
 
 

Delft University of Technology

Scalable and Decentralized Algorithms for Anomaly Detection via Learning-Based
Controlled Sensing

Joseph, Geethu; Zhong, Chen; Gursoy, M. Cenk; Velipasalar, Senem; Varshney, Pramod

DOI
10.1109/TSIPN.2023.3313818
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Signal and Information Processing over Networks

Citation (APA)
Joseph, G., Zhong, C., Gursoy, M. C., Velipasalar, S., & Varshney, P. (2023). Scalable and Decentralized
Algorithms for Anomaly Detection via Learning-Based Controlled Sensing. IEEE Transactions on Signal and
Information Processing over Networks, 9, 640-654. https://doi.org/10.1109/TSIPN.2023.3313818

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSIPN.2023.3313818
https://doi.org/10.1109/TSIPN.2023.3313818


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



640 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023

Scalable and Decentralized Algorithms for Anomaly
Detection via Learning-Based Controlled Sensing

Geethu Joseph , Member, IEEE, Chen Zhong , M. Cenk Gursoy , Senior Member, IEEE,
Senem Velipasalar , Senior Member, IEEE, and Pramod K. Varshney , Life Fellow, IEEE

Abstract—We address the problem of sequentially selecting and
observing processes from a given set to find the anomalies among
them. The decision-maker observes a subset of the processes at
any given time instant and obtains a noisy binary indicator of
whether or not the corresponding process is anomalous. We develop
an anomaly detection algorithm that chooses the processes to be
observed at a given time instant, decides when to stop taking
observations, and declares the decision on anomalous processes.
The objective of the detection algorithm is to identify the anomalies
with an accuracy exceeding the desired value while minimizing the
delay in decision making. We devise a centralized algorithm where
the processes are jointly selected by a common agent as well as
a decentralized algorithm where the decision of whether to select
a process is made independently for each process. Our algorithms
rely on a Markov decision process defined using the marginal prob-
ability of each process being normal or anomalous, conditioned on
the observations. We implement the detection algorithms using the
deep actor-critic reinforcement learning framework. Unlike prior
work on this topic that has exponential complexity in the number
of processes, our algorithms have computational and memory re-
quirements that are both polynomial in the number of processes.
We demonstrate the efficacy of these algorithms using numerical
experiments by comparing them with state-of-the-art methods.

Index Terms—Active hypothesis testing, deep learning, rein-
forcement learning, actor-critic algorithm, quickest state esti-
mation, sequential decision-making, sequential sensing.

I. INTRODUCTION

W E CONSIDER the problem of observing a given set
of processes to detect the anomalies among them via

controlled sensing. Here, the decision-maker does not observe
all the processes at each time instant, but sequentially selects and
observes a small subset of processes at a time. The sequential
control of the observation process is referred to as controlled
sensing. The challenge here is to devise a selection policy to
sequentially choose the processes to be observed so that the
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decision is accurate and fast. This problem arises, for instance,
in sensor networks used for remote health monitoring, structural
health monitoring, etc [1], [2]. Such systems are equipped with
different types of sensors to monitor different functionalities (or
processes) of the system. The sensors send their observations to
a common decision-maker that identifies any potential system
malfunction. These sensor observations can be noisy due to
faulty hardware or unreliable communication links. Therefore,
to ensure the accuracy of the decision, we employ a sequential
process selection strategy that observes a subset of processes
over multiple time instants before the final decision is made.
Further, the different processes can be statistically dependent
on each other, and as a result, observing one process also gives
information about the other dependent processes. Our goal is to
derive a selection policy that accurately identifies the anomalous
processes with minimum delay by exploiting their underlying
statistical dependence.

A. Related Literature

Anomaly detection problem is a well-studied research topic,
and there are several active sensing schemes for anomaly de-
tection designed to monitor the environments [3], [4], [5], [6].
This framework applies to various applications such as spec-
trum sensing in cognitive radio networks, medical diagnosis,
target localization, and adaptive group testing [7]. A popular
approach for solving this active sequential detection problem is
to use the active hypothesis testing framework [8], [9]. Here, the
decision-maker defines a hypothesis corresponding to each of
the possible states of the processes and computes the posterior
probabilities over the hypothesis set using the observations. The
decision-maker continues to collect observations until the proba-
bility corresponding to one of the hypotheses exceeds the desired
confidence level. The above active sequential detection problem
can be formulated as a dynamic programming problem which is
equivalent to a Markov decision process (MDP). This framework
of active hypothesis testing was introduced by Chernoff in [10]
which dates back to 1959. This seminal work also established
the asymptotical optimality of the test for binary hypotheses.
Later, the asymptotic optimality of the test was extended to
the multiple hypothesis testing problem [11]. Following the
Chernoff test, several other model-based tests were also studied
in the literature [7], [12], [13], [14], [15]. While the detection
accuracy of these algorithms is of significant research interest,
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several studies focus on the sensing costs and/or switching costs
during the detection process [15], [16], [17], [18], [19].

Most of the above works focus on centralized algorithms
where the processes are selected jointly by a common agent.
A few other works discuss the model-based non-adaptive detec-
tion algorithms in a decentralized setting [20], [21], [22], [23],
[24], [25]. Recently, a model-based active hypothesis testing
algorithm was also studied [26]. However, this work considered
the case wherein each sensor estimated the true hypothesis
independently, and the network arrived at a consensus based on
the sensor decisions and associated confidence. This framework
does not address the case wherein one sensor can observe
only one process, and they cooperate to detect all the process
states.

Recently, a new mathematical formulation of the active
hypothesis testing problem based on maximizing the expectation
of average reward of an MDP has been introduced in [27]. This
work studies the theoretical underpinning of the framework,
including the asymptotic optimality of the solution strategies,
and demonstrates the superior performance of the formulation
via a heuristic algorithm compared to the existing methods
such as extrinsic Jensen-Shannon divergence [13] and Chernoff
test-based open loop verification [7], [10], [11]. Further, for
MDPs with finite state and action spaces, the average reward
formulation and discounted reward formulation are equivalent
for sufficiently large discount factors [28]. Based on this
observation, an approximation to active sequential detection
problems as the problem of discounted reward maximization of
an MDP has been proposed in [29]. Following this idea, the ac-
tive hypothesis testing framework has been combined with deep
learning algorithms to design data-driven anomaly detection
algorithms [8], [9], [29], [30]. These algorithms learn from a
training dataset and provide the added advantage of adaptability
to the underlying statistical dependence among the processes.
The state-of-the-art algorithms employ the reinforcement learn-
ing (RL) algorithms such as Q-learning [29] and actor-critic [8],
[9], [30], [31]; and the active inference framework [30].
However, since each process can either be normal or anomalous
(two states per process), the number of hypotheses increases
exponentially with the number of processes, leading to a heavy
computational burden. Hence, we aim for a scalable anomaly de-
tection algorithm with polynomial complexity in the number of
processes.

We note that the above existing literature on deep active
hypothesis testing thus far focuses on centralized algorithms
where the processes are selected jointly by a common agent.
As we mentioned above, centralized algorithms do not scale
with the number of processes. Also, the central decision-making
agent introduces a single point of failure, thus rendering this
architecture is not suitable for monitoring critical applications.
So to handle this problem, we also explore a decentralized algo-
rithm for anomaly detection. In the decentralized version, there
is no common agent that collects the observations and makes the
process selection decisions. Instead, each sensor independently
decides whether or not to observe their corresponding processes.
In short, in this article, we aim to devise a learning-based

controlled sensing framework for anomaly detection with poly-
nomial complexity in the number of processes for the centralized
and decentralized cases.

