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Scaling DMD modes for modeling Dynamic Induction Control wakes in
various wind speeds

Jonas Gutknecht1,2,∗, Marcus Becker1, Claudia Muscari1, Thorsten Lutz2, Jan-Willem van Wingerden1

Abstract— Dynamic Mode Decomposition (DMD) is a fully
data-driven method to extract a linear system from exper-
imental or numerical data. It has proven its suitability for
modeling wind turbine wakes, particularly those generated with
Dynamic Induction Control (DIC), a method to reduce the
wake deficit by enhancing its mixing with the surrounding flow.
In this context, DMD may be used to build computationally
efficient aerodynamic models suitable for model-based wind
farm control algorithms. However, these standard DMD models
are only valid for the flow conditions of the training data.
This paper presents a novel approach to generalize a DMD
model for DIC wakes from the training wind speed to various
wind speeds by scaling the DMD modes. For this purpose, we
first extract the DMD modes from numerical simulations of a
DIC wake at a constant, homogeneous wind speed. Then, we
adapt the obtained modes to a different wind speed with a
scaling law for the frequency and magnitude derived from the
definition of the Strouhal number. This allows for a versatile,
efficient application of the DMD model in heterogeneous wind
conditions at low computational costs. For validating the
presented method, we model a helix wake at 6 ms−1 based on
the DMD modes from Large Eddy Simulations (LES) at 9 ms−1.
The DMD model coincides at a high level with validation
simulations, resolving even mid- to small-scale structures.

