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Abstract—The high execution time of DNA sequence alignment
negatively affects many genomic studies that rely on sequence
alignment results. Pre-alignment filtering was introduced as a
step before alignment to reduce the execution time of short-read
sequence alignment greatly. With its success, i.e., achieving high
accuracy and thus removing unnecessary alignments, the filtering
itself now constitutes the larger portion of the execution time. A
significant contributing factor entails the movement of sequences
from the memory to the processing units, while a majority will
filter out as they do not result in an acceptable alignment.
State-of-the-art (SotA) pre-alignment filtering accelerators suffer
from the same overhead for data movements. Furthermore, these
accelerators lack support for future pre-alignment filtering algo-
rithms using the same operations and underlying hardware. This
paper addresses these shortcomings by introducing SieveMem.
SieveMem is an architecture that exploits the Computation-in-
Memory paradigm with memristive-based devices to support
shared kernels of pre-alignment filters and algorithms inside
the memory (i.e., preventing data movements). SieveMem archi-
tecture also provides support for future algorithms. SieveMem
supports more than 47.6% of shared operations among all top 5
SotA filters. Moreover, SieveMem includes a hardware-friendly
pre-alignment filtering algorithm called BandedKrait, inspired
by a combination of mentioned kernels. Our evaluations show
that SieveMem provides up to 331.1× and 446.8× improvement
in the execution time of the two most-common kernels. Our
evaluations also show that BandedKrait provides accuracy at
the SotA level. Using BandedKrait on SieveMem, a design we
call Mem-BandedKrait, one can improve the execution time of
end-to-end sequence alignment irrespective of the dataset, which
can go up to 91.4× compared to the SotA accelerator on GPU.

Index Terms—Alignment, Pre-alignment Filter, Computation
in Memory, Emerging Memory Technology, Hardware Acceler-
ator

I. INTRODUCTION

Sequence alignment1 is a fundamental step in most genomic

studies that help us with outbreaks surveillance, precision

medicine, and other medical advances [11, 21, 36]. Sequence

alignment is finding the similarity/closeness between a refer-

ence genome sequence (hereafter called reference) and a DNA

read sequence (hereafter called read). Unfortunately, the DNA

base-pairs (e.g., A, C, G, T) in references and reads may not

always be identical at the location the read actually comes

from for two reasons: (1) errors that arise when obtaining

the sequences (a process called genome sequencing [32, 42]),

and (2) genetic differences that exist among an individual

organisms’ DNA and corresponding reference [3]. Therefore,

1Also known as mapping

the sequence alignment process should be able to tolerate such

differences, commonly known as edits: deletion, insertion, or

substitution. To deal with this requirement, SotA sequence

alignment methods employ computationally costly dynamic

programming-based (DP) algorithms such as Needleman-

Wunsch or Smith-Waterman algorithms [14, 34, 45] to account

for edits while avoiding duplicate works. Unfortunately, these

DP algorithms are computationally costly and incur long

latencies and energy inefficiencies when applied to large DNA

sequences. These limitations directly affect the medical studies

that benefit from sequence alignment.

Pre-alignment filtering2 was recently introduced as a solu-

tion to significantly speed up the overall process of sequence

alignment by heuristically replacing the need for expensive DP

solutions for many inputs, given a pre-defined edit distance

threshold between the inputs [2, 4, 5]. SotA pre-alignment

filters speed up the short-read (100-250 base-pairs or bps)

sequence alignment so much so that they themselves become

the (next) bottleneck to be accelerated [2, 4]. Although one

SotA work [5] accelerates the pre-alignment filters on Graph-

ics Processing Units (GPUs) and Field-Programmable Gate

Arrays (FPGAs), this work still does not completely alleviate

the bottleneck. Moreover, we find that data movement is a

major issue in SotA pre-alignment filters, i.e., these filters

waste a lot of time and energy when moving the sequences

from the memory to processing units, most of which turn out to

be unnecessary as the data is decided to be filtered out eventu-

ally [5]. Therefore, there is a need for a more efficient design

to tackle the filtering bottleneck in the sequence alignment

pipeline and simultaneously avoid the wasted work, time, and

energy consumption caused by data movement in the system.