B. Our Contributions

The specific contributions of the article are as follows:
1) Detection Algorithm: In Section III, we first reformulate

the problem of anomaly detection in terms of the marginal (not
joint) probability of each process being normal or anomalous,
conditioned on the observations. Consequently, the number of
posterior probabilities computed by the algorithm at every time
instant is linear in the number of processes. Based on these
marginal posterior probabilities, we define a confidence level
proportional to the decision accuracy. We then derive an algo-
rithm in Section III for estimating the states of the processes
when the confidence level exceeds a predefined threshold.

2) Centralized Algorithm: In Section IV, we present a novel
centralized algorithm for anomaly detection where we restrict
the number of processes chosen at any time to one. To obtain the
algorithm, we define two reward functions that monotonically
increase with the decision accuracy and decrease with the dura-
tion of the observation acquisition phase. These definitions allow
us to reformulate the anomaly detection problem as a long-term
average reward maximization problem in an MDP whose state
is the marginal probability vector. The problem is solved using
the deep actor-critic method.

3) Decentralized Algorithm: In Section V, we propose a
decentralized version of our centralized algorithm. Here, at each
time instant, the selection decision is independently made for
each process, and as a consequence, the algorithm chooses
more than one process at a time. The number of observations
is reduced by modifying the MDP reward to accommodate the
sensing cost. Using the modified notion of MDP, we derive a
novel actor-critic algorithm with a new architecture and training
procedure for decentralized anomaly detection.

4) Empirical Results: Using numerical results, we compare
our algorithms to the state-of-the-art algorithms in Section VI.
We show that the algorithms can learn and adapt to the statistical
dependence among the processes and offer a good accuracy level
in detecting anomalies.

Overall, this article presents centralized and decentralized
algorithms for anomaly detection with polynomial complexity,
which are practically more useful. Furthermore, this journal arti-
cle makes several new contributions compared to the conference
version [32]. In addition to the entropy-based reward function
in the conference version, we also present a log-likelihood
ratio (LLR)-based reward function for the scalable algorithms
(see Section IV). This scheme is empirically shown to slightly
outperform the entropy-based scheme. We further introduce
the concept of decentralized anomaly detection and present a
new actor-critic algorithm based on the concept of centralized
training and decentralized execution (see Section V). Also,
we provide a detailed derivation of recursive updates for the
marginal probabilities (see Section III) and the pairwise proba-
bilities (see Section VI).
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II. ANOMALY DETECTION PROBLEM

We consider a set of N possibly statistically dependent pro-
cesses where the state of each process is a binary random
variable. The process state vector is random vector s ∈ {0, 1}N
whose ith entry si being 0 and 1 indicates that the ith process is
normal and anomalous, respectively. The statistical dependence
is defined by the joint prior distribution of all the entries of
s, which specifies the prior probabilities associated with the
2N possible values of s. We do not assume the knowledge of
this joint prior distribution although it can be learned from the
training data.

Each process is monitored by a sensor. We detect the process
states s by selecting and observing a subset of the processes
at every time instant. Let A(k) ⊆ {1, 2, . . . , N} be the set of
processes observed by the algorithm at time instant k, and
the corresponding observation be yA(k)(k) ∈ {0, 1}|A(k)|. We
assume that every observation has a fixed probability of being
erroneous. Specifically, for any i ∈ {1, 2, . . . , N},

yi(k) =

{
si with probability 1− p,

1− si with probability p,
(1)

where p ∈ [0, 1] is called the flipping probability. We note that
(1) provides the distribution of the measurements given the
process state vector s. Further, we assume that conditioned on
the value of s, the observations obtained across time are jointly
(conditionally) independent,

P

[
{yi(l), i = 1, 2, . . . , N}kl=1

∣∣s] = N∏
i=1

k∏
l=1

P
[
yi(l)

∣∣si] ,
(2)

for any k. Therefore, the observations corresponding to the ith
process {yi(k) ∈ {0, 1}}∞k=1 is a sequence of independent and
identically distributed binary random variables parameterized
by the process state si ∈ {0, 1}. We aim to detect the anoma-
lous processes using the observations, which is equivalent to
obtaining the process state vector s.

At each time instant k, the decision-maker computes an
estimate of s along with the confidence in the estimate using
yA(k)(k). Using the available information, the posterior belief

π(k) ∈ [0, 1]2
N

on process state vector s at time k is

π(k) = P

[
s|{yA(l)(l)

}k

l=1

]
.

Since the estimate ŝ(k) of s at time k corresponds to
argmaxi πi(k), the detection accuracy is given by maxi πi(k).
The decision-maker observes the processes until the detection
accuracy exceeds the desired level denoted by Υupper ∈ (0, 1),
i.e., maxπ(K) ≥ Υupper. If multiple processes can be observed
at a given time, we introduce an associated sensing cost denoted
by λ > 0. Thus, at time k, the sensing cost of the network is
λ|A(k)|. Our goal is to optimize both sensing cost (which is
proportional to the number of observations) and the duration K
of the observation acquisition phase that achieves the desired
level Υupper.

We look for a sequential sensor selection policy A(k) that
adapts to the posterior belief, which, in turn, depends on the

past sensor selections. To tackle this problem, we can formulate a
dynamic optimization problem where the objective is to optimize
for detection accuracy and sensing cost achieved in a trajectory
of sensor selection A(k), for k = 1, 2, . . . , until the accuracy
π(k) ≥ Υupper, i.e.,

max
I,K,A(k),
k=1,2...,K

E

{
K∑

k=1

r(k)− ηλ |A(k)|
}

s. t. maxπ(K − 1) < Υupper, (3)

where η > 0 is the regularizer and λ|A(k)| is the sensing cost at
time k. Also, r(k) is the reward function at time k as a function
of the sensor selection A(k) and the process state detection
algorithm I. We reward the decision-maker for choosing A(k)
leading to observation vector yA(k)(k) that builds higher con-
fidence maxk π(k) in the estimated state ŝ(k) returned by the
detection algorithm I. A detailed discussion on the choice of
the reward function is deferred to Sections IV and V.

Furthermore, we note that the constraint maxπ(K − 1) <
Υupper is not independent of the reward function. A higher confi-
dence maxk π(k) in the estimated process state implies higher
detection accuracy. Therefore, as the decision-maker builds
more confidence in the estimated process state, maxk π(k)
increases, and at some finite time K, it violates the constraint.
After this time instant, the decision-maker can no longer accu-
mulate the reward, and the observation acquisition phase ends.
Overall, the reward formulation ensures that the stopping time
K is the earliest time at which the detection accuracy exceeds the
desired level Υupper. We reiterate that K is not directly included
in the discounted reward, but the optimal sensor selection and
process detection strategy that maximizes the reward function
also minimizes the stopping time. We discuss this point again in
detail in Section IV-A.

The objective function in (3) poses an additional challenge
that the sum keeps growing with K. To scale down the rewards,
we use a discounted reward formulation. With a suitable choice
of r(k), the overall underlying dynamic programming problem
is

max
I,K,A(k),
k=1,2...,K

E

{
K∑

k=1

γk−1 [r(k)− ηλ |A(k)|]
}

s. t. maxπ(K − 1) < Υupper. (4)

Here, γ ∈ (0, 1) is the discount factor, and K is the duration
of the observation acquisition phase or the time until which
the decision-maker can accumulate the reward. The discounted
reward formulation implies that a reward received k time steps
in the future is worth only γk times what it would be worth if re-
ceived immediately. This formulation encourages the decision-
maker to build confidence in the estimate as quickly as possible.

