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Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait
deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying
gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct
gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward
dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework
entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost
function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three
experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee
flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-
based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based
hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings
velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different
spastic gait patterns, which may help in providing targeted treatment.

Keywords: predictive simulations, neuromusculoskeletal modeling, forward dynamics, spastic diplegia, cerebral palsy

Spasticity is a neural impairment affecting over 85% of
children with cerebral palsy (CP).1 CP is the most common
childhood motor disorder, with an occurrence rate of around 2
in one thousand live births worldwide,2 and is caused by injury to
the developing brain during the perinatal period. In children,
spasticity can also be a feature of hereditary spastic paraplegia,
a group of rare genetic disorders, with a prevalence of 1.2 to 9.6 per
100,000.3

Spasticity is usually defined as a velocity-dependent increase
of the muscle stretch reflex4 and, therefore, is also known as stretch
hyperreflexia.5 This stretch hyperreflexia is caused by a lack of
supraspinal suppression of the H-reflex6 contributing to joint
hyperresistance.5 The combined impact of spasticity and other
musculoskeletal impairments that often develop during growth
results in a decline in gait function that adversely affects quality
of life.7

Improving gait function is an important patient goal, and a
range of treatments is available for spasticity management, includ-
ing botulinum toxin type A injections and selective dorsal rhizot-
omy.8,9 However, treatment selection is often difficult due to the
presence of a combination of different neuromusculoskeletal im-
pairments. When a child presents with a walking problem, it can be
unclear what the most limiting impairment to that child’s gait is,
and, hence, what the most effective treatment would be. The cause
and effect of how impairments like spasticity mechanistically affect
gait are difficult to test experimentally as the impairments cannot be
physically induced.

Instead, impairments can be induced in biocomputational
models within predictive forward simulations, and, therefore, such
simulations can be used to gain insight into causal mechanisms of
which muscle impairments contribute to specific gait deviations.
Doing so, the effects of plantar flexor weakness10,11 and plantar
flexor contracture10,12 on gait were demonstrated. Spasticity has
previously been modeled using stretch reflexes represented as
velocity-dependent feedback controllers, which successfully esti-
mated muscle behavior in fast stretches13 and clinically reported
deviations in spastic gait.14,15 However, outcomes were not directly
validated with experimental gait kinematics and kinetics. Recently,
it was suggested that a force-related hyperreflexia model out-
performed a velocity-based model when comparing each model’s
estimated muscle activity to experimental muscle activity during
passive stretches and gait in children with spasticity.16 This finding
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is supported by a recent experimental study suggesting that muscle
spindles encode force.17 However, simulations were not fully
predictive, limiting the evaluation of cause–effect mechanisms.
A length-based mechanism has also been modeled as being
involved in spasticity,14,15 but it has been shown that most spastic
muscles were only sensitive to length changes to a limited extent,18

and increased length and velocity feedback were shown to result only
in subtle temporal differences.14 No previous studies have imple-
mented force and velocity spasticity mechanisms into a predictive
simulation workflow to predict gait of children with spasticity.

Therefore, the overall aim of this study was to model and
compare these 2 hyperreflexia mechanisms in predictive simula-
tions of gait to evaluate which mechanisms may underly gait
deviations in children with spasticity. Two specific questions were
addressed. First, does velocity- or force-based hyperreflexia better
predict gait patterns in children with spasticity? Second, are
different gait patterns in children with spasticity predicted by
involvement of different muscles? Answering these questions
could enhance understanding of how spasticity can contribute to
gait deviations and which muscles may be important to treat when a
child presents with a specific gait pattern.

Methods
Experimental Data Clusters

Data from 17 children with spastic paresis were used as compara-
tive experimental data (Table 1). All children were scheduled for a
selective dorsal rhizotomy to reduce spasticity in the legs. Based on
clinical indication criteria,20 participants were selected as having
spasticity as the primary impairment affecting their gait, with
coimpairments such as weakness and contracture playing a smaller
role. Written informed consent was given by the parents as well as
by children older than 12. The study protocol was approved by the
medical ethics committee of the Amsterdam UMC, location VU
Medical Centre.