We propose SieveMem, an architecture based on

Computation-in-Memory (CIM) principles capable of

handling shared kernels in pre-alignment filtering for short-

sequence alignment. We identify the shared kernels via

an extensive profiling process using the same datasets and

platforms for all the pre-alignment filters for a fair comparison

and accurate recognition of bottlenecked operations. We also

propose BandedKrait, a novel lightweight pre-alignment filter

from shared kernels in previous filters (i.e., those supported

by SieveMem) and its mapping into SieveMem architecture,

a design called Mem-BandedKrait. SieveMem adapts the

CIM paradigm since it requires prevention of data movement,

2We use the term filter and pre-alignment filter interchangeably hereafter.
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processing a large amount of data, and performing relatively

small and/or simple computations, the main characteristics

a CIM architecture embraces [6, 37, 57]. SieveMem’s

design comprises two abstraction levels: (1) A low-level

abstraction that supports the shared kernels in filters and (2) a

high-level abstraction that supports filtering algorithms using

the existing hardware in SieveMem and takes care of input

data distribution and output data processing. SieveMem is

designed to support filtering for short reads because most of

the available data in the genomics realm is still short reads

(sequences of length 100 to 250 base-pairs), even though

the industry is slowly moving towards long-read sequencing.

Therefore, supporting short reads filtering and alignment will

remain relevant problems in upcoming years.

Our results show that SieveMem accelerates the execution

time of the identified shared kernels by up to 331.1× and

446.8× for the two most common kernels in pre-alignment

filters. The results also show that BandedKrait achieves an ac-

curacy on par with SotA filter SneakySnake. When accelerated

on SieveMem, Mem-BandedKrait accelerates pre-alignment

filtering by up to 95.5× and 1292× over SotA filters on

GPU and CPU, respectively, for the same real input datasets.

SieveMem achieves all these benefits, neither replacing the

sequence alignment nor introducing extra false negatives into

the pre-alignment filtering process, i.e., SieveMem only affects

the pre-alignment filtering step positively. Therefore, users can

still employ SieveMem with any sequence aligner.

Our contributions are the following:

• An configurable memristor-based accelerator (called

SieveMem) that supports the most common shared ker-

nels in pre-alignment filters.

• A memory-friendly filtering algorithm, called Banded-

Krait, accounting for the inflexibility of having the start-

ing point access aligned with the memory units in mem-

ory/hardware. BandedKrait uses the same shared kernels

and corresponding hardware of previous filters.

• A CIM-enabled realization of BandedKrait on SieveMem,

called Mem-BandedKrait, for short-read pre-alignment

filtering.

• An extensive evaluation of SieveMem’s supported ker-

nels, BandedKrait, and Mem-BandedKrait using real data

against previous software and hardware pre-alignment

filters.

II. BACKGROUND

In this section, we briefly discuss the necessary background

for this work. We refer the readers to comprehensive reviews

on the same topics [3, 22, 35] for more details.

A. Sequence Alignment

Sequence alignment is defined as identifying the potential

matching locations of every genome sequence (called read)

with respect to another known genome sequence, such as a

representative sequence for a species (known as the reference

genome). SotA sequence aligners use computationally costly

DP algorithms to prevent unnecessary, duplicate work. There

are two main directions to improve the sequencing alignment

step directly [5, 12, 15, 25, 31]: 1) accelerating the DP

algorithms, 2) exploiting the inherent parallelism of algorithms

and accelerating them using high-performance computing plat-

forms such as CPUs, FPGAs, and GPUs.

B. Pre-Alignment Filtering

Pre-alignment filtering is a heuristic-based method to miti-

gate the cost of sequence alignment by quickly eliminating

the need for performing the expensive DP given a pre-

defined threshold called "edit distance." SneakySnake [5],

Shouji [2], MAGNET [4], and SHD [54] are a few widely-

used examples of such filters. SneakySnake [5] is the most

recent of such filtering techniques that proposes to reduce

the approximate string matching (ASM) problem to the single

net routing (SNR) problem to find the optimal path with the

least routing cost. This tweak enables SneakySnake to filter

most unnecessary alignments in a parallel and highly accurate

manner. Alser, et al. [5] show that this conversion also makes

SneakySnake suitable for other high-performance computing

(HPC) architectures, e.g., GPUs.

