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ABSTRACT
Eliciting and capturing drivers’ affective responses in a realistic
outdoor setting with pedestrians poses a challenge when designing
in-vehicle, empathic interfaces. To address this, we designed a con-
trolled, outdoor car driving circuit where drivers (N=27 ) drove and
encountered pedestrian confederates who performed non-verbal
positive or non-positive road crossing actions towards them. Our
findings reveal that drivers reported higher valence upon observing
positive, non-verbal crossing actions, and higher arousal upon ob-
serving non-positive crossing actions. Drivers’ heart signals (BVP,
IBI and BPM), skin conductance and facial expressions (brow lower-
ing, eyelid tightening, nose wrinkling, and lip stretching) all varied
significantly when observing positive and non-positive actions.
Our car driving study, by drawing on realistic driving conditions,
further contributes to the development of in-vehicle empathic inter-
faces that leverage behavioural and physiological sensing. Through
automatic inference of driver affect resulting from pedestrian ac-
tions, our work can enable novel empathic interfaces for supporting
driver emotion self-regulation.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); Empirical studies in HCI.

KEYWORDS
empathic cars, driver emotion recognition, pedestrian non-verbal
crossing actions, outdoor driving circuit, physiological sensing,
thermal sensing, facial expression analysis
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1 INTRODUCTION
Driver emotions, such as anger or stress, or even ecstatic joy, that
arise during driving scenarios can significantly impact driving be-
haviour [24]. Consequently, Empathic interfaces 12 are being devel-
oped to identify and regulate driver emotions for improving road
safety [27, 60, 61]. Particularly, these interfaces may help drivers
regulate their emotions by providing calming cues (for e.g. music or
colours [21]) when signs of stress or anxiety in drivers are detected.
Empathic interfaces can also be used to enhance non-verbal com-
munication during critical moments like merging or yielding by
communicating drivers’ emotional state to other road users through
visual interfaces. [19] These driver emotions are detected through
collection of physiological data, such as heart rate or skin conduc-
tance, facial expressions, vocal tone, and eye movements that in
turn inform empathic interfaces.

While environmental and situational factors have been consid-
ered in previous research for inferring drivers’ emotional states
[6, 19, 25], non-verbal interactions between drivers and pedestri-
ans have received less attention [16, 45]. Pedestrian non-verbal
behaviour can often elicit different emotional responses from dri-
vers, where inferring driver affective states during driving scenarios
can support designing empathic in-vehicle interfaces for improving
driving experience and road safety [3, 60].

To capture the impact of non-verbal, pedestrian crossing actions
on drivers’ affective states in outdoor driving conditions, we de-
signed a driving track and equipped a car with a combination of
sensors to capture drivers’ affective states (emotion self-reports,

1https://www.theguardian.com/business/2018/jan/23/a-car-which-detects-emotions-
how-driving-one-made-us-feel
2https://www.irishtimes.com/business/transport-and-tourism/researchers-
developing-empathic-car-technology-1.3900701
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physiological signals, facial data) in response to positive and non-
positive, non-verbal pedestrian crossing actions. In this work, we
ask RQ: How do drivers’ affective responses vary toward non-
verbal, pedestrian crossing actions in a controlled, outdoor envi-
ronment? We ran an approximately week-long controlled, outdoor
driving study (𝑁 = 27) with drivers to test this. In this setup, drivers
encountered a zebra crossing where pedestrians performed non-
verbal crossing actions. We investigated the influence of different
pedestrian actions on drivers’ affective states using a combination of
camera and physiological sensors. We recorded drivers’ responses
in the form of emotion self-reports (valence and arousal, based on
Russell’s Circumplex model of emotion [49]). Drivers’ physiological
signals (heart rate and skin conductance) were gathered using an
Empatica E4 wristband, and their facial expressions were collected
using a FLIR dual RGB and thermal camera.

The momentary nature of actions such as eye contact or a nod by
several pedestrians at a given point in time makes it challenging to
capture and understand the resulting driver’s emotions [14, 48, 62].
Existing works rely on video stimuli depicting pedestrian cross-
ing actions to induce driver affect which were measured using
self-reports [16], or in-lab using sensors on participants with prior
driving experience [45]. As an alternative, hybrid driving simula-
tors have also been designed that combine driving in a simulated
environment while interacting with real-world pedestrian road
crossing actions [46]. Both approaches however lack driving con-
text and realistic driver-pedestrian interactions, which are neces-
sary to understand a driver’s behavioural and affective state during
such interactions. Contrary to such approaches, we incorporated a
greater degree of realism and ran a controlled, outdoor study with
confederate pedestrians. We collected drivers’ signals throughout
the entire duration of the study and manually annotated time seg-
ments where pedestrian crossing actions occurred. To identify the
exact source of driver affect, our study also ensured that a single
pedestrian crossed and performed an action at a time.