Data were collected as part of clinical care between November
2015 and June 2019 by the gait lab clinicians. In a physical exam,
spasticity levels were quantitatively assessed for the rectus femoris,
hamstrings, gastrocnemius, and soleus using the Spasticity Test
(SPAT).21 In the SPAT, each muscle was manually stretched at a
fast speed and one of the following scores allocated: 0 = no
spasticity, 1 = an increase in muscle resistance somewhere in the
range of motion, 2 = an increase in muscle resistance with a clear
catch and a release, 3 = an increase in muscle resistance with a clear
catch without release, 4 = clonus with less than 5 beats, and
5 = clonus with 5 beats or more.

In the same session, all children walked on an overground
walkway at their self-chosen comfortable walking speed. Motion

capture data were collected at 100 Hz using the Human Body
Model marker set (Vicon).22,23 Ground reaction forces (GRFs)
were simultaneously collected at 1000 Hz using 2 (before March
2017) or 5 (from March 2017) embedded force plates (AMTI).
Electromyography (EMG) data were recorded with bipolar sensors
at 1000 Hz for the rectus femoris, vastus lateralis, semitendinosus,
tibialis anterior, gastrocnemius medialis, and soleus muscles
(Cometa). Two to 5 strides per leg of each child with a clean
force plate hit were selected.

Gait data were analyzed using OpenSim (version 4.1, open-
source software).24 The gait 2392 musculoskeletal model25 was
scaled to each participant’s proportions extracted from a static T-
pose trial. OpenSim’s inverse kinematic and inverse dynamic tools
were used to compute joint angles and moments from walking
trials,24 and joint powers were calculated using angular velocities
and moments using custom-written scripts inMATLAB 2016a (The
MathWorks Inc). EMG signals were bandpass filtered between 30
and 300 Hz, full-wave rectified, and low-pass filtered by 6 Hz. Both
filters were second-order recursive Butterworth filters. For visuali-
zation purposes, EMG waveforms were normalized to their highest
value during the walking trial. All variables were time normalized to
stride duration to have the same number of samples (ie, 101) for each
stride.

Because of heterogeneity in the data, displayed by large SDs
in kinematic and kinetic variables, a cluster analysis was per-
formed to obtain representative subgroups of gait patterns per leg
of the children included in this study. The kmeans algorithm was
used in MATLAB 2016a, with experimental sagittal GRFs, joint
(ie, hip, knee, and ankle) and foot to horizontal (foot pitch) angles,
joint moments, and joint powers from each patient as input. The
number of gait clusters was visually set when adding an extra
cluster did not explain much more of the variance, also known as
the elbow method (Appendix A). Averaged time-normalized
GRFs, joint angles, moments and powers, and muscle excitations
derived from EMG were calculated for each cluster. Furthermore,
a Kruskal–Wallis test was performed on the SPAT scores of each
muscle to test whether these scores were different between
clusters.

Nested Optimization

For each gait cluster, a nested optimization scheme was used to find
velocity- or force-based hyperreflexia values that resulted in
predictive simulations that best matched the experimental data
(Figure 1). The inner loop ran predictive gait simulations, using
hyperreflexia values that were set and optimized by the outer loop.
Both loops are described next, starting with the inner loop,
followed by the outer loop.

Inner Loop

The inner loop process used our previously developed forward
dynamic simulation framework that showed good reproductions
of typical gait26 and idiopathic toe walking.12 The simulations
ran within Simulated Controller OptimizatioN Environment
(SCONE)27 with its Hyfydy model28 based on an OpenSim
model25,29 with 9 muscles per leg and 2 viscoelastic contact spheres
on the calcaneus and metatarsophalangeal joints of each foot.30

Muscles were controlled by the reflex-based controller from
Geyer and Herr31 to which supraspinal drive was added.26 Also,
the control for the rectus femoris, hamstrings, gastrocnemius, and
soleus muscles was expanded such that these muscles were
controlled by length-, velocity-, and force-based reflexes and