C. Computation-in-Memory (CIM) and Memristors

The recently re-ignited Computation-in-Memory (CIM)3

paradigm is a promising way to eliminate data movement

and saves us time and energy as the bandwidth is the largest

near the memory. This paradigm advocates for computation

where the data resides and, therefore, effectively mitigates the

need for data transfer. This contrasts with the traditional Von

Neumann architecture in which data and processing units are

separate and data movement is required for any operation. Pre-

vious works from industry and academia propose architectures

based on this paradigm to improve the performance and en-

ergy consumption in applications with relatively small and/or

simple computations and work on large amounts of data, such

as those in Machine Learning and Bioinformatics [6, 10, 41].

Pre-alignment filtering algorithms enjoy the same properties.

A memristive device is a non-volatile emerging mem-

ory technology that stores the data through its resistance

level [26, 51]. PCM [26], STT-RAM [50], and ReRAM [51]

are just a few examples. Memristive devices are suitable

candidates for both storage and computation units. Recent

works combine the CIM paradigm with memristors and use

them in crossbar-based memory structures to perform matrix-

vector [52] and bulk bit-wise logical [53] operations efficiently

following Kirchhoff’s law. Memristor devices also enjoy high

integration density and near-zero standby powers. Due to these

features and our accessibility to accurate models and chip mea-

surements for memristor-based memories (see Section V-A),

we use memristors as our underlying technology in SieveMem.

III. MOTIVATION AND PROFILING

This section (1) identifies the shared kernels in filters and

(2) motivates the CIM-enabled acceleration of filters. We refer

to Section V-A for detail on our setup and datasets.

3Interchangeably also known as Processing-in-Memory (PIM).
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Fig. 1: MAGNET’s breakdown. Fig. 2: Shouji’s breakdown. Fig. 3: SHD’s breakdown.

A. Shared Kernels in Filters

We profile three SotA (i.e., accurate and fast) pre-alignment

filters over different percentages of edit distances. Fig. 1,

Fig. 2, and Fig. 3 present a breakdown of the execution time

for each non-overlapping kernel in MAGNET, Shouji, and

SHD, respectively, over our representative dataset.

We make three key observations. First, across all filters

and edit distances, two operations, namely Hamming mask

creation (HMC) and detecting short patterns (called Short

Pattern Detect or SPD), make up most of the execution

time. Note that we categorized checking hamming distance,

leading zero counts, and SRS, in MAGNET, Shouji, and SHD,

respectively, into SPD, as they are all essentially detecting

short patterns. For example, HMC accounts for up to 66%,

84%, and 88% in end-to-end execution time of MAGNET,

Shouji, and SHD, respectively. Moreover, up to 72% and 68%

of the end-to-end execution time in MAGNET and Shouji,

respectively, is spent on SPD.

Second, the relative percentage of these two operations

varies per filter, edit distance, and dataset (and, therefore,

is data dependent). However, the combined HMC and SPD

account for a minimum 47.6% of filter’s execution time, going

up to 97.5%.

Third, apart from HMC and SPD, these filters also share

other operations of the same nature. For example, kernels for

counting edits, pre- and post-processing inputs and outputs,

and extra reads and writes of intermediate results.

We conclude that HMC and SPD comprise most of the

execution time in SotA filters. Acceleration of these two

kernels can resolve the bottleneck in filters and simultaneously

provide some assurance for future compatibility of filters that

utilize the same kernels.

B. Data Movement in Fitlers

Fig. 4 presents the breakdown of execution time for a SotA

accelerated filter, SneakySnake on GPU (Snake-on-GPU), on

two very different datasets of short reads labeled as D1 and

D2.

Fig. 4: Data movement bottleneck in accelerated filters.

We observe that over both datasets, Snake-on-GPU spends

a minimum of 60% of its execution time just transferring

data from memory to GPU. This portion can go up to 98%,

depending on the dataset and edit threshold. We conclude that

data movement is the bottleneck of the overall performance in

SotA accelerators for filtering.

The results presented in this section call for an acceleration

of pre-alignment filters with an emphasis on eliminating data

movement and supporting commonly shared kernels such as

HMC and SPD.

IV. PROPOSAL AND ARCHITECTURE

This section discusses (1) SieveMem and how it supports

HMC and SPD and mitigate data movement, (2) BandedKrait,

our new lightweight pre-alignment filtering algorithm, and (3)

Mem-BandedKrait, hardware realization of BandedKrait on

SieveMem.