Our findings show that our outdoor setup can effectively capture
drivers’ affective states from observing non-verbal, pedestrian cross-
ing actions. Specifically, we observe that drivers reported higher
valence (pleasantness) upon observing positive pedestrian cross-
ing actions, and higher arousal (excitement) upon observing non-
positive pedestrian crossing actions. Additionally, drivers’ phys-
iological signals corresponding to heart rate (BVP, IBI and BPM)
were significantly influenced by the different (positive versus non-
positive) non-verbal, pedestrian crossing actions. Heart and skin
signals (BVP and GSR) also varied significantly for different levels
of drivers’ valence (positive versus non-positive) and arousal (high
versus non-high) scores. Finally, drivers’ facial expressions also
varied significantly upon observing both positive and non-positive
non-verbal, pedestrian crossing actions.

Our work offers two key contributions: (1)We introduce a novel
controlled, outdoor car driving setup that leverages a combination
of camera and physiological sensors for capturing drivers’ affec-
tive responses as a result of pedestrian non-verbal crossing actions.
(2) Empirical findings reveal that non-verbal, pedestrian actions
can influence drivers’ self-reported emotions (valence and arousal),
heart signals and facial expressions. Automotive safety research
emphasises identifying and regulating drivers’ emotions, particu-
larly high arousal levels, which are associated with risky driving

behaviour [8, 50]. Quantitative findings from our study indicate
high driver arousal levels in response to the non-positive cross-
ing actions enacted by confederate pedestrians. These actions can
serve as cues for in-car affect recognition systems to preemptively
detect risky driving behaviour resulting from driver-pedestrian
interactions. Empathic in-car interfaces can therefore infer drivers’
affective cues identified in our study including physiological re-
sponses (heart rate and skin conductance), facial expressions, and
self-reported emotions, to automatically infer drivers’ affective
states during driver-pedestrian interactions. This can be integrated
into an emotion self-regulation framework aimed at enhancing
road safety [4, 29]

2 RELATEDWORK
This section outlines the three main strands of research that are
relevant for our work in inferring drivers’ emotions arising from
different pedestrian actions: (a) on-road driver-pedestrian inter-
actions, (b) emotion models for driver affect recognition, and (c)
in-car driver affect recognition.

2.1 On-Road Driver-Pedestrian Interactions
Non-verbal communication greatly influences driving behaviour,
such as driver-pedestrian communication through body language
[19, 55]. Previous studies found eye contact and facial expressions
to be primary means of driver-pedestrian communication [18, 57],
with pedestrians’ body language serving as important cues of intent.
Actions such as hand waving, thumbs-up, and head nodding were
commonly used by pedestrians to express positive reactions such
as gratitude or acknowledgement [30, 53]. Further, pedestrians in
uncontrolled crosswalks also performed hand waves, head nods,
and combined gestures involving pointing or indicating the desired
direction of travel [64]. On the other hand, driver communication
towards pedestrians is primarily via vehicle movement such as
speeding up or slowing down or honking [41, 51]. Additional fac-
tors such as time taken by pedestrian to arrive at the crossing also
played a role in driver attitudes such as giving way [17]. Despite ex-
isting research, the impact of non-verbal pedestrian actions at road
crossings on drivers’ emotional states is still relatively unexplored.
This study contributes to a better understanding of the role of dif-
ferent non-verbal pedestrian road crossing actions in influencing
drivers’ emotions.

2.2 Understanding Emotions - Emotion
Measurements and Models

Affect determination in the automotive context draws on research
from affective computing [43]. These include two main models of
emotions: discrete emotion models (e.g., Ekman’s six basic emotions
[12] and Plutchik’s emotion wheel [44]) and continuous emotion
models (e.g., the Circumplex [49] and Pleasure-Arousal-Dominance
models [38]). Studies have identified anxiety, anger, and happiness
as common discrete emotions experienced by drivers [26, 39]. This
study uses the 9-point, discrete Self-Assessment Manikin (SAM)
scale to obtain emotion self-reports from driver participants, due to
its widespread use and ease of use in emotion-measurement studies.
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2.3 In-Car Driver Affect Recognition
Existing literature explores facial, bio-physiological, and driving
behaviours for emotion recognition. Facial analysis extracts Regions
of Interest (ROIs) and facial action units (AU) from RGB images to
identify facial expressions and associated emotions [13, 33]. Bio-
physiological signals include electrocardiograph (ECG), heart-rate
variability (HRV), heart rate(HR), galvanic skin response (GSR),
respiratory, and skin temperature signals [7, 61].