Table 1 Patient Demographics and Gross Motor
Function Classification System19 Level

Diagnosis 14 CP, 3 HSP

Sex 9 boys, 8 girls

Age, y 8.2 (3.64) [4, 17]

Height, cm 132 (19) [108, 163]

Mass, kg 31 (14) [17, 64]

Gross Motor Function Classification System 4 × I, 13 × II

Abbreviations: CP, cerebral palsy; HSP, hereditary spastic paraplegia. Note: The
values are presented as mean (SD) [minimum, maximum].
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supraspinal drive, instead of only one type of reflex, to be more
complete and realistic of spindles.32,33 Hence, these muscle’s
excitations U were modeled according Equation 1:

U = C0þ GF × F þ GL × Lþ GV × V : (1)

In this, C0 represents the supraspinal drive and GF, GL, and GV the
reflex gains for the muscle force F, fiber length L, and fiber velocity
V, respectively. Reflex delays were 10milliseconds for the iliopsoas,
rectus femoris, gluteus maximus, and hamstrings; 20 milliseconds
for the vasti and biceps femoris short head; and 35 milliseconds for
the tibialis anterior, gastrocnemius, and soleus.34 The 160 design
variables of the inner loop for a typical gait optimization consisted of
the muscles’ reflex gains and supraspinal drive values as well as the
model’s initial pose, which were optimized through a covariance
matrix adaptation evolution strategy35 on a 24-core Intel Xeon CPU
E5-2690 2.60 GHz processor.

The multiobjective weighted cost function that was minimized
in the inner loop consisted of cost of transport,36 head stability,
foot–ground impact, knee hyperextension, and muscle activation
squared per distance travelled, as described in Veerkamp et al.26

Also, a penalty was added that prevented muscle fibers from
functioning on the descending limb of the force–length curve,37

and normalized muscle activations above 0.9 were penalized to
prevent unrealistic maximal activations. The duration of each
simulation was set to 10 seconds, and walking speed was free
to vary above 0.5 m/s. For each scenario, 12 separate optimizations
were performed with different random seeds, using an initial SD of
the design variables of 0.01. Optimizations stopped as soon as the
cost function, averaged over the last 500 generations, did not
improve more than 0.01% per generation. From the 12 optimiza-
tions, the simulation with the overall lowest cost function score
was selected for subsequent quantitative evaluation. From this

simulation, the first 2 gait cycles were excluded, and waveforms
were time normalized and averaged over all subsequent gait cycles,
which were typically all very similar. Muscle excitations were
filtered by a 6-Hz low pass second-order Butterworth filter.

Hyperreflexia was modeled in the predictive simulations by
increasing the optimized reflex gains from typical gait for the rectus
femoris, hamstrings, gastrocnemius, and soleus muscles as these
muscles were primarily affected in the patient groups. For each of
these muscles, a single hyperreflexia value was added to the typical
reflex gains across each gait phase for either of the velocity- or
force-based reflexes as it was previously shown that spastic gait has
similar reflex gain modulation as typical gait but at a higher
amplitude.6 The 20 reflex gains with hyperreflexia (ie, 4 muscles ×
5 gait phases) were removed from the design variables of the inner
loop optimization such that 140 design variables remained. As an
initial guess for the optimization, the optimized parameters from a
predictive simulation with slightly increased reflex gains were used
(ie, 0.3 for velocity-based, 2 for force-based hyperreflexia).
Hyperreflexia values were set by the outer loop.

Outer Loop

The outer loop of the nested optimization optimized the hyperre-
flexia values to get the best match with each cluster’s experimental
data. The root mean square errors (RMSE) between simulated and
experimental sagittal hip, knee, and ankle angles and moments
were minimized using a surrogateopt algorithm in MATLAB
2019b. Each RMSE was divided by its average experimental
SD to enable comparisons of the RMSE between variables with
different magnitudes. Hyperreflexia value constraints were 0 to 1
for velocity-based hyperreflexia and 0 to 20 for force-based
hyperreflexia. In pilot simulations, it was found that values above
the previously described upper bounds resulted in only a few

Figure 1 — Diagram of the nested optimization process to find hyperreflexia values that predict gait best matching experimental data. SCONE indicates
Simulated Controller OptimizatioN Environment.
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optimizations converging to a walking simulation in the inner loop,
giving little confidence that actual optimums were found.