From (4), we have two interrelated tasks: one, to develop a
detection algorithm I to infer the process state vector s and
the associated detection accuracy; and two, to design a reward
function r(k), sensor selection policy A(k), and criterion to
stop collecting observations. Our goal is to develop scalable
algorithms that have polynomial time complexity in N , and
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we consider the centralized and decentralized settings. In the
centralized setting, the algorithm selects the processes to be
probed using a centralized agent, whereas in the decentralized
setting, the selection decision is made independently across the
processes. We next present our detection algorithm I that is
common to both centralized and decentralized algorithms.

III. DETECTION ALGORITHM

In this section, we derive an algorithm to detect the process
states from the observations. We note that the observations
depend on the selection policy, and the policy design, in turn,
depends on the detection algorithm. Moreover, we design a de-
tection algorithm that minimizes the discounted reward function
in (4) by building estimate confidence quickly.

To derive the detection algorithm, we exploit the underlying
modeling assumptions (1) and (2) to derive a model-based detec-
tion algorithm. The optimal approach to detect the process states
is to compute the joint posterior probabilities π(k) associated
with the 2N possible values ofs using the available observations.
Nonetheless, this approach is not scalable as its complexity
increases exponentially with N . Thus, our detection framework
relies on the marginal posterior probabilities associated with
each process i.e., we use the belief vector σ(k) ∈ [0, 1]N at
time k whose ith entry σi(k) is the posterior probability that the
ith process is normal (si = 0). So, the probability that the ith
process is anomalous is 1− σi(k). This novel approach ensures
that the computational and memory cost of the algorithm is
polynomial in N .

Further, using our observation model in (1) and (2) and some
algebraic simplifications, the belief vector σi can be recursively
updated. The recursive update for the ith component of σ(k) is
given by

σi(k)≈ σi(k−1)
∏

a∈A(k) P[ya(k)|si=0]∑
s=0,1

|s−σi(k − 1)|
∏

a∈A(k)
P
[
ya(k)

∣∣si = s
] ,
(5)

for i = 1, 2, . . . , N . Here, the conditional probability
P[ya(k)

∣∣si = s] is given by

P [ya(k)|si = ps] =
∑

s′=0,1

p|s
′−ya(k)|(1− p)|1−s′−ya(k)|

× P [sa = s′|si = s] , (6)

which follows from (1). The term P[sa = s′|si = s], which
depends on the statistical dependence between the processes,
can be either assumed to be known or easily estimated from the
training data1 for every pair (i, j). The approximation is exact
when sA(k) is a deterministic function of si. Please refer to the
appendix for the detailed derivation.

Furthermore, when sA(k) and si are statistically independent,
for any s anda ∈ A(k), we obtainP[ya(k)

∣∣si = s] = P[ya(k)].
Consequently, (5) reduces to σi(k) = σi(k − 1). This update
is intuitive since an observation from process sA(k) does not
change the probabilities associated with an independent process

1Training assumes the knowledge of s but not the optimal sensor selection.

si. In other words, the recursive relation is exact when si and
sA(k) are independent or sA(k) is a deterministic function of si.

Onceσ(k) is obtained, the estimate of the process state vector
with the highest associated confidence is straightforward. The
ith component of the process state vector estimate denoted by
ŝ(k) can be determined as

ŝi(k) =

{
0 if σi(k) ≥ 1− σi(k)

1 if σi(k) < 1− σi(k).
(7)

We note that the detection accuracy can be related to the marginal
posterior probabilities via the Fréchet and max-min inequalities
as follows.

max
j

πj(k) = max
s̃

P

[
s = s̃|{yA(l)(l)

}k

l=1

]

≤ max
s̃

min
i=1,2,...,N

P

[
si = s̃i|

{
yA(l)(l)

}k

l=1

]

≤ min
i=1,2,...,N

max
s̃i=0,1

P

[
si = s̃i|

{
yA(l)(l)

}k

l=1

]
= min

i=1,2,...,N
max{σi(k), 1− σi(k)}, (8)

where max{σi(k), 1− σi(k)} is the detection accuracy for the
ith process. We replace the constraintmaxi πi(K − 1) < Υupper

of the optimization problem (4) as

min
i=1,2,...,N

max{σi(k − 1), 1− σi(K − 1)} < Υupper. (9)

The above condition ensures that the detection accuracy associ-
ated with at least one of the processes does not exceed the desired
level Υupper at time K − 1. Consequently, the constraint forces
the decision-maker to continue the observation acquisition phase
until the detection accuracy associated with all the processes
exceeds the desired level to maximize the objective function.

Hence, the derivation of the detection algorithm is complete
and we next discuss the design of the selection policy. The
design of the selection policy (i.e., the policy to determine
which processes to observe at a given time) is a sequential
decision-making problem, and this problem can be formulated
using the mathematical framework of MDPs. The MDP-based
formulation allows us to obtain the selection policy via reward
maximization of the MDP using RL algorithms. In the follow-
ing sections, we present the MDP and RL algorithms for the
centralized and decentralized settings.

IV. CENTRALIZED DECISION-MAKING

In the centralized version, we restrict |A(k)| = 1 for all values
of k for simplicity, i.e., only one process is observed per time
instant. The observation obtained by a sensor at a given time
is sent to a centralized decision-making agent that utilizes an
MDP framework to decide on which process to observe next.
The MDP-based selection policy is as follows.

A. Markov Decision Process

In the centralized case, the MDP is defined as follows:
1) MDP State: Our detection algorithm is based on the be-

lief vector σ(k) that changes with time after each observation

Authorized licensed use limited to: TU Delft Library. Downloaded on October 24,2023 at 05:50:40 UTC from IEEE Xplore.  Restrictions apply. 



644 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023

arrives. Therefore, we define σ(k) ∈ [0, 1]N as the state of the
MDP at time k. We note that the MDP state vector σ(k) is
different from the process state vector s.

2) MDP Action: The state of MDP depends on the observa-
tion which in turn depends on the process selected by the policy.
Naturally, the action taken by the decision maker at time instant
k is the selected process A(k) ∈ {1, 2, . . . , N}.

3) MDP State Transition: For our problem, the MDP state
σ(k) at time k is a deterministic function of the previous MDP
state σ(k − 1), the action A(k), and the observation yA(k)(k).
So, the MDP state transition is modeled by (5) and (6).

4) Reward Function: We recall from (4) that the decision-
maker is rewarded for choosing A(k) such that yA(k)(k) builds
higher confidence in the estimated state ŝ(k). The confidence can
be defined using the uncertainty associated with the ith process,
which can be quantified using the entropy of its posterior distri-
bution [σi(k) 1− σi(k)]. As a consequence, the instantaneous
reward of the MDP is

rentropy(k) =

N∑
i=1

H(σi(k − 1))−H(σi(k)), (10)

where H(x) = −x log x− (1− x) log(1− x) is the binary en-
tropy function. Alternatively, we can also use the LLR of the
posterior distribution of the processes to capture the confidence.
The LLR-based instantaneous reward function is

rLLR(k) =

N∑
i=1

L(σi(k))− L(σi(k − 1)), (11)

where L(x) = x log(x/(1− x)) + (1− x) log((1− x)/x).
The differences of the entropies and LLRs quantify the
reduction in uncertainty from time k − 1 to k. Hence, these
reward formulations force the RL agent to reduce the uncertainty
and detect with higher confidence as quickly as possible.

