convolutional neural network. More
specifically, in this technique, three versions of an underwater
degraded image are generated by applying white balance [1],
histogram equalization [17] and gamma correction [7] algo-
rithms to it. Three confidence maps are extracted accordingly
to these three versions of the original image by using a
convolutional neural network. In this way, the neural network
architecture learns three confidence maps that are subsequently
used to combine the three versions into an enhanced result.

III. PROPOSED SELECTION SCHEME

The selection pipeline is a classification model that relates
an image with the best image enhancement technique to be
implemented (Fig. 1). The approach is based on the Support
Vector Machines (SVM) algorithm [3], which is a machine
learning technique that maps the data to a higher dimensional
space by using a so-called kernel function and searches for
a hyperplane to distinctly separate the data points. The data
points that are nearest to the hyperplane and are used to make
the decision are called support vectors. Some examples of
kernel functions for two data points (xi, xj) are the linear
kernel:

K(xi, xj) = x⊺
i xj + c, (1)

the polynomial kernel:

k(xi, xj) = (γx⊺
i xj + c)d, γ > 0, (2)

and the radial basis function (RBF)

k(xi, xj) = e−γ∥xi−xj∥2

, γ > 0, (3)

where γ, c are kernel parameters and d is the degree of the
polynomial.
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Fig. 1. Selection pipeline concept.

IV. METHODOLOGY

In this section, the implementation of the proposed frame-
work is discussed. The dataset generation process, as well
as the procedure followed for the CNN training and the
implementation of the selection pipeline are explained.

A. Dataset Synthesis

In order to generate our dataset, two main aspects are taken
into account:

• A broad range of underwater scenes, diverse characteris-
tics of quality degradation, as well as a great variety of
image content should be considered.

• The ultimate objective of this study is to assist in the
task of underwater litter detection. Hence, the image
data contain observations of 4 categories, namely animal,
plant, Remotely Operated Vehicle (ROV), and trash.

The dataset is synthesized by real-world underwater images
that were collected from different sea areas and by different
cameras. More specifically, 300 images come from Trash-
Can public dataset [4]. TrashCan is sourced from the J-EDI
(JAMSTEC E-Library of Deep-sea Images) dataset [12], by
the Japan Agency of Marine Earth Science and Technology
(JAMSTEC) and it contains videos from ROVs, largely in the
sea of Japan. The visibility conditions of TrashCan images are
considered as good. Furthermore, 300 additional images are
generated from measurements in the sea area by Marseille,
France. The visibility conditions in this area are worse com-
pared to TrashCan.

Moreover, 600 images are taken from Dubrovnik, Croatia.
The sea areas there have in general very clear visibility
conditions. Two experiments were conducted with different
hardware and camera equipment, leading to the collection
of 300 images from each experiment. The two experiments
were different in terms of various conditions such as, water
conditions and equipment involved. As a result, the first 300
images showcase different characteristics in comparison to the
remaining 300 images. We have thus constructed a diverse
dataset of in total 1200 real-world underwater images, which is
used in order to conduct our comprehensive study with regards
to analysing the image enhancement techniques.

We then implement the image enhancement techniques
to the raw underwater images and we generate an image
dataset for each implemented technique (Fig. 2). In total,
we generate four datasets, i.e. raw, Fusion, Cast-Gan, and
WaterNET datasets.

B. CNN Training

Considering our purpose to analyze underwater image en-
hancement methods with respect to their impact on the perfor-
mance of computer vision tasks, we consider a deep-learning-
based image classification approach, where the images are fed
to a CNN, which in turn predicts their category. Our aim is
to train a neural network capable of classifying each sample
among the 4 available categories. It is a common practice to
initialize the network’s parameters using the weights as derived
from training on another relatively similar task. In our case, we
use the weights that are pretrained on the COCO (Microsoft
Common Objects in Context) dataset [10] . COCO is a large-
scale image dataset containing 328,000 images of everyday
objects and humans. The dataset contains annotations that are
widely used to train machine learning models to recognize,
label, and describe objects.

Regarding the CNN architecture, YOLOv6 [6] is se-
lected, which is one of the state-of-the-art CNN architectures.
YOLOv6 is chosen since it is a real-time architecture with
not only large accuracy but also fast inference speed. It is
a single-stage object detection framework mostly focusing
on industrial applications, with hardware efficient design and
better performance than its predecessors [13].

In order to evaluate the image enhancement methods, the
following two experiments are performed:

1) Training a CNN for each processed dataset: As a first
step, we train YOLOv6 on each one of the four processed
image datasets (Fig. 2). Having the four CNN networks, we
aim to evaluate the impact of each enhancement technique on
the feature space representation and its resulting effect on the
learning process.

Training

Evaluation

Method 1

Method 2

Method 3

Method 4

Data preparation

Fig. 2. Training a CNN architecture for each processed dataset.

2) Training a CNN on raw data: In the second experiment,
we train YOLOv6 on raw TrashCan data and then we evaluate
it on each of the four datasets. With this experiment, we
aim to investigate whether a technique can operate as a post
processing technique, allowing to employ pre-trained neural
networks from other applications. This experiment aligns with
enhancing human-based perception on image classification.
However, neural-network-based perception vastly depends on
the data that it has been trained on, and hence, we want
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to investigate whether shifting the data distribution might
deteriorate the performance.