Evaluations of Optimization Results

For the gait predicted by each nested optimization for each gait
cluster and each type of hyperreflexia, the match between the
simulations and the experimental data was quantified using the
coefficients of determination (R2) and RMSE. These values were
computed for different categories of biomechanical variables, that
is, GRF, joint and foot pitch angles, joint moments, joint powers,
and normalized muscle excitations. An average R2 and RMSEwere
calculated by averaging the values over all variables. RMSE of the
excitations were excluded as absolute amplitudes are difficult to
compare when EMG is not normalized by maximum voluntary
contractions, whereas the simulation excitation output was nor-
malized to maximum voluntary contractions. The RMSE for each
variable was divided by its average experimental SD. For each
cluster, it was evaluated whether velocity- or force-based hyperre-
flexia best predicted experimental data based on R2 and RMSE.
This was done by calculating which type of hyperreflexia predicted
most variables best. For each variable, the best performing type for
each cluster was scored with a 1, the worst with a 0. The obtained
distribution was compared against a distribution of 0.5 (ie, when
both types of hyperreflexia would score equally) using a binomial
test (IBM SPSS Statistics, version 20). Furthermore, the predicted
walking speed of the simulations was compared with the average
walking speed of each cluster.

For the modeled type of hyperreflexia that resulted in the best
match with experimental data, the optimized values were compared
for each muscle between clusters to evaluate which muscles were
predominantly involved in each gait pattern. Furthermore, these
values were compared against average SPAT scores to explore
whether there was consistency between the simulations and exper-
imental measures of each muscle’s level of spasticity. Values
were ranked within muscles (ie, sorted from low to high), and
ranks between hyperreflexia and SPAT values were statistically
compared by Spearman rho in SPSS per muscle and over all
muscles.

Results
Three different gait clusters were found (Appendix A). The first
cluster (14 legs) predominantly showed increased knee flexion
during stance compared with typical gait. The second cluster (11
legs) showed increased hip and knee flexion at initial contact and
some increased plantar flexion over the gait cycle. The third cluster
(9 legs) showed increased knee flexion and substantial increased
ankle plantar flexion throughout the gait cycle. SPAT scores
differed between clusters for the hamstrings (P = .035) and soleus
(P = .004), showed a trend for the gastrocnemius (P = .077), and
were not significantly different for the rectus femoris (P = .55). For
each cluster, the kinematics, kinetics, and muscle excitations from
each nested optimization were predicted with varying levels of
accuracy (Figures 2–4).

For the first cluster, the best velocity-based hyperreflexia
simulation was close to the experimental data but did not show
enough ankle dorsiflexion and showed too much knee extension in
preswing. The best simulation with force-based hyperreflexia
showed too much ankle plantar flexion and lacked increased knee
flexion at initial contact, as present in the experimental data. In both
simulations, the soleus excitation showed a double bump pattern,

as present in the experimental data. The velocity-based hyperre-
flexia simulation (R2: .63; RMSE: 1.42 SD; Figure 5) performed
slightly better than the force-based hyperreflexia simulation (R2:
.63; RMSE: 1.63 SD). The walking speed of the velocity-based
hyperreflexia simulation (1.01 m/s) was closer to the average
experimental speed of this cluster (1.00 [0.24] m/s) than the
force-based hyperreflexia simulation (1.25 m/s).

For the second cluster, both simulations showed a good
prediction of the increased ankle plantar flexion. However, the
velocity-based hyperreflexia simulation exhibited increased hip
and knee flexion at initial contact, as present in the experimental
data, whereas the force-based hyperreflexia simulation did not.
Both simulations showed a soleus double bump excitation pattern
and high gastrocnemius excitation instance, reflecting experimen-
tal data. The velocity-based hyperreflexia simulation also showed
gastrocnemius activity in swing. The velocity-based hyperreflexia
simulation (R2: .66; RMSE: 1.19 SD) performed somewhat better
than the force-based hyperreflexia simulation (R2: .61; RMSE: 1.28
SD) for this cluster. The walking speed of the velocity-based
hyperreflexia simulation (0.96 m/s) was closer to this cluster’s
average experimental speed (1.01 [0.18] m/s) than the force-based
hyperreflexia simulation (1.10 m/s).