I. INTRODUCTION

Complex dynamic systems, such as fluid flows, are in
many relevant cases governed by low-dimensional dynamics.
These governing dynamics may be extracted by modal de-
composition techniques, which assume, that a system’s state
is a superposition of empirically computed basis vectors, so-
called modes. If the system is governed by low-dimensional
dynamics, the number of modes necessary to approximate
the original state is by magnitudes smaller than the state
dimension of the system. These modes are beneficial in two
ways: (1) they can give valuable insights into the underlying
physical mechanisms of a system, and (2) they can be
extrapolated in time to predict a near future state with low
computational effort [1].
A modal decomposition technique that inherently features
the temporal information about the system is the Dynamic
Mode Decomposition (DMD), which was first described
by Schmid and Sesterhenn [2]. In contrast to the Proper
Orthogonal Decomposition (POD), the standard DMD modes
are not orthogonal, but they are associated with a frequency
specifying their temporal evolution. Thus, the DMD modes
describe the motion of the system from one time instance
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to the next, which makes it favorable for predicting a
future state. Due to its low computational effort, DMD state
prediction is a suitable modeling strategy for model-based
control algorithms.
Stemming from the fluid dynamics community, DMD has al-
ready proven its benefits in wind energy research: Premaratne
and Hu [3] analyzed the wake of a three-bladed wind turbine
obtained from particle image velocimetry experiments in a
wind tunnel, which was evaluated by numerical experiments
from Cherubini et al. [4]. They showed that the near wake
is described by one high-frequent mode with a frequency of
three times the rotational one, while the far wake contains
multiple lower frequent modes.
Besides its huge potential for analyzing a wind turbine wake,
DMD has increasingly attracted attention for wake modeling.
This is particularly relevant when wind turbines are grouped
in wind farms, where some turbines unavoidably operate in
the wake of upstream turbines, which can lead to power
losses of 35 - 40 %, compared to the standalone case [5] and
increased dynamic loads. Veers et al. [6] list the management
of the flow through wind farms to enhance power production
and reduce maintenance costs as one of the three Grand
Challenges that wind energy research needs to address for
a successful global energy transition. State prediction with
the DMD can contribute to estimating these wake effects
and designing wind farm controllers that mitigate them.
Iungo et al. [7] developed such a control-oriented, real-time
applicable model by training a DMD model on high-fidelity
LES simulations of a single wind turbine. Being embedded
in a Kalman filter, their model can incorporate live wind
speed measurements to achieve an overall model accuracy
of ≈ 4%.
Annoni et al. [8] present a model of a two-turbine wind farm
that processes changes in the pitch angle of the upstream
turbine. For this purpose, they apply an advanced version
of the DMD that handles problems with forced inputs and
outputs, called input-output DMD (IODMD). Cassamo and
van Wingerden [9] extend the IODMD with a Koopman
Operator to create a model that reproduces the downstream
turbines’ power dynamics and reconstructs the upstream
turbine wake.
In recent years, research has gone beyond just predicting
wake losses in wind farms by developing novel control
strategies for their mitigation [10]. One promising strategy
is Dynamic Induction Control (DIC), which sinusoidally
excites the blade pitch signals. Whether this signal is in phase
for all the blades or provided with a phase shift provokes a
pulsating (later referred to as pulse) [11] or a helicoidal (later
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referred to as helix)[12] shape in the wake, respectively. Both
enhance the mixing of the wake with the surrounding flow,
which results in a faster recovery of the velocity deficit in the
wake and, consequently, a higher wind speed at downstream
turbines. Frederik et al. [12] observed power gains of up
to 7.5% for a two-turbine array when the upstream turbine
operates with the helix in numerical studies.
Taschner et al. [13] investigated the helix in a two-turbine
array in a conventionally neutral atmospheric boundary layer.
Besides significant collective power gains for increasing
blade pitch amplitudes, they also identified increased damage
equivalent loads on several turbine components. They con-
clude the necessity for an excitation amplitude that balances
both operational parameters. Also in DIC wakes, DMD has
already proven its benefits: Muscari et al. [14] analyzed DIC
wakes with DMD and found that the most dominant modes
fit the excitation frequency of the DIC strategy and its higher
integer harmonics.
The application of DIC in a real wind farm requires a wind
farm controller, which activates pulse or helix on specific
turbines when power gains can be expected. One suitable
control strategy is Model Predictive Closed-Loop control,
which relies on an aerodynamic model to estimate the wind
field in the near future.
The main contribution of this paper is twofold: (1) We
present a technique to generalize DMD modes from the
training case to cases with changed boundary conditions
but the same dimensionless quantities. For this purpose, we
derive a scaling law for the frequencies and the shapes
of the DMD modes. This addresses a crucial limitation
of conventional DMD models, namely that they are only
applicable in boundary conditions similar to the training
data set. (2) We apply this method to model DIC wakes in
cases with equal Strouhal numbers, but different free wind
speeds based on one single LES simulation. This results in a
versatile and efficient aerodynamic model, oriented to model-
based wind farm control algorithms. We test and evaluate this
model with an exemplary case of the helix in a non-turbulent
regime, which is modeled in a free wind speed of 6 ms−1,
based on LES simulations with a free wind speed of 9 ms−1.
The remainder of this paper organizes as follows: Section 2
starts with a closer explanation of the DIC and the DMD
workflow. It closes with a detailed derivation of the novel
DMD mode scaling technique. The simulation setup for the
test case is presented in Section 3, followed by an evaluation
of the DMD mode scaling technique in Section 4. The paper
closes with a conclusion in Section 5.

II. METHODOLOGY

A. Dynamic Induction Control

The blade pitch angles of a wind turbine controlled with
DIC are superimposed with sinusoidal signals. These signals
are usually characterized by the Strouhal number St:

St =
feD
u1

, (1)

where fe denotes the excitation frequency, D the rotor
diameter and u1 the free wind speed. The Strouhal number
was identified as a governing parameter for the impact of
DIC on the wake. Whether the excitation signal is imposed
on the collective pitch angle or the individual pitch angle
results in the following two DIC strategies:

1) Pulse: The pulse results from exciting the collective
pitch angle with a sinusoid. This leads to an oscillation of
the thrust coefficient CT while the orientation of the thrust
remains aligned with the rotational axis. The effects on the
wake are significant: the turbine periodically sheds coherent
vortex rings that continuously decay on their way down-
stream. Munters and Meyers [11] optimized these effects
with an excitation signal with St = 0.25. Even if the pulse
has proven to increase the cumulative power of small wind
farms, it also increases the power and load fluctuations due
to the inherent oscillation of CT .