A. SieveMem Architecture

Fig. 5-(a) presents the placement of SieveMem in a real

system, i.e., part of the memory. Due to this placement, Sieve-

Mem follows a hierarchical structure similar to conventional

memories, i.e., SieveMem consists of ranks, bank groups,

banks, subarrays, and tiles (Fig. 5-(b), -(c), and -(d)).
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Fig. 5: (a) SieveMem system placement, (b) to (d) An

overview of SieveMem hierarchy and its additional compo-

nents at different levels.

However, to support the target shared kernels for filtering,

SieveMem augments the substrate as we will discuss below:

Tile level changes: SieveMem enhances the SAs ( 1 ) and adds

a series of OR gates ( 2 ). The modified SAs [28, 53] enable

SieveMem to perform logical operations such as XOR, AND,

etc., with a minimal area overhead on data in an entire row of

a tile. This design is possible due to the nature of memristor

devices that inherently follow Kirschof’s law. The subsequent

series of OR gates relates to the nature of our working datasets

and encoding. We want SieveMem to enable filtering for DNA
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short-reads of {A, C, G, T}. This means we can encode each

character with 2 bits in a hardware realization. Since our

enhanced SAs perform bitwise operations, SieveMem needs

this series of OR to obtain a result based on base-pairs. Our

walk-through example in Section IV-B details this further.

Bank level changes: SieveMem adds a series of AND gates

for masking 3 , 2 TCAMs 4 , and a series of AND gates

5 . SieveMem uses AND gates to select any section of the

outputs from tiles. The masking gates are necessary for a true

CIM-enabled design where we cannot guarantee our target

data is aligned perfectly with crossbars. A limitation that

previous CIM-enabled designs typically face [16]. SieveMem

uses the two memristor-based TCAMs (called Pattern-detect

and Output-select) for all the necessary pattern detection in

different kernels of pre-alignment filters. The AND gates are

used to accumulate the results over several related checks in

the SieveMem, for example, checks for the same read sequence

over shifted versions of the reference. Section IV-B details

how one can use different masks, pre-filled TCAMs, and

bitwise gates to perform different operations and pre-alignment

filtering algorithms.

Rank level changes: SieveMem includes a TCAM called

Count-TCAM ( 6 ) at the rank level per each bank group.

SieveMem uses this TCAM to effectively calculate the mini-

mum edit between the sequences.

Overall modifications: SieveMem adds a small FSM to

control each hierarchy level’s logic and memory operations

( 7 ). SieveMem also includes some input and output buffers

in different levels. Each level’s FSM oversees the operations of

the components in that level of SieveMem. These controllers

are hierarchical, i.e., smaller FSMs control the operations at

bank, subarray, and tile levels, all managed by a controller at

the higher level. The buffers ensure seamless dataflow among

different levels with no data loss.

B. SieveMem Example Support for SHD

SHD requires removing sequences of 1 to 2 zeros from the

bit vector produced by the tile after the similarity checks via

XOR. The original algorithm [54] performs this by detecting

patterns of “101” and “1001”. Here, SieveMem opts for an

inverse detection, i.e., SieveMem detects sequences of zeros

that are 3-bits or longer. Therefore, the output vector should

be the same as the input vector but with the removal of the

short ‘0’ sequences.

SieveMem provides support for this via the TCAMs at the

bank level. To implement the required pattern detection and

selection, the output should always be a ‘1’, except for those

bits which are part of a sequence of 3 zeros or more. This

is the case when a pattern of 000, 000 or 000 is detected,

where the bold character indicates the position of the bit in

the original bit vector at the input of the Pattern-detect TCAM.

Therefore, the Output-select TCAM essentially performs a

NOR operation on the Pattern-detect output corresponding to

those 3 patterns. If any of the three patterns is detected, it will

result in a ‘1’ in the intermediate signal. The Output-select

TCAM will, therefore, not output a ‘1’ but a ‘0’. Conversely,

if none of the patterns is detected, then SieveMem can be

sure that the bit is not part of a sequence of 3 or more zeros.

The intermediate result will contain only 3 zeros for these

patterns, and the Output-select TCAM will output a ‘1’ for

that bit position in the XOR result.

Since the 2 base-pairs to the left and rightmost extremities

of the TCAM input require information about the base-pairs to

the left and right, respectively, these positions will always be

left ‘0’, done by the left and rightmost columns of the Output-

select TCAM. Since the output of the bottom two rows of

the Pattern-detect TCAM is always ‘1’ due to it being filled

with don’t-cares, the output of the Output-select TCAM, which

looks for ‘0’, will always be ‘0’.