Studies have explored drivers’ galvanic skin response (GSR) and
heart rate (HR) in driving situations, with results indicating higher
autonomic activity during cooperation with pedestrians and the op-
posite trend during non-cooperative situations [1, 20]. Other works
have combined EDA and controller area network (CAN) behaviour
signals to study irritation [35], and bio-physiological signals, CAN,
and GPS signal to study stress [47]. A recent study developed a
novel mood-modulation system to induce different emotional states
and measured the impact on participants’ electroencephalogram
(EEG) and photoplethysmogram (PPG) signals in an idle car envi-
ronment [28]. Facial expressions, often combined with speech or
driving behaviours, have also shown potential to capture overtly
negative (e.g., frustration) and positive (e.g., joy) emotions [31, 52].

Few studies have explored driver affective states in outdoor or
in-the-wild scenarios. Bethge et al. (2021) combined multiple modal-
ities, including drivers’ facial expressions and contextual driving
data, to classify drivers’ emotions [4]. Bethge et al. (2023) also con-
ducted an in-the-wild car driving study using an unobtrusive setup
to collect contextual data, demonstrating the validity of relying on
contextual information for driver emotion recognition [3]. Con-
trary to driver sensing, another study combined driver emotion
self-reports with GPS and weather data to infer emotions associated
with driving, identifying a complex range of emotions associated
with different driving scenarios [11].

Previous studies have concentrated on classifying driver emo-
tions based on contextual factors, with less attention given to identi-
fying specific emotions caused by pedestrian non-verbal actions at
road crossings. Our study’s novel, controlled outdoor setup captures
multi-modal driver physiological and behavioural signals resulting
from more realistic pedestrian non-verbal road crossing actions.

3 CAR DRIVING STUDY
Our study extends prior research on the impact of pedestrian cross-
ing actions on drivers’ affective states through web-based question-
naires or in-lab video-based settings [16, 45]. To enhance realism,
we conducted a controlled, outdoor car driving study to capture
drivers’ affective states resulting from pedestrian non-verbal ac-
tions at road crossings. Here, we provide a detailed description of
the study design, apparatus, and procedure.

3.1 Study Design
Our study followed a within-subjects design with a single indepen-
dent variable (IV1: Performed action type: Positive vs. Non-positive
vs. No action). Performed action type included 6 different cross-
ing actions (3 positive, 3 non-positive) and 2 no-crossing (control)
actions. Drivers drove on a circuit with a zebra crossing and en-
countered a pedestrian who performed a scripted road-crossing
action. After each interaction, the driver verbally reported valence

and arousal the 9-point discrete Self-Assessment Manikin (SAM)
[5]. Physiological, thermal, and RGB facial information were cap-
tured by sensors during the entire duration of the experiment. The
study was conducted for eight consecutive weekdays in June (West-
ern Europe), capturing driving under diverse weather conditions
including sunny, cloudy, and thundershowers (historical weather in-
formation included in supplementary material). The study followed
strict guidelines from our institute’s ethics and data protection
committee, including COVID-19 regulations.

3.2 Study Setup
3.2.1 Driver Stimuli - Enacted Pedestrian Non-Verbal Crossing Ac-
tions. We selected non-verbal pedestrian crossing actions enacted
by confederate pedestrians as driver emotion-inducing stimuli
based on prior works [16, 45]. The selected actions included pos-
itive (handwave, smile, nod) and non-positive actions (stay_back,
impolite_hand_action, inattentive_with_phone). We also included
no_pedestrian and pedestrian_present_but_not_crossing as baseline
control scenarios (Figures 1g and 1h). All actions and scenarios are
included as part of the supplementary material.

3.2.2 Driving Circuit. The driver accompanied by the experimenter
drove along the pre-determined driving circuit which was restricted
for public use. Figure 2 shows a trial which was defined as the dis-
tance travelled from the start point and back. The circuit had a zebra-
crossing where the driver encountered a pedestrian (road-crossing
marker). The crossing was placed along the straight segment of the
circuit, where drivers have enough time to see the crossing and stop
safely for the pedestrian. Moreover, the maximum driving speed
was set to 30 km/h. The stop marker was used as a reference for
the experimenter to ascertain the point after which the driver were
verbally asked to report valence and arousal scores.

3.2.3 Driving Trials. The driver completed 32 trials, with 12 trials
involving positive interactions, 12 trials involving non-positive
interactions, and 8 trials with no interactions. The choice of 32 trials
was based on maximizing sensor data while ensuring an engaging
driving experience and results from power analysis 3. The order of
actions was determined using a balanced Latin-square approach to
ensure counterbalancing, with a pseudo-random generator used to
initialise the set of factors while avoiding the occurrence of two
no-action types together. The occurrence of the pedestrian was
random, with both positive and non-positive actions performed
equally by pedestrians to avoid driver anticipation and gender bias.

3.3 Study Apparatus
Our complete study apparatus comprises the following compo-
nents - (a) thermal, RGB and physiological sensors and (b) sensor
synchronisation application.

