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S U M M A R Y 

This paper presents a method that modifies commercial engineering-oriented finite element
packages for the modelling of Glacial Isostatic Adjustment (GIA) on a self-gravitating, com-
pressible and spherical Earth with 3-D structures. The approach, called the iterative finite
element body and surface force (FEMIBSF) approach, solves the equilibrium equation for
deformation using the ABAQUS finite element package and calculates potential perturbation
consistently with finite element theory, avoiding the use of spherical harmonics. The key to
this approach lies in computing the mean external body forces for each finite element within
the Earth and pressure on Earth’s surface and core–mantle boundary (CMB). These quantities,
which drive the deformation and stress perturbation of GIA but are not included in the equa-
tion of motion of commercial finite element packages, are implemented therein. The method
also demonstrates how to calculate degree-1 deformation directly in the spatial domain and
Earth-load system for GIA models. To validate the FEMIBSF method, loading Love numbers
(LLNs) for homogeneous and layered earth models are calculated and compared with three
independent GIA methodologies: the normal-mode method, the iterative body force method
and the spectral-finite element method. Results show that the FEMIBSF method can accurately
reproduce the unstable modes for the homogeneous compressible model and agree reasonably
well with the Love number results from other methods. It is found that the accuracy of the
FEMIBSF method increases with higher resolution, but a non-conformal mesh should be
avoided due to creating the so-called hanging nodes. The role of a potential force at the CMB
is also studied and found to onl y af fect the long-wavelength surface potential perturbation and
deformation in the viscous time regime. In conclusion, the FEMIBSF method is ready for use
in realistic GIA studies, with modelled vertical and horizontal displacement rates in a disc load
case showing agreement with other two GIA methods within the uncertainty level of GNSS
measurements. 

Key words: Creep and deformation; Loading of the Earth; Numerical modelling; Mechanics,
theory and modelling; Structure of the Earth. 

 I N T RO D U C T I O N  

he viscoelastic relaxation of the solid Earth to changing ice and water masses induced by climate variations is known as Glacial Isostatic
djustment (GIA). The GIA process can be observed on Earth’s surface in the form of global or regional sea-level changes, crustal rebound,
ravity and geoid changes, etc. (Peltier 1998 ; Whitehouse 2018 ). Moreover, GIA has been shown to affect the rotational state of the Earth by
hanging polar wander and length of the day (e.g. Wu & P eltier 1984 ; P eltier 1998 ; Martinec & Hagedoorn 2014 ), alter the stress state of the
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which 
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Earth which may lead to earthquakes and volcano acti vities (e.g. Stef fen & Wu 2011 ; Peltier et al. 2022 ) and induce viscous heating in the
mantle (Hanyk et al. 2005 ; Huang et al. 2018 ). Modelling GIA is important because on one hand, it can be applied to infer the viscosity profile
of the Earth (e.g. Haskell 1935 ; Lau et al. 2016 ; Huang et al. 2019 ; Argus et al. 2021 ) and on the other hand, it can be used to reconstruct the
ice-sheet history (e.g. Peltier 2004 ; Peltier et al. 2015 ; Lambeck et al. 2017 ). The former is vital in understanding other geodynamic processes
such as mantle convection while the latter can provide an insight in understanding sea level rise, glacier stability and climate change (e.g.
Whitehouse 2018 ; Gomez et al . 2010 ). 