Fig. 6 presents how one can pre-fill the two TCAMs of our

SieveMem to support the detection pattern required by SHD.

Note that the blank TCAM entries stand for don’t-cares. Here,

there is a ‘0’ between the two ‘1’s in the 6th bit counting from

the left. We observe that the patterns surrounding this bit are

“010”, “101”, and “010”. None of these are “000”. Therefore,

the Output-select TCAM will activate the row in green.

0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
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0 0 0

(a) Pattern-detect TCAM

1
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0
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0
0
1
1
0
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…

…

0
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1
0
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0
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0
0
0
0

(b) Output-select TCAM

Fig. 6: TCAMs values in SieveMem to support SHD.

At the rank level, SieveMem collects all bank group results

and counts the number of edits in a word set of the read

sequence. SieveMem uses Count-TCAM to detect patterns and

to assign a number for the edits of the detected patterns. Count-

TCAM is a 4-bit wide TCAM used in algorithms where we

need to split the final bit-vector into segments of k bits, e.g.,

SHD with k=4. Fig. 7 presents an example programming for

Count-TCAM to support SHD.

1
1
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1
X
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X
1
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1
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X

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Count-TCAM 
input

Count-TCAM
 

Mask

Output

Masked Output

Fig. 7: Filled Count-TCAM for SHD.

For the segment of "0000", SHD counts no edits, while it

counts two edits for "0101", "0110", "1001", "1010", "1011"

and, "1101". The rest of the cases are counted as single edits.

Therefore, SieveMem compresses these into 14 entries with
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don’t care cells, where the patterns that count for two edits

have double entries. Note that SieveMem relays the inputs to

the output without additional mutations. Therefore, a mask

might be required for the output to ignore the unused entries.

C. BandedKrait Algorithm

SieveMem is capable of supporting simple, shared kernels

in pre-alignment filters. Therefore, SieveMem can support any

future algorithm that uses similar kernels with different control

sequences. To show this, we devise a simple algorithm called

BandedKrait4,5.

BandedKrait reduces costly DP problem to a simpler exact

matching problem between (shifted versions of) smaller seg-

ments of read and reference. To this end, BandedKrait divides

the read sequence into segments of k-bps and compares them

to the corresponding segments of the reference and its shifted

versions. BandedKrait checks each pair for an exact match,

and the results determine whether an edit is present within that

segment. The repetition of this process for references shifted

by −E to +E ensures that BandedKrait support up to E
deletions and/or insertions. BandedKrait uses the pigeon-hole

principle on the combined results of segments to approximate

the #edits in the sequence pairing. Algorithm 1 summarizes

BandedKrait, where k is the segment size and E is the number

of permissible edits between input read and the reference

sequence.

Algorithm 1 BandedKrait Algorithm
Input: Read, Reference, E, ReadLength, k
Output: Accept

1: Nsegment ← �ReadLength/k�
2: Matches ← 0
3: for i ∈ {0 : Nsegment − 1} do
4: Match ← 0
5: for e ∈ {−E : +E} do
6: ReadSegment ← Read[i × k : (i + 1) × k − 1]
7: ReferenceSegment ← Ref [i × k + e : (i + 1) × k − 1 + e]
8: if ReadSegment == ReferenceSegment then
9: Match ← 1

10: end if
11: end for
12: Matches ← Matches + Match
13: end for
14: Accept ← (Matches >= Nsegment − E)
15: return Accept

BandedKrait flexibly explores two trade-offs: (1) accu-

racy vs. hardware-friendliness and (2) required resources vs.

achievable parallelism or performance. Exact matching is

known to be well-supported in hardware and specifically in

a CIM-enabled crossbar. However, using exact matches as

proximity to existing errors (compared to alternatives such

as DP or SNR sub-problems in SneakySnake, for example)

underestimates the number of edits. Therefore, more reads

4The banded krait (Bungarus fasciatus) is a species of elapid snake easily
identified by its alternate black and yellow crossbands, all of which encircle
the body.