We make a few observations about the reward function before
we present the process selection policy. As we mentioned in
Section II, from (8), (10), and (11), both reward and detection
accuracy are functions of σ(k), which in turn, depends on
sensor selection A(k) and detection algorithm I. For any given
σ(k − 1), the entropy-based reward function satisfies

argmax
σ(k)∈[0,1]N

rentropy(k) = argmin
σ∈[0,1]N

N∑
i=1

H(σi) = {0, 1}N ,

where {0, 1}N is the set of 2N vectors whose entries are either
0 or 1. Similarly, it is easy to show that

argmax
σ(k)∈[0,1]N

rentropy(k) =
1

2
1,

where 1 is the all-ones vector. This result implies that the reward
function encourages the decision-maker to move away from the
non-informative posterior and towards an informative posterior
σ(k) ∈ {0, 1}N . Moreover, from (8), as σ moves towards a
vector in the set {0, 1}N , the detection accuracy increases. In
other words, the reward function drives the algorithm to build the
confidence in detection and improve detection accuracy. Simi-
lar results and observations hold for the log-likelihood-based

reward function. This observation agrees with the discussion in
Section II that as the decision-maker builds more confidence in
the estimate, the detection accuracy increases, and the observa-
tion acquisition phase ends at a finite time K.

Since both reward functions behave similarly, in the sequel,
we use r(k) to denote the reward function at time k, which is
either rentropy(k) or rLLR(k). Further, we ignore the sensing cost
as λ|A(k)| = λ is fixed and independent of the sensor selection
A(k). Then, dynamically solving (4) at time k is the same
as maximizing the long term discounted reward of the MDP
R̄(k) =

∑K
l=k γ

l−kr(l), where γ is defined in (4). We next use
the actor-critic algorithm to solve the long-term average reward
maximization problem.

B. Actor-Critic Algorithm

We use the actor-critic algorithm which is a deep learning-
based RL technique to generate a sequential policy that maxi-
mizes the long-term expected discounted reward R̄(k) of a given
MDP. Unlike the detection algorithm given in Section III, here,
the optimal solution for policy design can not be derived in
closed form. Therefore, we resort to the deep learning framework
which learns the optimal sensor selection from the training
data, which is known to have a superior performance over the
model-based approximation algorithms [29], [30].

The actor-critic framework maximizes the discounted reward
using two neural networks: actor and critic networks. The actor
learns a stochastic policy that maps the state of the MDP to
a probability vector on the set of actions. The critic learns a
function that evaluates the policy of the actor and gives feedback
to the actor. As a result, the two neural networks interact and
adapt to each other. The components of the actor-critic algorithm
are as follows:

1) Actor Network: The actor takes the state of the MDP
σ(k − 1) ∈ [0, 1]N as its input. Its output is the probability vec-
tor μ(σ(k − 1);αcen) ∈ [0, 1]N over the set of processes where
αcen denotes the set of parameters of the actor network. The
decision maker employs a stochastic process selection strategy
A(k) ∼ μ(σ(k − 1);αcen), i.e., the ith process is selected at
time k with probability equal to the ith entryμi(σ(k − 1);αcen)
of the actor output.

2) Reward Computation: Once the process A(k) is selected,
the decision maker receives the corresponding observation
yA(k), and the MDP state σ(k − 1) is updated to σ(k) as given
by (5). The decision maker also calculates the instantaneous
reward r(k) using (10) or (11), and the reward value is utilized
by the critic network to provide feedback to the actor network,
as discussed next.

3) Critic Network: The critic neural network models the
value function V (σ(k)) of the current MDP state as

V μ(σ) = EA(k)∼μ

{
R̄(k)

∣∣σ(k) = σ
}
.

Here, V μ(σ) is the expected average future reward when the
MDP starts at state σ and follows the policy μ(·; θ) there-
after, indicating the long-term desirability of the MDP state σ.
Consequently, the input to the critic network is the posterior
vector σ ∈ [0, 1]N , and the output is the learned value function
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V̂ (σ;βcen). Here, βcen is the set of parameters of the critic neural
network. The scalar critique for the actor network is the temporal
difference (TD) error δ(k;βcen) defined as

δ(k;βcen) = r(k) + γV̂ (σ(k))− V̂ (σ(k − 1)). (12)

A positive TD error indicates that the probability of choosing the
current action should be increased in the future, and a negative
TD error suggests to decrease the probability of A(k).

4) Learning Actor Parameters: The goal of the actor is to
choose a policy such that the value function is maximized
which, in turn, maximizes the expected average future reward.
Therefore, the actor updates its parameter set αcen using the
gradient descent step by moving in the direction in which the
value function is maximized, i.e.,

αcen = α−
cen + δ(k;βcen)∇αcen [log μA(k)(σ(k − 1);αcen)],

(13)
where α−

cen is the previous network estimate [33, Ch.13].
5) Learning Critic Parameters: The critic chooses its param-

eters such that it learns the estimate V̂ of the state value function
V accurately. So, the critic updates its parameter set βcen by
minimizing the squared TD error δ2(k;βcen).

6) Termination Criterion: The actor-critic algorithm contin-
ues to collect observations until the constraint in (4) is satisfied
because afterwards, the decision maker can not accumulate the
reward. From (8), the constraint violation in (4) reduces to

min
i=1,2,...,N

max{σi(k), 1− σi(k)} > Υupper. (14)

Once the stopping time K satisfying (14) is reached, no further
observations are acquired. Thus, the actor-critic algorithm is
completed, and we next summarize the overall algorithm.

C. Overall Algorithm

Combining the detection algorithm in Section III and the
deep actor-critic method in Section IV-B, we obtain our cen-
tralized anomaly detection algorithm. The decision-maker col-
lects observations using the selection policy obtained using
the actor-critic algorithm until the stopping criterion given in
(14) is satisfied. After the actor-critic algorithm terminates, the
decision-maker computes ŝ using (7). We present the pseudo-
code of the overall procedure in Algorithms 1 and 2. Our
algorithm balances the model-based and deep learning-based
approaches via a model-based detection algorithm and neural
network-based actor-critic method, resulting in a model-assisted
learning algorithm. The model-based part helps to reduce the
training complexity of the deep neural networks, requiring them
to learn only the selection policy that can not be optimally
derived using the model-based approach.

The computational complexity of our algorithm is determined
by the neural networks’ size, the update of the posterior belief
vector given by (5) and (6), and the reward computation in
(10) or (11). Since all of them have linear complexity in the
number of processes N , the overall computational complexity
of our algorithm is polynomial in N . Also, the sizes of all the
variables involved in the algorithm are linear in N except for the
pairwise conditional probability P[si

∣∣sj ] for i, j = 1, 2, . . . , N .

Algorithm 1: Centralized Actor-Critic RL for Anomaly
Detection: Training Phase
Parameters: Discount rate 0<γ<1, time steps per
episode T

Initialization: Initialize αcen, βcen randomly, σ(0)
1: for Episode index = 1, 2, . . . do
2: Time index k = 1
3: repeat
4: Choose a process A(k) ∼ μ(σ(k − 1), αcen)
5: Receive observation yA(k)(k)
6: Compute σ(k) using (5) and (6), and instantaneous

reward r(k) using (10) or (11)
7: Update αcen using (13), and βcen as the minimizer of

δ2(k;βcen) in (12)
8: Increase time index k = k + 1
9: until k > T

10: end for

Algorithm 2: Centralized Actor-Critic RL for Anomaly
Detection: Testing Phase.
Parameters: Upper threshold on confidence Υupper

Initialization: αcen and σ(0) from the training phase
1: Time index k = 1
2: repeat
3: Choose a process A(k) ∼ μ(σ(k − 1), αcen)
4: Receive observation yA(k)(k)
5: Compute σ(k) using (5) and (6)
6: Increase time index k = k + 1
7: until (14) is satisfied
8: Declare the estimate ŝ using (7)

Therefore, the memory requirement of the algorithm is O(N2).
Hence, our algorithm possesses polynomial complexity, unlike
the anomaly detection algorithms in [9], [30] with exponential
complexity.