In most GIA studies a 1-D Earth structure is assumed, where the elastic parameters and viscosity only vary with depth (e.g. Peltier et al.
2015 ; Lau et al. 2016 ; Lambeck et al. 2017 ; Argus et al. 2021 ). Ho wever , in verse modelling with seismic, gravity, surface ele v ation and heat
flow data (e.g. Schaeffer & Lebedev 2013 ; Karao ̆glu & Romanowicz 2018 ; Priestley et al. 2018 ; Debayle et al. 2020 ; Fullea et al. 2021 ), and
evidence from mineral physics and geodynamics (e.g. Dannberg et al. 2017 ) show that both Earth’s elastic and viscous structures have strong
lateral v ariations, especiall y in the lithosphere and upper mantle. While lateral v ariations in elasticity may onl y have a minor impact on Last
Interglacial (LIG) sea levels (Austermann et al. 2021 ) or on present ocean tide loading (Huang et al. 2021 , 2022 ), lateral heterogeneity in
viscosity can strongly influence the present-day displacement field (e.g. Wu et al. 2005 ; Paulson et al. 2005 ; Steffen et al . 2006 ; Klemann
et al. 2008 ; Gomez et al. 2018 ; Peltier et al. 2022 ), and have a significant impact on sea level during the Holocene (e.g. Austermann et al.
2013 ; Li et al. 2018 , 2022 ; Yousefi et al. 2021 ) and the LIG (Austermann et al. 2021 ). On the other hand, the effect of compressibility
has been shown to be significant on GIA-induced horizontal displacement (Tanaka et al. 2011 ). With increasing accuracy of space geodetic
techniques such as Global Navigation Satellite System (GNSS), Very Long Baseline Interferometry (VLBI) and satellite g ravimetr y, for
example the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission and emerging integrated interpretations of Earth 
system processes, the need for improved crustal motion predictions is rising. As such, developing 3-D and compressible GIA algorithm/code
is important in improving sea level and deformation predictions. Ho wever , most 3-D compressible GIA models are dedicated software that are
not publicly available. This paper follows the approach of Wu ( 2004 ) in developing a new method that is based on commercial finite-element
(FE) packages (e.g. ABAQUS) that are well tested, highly efficient and the results are highly reliable. In addition, users can easily modify it
for other geophysical or geodynamic studies—for example in the study of GIA-induced earthquakes (e.g. Wu & Mazzotti 2007 ; Steffen et al.
2014 ; Wu et al. 2022 ) and of effects of more realistic rheologies on GIA (e.g. Huang et al. 2018 , 2019 ). Nevertheless, as pointed out in Wu
( 2004 ), commercial FE packages are designed for engineering purposes and not tailored for the modelling of large-scale Earth deformation,
thus they need to be modified by a certain method before they can be used for GIA studies. For example, Wu ( 2004 ) used the Iterative Stress
Transform (IST) method on ABAQUS to model 3-D incompressible and materially compressible self-g ravitating Ear ths, and Wong & Wu
( 2019 ) used the Iterative Body Force (IBF) method on ABAQUS to model 1-D compressible, self-g ravitating Ear ths. Here, we develop the
iterative finite element body and surface force (FEMIBSF) method on ABAQUS to model 3-D compressible, self-g ravitating Ear ths. The
aims of this paper are: (i) to discuss the mathematical formulation of the FEMIBSF method; (ii) to show the validation of this numerical
method and that spatial resolution and non-conformal grid resolution can significantly affect the accuracies of our results and (iii) to outline
some applications of this method so that researchers without access to dedicated GIA 3-D compressible models can use it with commercial
FE packages for studying large-scale Earth deformations. Before we address these aims, we shall give a brief overview of the development
of GIA models. 

Traditionally, GIA is modelled in the Laplace domain by seeking normal modes of laterally homogeneous (1-D) earth models (e.g. Peltier
1974 ; Wu & Peltier 1982 ; Tromp & Mitrovica 1999 ). This approach is called the normal-mode method (NMM) and has been used in the GIA
community in the past decades. The applicability of NMM to laterall y inhomo geneous earth models is limited though, due to mode coupling
which must be solved in a non-linear eigenvalue problem (e.g. Martinec 2000 ; Tromp & Mitrovica 2000 ). Using per turbation theor y, Tromp &
Mitrovica ( 2000 ) linearized this problem and introduced shifts in the normal-mode decay times and eigenfunctions. On the other hand, there
have been a few solutions to model GIA in the time domain. Gasperini & Sabadini ( 1989 ) as well as Kaufmann et al. ( 1997 ), for example,
used the finite element approach to study effects of lateral heterogeneity on GIA-induced displacement. Wu ( 1992 , 1993 ) and Karato & Wu
( 1993 ) used the same approach to explore postglacial rebound with po wer-la w rheology. These attempts, ho wever , were mostly restricted to
half-space models neglecting sphericity that can only be used on a regional scale up to a few 1000 km. For spherical Earth models, Hanyk
et al. ( 1996 ) proposed an initial-value and modal approach for compressible models with 1-D complex viscosity structures, while Martinec
( 2000 ) developed a spectral-finite element approach to the forward modelling of GIA on models with 3-D viscosity structures, which has
been extended by Tanaka et al. ( 2011 ) to incorporate the effect of compressibility. In addition, Zhong et al. ( 2003 ) developed a finite element
method to study GIA with 3-D spherical Ear th str ucture, while Wu & van der Wal ( 2003 ) included the effect of self-gravity in the oceans and
Geruo et al. ( 2013 ) extended it to consider compressibility . Finally , Latychev et al. ( 2005 ) proposed a finite volume formulism for GIA on
3-D earth models using elastic compressibility. 