2) Helix: The helix, first presented by Frederik et al. [12],
achieves recovery effects comparable to the ones achieved
with the pulse, but with lower load and power fluctuations.
In this case, the individual blade pitch is controlled so that
the thrust vector maintains its magnitude. For this purpose,
sinusoidal control signals for the tilt and yaw moments
with a phase shift ∆φ are defined and then transformed to
individual blade pitch signals with a Multi-Blade Coordinate
Transformation (MBC). As the name suggests, this strategy
generates a helicoidal shape in the wake, which rotates
depending on the ∆φ either twisted in counter-clockwise
(CCW) direction (∆φ = π

2 ) or in clockwise (CW) direction
(∆φ = 3π

2 ). The CCW helix was found to be more efficient
than the CW helix when applied to the upstream turbine of a
two-turbine array. With St = 0.25 and a blade pitch amplitude
of 4deg, it increases the cumulative power by up to 7.5%
compared to a baseline case with both turbines controlled
greedily. Additionally, the power and thrust variations are
by factor 2 lower than with the pulse.

B. Standard Dynamic Mode Decomposition
The DMD workflow requires a set of m snapshots x

that represent the states of the system at consecutive time
instances. The origin of these snapshots is irrelevant. The
following description of the DMD workflow is based on [15]
and [1].
In the first step, these snapshots x are arranged into two
column matrices X and X′ in ascending order, such that each
column represents the state of the system at one time-step:

X =


...

...
...

...
x1 x2 x3 · · · xm−1
...

...
...

...

 ,

X′ =


...

...
...

...
x2 x3 x4 · · · xm
...

...
...

...

 ∈ Rn×(m−1),

(2)

where n denotes the number of data points per snapshot.
X′ can be interpreted as the evolution of X one time-step
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∆t further in time. Then, the DMD aims at finding a linear
mapping A that transfers the states in X to their subsequent
states in X′:

X′ = AX, A ∈ Rn×n. (3)

The DMD modes consist of a spatial description, defined by
the eigenvectors of A, and a temporal evolution, or more
specifically, a frequency and a decay rate defined by the
corresponding eigenvalues.
The rank of A is, in most cases, too high to perform
the eigendecomposition directly. Consequently, the DMD
algorithm circumvents computing A by considering a rank-
reduced representation in terms of a POD-projected ma-
trix Ã. For this purpose, the first step of the DMD algorithm
is to perform a Singular Value Decomposition (SVD) of X:

X ≈ UΣV∗, (4)

where * denotes the conjugate transpose, U∈Cn×r, Σ∈Rr×r

and V∗ ∈ Cr×(m−1). U contains the left singular vectors and
Σ the corresponding singular values in descending order
on its main diagonal. The truncation order r < m defines
the dimension of the POD space and, accordingly, how
many singular values are considered in further calculations.
Consequently, r governs the number of extracted DMD
modes and the level of approximation to the underlying
system. A sharp decay of the singular values implies that
the system features low-dimensional dynamics and r can be
chosen relatively small.
Ã is then computed as

Ã = U∗AU = U∗X′VΣ
−1, Ã ∈ Rr×r, (5)

where Ã corresponds to the projection of the full matrix A
onto the POD space. The eigenvalues of A are now obtained
from an eigendecomposition of Ã:

ÃW = WΛ, (6)

where the main diagonal of Λ contains the eigenvalues λ

and the columns of W the eigenvectors. The eigenvalues λ

already describe the temporal evolution of the DMD Modes
in real space. In contrast, W needs to be projected from the
POD space to the real space to obtain the eigenvectors Φ of
A:

Φ = X′V Σ
−1W, Φ ∈ Rn×r, (7)

so that Φ describes the spatial shape of the DMD modes.
In the case of DIC wakes and a suitable dimension of the
DMD subspace r, mode 0 corresponds to the constant mean
flow (Im(Ω) = 0). Mode 1 oscillates with the excitation
frequency fe of the pitch and the subsequent modes are har-
monics of mode 1. The excitation frequency fe is governed
by the Strouhal number St, which is introduced in (1).
The described approach can be formulated as the following
regression problem:

argmin
rank(A)=r

∥∥X′−AX
∥∥

F . (8)

Where A represents a linear best-fit operator that minimizes
the error X′−AX with respect to the Frobenius norm.