3.3.1 Sensors. Sensors were used to record drivers’ real-time affec-
tive data, including an Empatica E4 wristband for physiological
signals (heart rate and skin conductance) at 64 Hz, a GoPro Hero9
high speed camera for facial expressions at 240 fps, a FLIR Duo
Pro R thermal camera for facial skin temperature and RGB images
3For effect size f=0.25 under 𝛼 = 0.05 and power (1-𝛽) = 0.95, with 24 repeated mea-
surements within factors (discarding no interaction trials), one would need a minimum
sample size of 12 participants.
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(a) Handwave (b) Nod (c) Smile (d) Stay back

(e) Impolite hand action (f) Inattentive with phone (g) No pedestrian (h) Pedestrian present but
not crossing

Figure 1: Non-verbal positive (a - c), non-positive (d - f) and no-action (g, h) pedestrian crossing actions performed during the
study

Figure 2: The circuit defined for the car driving study, with
the driving path (trial) indicated via the red line. The driver
stopped at the zebra crossing for the pedestrian. The stop
marker served as a cue for the experimenter to ask drivers
to verbally report valence and arousal scores.

at 29.97 fps, and a Samsung Galaxy S10 for recording drivers’
view of the road at 60 fps. Videos showing the drivers’ view were
later human-annotated to identify exact time periods of driver-
pedestrian interactions. The car was also equipped with a 400 Watt
inverter to power the FLIR thermal camera. The sensors used and
their placement are shown in Figures 3 and 4.

3.3.2 Integrating Sensors Module. A modified Electron-based ap-
plication 4 called SensorSync was used to synchronously start and
stop sensor recording. The FLIR camera was modified with a custom
ESP8266-ESP-12 micro-controller and connected to a circuit board
with a Wi-Fi module that starts an HTTP server. The Empatica E4
wristband was connected to an Android mobile device running the
EmpaticaRelay application, which connects to the software running

4https://github.com/electron/electron

on the micro-controller, and starts a TCP server to fetch data. Wi-Fi
was provided via an external high-speed router (Figure 3c). Figure
4c shows the user interface (UI) of the SensorSync application that
allows for the selected sensors to be connected. The Empatica data
was stored on the EmpaticaRelay application, while all other sen-
sors (FLIR camera, GoPro, Samsung) saved the data onto internal
memory cards.

3.4 Study Procedure
The experiment consisted of 4 sessions: pre-driving, driving, post-
driving, and post-session. In the pre-driving session, drivers’ de-
mographic information and informed consent were obtained, and
the car’s sensors were set up and calibrated. A demo session was
conducted to familiarise the driver with the circuit and relevant
parameters. The SensorSync application was used to initiate all
sensors to start recording, and a clapperboard was used to record
the start and end times across all sensors. These cues were later
used during data pre-processing to accurately identify the start
and end of the driving session for all modalities. During each of
the 32 trials, the driver encountered one of two pedestrians who
performed a positive, non-positive, or no-action action, and re-
ported Valence and Arousal scores on a 9-point Self-Assessment
Manikin (SAM) scale (upon crossing the stop marker in Figure 2)
[5]. An exit interview was conducted in the post-driving procedure,
and subsequently the car was sanitised. The study lasted for about
45 to 60 minutes. Figure 5 illustrates the entire experiment and
post-experiment session.

3.4.1 Overview of Measured Variables. We gathered qualitative and
quantitative data from drivers throughout the duration of the study
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(a) Empatica E4
wristband recorded
drivers’ heart and skin
responses.

(b) The FLIR Duo Pro R
thermal and RGB cam-
era recorded drivers’
facial expressions.

(c) A Router provided
Wi-Fi connectivity to
the FLIR camera and
Empatica.

(d) The Samsung
Galaxy S10 camera
captured RGB videos
of the scene from the
driver’s perspective.

(e) The GoPro Hero 9
RGB Camera recorded
drivers’ facial expres-
sions.

(f) A 400 Watt Inverter
powered the FLIR cam-
era.

Figure 3: Sensors and accessories used during the car driving study.

(a) Exterior of car used for the study. (b) Final sensor setup (FLIR, GoPro and
Samsung Galaxy) inside the car used to
record driver and scene data.

(c) SensorSync application connected the
FLIR, GoPro, Samsung S10 and Empatica de-
vices, and was used to start and stop record-
ing of data.

Figure 4: Car and sensor setup during car driving study.

Figure 5: Overview of the car driving study procedure that comprised the experiment session and the post-experiment session.

and these are summarised in Table 1. Additionally, outdoor weather
data was gathered from the local weather station and monitored
for the duration of the study. These reports can be found as part of
supplementary materials.