In addition to the above-mentioned spherical time-domain approaches, the finite element method proposed by Wu ( 2004 ) makes use of
the commercial finite element package ABAQUS which he adapted to GIA modelling in the spherical domain. Following remarks regarding
the implementation of compressibility by B ängtsson & Lund ( 2008 ), the original Iterative Stress Transform (IST) method proposed in
Wu ( 2004 ) and intended for incompressible earth models was extended by Wong & Wu ( 2019 ), who proposed an Iterative Body Force
(IBF) approach which implements body forces in each element and solves the mechanic equilibrium equation iterati vel y with ABAQUS.
Compressibility in Abaqus can in principle be dealt with by explicitly specifying a gravity force and using Abaqus’ geometrically non-
linear formulation (Hampel et al. 2019 ). Ho wever , this approach cannot be used for spherical models (Reusen et al. 2023 ). The method in
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ong & Wu ( 2019 ) is suitable for harmonic loading and 1-D spherical models where elastic and viscous parameters vary radially. In addition,
ike other finite element methods (e.g. Zhong et al. 2003 ; Geruo et al. 2013 ), spherical harmonics are used there to solve Poisson’s equation
or the gravitational potential. Moreover, Wong & Wu ( 2019 ) and Wu ( 2004 ) did not consider the degree-1 deformation since it can cause a
hift in the centre of mass (COM) of the Earth-load system and that is not permitted in commercial FE modelling packages. Here, following
ong & Wu ( 2019 ), we propose a finite element approach to GIA modelling applicable for 3-D compressible Earth models with arbitrary

urface loads. By this approach, we are free from decomposing the load, displacement, and potential into spherical harmonics of different
egree and order (d/o) and neglecting short wavelength components (high d/o), which is common for approaches using spherical harmonics.
ur ther more, we consider deformation in the Earth-load reference frame with the origin at the instantaneous COM and calculate the degree-1
eformation by subtracting the translation of the COM (e.g. Paulson et al. 2005 ; Geruo et al. 2013 ). In addition, we take the potential stress
t the CMB (Wu & Peltier 1982 ; Tromp & Mitrovica 1999 ; Martinec 2000 ; Zhong et al. 2003 ) into account and study its impact on surface
isplacement and potential perturbation. Finally, the method presented here has the ability of implementing adaptive meshing (with a high
esolution in the region of interest, such as the area with ice-water masses and the area with significant contrast in material properties, and
 low resolution in regions of no interest, see Section 6 ), which is important in reducing computational cost while maintaining reasonable
ccuracy in numerical solutions. 

In Section 2 and Appendices A and B, we present the detailed finite element method for computing radial displacement and dilatation,
alculating the body and surface forces that are implemented in ABAQUS and solving Poisson’s equation for the gravitational potential. We
lso discuss the impact of the fluid core on static deformation of the Earth and show how to consider the degree-1 deformation in the COM
rame. In Section 3 , we discuss the difference in the iteration scheme between our method and that in Wong & Wu ( 2019 ). The computational
fficiency of FEMIBSF which uses parallel computing is evaluated in Section 4 . A validation of our results is presented in Section 5 where
e compare our results for homogeneous and layered 1-D earth models with those from other established methods. Resolution tests and the

nfluence of non-conformal mesh are also shown in this section. Applications of FEMIBSF in investigating the effect of a CMB potential
orce and a disc load example are discussed in Section 6 . Conclusions are presented in Section 7 . A potential implementation of rotational
eedback with FEMIBSF is presented in Appendix C . 

 M A  T H E M A  T I C A L  F O R M U L A  T I O N  

he mathematical equations introduced in Wong & Wu ( 2019 ) such as the interpolation and integration equations based on an axisymmetric
lement and the usage of zonal harmonics, are applicable for 1-D earth models. To adapt to 3-D earth models, the classical finite element (FE)
quations (e.g. Zienkiewicz et al. 2005 ) based on 3-D isoparametric elements are used here and re vie wed in Appendices A and B. There, we
ntroduce two coordinate systems: one is a spherical system L k ( r, θ , ϕ) and the other is a Cartesian system R k ( g , h , s ) (Fig. A1 ). The equations
n the Appendices are applied to compute the geometric area, volume, displacement, dilatation, surface/body forces and gravitational potential
erturbation as well as the degree-1 deformation which are specific to GIA. In particular, by using the classical FE techniques, w e a void the
sage of spherical harmonics and so avoid the leakage of high-degree load contribution (Section 2.3 ). Therefore, explicitly introducing these
quations are beneficial for readers. 