C. Conservative DMD

In this work, we use a DMD version that is adapted for
conservative systems, such as energy-preserving flows like
DIC wakes, presented by Baddoo et al. [16]. In contrast to
the standard DMD, the modes obtained with the conservative
DMD are orthogonal, so they oscillate with constant ampli-
tudes over time. For this purpose, A must not change the
energy of the system but only redistribute energy between the
states. This holds if A is unitary, such that the optimization
problem solved by the DMD can be formulated as:

argmin
A∗A=I

∥∥X′−AX
∥∥

F . (9)

where I is the identity matrix. This is known as the orthog-
onal Procrustes problem:

A = UV∗, (10)

where UΣV∗ = YX∗ is the full singular value decomposi-
tion. With slight adaptions, this can be integrated into the
DMD workflow, as presented by Baddoo et al. [16]. As
the DIC wakes are inherently conservative, the conservative
DMD performs better than the standard DMD described in
Section II-B. However, the presented DMD mode scaling
technique is equally applicable to both versions.

D. Future State Prediction with DMD

The DMD modes allow for predicting a system’s future
state by extrapolating the dynamics beyond the time covered
in the training data. Besides the DMD modes (described by
the mode shapes Φ and their temporal evolution Λ), this
requires one initial snapshot x1.
For this purpose, the discrete-time formulation of the eigen-
values λ is reformulated to a continuous-time formulation
ω:

ωk =
ln(λk)

∆t
. (11)

A future state can then be approximated as follows:

x(t)≈
r

∑
k=1

φkeωktbk = ΦeΩtb, (12)

where Ω = diag(ω) is a diagonal matrix that carries the
time-continuous eigenvalues ωk. The mode shapes Φ are
scaled with the initial amplitudes b. This initial condition
is determined with one initial snapshot x1:

b = Φ
†x1 (13)

Since Φ is usually not a square matrix, the Moore-Penrose
pseudoinverse, denoted with †, is used. Typically, the calcula-
tion of pseudoinverse matrices requires a high computational
effort. Hence, multiple state predictions of the same dynamic
system, as in the presented dynamic wake models, can
significantly be accelerated by calculating b separately and
reusing it for all of the required state predictions.
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E. DMD Mode Scaling

To derive the main contribution of this work, the DMD
mode scaling method, we first define the following two DIC
cases:

1) Case 1 is the training case, from which the dynamic
modes (Φ1,Ω1) and the initial amplitudes b1 have been
extracted. The Strouhal number St1 and the free wind
speed u1,1 are known.

2) Case 2 is the case which should be modeled with a
free wind speed u1,2 ̸= u1,1. The DIC strategy and the
Strouhal number St2 = St1 are the same as in case 1.

The previously described technique to predict a future state
with DMD modes is only valid for constant boundary con-
ditions. Consequently, it fails to predict the states of case 2
without having a specific training data set. This represents a
decisive limitation because the DIC wake model must be
applicable at any free wind speed without needing wind
speed-specific training sets. To circumvent that limitation,
we assume that the characteristic dynamics of the DIC
wake scale with the free wind speed. Consequently, the
dynamic modes from case 1 can be adapted to case 2 without
additional training data. For this purpose, the spatial and the
temporal characterization of the dynamic modes are scaled
separately as follows:

1) Scaling of the Spatial Dynamic Characteristics: The
standard DMD workflow already contains a manipulation of
the spatial dynamics in (12) and (13). The mode shapes Φ

are linearly scaled with the initial amplitudes b to incorporate
the boundary conditions given by the initial snapshot x1.
A variation in the free wind speed represents a change in
the boundary conditions. Consequently, the effects on the
spatial characterization of the DMD modes can be addressed
by scaling the initial amplitudes b linearly to the new wind
speed:

b2 =
u1,2

u1,1︸︷︷︸
s

·b1, (14)

where the ratio of u1,2 and u1,1 is considered as scaling
factor s. As the scaling is linear, scaling Φ with s would
lead to the same result.