5Recently, Shahroodi et al. [39] propose RattlesnakeJake, a hard-
ware/software (HW/SW) co-designed accelerator based on Computation-
in-Memory (CIM) paradigm, capable of pre-alignment filtering for short-
sequence alignment. The software algorithm behind RattlesnakeJake is similar
to BandedKrait. However, the hardware design of RattlesnakeJake and Sieve-
Mem differ.

can pass BandedKrait, making it inaccurate. Moreover, finding

the exact matches between each segment pair and the shifted

variants are independent, parallelizable problems. However,

exploiting that demands higher resources.

D. BandedKrait on SieveMem (Mem-BandedKrait)

BandedKrait is completely supported by SieveMem. If

implemented on SieveMem, we call the design Mem-

BandedKrait. Fig. 8 presents an example of how the two

TCAMs in SieveMem are filled so that it can support the

pattern required by BandedKrait algorithm. Mem-BandedKrait

repeats this process for all 2E+1 shifted reference segments.

If no exact match is detected in any of the iterations, Mem-

BandedKrait counts an error for that segment.
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Fig. 8: TCAMs values in SieveMem to support BandedKrait.

V. EVALUATIONS

A. Evaluation Methodology

Implementation & setup. We implemented SieveMem in a

cycle-accurate RTL-based simulation platform. We verify the

design by comparing the simulation results with SieveMem’s

software outputs. We use the same implementation for the

evaluation of Mem-BandedKrait. SieveMem hardware uses

memory models from a small RRAM crossbar in TSMC

40 nm CMOS technology [24, 43]. These memories are

provided to us by generous partners from the EU project

MNEMOSENE [33]. The additional components of SieveMem

discussed in Section IV-A are also designed using TSMC

40 nm technology node in Synopsis Design Compiler [47]. We

integrated the latency numbers into the simulation platform.

We run our experiments on a 12-core server with 16GB
memory, Tesla-K80 GPUs, and a Intel® Xeon® CPU E5-

2680 operating at 2.4GHz. Our evaluations consider the same

platform and input datasets for all filters for a fair analysis.

Baselines. We compare different kernels supported in Sieve-

Mem with their accelerated version in literature. We also com-

pare Mem-BandedKrait and BandedKrait with SneakySnake

(SS) [5], Shouji [2], SHD [54], and GRIM-Filter [23], as SotA

pre-alignment filters. We use open-sourced implementations of

these filters. We consider SneakySnake on both CPU and GPU,

Shouji and SHD on FPGA, and GRIM-Filter on 3D-stacked

memories.

Datasets. We use real genome datasets, i.e., human_g1k_v38.

Since SieveMem is designed for supporting filters (and their
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Fig. 9: HMC and SPD on ERR240727_1 with E=40. Fig. 10: HMC and SPD on SRR826471_1 with E=100.

Fig. 11: FP rate on ERR240727_1 with E=40. Fig. 12: FP rate on SRR826471_1 with E=100.

kernels) for short-reads, we use two sample sets [5] of

ERR240727_1 and SRR826471_1 from Illumina reads [8]

with read lengths varying from 100bps to 250bps, respectively.

For end-to-end evaluation of alignment (in the case of compar-

ing Mem-BandedKrait with other filters), we use Edlib [46]

to create full-alignment results for accuracy. Edlib results also

verify the functionality of filters.

B. Execution Time of Supported Kernels

Fig. 9 and Fig. 10 compare the execution time of performing

the same number of HMC and SPD operations on CPU and

SieveMem, over our two datasets for different edit distances.

We choose SHD as the reference filter to align with the

example we provided over SieveMem supporting SHD in Sec-

tion IV-B. The results consider the necessary data movement.

The y-axis has been limited to a low number (30 and 50)

for improving readability. Since no approximation is used for

these kernels, no accuracy loss occurs due to the underlying

platform, and all three versions produce the same result.

We observe that SieveMem accelerates both HMC and

SPD irrespective of the dataset. This improvement goes up

to 331.1× and 446.8× for HMC and SPD, respectively, over

the datasets. This is expected for two reasons: (1) fewer data

movement in SieveMem and (2) parallel computation of target

operation with a reasonably high clock cycle. We conclude

that not only SieveMem supports the shared kernels of pre-

alignment filters, but also it significantly accelerates them.