.1 Compressibility and dilatation 

he compressibility of solid Earth material results in dilatation, which further causes mass anomalies in Earth’s interior that contribute
o gravitational potential perturbations (Section 2.3 ). Thus, it requires specific mathematical treatment . The definition of dilatation is
traightforward in L k , that is 

 · u = 

∂u x 

∂x 
+ 

∂u y 

∂y 
+ 

∂u z 

∂z 
. (2.1.1) 

Here, u is the displacement vector and u x , u y and u z are its x , y and z component, respecti vel y. Ev aluating ∂ u x / ∂ x , ∂ u y / ∂ y and ∂ u z / ∂ z is
ot straightforward but needs making use of eq. (B2). With some algebra manipulation, one can get 

∂u x 

∂x 
= 

1 

‖ J V ‖ 

∣∣∣∣∣∣∣
∂u x 
∂g 

∂y 
∂g 

∂z 
∂g 

∂u x 
∂h 

∂y 
∂h 

∂z 
∂h 

∂u x 
∂s 

∂y 
∂s 

∂z 
∂s 

∣∣∣∣∣∣∣ , 
∂u y 

∂y 
= 

1 

‖ J V ‖ 

∣∣∣∣∣∣∣
∂x 
∂g 

∂u y 
∂g 

∂z 
∂g 

∂x 
∂h 

∂u y 
∂h 

∂z 
∂h 

∂x 
∂s 

∂u y 
∂s 

∂z 
∂s 

∣∣∣∣∣∣∣ , 
nd 

∂u z 

∂z 
= 

1 

‖ J V ‖ 

∣∣∣∣∣∣∣
∂x 
∂g 

∂y 
∂g 

∂u z 
∂g 

∂x 
∂h 

∂y 
∂h 

∂u z 
∂h 

∂x 
∂s 

∂y 
∂s 

∂u z 
∂s 

∣∣∣∣∣∣∣ (2.1.2) 

here J v is the Jacobian matrix (eq. A9 ) and the deri v ati ve of x / y / z with respect to g / h / s is given in Appendix A . 
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2.2. The density and Eulerian potential perturbations 

The GIA-related density perturbations involve two types: one is due to surface mass (ice and water mass) redistribution and the other due to
internal mass redistribution caused by the deformation. Denoting the surface mass density by σ , then the total surface mass reads as ∫ ∫ 

σ d S ′ = 

∫ ∫ (∞ 

∫ 

0 
σδ

(
r ′ − a 

)
dr ′ 

)
dS ′ , (2.2.1) 

where the integral on the left-hand side is with respect to the Earth’s surface and can be transformed into the integral on the right-hand side
inv olving the w hole Earth’s v olume. It follows from the right-hand side integration that an equi v alent volume mass density of the surface
load is 

ρs = σ
(
θ ′ , ϕ 

′ ) δ
(
r ′ − a 

)
. (2.2.2) 

The density perturbation in the Earth’s interior, based on the conservation of mass, reads (Wu & Peltier 1982 ; Tromp & Mitrovica 1999 ;
Martinec 2000 ) 

ρ1 

(
r ′ 

) = −∇ · ( ρ0 u 

) . (2.2.3) 

For an earth model with a layered structure, the initial density can be expressed as (Geruo et al. 2013 ) 

ρ0 

(
r ′ 

) = 

N ∑ 

j= 1 
�ρ j H 

(
r ′ j − r ′ 

)
, (2.2.4) 

where N is the number of layers and H is the Heaviside function. For the j th layer with an upper-bound radius r j and lower-bound r j −1 , the
density is ρ j . �ρ j denotes the density jump at r j from the ( j + 1)th layer to the j th layer, that is 

�ρ j = ρ j − ρ j+ 1 for j = 1 , 2 , . . . , N from the CMB to the surface of the Earth . (2.2.5) 

Note that ρN + 1 denotes the density outside the Earth which equals to 0 while ρ1 is the density of the core. Substituting eq. ( 2.2.4 ) into eq.
( 2.2.3 ), one can obtain (Geruo et al. 2013 ) 

ρ1 

(
r ′ 

) = 

N ∑ 

j= 1 
�ρ j δ

(
r ′ j − r ′ 

)
u r − ρ0 ∇ · u . (2.2.6) 

The potential perturbation ( φ1 ) induced by surface and internal density anomalies, complies with the Poisson’s equation 

∇ 

2 φ1 = 4 πG 

( ρ1 + ρs ) (2.2.7) 

The solution to φ1 , with the application of Green’s function method, is given by 

φ1 ( r ) = −
�  G 

| r − r ′ | 
(
ρ1 

(
r ′ 

) + ρs 

)
dV 

′ (2.2.8) 

Substituting eqs (2.2.2) and ( 2.2.6 ) into eq. ( 2.2.8 ), one can get (Wu 2004 ; Geruo et al. 2013 ) 

φ1 ( r ) = −
∑ N 

j= 1 

� G 

| r − r ′ | �ρ j u r 

(
r 

′ 
j 

)
d S ′ + 

�  G 

| r − r ′ | ρ0 ( ∇ · u 

) d V 

′ −
� G 

| r − a ′ | σ d S ′ , (2.2.9) 

where a 
′ 

is the radius of the Earth. Inspection of eq. ( 2.2.9 ) shows that the potential perturbation is induced by the load (the third term on the
right), dilatation (the second term on the right) and radial displacement related to internal boundaries (the first term on the right). The load
potential φ2 (the third term) plays a role through the gravitational body force in inducing deformation and thus deformational potential (the
sum of the first and second terms) φ3 . As such, φ2 can also be called the driving potential and φ3 the responding potential. It is well known
that the driving and responding potentials cancel each other in the isostatic (fluid) limit and thus the total potential φ1 vanishes. 