3.4.2 Covid-19 safety measures. To adhere to Covid-19 safety pro-
tocols, the experimenter sat in the rear-right seat of the car to
maintain maximum possible distance from the driver. The windows
were rolled down at least 10 cm for good air circulation, and in case
of rainfall, only the rear-left and front-right windows were opened

based on recommended guidelines [37]. All surfaces and sensors
were disinfected after each experiment session to ensure safety.

3.4.3 Participants for the Car Driving Study. 40 drivers (age ≥ 21,
driving experience ≥ 1 year) were recruited via aWestern European
agency. After accounting for data quality, 27 drivers were finalised
(12males, 15 females, with ages 21−60 (𝑀 = 39.93, 𝑆𝐷 = 13.42) and
driving experience of 1.5 − 42 years (𝑀 = 17.65, 𝑆𝐷 = 12.83). Two
confederates, one male (28) and one female (26), acted as pedes-
trians (Figure 1). Pedestrians received multiple training sessions
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Type Data Data Collection Method Experiment Segment

Subjective
Demographic information Recorded on paper forms Pre-driving session
Study feedback Recorded verbal interview Post-driving session
Valence and arousal self-reports Verbally reported Driving session

Objective

Heart rate Empatica E4

Driving session
Skin conductance Empatica E4
Facial Thermal Data FLIR Camera
Facial RGB Data FLIR Camera; GoPro Camera
RGB road view from drivers’ perspective Samsung S10 Smartphone

Table 1: Overview of the different qualitative and quantitative data gathered from drivers during the Car Driving Study.

on performing each action and timing their approach to the zebra-
crossing with the approaching car for realism. They were provided
with a list of actions, their order, and instructions on which trials
to avoid crossing.

4 RESULTS
We report our analysis of drivers’ affective responses from the
controlled, outdoor driving study. We first explain the data pre-
processing steps undertaken and thereafter discuss: (a) emotion
self-report analysis, (b) physiological signal analysis, and (c) facial
data analysis. Our study also recorded GoPro data of drivers’ facial
expressions, however these were excluded from analysis.

4.1 Data Pre-processing
Prior to analysis, the raw data for 27 finalised drivers underwent
several stages of pre-processing which resulted in 1.79 TB of pro-
cessed data (summarised in Table 2). The pre-processing steps are
described below.

Data Type Modality Sensor Total

Face RGB FLIR Dual
Camera

1, 069, 272 frames
Thermal 1, 069, 272 frames

Heart
BVP Empatica E4 241, 476 samples
IBI Empatica E4 214, 631 samples
BPM Empatica E4 214, 631 samples

Skin GSR Empatica E4 241, 476 samples
Table 2: Final dataset after all pre-processing, and sampled
at 30 Hz/frames per second (fps).

4.1.1 Driver Affective States Before and During Pedestrian Interac-
tion. All driver signals (physiological, and facial) associated with
pedestrian crossing actions were selected and processed using two
segments: before action and during action. The during action seg-
ment was defined as the period from when the pedestrian stepped
onto the zebra crossing until they stepped off. The before action
segment was defined as the 5-second period prior to the pedestrian
stepping onto the zebra crossing, based on empirical evaluation

and following Schneeman et al. (2016), who found that driver inter-
action with pedestrians starts about 30 meters before the crosswalk
in a 30 km/h zone [51].

4.1.2 Valence-Arousal Ratings Transformation. Valence and arousal
self-reports corresponding to each pedestrian interaction were col-
lected from every driver. Following prior work [16, 45], we grouped
valence scores into positive or non-positive categories depending
on whether they were ≥ 3 or < 3, respectively. Similarly, arousal
scores were categorised as high or non-high scores.

4.1.3 Signal Cleaning and Processing. Facial data in the form of
RGB and thermal videos were recorded at 29.97 fps using a FLIR
camera. The thermal and RGB images were aligned using a homog-
raphy matrix based on 14 selected points from each image [54, 56].
Galvanic Skin Responses (GSR) and Blood Volume Pressure (BVP)
were gathered using an Empatica E4 wristband at 64HZ. All missing
values were interpolated linearly [42] and downsampled to 30 Hz
(corresponding to the thermal camera), with GSR signals downsam-
pled using a lowpass technique [15] and BVP signals downsampled
using Stationary Wavelet Transform 7th level Daubechies mother
wavelet [40]. Inter-beat interval (IBI) and heart beats per minute
(BPM) were extracted from BVP, with outliers manually ( 23%) re-
moved by visually examining the peaks in the plotted data 5. The
final dataset for analysis included aligned thermal and RGB frames,
GSR, BVP, IBI, BPM signals, and self-reported valence and arousal.