For the third cluster, both simulations matched the experimen-
tal kinematics well, with increased knee flexion at initial contact
and increased plantar flexion over the gait cycle. The velocity-
based hyperreflexia simulation did not show enough ankle plantar
flexion during push off, which was better achieved by the force-
based hyperreflexia simulation, although the plantar flexion timing
was better for the velocity-based compared with the force-based
hyperreflexia simulation. In the velocity-based hyperreflexia sim-
ulation, both the gastrocnemius and the soleus muscle did not show
a clear excitation peak during push off and remained active in
swing. In the experiment data, a clearer push-off excitation was
visible, but the predicted soleus excitation in swing was in agree-
ment with the experimental data. Overall, the velocity-based
hyperreflexia simulation (R2: .59; RMSE: 1.49 SD) performed
slightly better than the force-based hyperreflexia simulation (R2:
.50; RMSE: 1.71 SD). The walking speed of the velocity-based
hyperreflexia simulation (0.87 m/s) was closer to the average
experimental speed of this cluster (0.85 [0.21] m/s) than the
force-based hyperreflexia simulation (1.08 m/s).

Over all clusters, velocity-based hyperreflexia scored better
than force-based hyperreflexia for 74% of the examined bio-
mechanical variables (Figure 5), which was significantly different
from a 50% distribution, as shown by the binomial distribution
test (P = .019).

Optimized velocity-based hyperreflexia values for each cluster
are shown in Figure 6A and Appendix B. Velocity-based hyperre-
flexia values for the first cluster were highest for the hamstrings and
rectus femoris muscles. For the second cluster, hyperreflexia values
were highest for the gastrocnemius, and for the third cluster, values
were highest for the hamstrings, gastrocnemius, and soleus muscle.
The rectus femoris and soleus showed a similar ranking of the
experimental SPAT values (rho = 1). The hamstrings scored a rho
of .5, and the gastrocnemius scored worst with a rho of −.5. Overall,
Spearman rho between optimized and experimental values was
.5 (P = .098).

Discussion
This study aimed to evaluate the pathophysiological mechanisms
underlying gait deviations seen in children with spastic paresis,
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characterized predominantly by spasticity. Three clusters of gait
patterns emerged, with distinct differences in knee and ankle
kinematics throughout the gait cycle. Velocity-based hyperreflexia
predicted spastic gait patterns better than force-based hyperreflexia.
Each gait pattern was explained by different combinations of
spasticity between muscles, with some similarities between the
relative contributions of spastic muscles within the simulations and

experimentally measured spasticity scores. These insights into the
role of spastic muscles in gait can guide clinical recognition of
when and where spasticity is present and may inform targeted
treatment.

Most gait deviations and some SPAT score ranks could be
predicted by the simulations, suggesting that spasticity could,
indeed, be the predominant impairment affecting gait in the

Figure 2 — Predicted kinematics for (A) typical gait and for gait patterns from children with spasticity, that is, (B) cluster 1 with mostly increased knee
flexion during stance, (C) cluster 2 with mostly increased ankle plantar flexion, and (D) cluster 3 with increased knee flexion and ankle plantar flexion. For
each of the gait patterns, velocity- and force-based hyperreflexia were imposed, separately. Experimental kinematics display ± 1 SD from the mean.
Comparative experimental data for typical gait were obtained as described in Veerkamp et al.26
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selected children. However, some differences between predicted
and experimental gait still existed, and optimized and experimental
spasticity values for the gastrocnemius did not match well. Perhaps,
besides spasticity, other impairments also contribute to the gait
deviations in the experimental gait patterns that may explain the
observed differences. The simulation predicting the first cluster
with increased knee flexion predominantly showed spastic involve-
ment of the rectus femoris and hamstrings, whereas during the

physical exam, spasticity was also detected in the gastrocnemius
and soleus in children within this cluster. These children may have
also presented with plantar flexor muscle weakness, which is often
present in CP39–42 but was not modeled in this study nor measured
within our patient group. Perhaps, plantar flexor spasticity would
have resulted in increased plantar flexion during gait in these
children, but this could be neutralized by weakness. Furthermore,
in the third gait pattern, with increased knee flexion and ankle