C. Filtering Accuracy

Fig. 11 and Fig. 12 compare the false positive (FP) rate of

several filters. FP rate in a filter shows the ratio between reads

that wrongly pass the filter (i.e., could have been filtered) and

go through alignment (i.e., DP) over all the reads. The lower

the FP, the better. Note that in terms of True Positive (TP) and

True Negative (TN) rates (the other two important metrics for

the accuracy of a filter), BandedKrait and Mem-BandedKrait

achieve the same rate as SneakySnake, which currently results

in the best filtering rates.

We make three key observations. First, BandedKrait and

Mem-BandedKrait provide low FP rates irrespective of edit

threshold and dataset. In fact, their FP rates are on par with the

SotA SneakySnake. Second, the FP rate of Mem-BandedKrait

and BandedKrait is less than 1% apart; i.e., the hardware

limitation regarding the reference’s start point, which affects

#segments, does not affect the accuracy significantly. Third,

BandedKrait outperforms Shouji, SHD, and GRIM-Filter by

providing, on average, 22%, 40%, and 90%, respectively,

fewer number of falsely-accepted sequences. We conclude that

BandedKrait is an effective and accurate filter on both CPU

and SieveMem architecture.

D. Filtering Speed

Fig. 13 and Fig. 14 present the execution time for different

filtering methods over different edit threshold. The y-axis uses

a logarithmic scale.

We make two key observations. First, although BandedKrait

requires more time than some SotA filters, Mem-BandedKrait

significantly outperforms the fastest SotA filters on CPU

(SS_CPU) and on GPU (SS_GPU) by up to 1292× and

95.5×, respectively, when processing the same amount of

sequences. Note that SS_CPU and SS_GPU outperform all

previous existing filters, independent of the dataset and edit

threshold.

Second, Mem-BandedKrait provides better scalability for

larger short reads (SRR826471 vs. ERR240727) than other

methods. For example, the average speedup of Mem-

BandedKrait over SS_CPU is 2.93× more on SRR826471 than

on ERR240727 for the same edit threshold of E=5. This is

because the performance on Mem-BandedKrait is only slightly

affected by the length of inputs and target edit threshold, while,

in original SS_CPU this change is more significant.

We conclude that BandedKrait and Mem-BandedKrait ef-

fectively reduce the execution time of filtering for the same

#processed read and reference sequences.
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Fig. 13: Filtering speed on ERR240727_1 with E=40.

Fig. 14: Filtering speed on SRR826471_1 with E=100.

E. End-to-end Alignment Speed

Fig. 15 and Fig. 16 present the execution time for end-

to-end alignment for a combination of filters with Edlib for

alignment over several edit thresholds. We limit the y-axis

that shows the execution time of filter+alignmnet to 1000s

to capture better the trends and relative execution time of

in the system compared to other methods. The y-axis is in

logarithmic scale.

We make two key observations. First, Mem-BandedKrait

significantly reduces the end-to-end execution time of se-

quence alignment irrespective of the dataset or edit thresh-

old. The improvements are so profound that they are hard

to capture, even on the logarithmic scale. Particularly, the

improvement in filtering translates to a 254.6× and 91.4×
improvement in end-to-end alignment time compared with

SotA filter combined with SotA alignment and sheer Edlib

on CPU, respectively, averaged over our datasets.

Second, similar to the comparison of filters in Section V-D,

the speedup in the end-to-end alignment is higher for

SRR826471 compared to that on ERR240727. For example,

the average speedup of alignment using Mem-BandedKrait is

9.86× more on SRR826471 compared to on ERR240727 for

edit threshold of E=5. This is due to the effect of filtering being

even more effective on the SRR826471 dataset compared to

the ERR240727 dataset as discussed in Section V-D.

We conclude that Mem-BandedKrait is a fast pre-alignment

filter and effectively reduces the execution time of end-to-

end alignment such that it takes a step towards mitigating the

filtering bottleneck.

VI. DISCUSSIONS AND FUTURE WORKS

A. SieveMem for Long Sequence Alignment

From the conceptual point of view, the BandedKrait algo-

rithm is also effective for long sequence alignment, where

sequences are a size of 100Kbp. However, when it comes

to mapping to SieveMem, distributing the long reference or

read sequences in the memory hierarchies requires complex

bookkeeping, different buffer sizes, control unit sequences,

and potentially some additional logic. However, to the best

of our knowledge, pre-alignment filters are not currently

deployed for long-read sequence alignment acceleration. We

leave the exploration of BandedKrait on SieveMem for long

pre-alignment filtering to future work.