2) Scaling of the Temporal Dynamic Characteristics:
The fact that case 1 and case 2 feature the same Strouhal
number allows us to derive the following scaling of the DIC
excitation frequency fe:

St1 = St2 ⇒
fe,1D
u1,1

=
fe,2D
u1,2

⇒ fe,2 = fe,1 · s (15)

Note that this derivation results in the same scaling factor s
as in (14). The relevant DMD modes oscillate with the exci-
tation frequency fe and its integer multiples. Consequently,
the scaling with s is similarly valid for the frequencies of the
DMD modes, defined by the imaginary components of Ω:

Im(Ω2) = s · Im(Ω1) (16)

After scaling the DMD modes from case 1 with the scaling
laws described in (14) and (16), they may be used for

predicting a state of case 2 with the standard DMD approach
according to (12). Thus, the DMD mode scaling technique
promises to capture the dominant effects of changed wind
speeds in the DIC wake, with minor modifications of the
DMD modes. The DMD workflow itself remains unchanged,
so the model complexity and computational effort remain
low.

III. DATA GENERATION WITH LES

In this work, the helix wake of one turbine is numerically
simulated at two different wind speeds. A first case with a
free wind speed of 9 ms−1 is used to generate the snapshots
to train the DMD model. In the second case, the free wind
speed is 6 ms−1 and serves as an evaluation for the DMD
mode scaling model.
Both cases are simulated with the Computational Fluid
Dynamics (CFD) toolbox SOWFA (Simulator fOr Wind
Farm Applications) [17], extended with the helix controller
described by Frederik et al. [12]. SOWFA solves the Navier-
Stokes equations with a Large Eddy Simulations (LES)
scheme. In this work, the turbine is modeled with the
Actuator Line Method (ALM). We use the SOWFA setup
from Muscari et al. [14] as presented in Tab. I. The base
mesh has a spatial discretization of 50 m in the far field and
is refined to 3.125 m in the rotor area. Note that a uniform
inflow is chosen and the ground is modeled with a slip wall
boundary condition to get the pure helix dynamics without
additional complexity introduced by turbulence. The helix
controller is switched on after a transient phase of 400 s.
The simulation results are decimated in spatial and temporal

TABLE I: Characteristics of the SOWFA Setup

Turbine DTU 10 MW
D 173.3 m

DIC Strategy helix
St 0.25

Free wind speed u1 9 ms−1 , 6ms−1

Turbulence intensity I0 0 %
Time step ∆t 0.2 s

Simulation time t 2000 s
Domain extension x× y× z 2500 × 1000 × 600 m3

Cell size in rotor area 3.125 m

dimensions to reduce the data volume processed in the DMD.
Besides discarding the transient run-up phase, only every
tenth time-step is considered so that the set of snapshots
contains m = 800 states with a temporal discretization of 2 s.
The spatial dimension is reduced by discarding the coarser
outer flow grid cells and considering only one of four grid
cells in the rotor domain. This results in a domain size of
1712.5×337.5×300 m3 with a cell dimension of 12.5 m,
hence each snapshot contains data at 96600 gridpoints.
The simulation results contain the velocity components u,
v and w in x, y and z direction, respectively, as well as the
pressure p. However, the training-dataset only considers the
velocity component u as it is the only parameter needed for
power estimations of downstream turbines. Ignoring the other
flow dimensions reduces the data volume by 75 % without
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Fig. 1: Influence of the truncation order r on the model
accuracy

sacrificing modeling accuracy. The training data contains 800
timesteps, consequently X,X′ ∈ R96600×799.

IV. RESULTS

A. Model Evaluation

The truncation order r is the governing parameter of the
DMD, as it defines the number of dynamic modes that are
extracted and used for the state reconstruction. Consequently,
it governs both the computational effort and the model accu-
racy. Figure 1 determines its influence on the model accuracy
by investigating truncation orders r ∈ [1,200]. Thereby, the
results are quantified in terms of the Root Mean Square
Error (RMSE), which is calculated based on the element-
wise residuals between the true snapshot matrix X′ and its
reconstruction X′

DMD,i j:

RMSE =

√
1

nm

n

∑
i=1

m

∑
j=1

(X′
i j −X′

DMD,i j)
2 (17)

This happens based on the training data set with a free wind
speed of 9 ms−1. Note that this formulation averages over all
of the contained snapshots meaning that it has no informative
value about the temporal evolution of the model accuracy.
Figure 1 presents an initial drop of the RMSE for r ⪅ 13
before it converges towards a constant value. This is the
typical behavior of a system governed by low-dimensional
dynamics [1]. The relevant dynamics can be described with a
relatively small number of modes, thus, increasing r does not
necessarily improve the accuracy. Consequently, a truncation
order of r = 40 is chosen as a suitable trade-off between
computational efficiency and accuracy.
Table II summarizes the Strouhal numbers of the first five
dynamic modes obtained from the training data set.