Figure 3 — Predicted kinetics for (A) typical gait and for gait patterns from children with spasticity, that is, (B) cluster 1 with mostly increased knee
flexion during stance, (C) cluster 2 with mostly increased ankle plantar flexion, and (D) cluster 3 with increased knee flexion and ankle plantar flexion. For
each of the gait patterns, velocity- and force-based hyperreflexia were imposed, separately. Experimental kinematics display ±1 SD from the mean.
Comparative experimental data for typical gait were obtained as described in Veerkamp et al.26
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plantar flexion, a prominent difference between the simulation and
the experimental data was the lack of increasing ankle plantar
flexion during push off in the simulation. Further assessment of the
physical exam data (Appendix C) revealed that these children also
had limited ankle range of motion (maximum dorsiflexion angle of
−5° [12°] with knee flexed, −12° [8°] with knee extended), which
was not modeled. Therefore, within the simulation, the plantar

flexors may be performing at such short normalized fiber lengths
during push off that further plantar flexion could not be achieved,
whereas further plantar flexion may have been possible when the
contracture was also modeled.

Even though the optimized hyperreflexia values and experi-
mental SPAT scores generally showed some similarities across
clusters, it needs to be noted that the comparative value of the

Figure 4 — Predicted normalized muscle excitations for (A) typical gait and for gait patterns from children with spasticity, that is, (B) cluster 1 with
mostly increased knee flexion during stance, (C) cluster 2 with mostly increased ankle plantar flexion, and (D) cluster 3 with increased knee flexion and
ankle plantar flexion. For each of the gait patterns, velocity- and force-based hyperreflexia were imposed, separately. Experimental kinematics display ±1
SD from the mean. Comparative experimental data for typical gait were obtained from Bovi et al.38
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SPAT score is limited. It has been shown that the SPAT also
correlates with tissue stiffness,43 indicating that it is difficult to
distinguish neural and nonneural contributors to joint resistance by
such a manual assessment. Instead, an instrumented spasticity
assessment, such as described by van Den Noort et al44 and
Bar-On et al,45 could be used to quantify neural hyperreflexia and
may provide a more valid comparison. Unfortunately, such assess-
ment was not performed within our patient group. However, even
when using such an instrumented spasticity assessment, compar-
isons would not be completely valid. Hyperreflexia gains in passive
and active conditions are not necessarily interchangeable,46 and
reflex gains have been shown to be task dependent.47,48

The finding that modeling velocity-based hyperreflexia can
predict experimental data from children with spasticity is in
agreement with most simulation studies.13–15 However, Bruel
et al,15 Jansen et al,14 and Falisse et al16 changed length-based
reflex gains simultaneously with velocity-based hyperreflexia. We
chose not to add length-based hyperreflexia as it would double the
number of hyperreflexia values to be optimized, and pilot simula-
tions showed only a minor additional effect from length-based
hyperreflexia. Jansen et al14 also mentioned a minor difference
between length hyperreflexia and velocity hyperreflexia. More-
over, Bar-On et al18 showed that most spastic muscles were
predominantly sensitive to velocity changes, rather than length
changes, during passive stretches.

Our study findings contrast with the findings of Falisse et al,16

who showed that force-based hyperreflexia outperformed velocity-
based hyperreflexia in predicting muscle activations during gait of
children with CP. Differences in modeling approach and patient
selection may explain this contradicting finding. Falisse et al also
modeled force-derivate feedback, whereas we chose not to do this

Figure 5 — Matches for each of the predictive simulations with the corresponding experimental data (ie, experimental data of typical gait or of one of
the clusters), quantified by the coefficient of determination (R2) and RMSE for different biomechanical categories as well as averaged over all
categories. GRFs indicates ground reaction forces; RMSE, root mean square errors.