4.2 Emotion Self-report Analysis
Figure 6 shows self-reported valence and arousal scores grouped by
positive and non-positive action types. Since the Shapiro-Wilk test
revealed that the responses did not follow a normal distribution
(𝑝 < 0.05), we ran a Mann-Whitney U test to evaluate the difference
in the responses from the 9-point Self Assessment Manikin (SAM)
scale. We see that drivers’ self-reported valence (𝑈 = 18991.5, 𝑍 =

13.81, 𝑝 < 0.05, 𝑟 = 0.771) and arousal (𝑈 = 32213, 𝑍 = −8.17, 𝑝 <

0.05, 𝑟 = −0.456) scores vary significantly for the two action types.

4.3 Physiological Signal Analysis
Following prior work that studied driver affect, skin conductance
(GSR), and heart data (BVP, BPM and IBI) were analysed for their
variation in standard deviation [34, 45]. Specifically, we examined

5https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-
expected-signal
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(a) Valence scores across action types (b) Arousal scores across action types

Figure 6: Emotion self-report variation grouped by action types for (a) valence and (b) arousal scores reveals a significant effect
of action type.

the (a) variation in physiological signals across different action
types - positive, non-positive, no-action and (b) the relationship be-
tween self-reported valence and arousal scores and variation in
physiological signals.

We first compared variation in the standard deviation of all
physiological signals across the three action types - positive, non-
positive and no-action. The Shapiro-Wilk test revealed a non-normal
distribution for all signals (BVP: 𝜒2 (2) = 7.64, 𝑝 < 0.05, IBI: 𝜒2 (2) =
24.94, 𝑝 < 0.001, BPM: 𝜒2 (2) = 18.42, 𝑝 < 0.001). For all signals, a
Kruskal Wallis test (accommodating the three action types) was
used to identify significant differences following which post-hoc
Mann-Whitney U test with Bonferroni corrections were employed.

Mann-Whitney U Test revealed significant differences for BVP
between pos and no_action (𝑈 = 35009.0, 𝑝 < 0.001, 𝑟 = 0.18)
and, non_pos and no_action pairs (𝑈 = 19672.0, 𝑝 < 0.001, 𝑟 =

0.15). For IBI, significant differences were found between pos and
no_action (𝑈 = 24551.0, 𝑝 < 0.001, 𝑟 = 0.33) and, non_pos and
no_action pairs (𝑈 = 12018.0, 𝑝 < 0.001, 𝑟 = 0.281). Finally, for
BPM, significant differences were noted between pos and no_action
(𝑈 = 24983.0, 𝑝 < 0.001, 𝑟 = 0.29) and, non_pos and no_action pairs
(𝑈 = 11577.5, 𝑝 < 0.001, 𝑟 = 25). These are illustrated in Figure 7.

Physiological signals were also compared for their variation
corresponding to two levels of drivers’ self reported valence (pos and
non-pos) and arousal (high and non-high) scores in Figure 8. In both
cases, the Shapiro-Wilk test indicated a non-normal distribution
(𝑝 < 0.05). Thereby, Mann-Whitney U tests revealed a significant
effect (𝑝 < 0.05) of valence levels for BVP values (U = 76041, 𝑝 <

0.001, 𝑟 = 0.132). Similarly, the two levels of arousal scores had a
significant effect on BVP (𝑈 = 107223.0, 𝑝 < 0.001, 𝑟 = 0.265) and
GSR (𝑈 = 101254.0, 𝑝 < 0.05, 𝑟 = 0.148) signals.

4.4 Facial Analysis
We present results from FLIR thermal data in the form of changes
in facial landmarks analysis (a) before and during pedestrian in-
teractions and (b) variation in facial landmarks corresponding to
self-reported valence and arousal scores. We then repeat the analy-
sis for the facial action units (FAUs) using the FLIR RGB data.

4.4.1 Facial Landmarks Analysis. We used OpenFace to detect 3D
facial landmarks from drivers’ aligned thermal images [2]. Hand-
crafted features were extracted as per Masip et al. (2014) [36]. Aver-
aged landmark coordinates defined each frame, and dispersion was
calculated as the average distance to the center. Standard deviation
and difference between maximum and minimum dispersion were
computed. Wilcoxon signed rank test analyzed non-parametric
data [58], and the Paired T-Test assessed parametric data [22]. Dri-
vers’ facial landmarks did not show significant changes (𝑝 < 0.05)
in response to positive and non-positive pedestrian actions. Sim-
ilarly, there were no significant differences (𝑝 < 0.05) in facial
landmarks based on drivers’ self-reported valence (pos and non-
pos) and arousal (high and non-high) scores.

4.4.2 Facial Expressions Analysis. FLIR RGB data was analyzed
using Facial Action Coding System (FACS) to identify facial ex-
pressions [9]. Activation levels were compared before and during
pedestrian action. Standard deviation values compared facial data
across the three action types. A Shapiro-Wilk test was performed
to determine data distribution (𝑝 < 0.05), and a Wilcoxon signed-
rank or a Paired T Test was used depending on the distribution.
Significant differences were observed: 4 for positive trials, 2 for
non-positive trials, and 7 for no-action trials [9, 23].