Alternati vel y, the Eulerian potential perturbation can be obtained by solving Poisson’s equation subject to boundary conditions (e.g.
Tromp & Mitrovica 1999 ; Latychev et al. 2005 ; Martinec & Hagedoorn 2014 ). Poisson’s equation differs from eq. ( 2.2.7 ) by vanishing ρs .
The boundary conditions on the external boundary (Earth’s surface) are 

[ φ1 ] 
+ 
− = 0 

and 

[ e r · ∇φ1 ] 
+ 
− = 4 πGρ0 u r + 4 πGσ, (2.2.10) 

where + and − denote the upper and lower side of a boundary, respecti vel y, and e r is the unit vector perpendicular to the boundary and
pointing outside of the domain. The boundary conditions on the internal boundaries and core–mantle boundary (CMB) are 

[ φ1 ] 
+ 
− = 0 

and 

[ e r · ∇φ1 ] 
+ 
− = −4 πGu r [ ρ0 ] 

+ 
− . (2.2.11) 
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Applying the Green’s function method to solve Poisson’s equation subject to boundary conditions (eqs 2.2.10 and 2.2.11 ), one can obtain
he solution 

1 ( r ) = −
�  G 

| r − r ′ | ρ1 

(
r ′ 

)
dV 

′ + 

N ∑ 

j= 1 

∫ ∫ 
G 

| r − r ′ | [ ρ0 ] 
+ 
− u r 

(
r 

′ 
j 

)
d S ′ . (2.2.12) 

Substituting eq. ( 2.2.6 ) into eq. ( 2.2.12 ) and applying Gauss’s integration theory, one can get 

1 ( r ) = −
� G 

| r − b ′ | ρc u r 

(
b ′ 

)
d S ′ −

�  G 

| r − r ′ | 3 ρ0 u · (
r − r ′ 

)
d V 

′ −
� G 

| r − a ′ | σ d S ′ , (2.2.13) 

here b 
′ 

is the radius of the CMB and ρc is the density of the fluid core. Note that eq. ( 2.3.13 ) is identical to eq. (14) of Latychev et al.
 2005 ) and equi v alent to eq. ( 2.2.9 ). As pointed out b y Latyche v et al. ( 2005 ), the density anomal y at the CMB from the core side is ρc u r
eq. 12 of Latychev et al. 2005 ), the only contribution of the fluid core to the gravitational perturbation φ1 . The integration domain in both
q. ( 2.2.9 ) and eq. ( 2.2.13 ) is from the CMB to the Earth’s surface because we assume an incompressible and uniform fluid core which has
o volumetric density perturbation under static deformation (see Section 2.4 ). 

In practice, we calculate φ1 at each node with the two-point Gauss–Legendre quadrature rule after transforming all integrals in eq. ( 2.2.9 )
r eq. ( 2.2.13 ) into the R k coordinate system, a procedure demonstrated by eqs ( A4 ) to ( A10 ). The φ1 value inside the element and their
eri v ati ves can be obtained again with the trilinear interpolation method. Compared to the spectral method used to compute φ1 (e.g. Zhong
t al. 2003 ; Wu 2004 ; Geruo et al. 2013 ; Wong & Wu 2019 ), our direct integration method (a similar method is used in Wang & Li ( 2021 )
or mantle convection modelling) gets rid of spherical harmonics and so avoids the leakage of high-degree load contribution. Moreover, with
he direct integration method, the displacement output in the spatial domain can be directly used to compute the potential, whereas with the
pectral method the spatial-domain displacement needs to be decomposed into spherical harmonics which are then used to reconstruct the
otential. Ho wever , the direct integration method involves integration of all 3-D elements constructing the Earth model, which makes the
omputational load heavy. Therefore, it is difficult to confirm which method is more computationall y ef ficient. Using a parallel computation
cheme, the speed of direct integration can be increased significantly, as will be demonstrated in Section 3 . 