It is straightforward to extend our algorithm to the case in
which the decision maker chooses at most 1 ≤ n ≤ N processes
at a time. In that case, the state remains unchanged, but the action
space of the MDP changes. When we allow up to n processes to
be observed, there are

∑n
l=1

(
N
l

)
possible actions. So, the output

layer of the actor has
∑n

l=1

(
N
l

)
neurons, each representing

one action. Therefore, the overall computational complexity of
the resulting algorithm is polynomial in Nn, and the memory
requirement is O(Nn). Naturally, as n grows, the centralized
algorithm becomes non-scalable.

V. DECENTRALIZED DECISION MAKING

In the decentralized setting, there is no centralized decision-
making agent that accumulates the observations and makes the
process selection decisions. At every time instant, the sensors
independently decide whether or not to observe their corre-
sponding processes. The sensors that choose to observe the
corresponding processes collect the observations. Further, de-
pending on the underlying network topology, the sensors share
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their observations. In particular, the ith sensor (i.e., the sensor
corresponding to the ith process) can receive observations from
a set of neighboring sensors denoted by Ni ⊆ {1, 2, . . . , N},
including the ith sensor itself. In other words, at time k, the ith
sensor knows the observations corresponding to the processes
indexed by Ni ∩ A(k). Similarly, if the ith sensor observes the
corresponding process at time k (i.e., i ∈ A(k)), the observa-
tion yi(k) is also available at the sensors indexed by the set
{j : i ∈ Nj}.

Each sensor keeps its local estimate of the marginal posterior
probabilities. We denote the posterior probability vector of
the ith sensor at time k by σ(i)(k) which is updated using
yNi∩A(k)(k) via (5) and (6). Further, since the sensors have
potentially different posterior probability vectors, we can not
directly use the stopping condition (14). So, the ith sensor
broadcasts a message when the following condition is met,

max{σ(i)
i (k), 1− σ

(i)
i (k)} > Υupper. (15)

The sensors do not immediately stop collecting observations
when (15) is satisfied. Instead, they continue to collect observa-
tions until they receive similar broadcast messages from all the
sensors. When the observation acquisition phase ends at time
K, each sensor i declares the estimate of its process as

ŝi =

{
0 if σ(i)

i (K) ≥ 1− σ
(i)
i (K)

1 if σ(i)
i (K) < 1− σ

(i)
i (K).

(16)

In short, in the decentralized version, the process selection
algorithm runs at each sensor independently of each other. We
next describe how the sensors decide whether or not to choose
to observe the corresponding process. Similar to the centralized
algorithm discussed in Section IV, we use a deep actor critic
algorithm as described next.

A. Decentralized Deep Actor Critic Framework and MDP

In the decentralized algorithm, each sensor has to learn its
selection policy depending on its posterior vector σ(i)(k). Our
framework consists of one actor network per sensor and a
single common critic network, and we adopt the mechanism
of centralized training and decentralized execution to learn
the neural networks. Specifically, we assume that all the actor
networks share the same parameters and are trained together in
a centralized fashion. In the testing phase, each sensor uses a
separate actor network derived from the common actor network
learned via centralized training. The centralized training phase
assumes that all the sensors receive observations from all the
other sensors. Consequently, all the sensors have the same set
of observations given by yA(k)(k), and they share a common
posterior probability vector σ(k). This assumption simplifies
our training and leads to a common MDP in the centralized
training phase as described next.

1) MDP State and Action: For the centralized training phase,
the MDP state and state transitions are identical to those in the
centralized algorithm, i.e., we define σ(k) ∈ [0, 1]N as the state
of the MDP at time k, and the MDP state transitions are modeled
by (5) and (6). Based on the MDP state, each sensor decides
whether or not to sense the corresponding process. The indices of

the selected process at time k denoted byA(k) ⊆ {1, 2, . . . , N}
represent the (joint) decisions taken by each sensor and form the
MDP action.

2) MDP Reward: Unlike the centralized case, here |A(k)|
is not necessarily one. Here, all the sensors aim to achieve the
common goal of minimum stopping time with a small sensing
cost and the desired detection accuracy (decided by Υupper).
Therefore, we need a single reward function that promotes the
common goal of the network, defined as

rde(k) = r(k)− ηλ |A(k)| , (17)

where η > 0 is the regularizer and λ|A(k)| is the sensing cost
of the network at time k. Also, we recall that r(k) is either
rentropy(k) in (10) or rLLR(k) in (11). The decentralized reward
rde(k) encourages the sensor network to minimize the stopping
time via the first term and minimize the sensing cost via the
second term. In other words, λ balances the trade-off between
the stopping time and sensing cost.

Using the above notion of MDP, we learn the common actor
and critic networks in the centralized training phase. The critic
learns a function that evaluates the policy followed by the
common actor and gives a common feedback to them for the
joint action A(k) of the network. The neural networks interact
and adapt to each other during the centralized training phase. In
the testing phase, the sensors choose the actions based on the
actor network’s learned policy without the critic network.

Before presenting the details of the testing and training
phases, we compare the MDP formulations in the centralized
and decentralized settings. In the centralized setting presented in
Section IV, the MDP captures the common posterior evolution,
and the control and reward of a single decision-maker. For the
decentralized case introduced and analyzed in this section, the
MDP captures the evolution of the common posterior vector,
the joint actions that a group of decision-makers takes, and the
resulting collective reward.

Next, we discuss the centralized training and decentralized
execution phases of the decentralized decision-making.

B. Centralized Training

For decentralized actor-critic networks, the reward com-
putation and critic network definition and learning are the
same as those in the centralized algorithm (see Section IV-B).
Also, the common actor network input is the MDP state
σ(k − 1) ∈ [0, 1]N . However, unlike the centralized algorithm,
the actor network output is not a probability vector. Rather, it is
ν(σ(k − 1);αde) ∈ [0, 1]N whose ith entry is the probability of
probing the ith process at time k.

In the centralized training phase, we learn the parameters of
the common actor network αde and the critic network, denoted
by βde. The learning in the centralized training is identical to that
of the centralized algorithm with a few differences in learning
the actor network. We recall that the actor network updates its
parameters αde using the gradient descent step by moving in the
direction in which the value function is maximized using the
probability of the action A(k). Here, we explicitly calculate this
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Algorithm 3: Decentralized Actor-Critic RL for Anomaly
Detection: (Centralized) Training phase.
Parameters: Discount rate 0< γ <1, time steps per
episode T

Initialization: Initialize αde, βde randomly, σ(0)
1: for Episode index = 1, 2, . . . do
2: Time index k = 1
3: repeat
4: A(k) = ∅
5: for process (or sensor) index a = 1, 2, . . . , N do
6: Choose process a ∼ νa(σ(k − 1), αde)
7: if process a is selected then
8: Add a to A(k) and receive observation ya(k)
9: end if

10: end for
11: Compute σ(k) using (5) and (6), and instantaneous

reward r(k) using (17)
12: Update αcen using (18), and βcen as the minimizer of

δ2(k;βde) in (12)
13: Increase time index k = k + 1
14: until k > T
15: end for

Algorithm 4: Decentralized Local Actor-Critic RL for
Anomaly Detection: Testing Phase at the ith sensor.
Parameters: Upper threshold on confidence Υupper

Initialization: αde and σ(i)(0) from the training phase
1: Time index k = 1
2: repeat
3: Observe process i with prob. νi(σ

(i)(k − 1), αde)
4: if process i is selected then
5: Receive yi(k) and send it to sensors {j : i ∈ Nj}
6: end if
7: Compute σ(k) using yNi∩A(k)(k) via (5) and (6)
8: if (15) is satisfied then
9: Broadcast a message to stop

10: end if
11: Increase time index k = k + 1
12: until all the sensors request to stop at time k
13: Declare the estimate ŝi using (16)

probability as

φ(A(k);αde) =
∏

a∈A(k)

νa(σ(k − 1);αde)

×
∏

a/∈A(k)

(1− νa(σ(k − 1);αde)) ,

where νa(σ(k − 1);αde) is the probability of choosing process
a at time k, and we use the fact that each process is selected
independently. Thus, the actor parameters update is

αde = α−
de + δ(k;βde)∇αdeφ(A(k);αde), (18)

where α−
de is the previous network estimate. The critic updates

its parameter set βde by minimizing the squared TD error δ2.
The overall procedure in summarized in Algorithms 3.