The summary statistics for positive trials are as follows - AU
04 (Brow Lowerer), Before: Paired T: t(52) = 2.501, p-value = 0.0190;
AU 06 (Cheek Raiser) Wilcoxon: U=54, Z=0.0012, p<0.05, r = 0.441;
AU 10 (Upper Lip Raiser) Wilcoxon: U=65, Z=0.0028, p<0.05, r=0.405;
AU 20 (Lip stretcher) Wilcoxon: U80, Z=0.0088, p<0.05, r=0.356. The
summary statistics for non-positive trials are as follows - AU 09
(Nose Wrinkler) Wilcoxon: U=91.0, Z=2.354, p < 0.05, r=0.320; AU
20 (Lip stretcher) Wilcoxon: U=87.0, Z=2.451, p < 0.05, r=0.0224. The
summary statistics for no-action trials are as follows - AU 01 (Inner
Brow Raiser) Wilcoxon: U=102.0, Z= 2.090, p<0.05, r=0.284; AU 02
(Outer Brow Raiser) Paired T: t(52) = -3.76, p-value=0.0009; AU 06
(Cheek Raiser)Wilcoxon: U=94.0, Z=2.282, p<0.05, r=0.311; AU 09
(Nose Wrinkler) Wilcoxon: U=101.0, Z=2.114, p<0.05, r=0.288; AU 10
(Upper Lip Raiser)Wilcoxon: U=76.0, Z=2.714, p<0.05, r=0.369; AU
20 (Lip stretcher) Wilcoxon: U=32.0, Z=3.772, p<0.05, r=0.513; AU
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(a) BVP comparison (b) IBI comparison (c) BPM comparison

Figure 7: Significant variation (𝑝 < 0.05) in std dev. of trial-wise values across action types for (a) BVP (b) IBI (c) BPM signals.

(a) BVP variation across Valence (b) BVP variation across Arousal Scores (c) GSR variation across Arousal Scores

Figure 8: Significant variation (𝑝 < 0.05) in (a) BVP across two levels of valence; (b) and BVP and GSR across two levels of arousal
scores.

25 (Lips part)Wilcoxon: U=23.0, Z=3.988, p<0.05, r=0.543. Detailed
statistics are part of supplementary material.

We also examined the changes in facial expressions of drivers
corresponding to self-reported valence and arousal scores. As the
Shapiro-Wilk test revealed non-normal data distribution in both
cases (𝑝 < 0.05), the Mann-Whitney U Test indicated that there
was no significant effect of self reported valence and arousal scores
on any facial action units.

5 DISCUSSION
5.1 Key Findings
We conducted a controlled study to investigate the impact of non-
verbal pedestrian crossing actions on drivers’ affective states using
camera and physiological sensors. Our study showed that non-
verbal actions significantly influenced drivers’ physiological re-
sponses, facial temperature, and self-reported emotions. Our key
findings include - (a) drivers reported greater valence scores upon
observing positive pedestrian crossing actions and greater arousal
scores for non-positive crossing actions (Figure 6). (b) Drivers’ heart
signals (BVP, IBI, and BPM) showed significant variations when
observing positive and non-positive pedestrian crossing actions,
compared to no actions (Figure 7). BVP also correlated significantly

with self-reported valence and arousal scores, while skin conduc-
tance (GSR) varied significantly with arousal scores (Figure 8). (c)
Facial landmarks analysis did not show any significant variation
upon observing positive, non-positive and no-action types, and
emotion self-reports. (d) Facial expressions analysis using facial
action units (FAUs) revealed significant differences in brow (lower-
ing), cheek (raising) and lip movements (raising, stretching) upon
observing positive pedestrian actions. Nose (wrinkling) and lip
(stretching) movements showed significant differences upon ob-
serving non-positive pedestrian actions. Brow (inner and outer
brow raising), cheek (raising), and lip (raising, stretching, parting)
movements varied significantly during the no-action scenarios. Ad-
ditionally, we found eyebrow lowering (AU_04) to uniquely occur
for drivers upon observing positive pedestrian actions. Typically as-
sociated with non-positive emotions, these AUs may have resulted
from drivers misinterpreting positive actions such as a smile, as
sarcastic and therefore non-positive [2], which is key to avoiding
algorithmic bias (cf., [59]) in facial emotion expression inference.
Next, drivers’ brow movements (raising the inner and outer brow
(AU_01, AU_02)), and parting of lips (AU_25) were unique to the
no-action scenarios. Associated with perplexity, annoyance and
frustration, these AUs may be a result of drivers misconstruing
pedestrian_present_but_not_crossing as non-positive [2] (c.f. 4.4.2).
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5.2 Implications
Our study’s findings have implications for the development of au-
tomated driving systems that aim to enhance safety by predicting
driver emotions using driver behavioural and physiological signals.
Our work further validates the suitability of our selected positive
and non-positive, non-verbal pedestrian actions as driver emotion-
inducing stimuli given realistic driving conditions. Our findings
expand on in-lab studies that put forth a set of driver emotion-
inducing stimuli based on survey-based affective self-reports [16],
as well as affective responses toward in-video pedestrian actions
[45]. These pedestrian actions can serve as cues for road scene recog-
nition systems that can better anticipate and respond to pedestrian
crossing actions to enhance driver assistance features such as blind-
spot monitoring and automatic emergency braking for road safety
[63, 65]. Furthermore, we contribute an experimental study setup
using a driving track equippedwith sensors inside the vehicle that is
suitable for collecting and inferring driver affect while ensuring the
safety of drivers and confederate pedestrians. Our selected sensors
captured driver affective cues arising from driver-pedestrian inter-
actions, including heart (BVP, IBI, BPM), skin conductance (GSR),
and facial expression changes. We found that non-positive pedes-
trian crossing actions elicited higher driver arousal associated with
risky driving behaviour [8, 50], and our facial expression analysis
revealed the role of subtle pedestrian facial cues in causing unin-
tended non-positive emotions in drivers (e.g. positive pedestrian
facial expression was misconstrued as non-positive by drivers), akin
to real-world scenarios. Combined, these cues can aid researchers
in selecting appropriate sensing modalities for detecting driver
emotion signals related to non-verbal, pedestrian crossing actions.