.3. The Iterative FEMIBSF approach 

.3.1 The equilibrium equation 

uring glacial isostatic adjustment, the surface load exer ts g ravitational forces inside the Earth and pressure on Earth’s surface, which makes
he Ear th defor m. Considering the small magnitude of acceleration, the Earth is assumed to be in a mechanical equilibrium state where the
otal forces acting on any portion of the viscoelastic body must vanish. The equilibrium equation reads (Peltier 1974 ; Wu & Peltier 1982 ) 

 · τ − ρ0 ∇ 

( g 0 u r ) − ρ0 ∇φ1 + ρ0 g 0 ( ∇ · u 

) e r = 0 , (2.3.1) 

and holds pointwise. The associated body forces in eq. ( 2.3.1 ) include the force exerted by internal stress perturbation (the first term),
he force due to pre-stress advection (the second term), the gravitational forces due to perturbation in the gravity field (the third term) and due
o the density perturbation induced by compressibility (the fourth term). The equilibrium equation is subject to the boundary condition on
tresses acting on external boundaries of our solution domain including the mantle and lithosphere. Let τ rr be the stress in the radial direction.
hen at the Earth’s surface (ES), the surface loads induce a stress which is (Wu & Peltier 1982 ; Wu 2004 ; Wong & Wu 2019 ) 

ES 
rr = −σg. (2.3.2) 

At the CMB, the stress consists of a potential force (i.e. potential stress, the first term in eq. 2.3.3 ), and a buoyancy from the core (the
econd term in eq. 2.3.3 ) (Wu & Peltier 1982 ; Tromp & Mitrovica 1999 ; Martinec 2000 ; Zhong et al. 2003 ), that is 

CMB 
rr = ρc φ1 + ρc g 0 u r . (2.3.3) 

The latter three body forces in eq. ( 2.3.1 ), together with the two surface forces in eqs ( 2.3.2 ) and ( 2.3.3 ), are called external or driving
orces which cause the static deformation and stress perturbation in Earth’s mantle and lithosphere. We use a commercial FE package (e.g.
BAQUS) to solve the equilibrium equation (eq. 2.3.1 ) for displacement subject to boundary conditions (eqs 2.3.2 and 2.3.3 ). Therefore,

hese external forces must be specified in each iteration/step when using commercial FE packages. Wong & Wu ( 2019 ) were the first to apply
his idea to GIA modelling, where they called it the iterative body force (IBF) approach with the role of surface forces neglected. Here, to
upplement the role of surface forces in the finite element method, we rename this approach as iterative FEMIBSF approach. 

In addition, in Appendix C we show how the rotational feedback of GIA can potentially be implemented with FEMIBSF. 

.3.2 Evaluating the external body forces 

s the element is at the heart of the finite element approach, eq. ( 2.3.1 ) is not solved pointwise but for each individual element. This means
e need to consider and specify the total external forces acting on each element. ABAQUS provides an easy way to achieve this goal: the



2236 P. Huang et al . 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/3/2231/7271390 by D

elft U
niversity of Technology user on 30 O

ctober 2023
user only needs to specify the average external body force for each element, plus the pressure (stress) for elements on external boundaries.
Therefore, our task now is to compute the mean body force and pressure, which is done b y appl ying the finite element equations in Appendices
A and B. 

Based on eq. ( 2.3.1 ), we define a scalar f as 

f = −ρ0 g 0 u r − ρ0 φ1 . (2.3.4) 

The deri v ati ves of f with respect to spatial coordinates g , h and s are ⎡ 

⎢ ⎣ 

∂ f 
∂g 
∂ f 
∂h 
∂ f 
∂s 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

∂g 0 
∂g 

∂u r 
∂g 

∂φ1 
∂g 

∂g 0 
∂h 

∂u r 
∂h 

∂φ1 
∂h 

∂g 0 
∂s 

∂u r 
∂s 

∂φ1 
∂s 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

−ρ0 u r 

−ρ0 g 0 
−ρ0 

⎤ 

⎥ ⎦ 

(2.3.5) 

with the assumption that ρ0 is a constant within the element. Evaluating eq. ( 2.3.5 ) requires computing the deri v ati ves of initial gravity, radial
displacement and potential perturbation in the R k coordinate system. The latter two deri v ati ves are gi ven in Appendix B and Section 2.2 . For
the initial gravity, we compute its value at each node with radius r ( r j −1 < r ≤ r j ) by the analytical expression (Martinec 2000 ) 

g 0 ( r ) = 

4 πG 

3 

(
ρ j r + 

R j 

r 2 

)
, (2.3.6) 

where 

R j = 

⎧ ⎨ 

⎩ 

0 f or j = 1 
j ∑ 

i= 2 
�ρi−1 r 3 i−1 f or j = 2 , · · · , N 

. 