TABLE II: Strouhal numbers of the dominant DMD modes

Mode 1 2 3 4 5
Sttheory (-) 0.25 0.5 0.75 1.0 1.25
Stmodel (-) 0.248 0.495 0.743 0.991 1.238

Deviation (%) 0.8 1 0.93 0.9 0.96

As the dynamics excited by the pitch excitation dominate
the DIC wake, the modes should be integer harmonics of
the excitation Strouhal number St = 0.25. The obtained

modes match their theoretical value with minor deviations
of ≤ 1 %, which is sufficient for the application in the
DMD model. Generally speaking, too-high deviations of the
mode frequencies from their theoretical values are expected
to decrease the models’ scalability significantly.

B. Flowfield Prediction

First, the DMD mode scaling approach is validated qual-
itatively in its capabilities to model the wake field. For
this purpose, Figure 2 visualizes a snapshot of the velocity
component u at hub height. The top row shows the SOWFA
validation data at 6 ms−1, followed by the modeled wake
based on the modes from 9 ms−1. The bottom row presents
the local absolute error between the model and the SOWFA
simulation.
Before establishing a quasi-steady behavior, the helix re-
quires an undefined run-up phase in SOWFA, which is not
captured by the DMD model. Consequently, the modeled
wake is not inherently in phase with the validation data but
requires a manual alignment. For this purpose, a phase shift
is induced and optimized manually to minimize the overall
error. Note that this is only required for validation purposes,
but not for the application in a real wind farm. The presented
snapshots represent the state 400 s after the manual alignment
to allow for conclusions on the model accuracy over time.
The wake, modeled with the DMD mode scaling method,
shows high accordance with the validation simulations. The
general shape of the modeled helix is, 400 s after the manual
alignment, still in phase with the validation simulations. This
indicates, that the suggested DMD mode scaling technique
successfully adapts the excitation frequency fe to the new
wind speed. This also results in a suitable manipulation of
the advection speed of the characteristic helix flow structure.
Within the helix wake, even small- and mid-scale structures
with a spatial dimension of 0.25 - 0.5 D are precisely
resolved. This is proven by large areas with a low absolute
error throughout the entire wake. Only in scattered, isolated
areas the absolute error exceeds 1 ms−1. These errors occur
primarily in the downstream regions of x > 5 D, where a
turbulent regime governs the flow. Therefore, we assume
the error spots do not relate to the helix dynamics but to
stochastic turbulences, which are unfeasible for the DMD.
Thus, the evaluation of the flow fields at hub height implies
a considerable potential for DMD mode scaling to generalize
the DMD modes to various wind speeds. It supports the
initial assumption, that a change in the free wind speed
doesn’t change the dominant dynamic characteristics of the
helix fundamentally. They can rather be scaled from the
DMD space to the real space with the suggested velocity-
dependent scaling laws (14) and (16).

C. Mean Velocity at Virtual Downstream Turbine

Even if the DMD model does so, a highly resolved flow
field is not of major importance for the application in an
engineering wind farm model. Here, the focus lies on precise
estimations of the generated power, which is governed by
the wind speed at the rotor plane u2. In this section, the
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Fig. 2: Comparison of the flow fields at hub height at a free wind speed of 6 ms−1. The SOWFA validation data (top row)
is compared to the modeled wake with DMD modes, scaled from 9 ms−1 (middle row).

suitability of the DMD mode scaling method for a control-
oriented model is evaluated by determining the mean wind
speed ū2 over a circular area F of diameter D:

ū2 =
4

πD2

∫∫
F

u dσ , (18)

where dσ denotes one surface element. This approach can
be considered as placing a virtual turbine in the wake
and seeking its effective wind speed. Equation (18) can be
evaluated for multiple consecutive time-steps and thus allows
for an evaluation of the model accuracy over time.
In this work, multiple virtual turbines are directly aligned
with the upstream turbine to evaluate a full wake overlap.
Cases with partial wake overlap or yaw misalignment are
not considered. Figure 3 compares the temporal evolution of
ū2 at four equidistant virtual downstream turbine positions
from the SOWFA validation simulations to the modeled flow.