5.3 Limitations and Future Work
Our study involved drivers in an outdoor circuit, encountering
pedestrians performing road crossing actions. However, it lacked
ecological validity due to safety concerns, potentially limiting its
representativeness of real-world driving and driver-pedestrian in-
teractions. This is because driver emotions may vary with simulta-
neous observation of multiple pedestrian actions. Multiple positive
actions can evoke stronger positive reactions, while multiple nega-
tive actions may amplify non-positive responses. Further, mixed
actions can elicit even more complex emotional responses from
drivers. Nevertheless, our study contributes to understanding the
impact of non-verbal pedestrian crossing actions on driver affec-
tive states in a controlled outdoor setting, prioritising participants’
and confederates’ safety. Future research could explore in-the-wild
studies with less obtrusive sensors, enhancing realism of driver
reactions.

Physiological signals (IBI, BVP, BPM, GSR) showed significant
differences between positive/no-action and non-positive/no-action
conditions. However, no significant differences were observed be-
tween positive and non-positive actions. This could be due to fac-
tors like sensitivity of chosen measures, individual differences, and
limited stimulus variability. For example, the study primarily had
experienced drivers (mean driving experiences was 18 years), who
may have been unaffected by the pedestrian actions. Facial expres-
sions analysis however revealed positive driver expressions (e.g.
smiling) for positive actions and aversion expressions (e.g. nose

wrinkling) for non-positive actions. Given the role of cultural and in-
dividual differences in interpreting facial expressions, multi-modal
methods, including driver self-reports, enhance our understanding
of emotional responses.

Lastly, while our study revealed variations in driver affective
states based on observed positive and non-positive actions, we can-
not draw precise conclusions about real-world driver emotions.
Moreover, the effectiveness of such signals for just-in-time inter-
ventions in an empathic vehicle, enabling drivers to self-regulate
their emotions in real-time, remains an open question [8]. Inferring
aggressive driving solely from high arousal ([50]) or driver affective
states solely from pedestrian actions can lead to incorrect conclu-
sions. Incorporating additional data such as scene understanding,
driving characteristics, and user feedback can enhance context and
accuracy. User verification and feedback can further improve self-
report emotion annotations and strengthen recognition models
against classification errors.

6 CONCLUSION
Non-verbal communication between drivers and pedestrians has
been found to impact driving behaviour. Therefore, inferring driver
affect during on-road driver-pedestrian non-verbal interactions is
key for developing empathetic in-car interfaces as part of improved
road safety [10, 32, 55]. Drawing on realistic driving conditions,
our controlled, outdoor car driving experiment with 27 participants
investigated the effect of enacted, non-verbal pedestrian crossing ac-
tions on drivers’ (N=27 ) affective responses. These include valence
and arousal self-reports, heart and skin physiological signals, and
facial expressions. Results showed drivers reported higher valence
and arousal when observing positive and non-positive pedestrian
crossing actions, and their physiological and facial expressions var-
ied significantly. Our study validates our outdoor driving environ-
ment and non-verbal pedestrian crossing scenarios using empirical
evidence that may serve towards the development of automatic, in-
car empathic interfaces. Such interfaces, integrated into real-time
emotion recognition systems, can have the ability to infer drivers’
affective states based on observed pedestrian actions and facilitate
"just-in-time" driver emotion regulation, thereby enhancing road
safety.
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