The initial gravity and its deri v ati ves inside the element are interpolated in the R k system (see Appendix A and Fig. A1 ) by 

g 0 ( g, h, s ) = 

8 ∑ 

i= 1 
N i ( g, h, s ) g 0 i (2.3.7) 

and 

∂g 0 
∂g 

= 

8 ∑ 

i= 1 

∂ N i 

∂g 
g 0 i , 

∂g 0 
∂h 

= 

8 ∑ 

i= 1 

∂ N i 

∂h 

g 0 i , 
∂g 0 
∂s 

= 

8 ∑ 

i= 1 

∂ N i 

∂s 
g 0 i , (2.3.8) 

respecti vel y. 
We now e v aluate the 1st and 2nd body forces in eq. ( 2.3.1 ). Since u r and φ1 depend on x , y and z, it follows that the pointwise body

force is 

F 12 = ∇ f = 

∂ f 

∂x 
e x + 

∂ f 

∂y 
e y + 

∂ f 

∂z 
e z . (2.3.9) 

Here, ∂ f/ ∂ x , ∂ f/ ∂ y and ∂ f/ ∂ z are the x , y and z component of F 12 , respecti vel y. The mean body force for an indi vidual element can be
calculated in the R k system by 

〈 F 12 x 〉 = 

1 

V k 

�  ∂ f 

∂x 
d � = 

1 

V k 

1 
∫ 

−1 

1 
∫ 

−1 

1 
∫ 

−1 

∂ f 

∂x 
| J V | d h dg d s 

〈
F 12 y 

〉 = 

1 

V k 

1 
∫ 

−1 

1 
∫ 

−1 

1 
∫ 

−1 

∂ f 

∂y 
| J V | d h dg d s, 

and 

〈 F 12 z 〉 = 

1 

V k 

1 
∫ 

−1 

1 
∫ 

−1 

1 
∫ 

−1 

∂ f 

∂z 
| J V | d h d g d s, (2.3.10) 

where 

∂ f 

∂x 
= 

1 

| J V | 

∣∣∣∣∣∣∣
∂ f 
∂g 

∂y 
∂g 

∂z 
∂g 

∂ f 
∂h 

∂y 
∂h 

∂z 
∂h 

∂ f 
∂s 

∂y 
∂s 

∂z 
∂s 

∣∣∣∣∣∣∣ , 
∂ f 

∂y 
= 

1 

| J V | 

∣∣∣∣∣∣∣
∂x 
∂g 

∂ f 
∂g 

∂z 
∂g 

∂x 
∂h 

∂ f 
∂h 

∂z 
∂h 

∂x 
∂s 

∂ f 
∂s 

∂z 
∂s 

∣∣∣∣∣∣∣ , 
and 

∂ f 

∂z 
= 

1 

| J V | 

∣∣∣∣∣∣∣
∂x 
∂g 

∂y 
∂g 

∂ f 
∂g 

∂x 
∂h 

∂y 
∂h 

∂ f 
∂h 

∂x 
∂s 

∂y 
∂s 

∂ f 
∂s 

∣∣∣∣∣∣∣ . (2.3.11) 
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Similarly, based on eq. ( 2.3.1 ), we define the third pointwise body force 

F 3 = ρ0 g 0 ( ∇ · u 

) e r . (2.3.12) 

Expressing e r by e x , e y and e z , one can get the x , y and z component of F 3 which reads as 

F 3 x = 

ρ0 g 0 ( ∇ · u 

) x √ 

x 2 + y 2 + z 2 
, 

F 3 y = 

ρ0 g 0 ( ∇ · u 

) y √ 

x 2 + y 2 + z 2 
, 

F 3 z = 

ρ0 g 0 ( ∇ · u 

) z √ 

x 2 + y 2 + z 2 
, (2.3.13) 

especti vel y. 
Accordingly, the mean F 3 for an individual element expressed in R k is given by 

〈 F 3 x 〉 = 

1 

V k 

�  

F 3 x ( x , y , z ) d� = 

1 

V k 

1 
∫ 

−1 

1 
∫ 

−1 

1 
∫ 

−1 
F 3 x | J V | d h dg d s

〈
F 3 y 

〉 = 

1 

V k 

1 
∫ 

−1 

1 
∫ 

−1 

1 
∫ 

−1 
F 3 y | J V | d h dg d s

〈 F 3 z 〉 = 

1 

V k 

1 
∫ 

−1 

1 
∫ 

−1 

1 
∫ 

−1 
F 3 z | J V | d h d g d s. (2.3.14) 

The integrals in eqs ( 2.3.10 ) and ( 2.3.14 ) are e v aluated again with the two-point Gauss–Legendre quadrature rule. The sum of F 12 and
 3 is implemented as a uniform body force in ABAQUS. 