B. Potential Design Explorations

SieveMem’s best configuration. Current evaluations of

SieveMem are based on the measurements on a small ReRAM

chip prototype for tiles and TCAMs. However, a complete

design space exploration is required to direct the final config-

uration of SieveMem before deploying it in future genomics

systems. Such exploration should consider different inputs,

memory units and arrangements, variations of devices, and cir-

cuit behavior (e.g., non-idealities) for different organizations.

We leave this to an extended report.

Other memory technologies. We design SieveMem as-

suming memristors as the underlying technology due to the

benefits they offer in terms of density, low power, and support
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Fig. 15: End-to-End speed on ERR240727_1 with E=40.

Fig. 16: End-to-End speed on SRR826471_1 with E=100.

for logical vector operations (please see Section II-C for more

details). However, independent and separate works [37, 49, 55]

propose supporting the same operations (XNOR, associate

search, etc.) in other technologies as well. Having a complete

comparison of SieveMem’s versions with different technolo-

gies is an interesting work we leave for the future.

VII. RELATED WORKS

To our knowledge, this is the first work to present a CIM

architecture to support shared kernels in pre-alignment filters.

Our Mem-BandedKrait is also the first hardware filter that

resolves the execution bottleneck of the filtering and alignment

process (Section I and Section II). We have already exten-

sively compared SieveMem, BandedKrait, Mem-BandedKrait

with previous pre-alignment filters and their accelerators in

Section V. This section briefly discusses previous works on

sequence alignment and (PIM-enabled) genomics accelerators.
Sequence Alignment Acceleration. Many previous works

aim to accelerate sequence alignment following two main

directions: 1) accelerating the dynamic programming algo-

rithms [12, 25], 2) exploiting the inherent parallelism of

algorithms and accelerating them using high-performance

computing platforms such as CPUs [13, 20], FPGAs [7, 15],

and GPUs [29, 31]. SieveMem and Mem-BandedKrait (and in

general all pre-alignment filters) are orthogonal to these works

as they are pre-alignment filters and accelerators aiming to

speed up the overall sequence alignment process by preventing

the expensive DP in the first place.
General CIM-based Accelerators. Prior works heavily in-

vestigate different compute-capable memories [1, 16, 27, 37,

44, 58]. These works focus on different memory technologies

(e.g., DRAM [19] vs. STT-MRAM [44]), various operations

(e.g., simple logical operations [37] vs. more complex Vector-

Matrix-Multiplication operation [38]), to even diverse appli-

cations (e.g., Binary Neural Network [38] vs. graph pro-

cessing [56]). SieveMem differs from these works in either

underlying technology, supported kernels, and/or accelerated

application.

(CIM-based) Genomics Accelerators. Many works propose

different architectures and accelerators for genomics-related

kernels and applications. GenASM [9] and DARWIN [48]

target approximate string matching and sequence alignment.

ApHMM [18] uses hardware/software co-designed to accel-

erate the Baum-Welch algorithms used in pHMM graphs.

Helix [30] and KrakenOnMem [41] accelerate basecalling

and metagenomics profiling on memristor-based systems.

BLEND [17] proposes an efficient mechanism to identify

exact-matching and highly similar seeds through a single

lookup of their hash values. BLEND uses a technique called

SimHash and demonstrates its effectiveness in read overlap-

ping and read mapping. Demeter [40] proposes a CIM-enabled

architecture and a PCM-based accelerator to improve food

profiling. SieveMem differs from all these works in the target

kernel and can be orthogonally used in conjunction with them

in any genomics pipeline that requires alignment.

VIII. CONCLUSION

This paper proposes a memristor-based CIM-enabled ar-

chitecture for pre-alignment filters called SieveMem to (1)
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accelerate shared kernels in pre-alignment filters and (2)

prevent unnecessary data movement for sequence alignment by

filtering dissimilar short sequences inside the main memory.

The paper also discusses a CIM-friendly algorithm for pre-

alignment filtering called BandedKrait that is suitable for

implementation on SieveMem. Considering a larger genomics

pipeline, accelerated BandedKrait on SieveMem is fast enough

to shift the processing bottleneck back (again) to the DP step

of the remaining sequences. Hence, our work demands even

more accurate pre-alignment filtering and/or better DP-based

alignment algorithms.
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