Data preparation Training Evaluation

Method 1

Method 2

Method 3

Method 4

Fig. 3. Training a CNN architecture on raw image data and evaluating it on
enhanced image data

C. Selection Framework

Before training the classification model, we implement data
augmentation to the image samples, in order to enlarge our
dataset. The original dataset contains around 230 images
coming from the validation set of the previously described
dataset. The augmentation that is performed includes the
implementation of image transformations such as rotation,
horizontal flip and transpose operations.

Based on the trained CNN architectures and the classifi-
cation achieved per image, the multi-class SVM is applied
to relate images with the best enhancement technique. The
implementation is based on the scikit-learn library from
Python programming language. We explore two variations
of this architecture by adjusting the input features provided
to the algorithm in order to learn the mapping between
an image and the best enhancement approach: (i) In the
first variation, the input features used are the pixel values
corresponding to the hue (Hue), saturation (Saturation), and
brightness (Value/Brightness) channels. (ii) In the second case,
we perform a training of the SVM architecture by adopting
the IQA metrics (UCIQE, UIQM, and CCF) as features for
the classification task. In this way we perform a faster training
than in the first architecture, since the three IQA values require
much less computational effort to be processed than the pixel
values of the HSV image channels. The dataset is divided
using the ratio of 80:20, where 80 % is for training and 20 %
is for testing.

V. EXPERIMENTAL RESULTS

Our aim is to construct a mapping between a given image
and the respective most suitable image enhancement method,
considering the classification performance. For this reason,
the predicted classification score and the respective difference
with the ground truth per image is extracted. In other words,

the predicted labels for each image are compared with the
ground truth. The result is also compared with the predicted
labels of the image processed by the other methods. For
the images whose labels correspond to the correct ground
truth values, the confidence score is compared with the other
enhancement methods in order to validate which one ensures
the highest confidence. An image enhancement technique is
regarded as the best performing one per each image if it
yields the highest confidence, provided that this confidence
is greater than the confidence of the second best performing
technique with a threshold of 2%. If this threshold difference
is not met, then both of the highest scoring techniques are
considered as best performing ones. The results are depicted in
Fig. 4 and Fig. 5. More specifically, Fig. 4 depicts the number
of images on which each enhancement method reaches the
highest classification score while considering the 2% differ-
ence threshold. This figure corresponds to the first experiment
presented in Section III. We can conclude that the method
Fusion outperforms the rest methods, while WaterNet is the
second best performing method respectively. Finally, CastGan
performs the worst among the four methods.

In addition, Fig. 4 depicts the results obtained from the
second experiment in Section III. From this figure, it can be
observed that the implementation of no enhancement (i.e. just
raw image data) appears to perform the best, compared to any
other image enhancement method. This can be explained by
the fact that the training of the CNN is done on solely raw
data. As a result, the network has learned to best distinguish
the features belonging to each category, when the data are in
raw form. WaterNet is the second best performing approach,
followed by CastGan. It is also noticeable that Fusion achieves
a low performance at this experiment, contrary to the previous
one where it outperformed the other methods.

Furthermore, it should be noted that the score using IQA
metrics is not necessarily proportional to the classification
score. As shown in Fig. 7, the CastGAN appears to outperform
the other methods regarding the UCIQE metric. Nevertheless,
this technique is not one of the top performing ones with
regards to the classification performance. At the same time,
Fig. 6 depicts the performance score per image among the
examined methods in a descending order. As can be seen,
some methods might reach quite a high classification score for
only a few images, while achieving quite a low performance
for the majority of the images.

The classification results are presented in Table I where the
F1-score metric for the two SVM architectures is presented.
Note that in this case, the dataset size limits the possibility
to achieve higher performance in this four-class classification
problem. Hence, in our future work we will consider larger
size datasets.
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Fig. 4. Image enhancement methods evaluation based on four CNN architec-
ture trained on each processed image dataset.
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Fig. 5. Image enhancement methods evaluation based on a CNN architecture
trained on raw image data.
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Fig. 6. Classification score among methods.
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Fig. 7. UCIQE metric per image for each method.

TABLE I
PERFORMANCE OF CLASSIFICATION

f1-score
SVM Classifier - HSV channels as features 41 %
SVM Classifier - IQA metrics as features 46 %

VI. CONCLUSIONS AND FUTURE WORK

In this paper a framework is introduced towards automating
the selection process of the most appropriate underwater image
enhancement method to be implemented on an image and the
impact of these methods on the performance of classification
task is explored. The results show that there is a distinction
between how the human eye perceives the image enhancement
to more easily classify underwater objects and how a trained
neural network increases its classification performance by the
implementation of various techniques. A selection pipeline is
also introduced based on a supervised classification model that
performs a mapping between images, their IQA metrics, and
their likely optimal enhancement technique.

Future work could contain the expansion of the dataset
to further validate the proposed scheme. An additional im-
portant step should concern the implementation and analysis
of more image enhancement methods. Finally, an interesting
future research direction should concern the implementation of
enhancement methods on parts of an image instead of the total
image. This could be achieved if, for example, an image is split
into a number of areas, and for each area the most appropriate
image enhancement technique is implemented accordingly,
instead of applying solely one technique on the total image.
In this way, if only parts of an image are used, and in each
of these parts a different technique is applied, even higher
performance could be achieved, since the texture of an image
usually differs along it and hence, a technique can have a
varying performance among the different image areas.
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