C. Decentralized Execution

For the decentralized execution during the testing phase, the
actor network of the ith sensor represents a stochastic policy
that maps the posterior vector σ(i)(k) ∈ [0, 1]N to a probability
ν(i)(σ(i)(k − 1) ∈ [0, 1] with which the corresponding process
is selected. These actor networks are identical to the common
actor except for the output layer. The reduced actor network
of the ith sensor retains only the ith entry of the output of
the common actor network, and the remaining output nodes
are removed. Thus, the output of the ith actor network is
ν(i)(σ(k − 1);αde) = νi(σ(k − 1);αde)which is the probabil-
ity of choosing the ith process at time k.

At every time instant k, the ith sensor feeds its posterior
vector σ(i)(k − 1) as the input to its actor network and choose
to observe the corresponding process with probability equal to
its actor output. Depending upon the network topology (decided
by {Ni}Ni=1), the sensors share their observations and update
the posterior vector using (5) and (6). The sensors continue to
collect observations until all the sensors satisfy (15). Thus, the
overall stopping criterion of the algorithm is

min
i=1,2,...,N

max{σ(i)
i (k), 1− σ

(i)
i (k)} > Υupper,

which is similar to (14). After the actor-critic algorithm termi-
nates, the decision-makers compute ŝ using (7). We present the
pseudo-code of the overall procedure in Algorithms 4.

To summarize, centralized training refers to using common
actor and critic networks during training. Decentralized exe-
cution refers to independent decision-making using individual
actor networks derived from the common actor network.

As a final remark on the decentralized version, we mention
its relation with the centralized detection algorithms. For this,
we consider the special case when all the sensors broadcast
their observations, i.e., Ni = {1, 2, . . . , N} for all i. Then, the
posterior vectors at all the sensors are identical,σ(i)(k) = σ(k),
for all values of i, k > 0. Mathematically, this system is equiv-
alent to a centralized anomaly detection algorithm that uses the
common actor learned in the centralized training phase. This
centralized algorithm chooses to observe the ith process with
probability given by the corresponding entry of the actor output
νi(σ(k − 1);αde). Nonetheless, we note that this algorithm
(which can potentially have A(k) > 1) is different from the
centralized algorithm discussed in Section IV (which restricts
A(k) = 1). Moreover, we note that our decentralized framework
can address a spectrum of scenarios ranging from complete
information exchange (as discussed above) to no information
exchange (i.e., Ni = {i} for all i). Indeed, these two cases
(referred to as shared and local detection algorithms) are em-
pirically analyzed in Section VI-B.

VI. SIMULATION RESULTS

This section empirically studies the detection performance of
our algorithm. We use three metrics for the performance eval-
uation: accuracy (the fraction of times the algorithm correctly
identifies all the anomalies), stopping time (K), and number of
observations per unit time (= 1

K

∑K
k=1 |A(k)|).
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Our simulation setup considers five processes N = 5 and
assume that the probability of each process being normal is
q = 0.8. Here, the first and second processes (s1 and s2) are
statistically dependent, and the fourth and fifth processes (s4
and s5) are also statistically dependent. These pairs of processes
are independent of each other and independent of the third
process (s3). The dependence is captured using the correlation
coefficient ρ ∈ [0, 1] common to both process pairs:

P [s1 = s2 = 0] = P [s4 = s5 = 0] = q2 + ρq(1− q)

P [s1 = s2 = 1] = P [s4 = s5 = 1] = (1− q)2 + ρq(1− q)

P [s1 = s2] = P [s4 = s5] = (1− ρ)q(1− q).

The flipping probability isp = 0.2. Our data model is inspired by
the anomaly detection framework in various applications, such
as spectrum sensing in cognitive radio networks, remote sensing,
remote health monitoring, and structural health monitoring, that
are threshold-based, i.e., the difference between the observed
data and the expected data with no anomaly is thresholded to
decide whether there is an anomaly (a binary decision).

Before we present the simulation results, we note that for
the above setting, the pairwise probabilities required for the
posterior updates in (6) can be computed as follows. Here, there
are three independent groups of process ({1, 2}, {3}, {4, 5}).
If i and j are independent processes, for any s, s′ ∈ {0, 1}, we
have

P
[
si = s′

∣∣sj = s
]
= P [si = s′] =

{
q if s′ = 0

1− q if s′ = 1.

Similarly, if i and j are dependent, the pairwise probabilities are
given by

P
[
si = s′

∣∣sj = s
]
=

P [si = s′, si = s]

P [si = s]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q + ρ(1− q) s′ = s = 0

(1− q) + ρq s′ = s = 1

(1− ρ)q s′ = 0, s = 1

(1− ρ)(1− q) s′ = 1, s = 0.

Also, the prior σ(0) = q1.
In the following, we present the numerical results for the cen-

tralized and decentralized algorithms. Our centralized algorithm
chooses only one process per unit time whereas our decentralized
algorithm can potentially choose multiple processes per unit
time. So, there is no direct comparison between them. For a fair
comparison, we compare our algorithms with the competing
algorithms with similar policies.

A. Centralized Algorithm

The architecture and parameters of our algorithm are as
follows. We implement the actor and critic neural networks
with three layers and the ReLU activation function between
consecutive layers. The actor output is normalized to be a
probability vector over the set of processes. The parameters of
the neural networks are updated using Adam Optimizer, and we

TABLE I
COMPARISON OF (TESTING) RUNTIME FOR DIFFERENT SCHEMES

set the learning rates of the actor and the critic as 5× 10−4, and
5× 10−3, respectively. Also, the discount factor γ is 0.9.

We compare our algorithm (labeled asMarginal) with three
other schemes that also choose one process per unit time.

1) Joint Probability Mass Function (pmf)-Based Scheme
(Labeled as Joint): The state-of-the-art algorithm presented
in [9] is based on the joint posterior probabilities of all the
entries of process state s. Since s can take 2N possible values, its
complexity is exponential in N . However, the joint probabilities
help to exploit the complete statistical dependencies.

2) Naive Marginal Pmf-Based Scheme (Labeled as Naive):
The naive method relies on the marginal posteriorσ ∈ [0, 1]N . It
is identical to our algorithm except that it only updates the entry
σA(k)(k) at time k, ignoring the possible statistical dependence
among processes. Hence, the computational complexity of this
algorithm is also O(N). We note that, unlike our algorithm, this
algorithm does not use any approximation.