First, it is noticeable, that the ū2 amplitudes increase
with increasing downstream distance, which is due to the
following: The helix wake rotates constantly, consequently,
the overlap of the wake core with the virtual turbines varies
periodically. In the downstream direction, the crosswind
deflection of the helix wake center increases, so the variation
of the wake overlap with the virtual turbine does the same.
This results in increasing fluctuations of ū2. Thus, Figure 3
represents reasonable evolutions of ū2 and can be used for
evaluating the DMD model.
As implied by the high accuracy in modeling the flow
field at hub height, the modeled temporal evolution of ū2

coincides in a major part with the SOWFA validation data.
Periodicity and magnitude are approximated with a high
level of accuracy. Thereby, the period matches the adapted
excitation period of Te = 118.8 s, which corresponds to
St = 0.25 in the given wind speed of 6 ms−1.
It stands out that at x = 3 D, the DMD model overestimates
ū2 with a constant offset of ≈ 0.055 ms−1, which corresponds
to 0.9% of the free wind speed. The other investigated x-
positions do not show such a clear deviation trend. They
rather follow the shape of the SOWFA validation data with
occasional minor exceptions in the peak areas. It is worth
mentioning, that Figure 3 doesn’t indicate any tendency to a
temporal error growth, which implies that the DMD model
is applicable without any run-time limitations.
Overall, Figure 3 suggests that the DMD mode scaling
technique is a promising model candidate for predicting the
generated power in a wind farm model, as it approximates
the mean velocity with a high accuracy independent of run-
time and downstream position. Nevertheless, further research
is required to evaluate cases with partial wake overlap and
to which degree the results from a virtual turbine hold for
an actual turbine made of solid material.

D. Computational Efficiency

Apart from the model accuracy, also the computational
efficiency is decisive for the applicability of control algo-
rithms. Running on a 12th Gen Intel(R) Core(TM) i7-1265U
Processor with 16 GB RAM, the model needs ≈ 0.002 s to
estimate one timestep. That value is obtained by averaging
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Fig. 3: Validation of the temporal evolution of the mean
velocities at downstream virtual turbines at 6 ms−1.

over 5 simulations of 60 timesteps. The time required for
data generation and training is not considered, as it has no
impact on the computation time in the application phase.

V. CONCLUSIONS AND DISCUSSION

This work presents a method to model dynamic systems
in various boundary conditions based on the dynamics of a
single training case. In the first step, the dominant dynamics
are extracted from the training case with the DMD. Then,
a scaling law is presented to adapt the frequency and mag-
nitude of the obtained dynamic modes to changed boundary
conditions. The scaled modes can then approximate the state
of the system in changed boundary conditions with the
standard DMD state reconstruction workflow.
The method is derived and tested with the dynamics of a DIC
wake of a wind turbine at various wind speeds. Thereby, the
Strouhal number is kept equal in all the cases. It is shown that
the method allows for an accurate reconstruction of the helix
wake at 6 ms−1, based on the dynamic modes extracted from
LES simulations at 9 ms−1, resolving even mid- to small-
scale structures. Besides that, the DMD model approximates
the mean wind speed ū2 at virtual turbines placed at multiple
downstream positions with a high accuracy. Thus, the DMD
mode scaling method represents a promising candidate for a
control-oriented aerodynamic DIC wake model to predict a
wind farm’s power output with low computational effort.
Further research is required to determine the applicability of
the presented method in turbulent flow regimes and different
free wind speeds.
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and S. Leonardi, “Data-driven reduced order model for prediction of
wind turbine wakes,” Journal of Physics: Conference Series, vol. 625,
p. 012009, jun 2015.

[8] J. Annoni, P. Gebraad, and P. Seiler, “Wind farm flow modeling
using an input-output reduced-order model,” in 2016 American Control
Conference (ACC), 2016, pp. 506–512.

[9] N. Cassamo and J. W. van Wingerden, “On the potential of reduced
order models for wind farm control: A koopman dynamic mode
decomposition approach,” Energies, vol. 13, no. 24, 2020.

[10] J. Meyers, C. Bottasso, K. Dykes, P. Fleming, P. Gebraad, G. Giebel,
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