Figure 6 — Spasticity scores for the rectus femoris, hamstrings,
gastrocnemius, and soleus muscles for each cluster as (A) optimized within
the predictive simulations with velocity-based hyperreflexia (displayed by *)
and (B) asmeasured during a physical exam by the SPAT (median displayed by
×, mean displayed by +; the size of the circles indicates the distribution of the
individual data points: a bigger circle means that that value was measured in
more patients). SPAT indicates Spasticity Test.

Predictive Simulations With Spasticity 341

JAB Vol. 39, No. 5, 2023
Brought to you by ULB - TEAM HUMANWISSENSCHAFTEN | Unauthenticated | Downloaded 10/26/23 07:36 AM UTC



as this derivative is very sensitive to noise. Also, the spasticity
model in Falisse et al was fitted to the passive stretch experimental
data and not to gait, whereas, as mentioned, passive and active
hyperreflexia gains may not be the same. Furthermore, the simula-
tions from Falisse et al were not fully predictive but required EMG
and musculotendon lengths as input, which could have been
affected by other neuromusculoskeletal impairments. Moreover,
such other impairments may be playing a bigger role in the children
selected by Falisse et al as these children were not specifically
selected based on spasticity being their primary impairment.
Nevertheless, it may also be that spasticity can be explained by
a combination of velocity- and force-based hyperreflexia. For
example, for the first cluster, the force-based hyperreflexia simula-
tion predicts increased knee flexion in preswing, which the veloc-
ity-based hyperreflexia could not achieve, suggesting how they
could complement each other. Nonetheless, testing combinations
of hyperreflexia types is computationally expensive as the number
of hyperreflexia values that needs to be optimized by the outer loop
increases. Each nested optimization in the current study took
around 5 days, and it would have been prohibitive to further
increase simulation times.

Within neurophysiological literature, there is a stronger base of
evidence for spasticity being a velocity-dependent phenomenon as
opposed to force dependent.49,50 The source of spasticity is sug-
gested to be disinhibition of feedback from the muscle spindles
within the spinal cord.51 Even though a recent paper has suggested
that spindle firing depends on force and force derivative,17 this does
not seem to weigh up against evidence for spindle sensitivity to
length and velocity (eg, Matthews and Stein33; Matthews32).
Length, velocity, and force are possibly also correlated in many
experimental conditions, challenging studies of the underlying
physiological mechanisms. It may be that in spasticity, inhibition
of the Ia afferents from the spindles, which provide velocity
feedback, is suppressed,18,52 but the exact physiological mecha-
nism of velocity dependency of spasticity remains unclear.53

Several limitations and assumptions of this study need to be
considered in interpreting the findings of our simulation study.
First, we used a 2D (sagittal) model, whereas muscles prone to
spasticity also contribute to gait deviations in the frontal and
transverse planes. Further developments in the controller are
required to enable evaluation of effects of spasticity in 3D, for
example, by also being able to include adductor and tibialis
posterior spasticity. Second, hyperreflexia values were added to
typical reflex gains, but these typical gains could not be validated.
Third, our framework used a cost function that was tuned to predict
typical gait.26 For children with CP, the criteria may be weighted
differently, and other factors, such as pain, may also play a role.
Fourth, some children did show limited joint range of motion,
particularly in the ankle (Appendix C), which likely also affected
their gait. Fifth, walking speed was free to vary within the
simulations, and the force-based hyperreflexia simulations resulted
in a faster walking speed than experimentally found for each
cluster. The velocity-based hyperreflexia simulations predicted a
closely matching walking speed. Therefore, the force-based simu-
lation’s worse match with experimental biomechanical variables
may be explained by differences in walking speed. However, we
preferred not to impose the simulation’s walking speed as this
would limit the framework’s applicability in predicting gait for new
situations in which the walking speed is unknown. Furthermore, it
may be considered a strong result from the velocity-based hyperre-
flexia simulations that experimental walking speed was predicted
closely.