3) Chernoff Test (Labeled as Chernoff): This model-
based test sequentially chooses actions that quickly build the
posterior belief on s [10]. Its stochastic policy, given by the
probabilities over all the actions q ∈ [0, 1]N , is

argmax
q∈[0,1]N∑

i qi=1

min
ŝ∈{0,1}N
ŝ=s̄(k)

N∑
i=1

qiD{p(yi(k)|s= s̄(k)) ‖p(yi(k)|s= ŝ)} ,

where D denotes the KL divergence and s̄(k) is the state vector
corresponding to the maximum joint posterior probability at time
k − 1. However, from (2), p(yi(k)|s) = p(yi(k)|si). So, the KL
divergence is (1− 2p) log(1/p− 1) if ŝi = s̄i(k), and it is zero
otherwise. Hence, the above optimization problem reduces to

argmax
q∈[0,1]N :

∑
i qi=1

(
min
i

qi

)
,

and the Chernoff test selects a process uniformly at random.
This approach is suboptimal because the statistical dependence
is accounted only for the joint posterior computation but ignored
for the process selection.

We implement the deep learning algorithms using the entropy
and LLR-based rewards (see (10) and (11) for the marginal pmf-
based algorithms and [9] for the joint pmf-based algorithm).
Since the number of observations per unit time is always one,
the performance metrics are accuracy and stopping time. Our
results are summarized in Fig. 1, 3, and 4 and Table I, and the
key inferences are below.

Fig. 1 compares the entropy-based schemes (in the first row)
and the LLR-based schemes (in the second row) whereas Fig. 3
plots the accuracy (in the first row) and the stopping time (in the
second row) of LLR-based-scheme as a function of the upper
threshold Υupper for confidence. The interested readers can refer
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Fig. 1. Accuracy of the centralized anomaly detection algorithms using different rewards as a function of stopping time K for different values of correlation
coefficient ρ.

Fig. 2. Bar plot showing the number of times each sensor is chosen by our
entropy-based anomaly detection algorithm for different values of correlation
coefficient ρ when Υupper = 0.99.

to [32] for similar figures for the entropy-based reward function
showing similar trends under all settings. The accuracy and the
stopping time of all the algorithms increase with Υupper. This
trend is because as Υupper increases, the decision-maker requires
more observations to satisfy the higher desired confidence level.
In Fig. 4, we plot the accuracy and stopping time as a function of
ρ. Comparing the two rewards, we infer that the performances
of the LLR-based and entropy-based schemes are similar.

From Fig. 4 and along with the results in Fig. 1, and 3, we
next look at the dependence of the algorithm performance on ρ.

We notice that the accuracy of our algorithm is comparable
to the other algorithms when ρ = 0 and ρ = 1. The accuracy
degrades as ρ is close to 0.5. This behavior is because our algo-
rithm uses approximate marginal probabilities to compute the
confidence level whereas the other algorithms use exact values.
This approximation in (23) is exact when ρ = 0 and ρ = 1.
As ρ approaches 0.5, the approximation error increases, and
the accuracy decreases. Also, the stopping times of the three
algorithms are similar when ρ = 0. This behavior is because
when ρ = 0, all the processes are independent, and the updates
of our algorithm are exact. The naive marginal pmf-based algo-
rithm and the Chernoff test also offer good performance when
ρ = 0 as there is no underlying statistical dependence among the
processes. Further, the stopping times of our algorithm and
the joint pmf-based algorithm improve with ρ. As ρ increases,
the processes become more correlated, and therefore, an obser-
vation corresponding to one process has more information about
the other correlated processes. However, the naive marginal
pmf-based algorithm ignores this correlation and handles the
observations corresponding to the different processes indepen-
dently. Therefore, its stopping time is insensitive to ρ and the
performance is similar to that of the Chernoff test. Consequently,
the difference between the stopping times of these two algo-
rithms and our method (and joint pmf-based scheme) increase
as ρ increases.

Furthermore, to gain insights into the selection rule of our
algorithm, we visualize the actions decided by the algorithm
with the entropy-based cost using a bar plot shown in Fig. 2.
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Fig. 3. Performances of the centralized anomaly detection algorithms (using LLR-based reward for deep actor-critic methods) as a function of Υupper for different
values of correlation coefficient ρ.

Fig. 4. Performances of different centralized deep actor-critic algorithms with varying ρ when Υupper = 0.95.

When ρ = 0, all the processes are independent; therefore, all
the sensors are chosen roughly the same number of times.
When ρ = 0.6, processes {1, 2} are correlated, so the algorithm
observes the first process more often while reducing the number
of times the second process’s state s2 is observed. This behavior
is because an observation from the first process also gives some
information about the second process, and consequently, we ob-
serve the second process fewer times. The same behavior applies
to the forth and fifth sensors, observing correlated processes.
Also, when ρ = 1, we have s1 = s2. So, the first sensors gives
more information about the second process s2 compared to the
ρ = 0.6 case. Thus, the number of selections of the second sensor
is further reduced. Since the third sensor observes s3, which
is independent of others, its fraction is least affected by the

variation in ρ. Hence, the algorithm adapts to the correlation
coefficient, and as shown in Fig. 4, the stopping time and the
total number of observations reduce with ρ. We make similar
observations about the algorithm with LLR-based cost, whose
plot is omitted to avoid repetition.

The algorithm run times given in Table I demonstrate that
the joint pmf-based algorithm is computationally heavier (40%
higher) compared to the other two algorithms. This observation
is in agreement with our complexity analysis in Section IV-C.
We also recall that the difference in the runtimes of the joint
pmf-based algorithm and our algorithm grows with N .

Thus, our algorithm combines the best of two worlds by
benefiting from the statistical dependence (like the joint scheme)
and offering low-complexity (like the naive scheme).
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Fig. 5. Performances of the shared and local detection algorithms as a function of the upper threshold on confidence Υupper, sensing cost per observation λ, and
correlation coefficient ρ with N = 5 processes. Unless mentioned otherwise, Υupper = 0.95, ρ = 0.8 and λ = 0.5.

Fig. 6. Performances of the shared and joint detection algorithms as a function of the upper threshold on confidence Υupper when sensing cost per observation
λ = 0.5 and correlation coefficient ρ = 0.8 with N = 5 processes.

B. Decentralized Algorithm

The architecture and parameters for our decentralized algo-
rithm are as follows. We implement the actor and critic neural
networks with four layers and the ReLU activation function
between consecutive layers. The output layer of the actor layer
uses the sigmoid function to ensure that the entries of the
output vector of probabilities belong to [0, 1]. The parameters

of the neural networks are updated using Adam Optimizer.
We set the learning rates of the actor for the entropy and
LLR-based reward functions as 2× 10−5 and 3× 10−5, re-
spectively. Also, the critic learning rate is 1× 10−4 for both
reward functions. Additionally, we set the discount factor as
γ = 0.9 and the regularizers as η = 1 for the LLR-based re-
ward in (11) and η = 0.1 for the entropy-based reward in
(10).
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Fig. 7. Performances of the LLR-based shared detection algorithm with varying number of processes N as a function of the upper threshold on confidence Υupper
when sensing cost per observation λ = 0.5 and correlation coefficient ρ = 0.8.

The numerical results for the decentralized algorithm are
provided in Fig. 5–7. In the first setting, all the sensors
share their observations with all the other sensors, i.e., Ni =
{1, 2, . . . , N}, ∀i, which we refer to as the shared detection
algorithm. In the second setting, none of the sensors share their
observations with any other sensor, i.e., Ni = {i}, ∀i, which
we refer to as the local detection algorithm. We also consider
a scheme with the joint pmf-based stopping rule (referred to
as joint detection algorithm). The joint detection algorithm is
identical to the shared detection algorithm, but its stopping
rule is based on the joint posterior probabilities. This method
computes the joint posterior probabilities π(k) ∈ [0, 1]2

N
of all

the entries of s ∈ [0, 1]N (see [9] for details).
The first columns of Figs. 5 and 6 shows that the accuracy of

all the algorithms increases with Υupper. However, the accuracy
is insensitive to λ and ρ because the accuracy depends on the
stopping rule that is independent of λ and ρ. Since the compu-
tations of the confidence used by the stopping rule are identical
for the two versions (entropy and LLR-based schemes) of each
algorithm (shared, local, and joint detection algorithms), they
have the same accuracy levels. The accuracies of the local and
joint detection algorithms are slightly higher than our shared
detection algorithm, obtained at the cost of a higher stopping
time.

The middle subfigure of the first row of Fig. 5 shows that,
unlike the accuracy, the number of observations per unit time
is insensitive to the Υupper. This trend is because the number of
observations per unit time only depends on the selection policy
learned by the algorithm, which in turn, depends only on the
correlation coefficient ρ and sensing cost per observation λ. We
see that the number of observations per unit time decreases with
λ. This behavior naturally follows from (17) because the second
term corresponding to the number of observations in (17) gets
more (negative) weight in the reward function compared to the
first term (entropy or LLR term). We also note that the number of
observations per unit time does not show any noteworthy change
as ρ varies. Further, due to the common centralized training, the
selection policies of all the algorithms with a common reward
function are the same. Hence, all the algorithms with a common
reward function have the same number of observations per unit
time.

The most sensitive performance metric is the stopping time
which depends on both policy and stopping rule. The last
columns of Figs. 5 and 6 indicate that the stopping times increase
with Υupper and λ. For a given policy, larger Υupper implies a
higher accuracy level which leads to a longer stopping time.
Similarly, a larger λ results in a small number of observations
per unit time, and consequently, stopping time increases with λ.
This behavior captures the trade-off between the sensing cost
and stopping time because the sensing cost decreases with λ.
Further, the variation of the stopping time with ρ depends on the
algorithm. The local detection algorithm ignores the correlation
between the processes, and its stopping time does not vary sig-
nificantly with ρ. However, the marginal probability updates of
the shared and joint detection algorithms account for the learned
statistical dependence among the processes. As ρ increases, each
observation from a process gives more information on the other
correlated processes, leading to a shorter stopping time.

Comparing the entropy-based and LLR-based algorithms, we
see that both schemes offer almost the same level of accuracies
and observations per unit time. However, the stopping time cor-
responding to the entropy-based scheme shows an improvement
over the LLR-based schemes.

Finally, Fig. 7 shows the algorithm performance when the
number of processes scales as N = 5c where c = 1, 2, 3. Here,
we have 2c pairs of statistically dependent processes captured by
ρ and c independent processes. We observe similar performance
trends with varying Υupper for all values of N . The observations
per unit time and stopping time naturally increase with N . How-
ever, the accuracy slightly decreases with N for the same value
of Υupper. This behavior is because Υupper defines the accuracy
of correctly detecting a given process, and hence, the over-
all accuracy of detecting all the processes correctly decreases
with N .

VII. CONCLUSION

We presented low-complexity centralized and decentralized
algorithms to detect anomalous processes among a set of binary
processes by dynamically selecting processes to be observed.
The sequential process selection problem was formulated uti-
lizing an MDP whose reward is defined using the entropy or
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LLR of the marginal probabilities of the binary processes. The
optimal process selection policy was obtained via the deep
actor-critic RL algorithm that maximizes the long-term average
reward of the MDP. The centralized algorithms chooses one
process per unit time, whereas for the decentralized algorithm
controls the number of observations per unit time via the sensing
cost incorporated into the MDP reward. The numerical results
showed that our algorithms offered good detection accuracy
and stopping time while operating with low complexity. The
algorithms also exploited the underlying statistical dependence
among the binary processes, which led to a shorter stopping
time when the processes were highly correlated. However,
for scalable computing, our algorithms rely on approximate
marginal probabilities. Quantifying this approximation error is
an interesting direction for future work.

APPENDIX

DERIVATION OF POSTERIOR UPDATE

As observations arrive, we compute the belief vector as

σi(k) = P

[
si = 0

∣∣ {yA(l)(l)
}k

l=1

]
(19)

=
P

[{
yA(l)(l)

}k

l=1

∣∣si = 0
]
P [si = 0]∑

s=0,1
P

[{
yA(l)(l)

}k

l=1

∣∣si = s
]
P [si = s]

,

(20)

for i = 1, 2, . . . , N .
To further simplify the above relation, we take a close look at

the term P[{yA(l)(l)}kl=1

∣∣si = s]. From (2), we have

P

[{
yA(l)(l)

}k

l=1

∣∣si = s
]

=
∑

s:si=s

P

[{
yA(l)(l)

}k

l=1

∣∣s]P [s|si = s]

=
∑

s:si=s

P

[{
yA(l)(l)

}k−1

l=1

∣∣s] ∏
a∈A(k)

P
[
ya(k)

∣∣sa]P [s|si = s]

=
∑

s:si=s

∏
a∈A(k)

P

[{
yA(l)(l)

}k−1

l=1
, s
∣∣si = s

]
P
[
ya(k)

∣∣sa]

=
∑

sA(k):si=s

∏
a∈A(k)

P

[{
yA(l)(l)

}k−1

l=1
, sA(k)

∣∣si = s
]

× P
[
ya(k)

∣∣sa] .
We recall the following algebraic identity,

P∑
j=1

xj

P∑
j=1

yj −
P∑

j=1

xjyj =
∑
j =k

xjyk ≥ 0,

for any numbers xi, yi ≥ 0 and holds with equality when
the sequence satisfies

∑
j =k xjyk = 0. Applying this identity

recursively, we deduce that

P

[{
yA(l)(l)

}k

l=1

∣∣si = s
]

≤
∑

sA(k):si=s

P

[{
yA(l)(l)

}k−1

l=1
, sA(k)

∣∣si = s
]

×
∏

a∈A(k)

∑
sa:si=s

P
[
ya(k)

∣∣sa] .
To simplify our computations, we approximate the probability
terms in (20) with the above upper bound to get

P

[{
yA(l)(l)

}k

l=1

∣∣si = s
]
≈ P

[{
yA(l)(l)

}k−1

l=1

∣∣si = s
]

×
∏

a∈A(k)

∑
sa:si=s

P
[
ya(k)

∣∣sa] .
(21)

The above approximation holds with equality when |{sA(k) :
si = s}| = 1, i.e., when sA(k) is completely determined by si.
Further, we have∑
sa:si=s

P
[
ya(k)

∣∣sa] ≥ ∑
sa:si=s

P
[
ya(k)

∣∣sa]P [
sa

∣∣si = s
]

= P
[
ya(k)

∣∣si = s
]
. (22)

The above bound holds with equality if P[sa
∣∣si = s] ∈ {0, 1},

i.e., sa is completely determined from si. We then obtain the
following approximation from (21) and (22) for simplification,

P

[{
yA(l)(l)

}k

l=1

∣∣si = s
]
≈ P

[{
yA(l)(l)

}k−1

l=1

∣∣si = s
]

×
∏

a∈A(k)

P
[
ya(k)

∣∣si = s
]
.

(23)

From (2), the observation yA(k)(k) is independent of all other
observations, conditioned on the value of sA(k). As discussed
above, the approximation is exact when sA(k) is a deterministic
function of si. Combining (20) and (23), we arrive at (5),
completing the derivation.
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