This study has provided insights into the role of spastic
muscles in different gait patterns. These insights can guide clinical
recognition of when and where spasticity is present in a patient. The
cause-and-effects mechanisms of how spasticity affects gait could
be used to verify relations between gait deviations and impair-
ments. Such relations are used in clinical practice to guide treat-
ment selection.54–56 As a next step, spasticity should be combined
with other impairments, such as weakness and contracture, to
elucidate the interaction of these impairments. This may assist
in the clinical reasoning process of gait analysis interpretation in
children with CP and other neuromuscular disorders, which could
improve treatment selection. Combining impairments would also
be important for patient-specific simulation, which can account for
the heterogeneity within the population. Moreover, the effects of
interventions can be investigated and validated with postinterven-
tion gait data. Combined, this would be a step toward the ultimate
goal of being able to use patient-specific predictive simulations to
predict and optimize treatment outcomes.

In conclusion, we have shown that different gait patterns of
children with spasticity can be distinguished. Each of these gait
patterns can be predicted reasonably by simulations with velocity-
based hyperreflexia, and each gait pattern was explained by a
different combination of spastic muscles.
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Appendix A: Cluster Analysis Elbow Method

Appendix B: Optimized Hyperreflexia Values

Table B1 Optimized Velocity-Based Hyperreflexia Values for Each Muscle and Each Cluster

Rectus femoris Hamstrings Gastrocnemius Soleus

Cluster 1 0.74 0.52 0.23 0.10

Cluster 2 0.36 0.19 0.72 0.20

Cluster 3 0.28 0.62 0.88 0.82

Table B2 Optimized Force-Based Hyperreflexia Values for Each Muscle and Each Cluster

Rectus femoris Hamstrings Gastrocnemius Soleus

Cluster 1 0 0.05 0.14 2.19

Cluster 2 6.73 2.19 20 2.93

Cluster 3 3.17 2.69 13.25 7.97
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Figure A1 — The elbow method was used to visually determine the optimal number of clusters present in the experimental data. In this method, a
number of clusters is selected to which adding an extra one does not explain much more of the variance. Based on this figure, the use of 3 clusters was
considered to be optimal. This also made most sense when visually assessing the data as it resulted in gait patterns with clearly distinct gait patterns, with a
quite even distribution of legs between cluster (9–14 legs per cluster).
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Appendix C: Joint Range of Motion per Cluster

Cluster 1 Cluster 2 Cluster 3

Mean SD Mean SD Mean SD

Supine

Hip flexion 108.9 6.8 114.1 11.1 108.9 10.2

Hip abduction (knee flexed) 37.9 7.8 43.6 11.6 43.9 16.0

Hip abduction (knee extended) 20.4 4.1 28.2 7.8 25.0 9.0

Hip adduction 17.9 6.7 26.4 11.0 26.1 5.5

Knee flexion 142.1 13.0 146.4 11.6 148.9 7.8

Knee extension −2.5 7.0 0.5 5.2 −2.8 5.7

Popliteal angle 71.8 7.5 65.9 20.0 65.0 16.8

Ankle plantarflexion 43.9 9.2 41.8 10.1 46.1 10.2

Ankle dorsiflexion (knee flexed) 6.4 6.0 5.0 13.6 −5.0 12.7

Ankle dorsiflexion (knee extended) −2.5 7.0 0.5 12.5 −12.2 7.5

Prone

Hip extension 5.0 11.3 −1.8 5.1 0.0 5.0

Hip endorotation 59.6 13.1 67.7 13.3 60.6 9.8

Hip exorotation 20.0 8.3 15.9 4.9 19.4 8.5

Knee flexion 109.6 27.0 121.8 19.9 121.1 20.3

Ankle varus 13.8 4.8 15.0 5.9 17.2 7.9

Ankle valgus 1.7 2.5 4.5 4.2 3.9 3.3

Ankle pronation 21.7 8.6 25.0 4.7 25.0 7.1

Ankle supination 29.6 16.8 32.5 17.8 33.1 11.9
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