.3.3 Evaluating the pr essur e 

BAQ US tak es the convention that the pressure has an opposite sign to that of the stress. Based on eq. ( 2.3.2 ), the pressure on Earth’s surface
s 

P = σg 0 . (2.3.15) 

Here, we interpolate the initial gravity and surface mass density within the surface element by 

g 0 = 

4 ∑ 

i= 1 
N i ( g, h 

) g 0 i , 

= 

4 ∑ 

i= 1 
N i ( g, h 

) σi , (2.3.16) 

here g 0 i and σ i are nodal values. The average pressure over an elemental surface is given by 

〈 P 〉 = 〈 σg 0 〉 = 

1 

S k 

1 
∫ 

−1 

1 
∫ 

−1 
σg 0 | J S | d g d h. (2.3.17) 

Similarly, on the CMB the pressure from the fluid core, based on eq. ( 2.3.3 ), is 

P = −ρc φ1 − ρc g 0 u r . (2.3.18) 

The second term on the right can be modelled by Winkler foundations ( ρc g 0 ) in ABAQUS (Wu 2004 ; Wong & Wu 2019 ). The first term
n the right is modelled by prescribing the mean pressure as 

〈 −ρc φ1 〉 = 

1 

S k 

1 
∫ 

−1 

1 
∫ 

−1 
( −ρc φ1 ) | J S | d g d h. (2.3.19) 

The integrals in eqs ( 2.3.17 ) and ( 2.3.19 ) are again e v aluated with the two-point Gauss–Legendre quadrature rule. The mean pressure is
rescribed in ABAQUS by a P2-type and P1-type pressure on elements located at the Earth’s surface and CMB, respecti vel y. 

.4. The fluid core 

he role of a fluid core on static deformation of the Earth has been discussed since the 1970s (e.g. Smylie & Mansinha 1971 ; Dahlen
974 ; Chinnery 1975 ; Crossley & Gubbins 1975 ). It has been established that, subject to surface loading, the fluid core experiences
erturbations in the potential, gravity and stress fields. The density perturbation is given by (e.g. Dahlen 1974 ; Tromp & Mitrovica 1999 ;
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Martinec & Hagedoorn 2014 ) 

ρ1 = 

∂ r ρ0 ( r ) 

g 0 ( r ) 
φ1 . (2.4.1) 

Following Zhong et al. ( 2003 ) and Latychev et al. ( 2005 ), we consider an incompressible core stratification satisfying the Williamson–
Adams (WA) condition. For an incompressible sphere, this condition means a homogenous core which is al wa ys in a state of neutral equilibrium
(Dahlen 1974 ). Inspection of eq. ( 2.4.1 ) shows that the density perturbation vanishes because there is no density stratification due to our
assumption. This means that the core has no volumetric contribution to the perturbed potential field. Even if a stratified fluid core is assumed,
the relative difference in viscoelastic responses to that of a fluid core without density perturbation is rather small ( ∼5 × 10 −3 ; Martinec
& Hagedoorn 2014 ). For models with a solution domain restricted in the mantle and lithosphere, the role of the fluid core reduces to the
boundary conditions at the CMB where solutions from the mantle must match those from the core. In particular, a potential stress induced by
the potential perturbation in the core needs to be considered at the CMB (see eq. 2.3.3 ). In Section 6 , we particularly investigate the role of
the potential stress on surface displacement and geoid. 

2.5. T he deg r ee 1 def ormation 

Following Paulson et al. ( 2005 ), Geruo et al. ( 2013 ) and Blank et al . ( 2021 ), we also derive the displacement field in the Earth-load reference
system (CM frame) with the origin at the instantaneous COM. ABAQUS calculates displacements in a coordinate system with the origin
fixed at the centre of the initially undeformed spherical Earth, named the FE frame (Paulson et al. 2005 ). The displacement field in the FE
frame differs from that in the CM frame by d cm 

, a quantity identical to the translation of COM with respect to the FE frame. According to
Martinec & Hagedoorn ( 2005 ), d cm 

can be calculated in the FE frame by 

d cm 

( t ) = 

1 

M 

⎡ 

⎣ 

∫ 
V 

ρ0 ( r ) u 

( r , t ) d V 

( r ) + 

∫ 
∂V 

σ ( r , t ) r d S ( r ) 

⎤ 

⎦ . (2.5.1) 

Here, M is the total mass of the Earth and load and u is the displacement field in the FE frame. 
The first term in eq. ( 2.5.1 ) is the translation due to Earth’s deformation. It can be further decomposed into the motion of the lithosphere

and mantle (Klemann & Martinec 2011 ) 

d S ( t ) = 

1 

M 

∫ 

V S 

ρ0 ( r ) u 

( r , t ) dV 

( r ) , (2.5.2) 

and the motion of the liquid core (Klemann & Martinec 2011 ) 

d lq ( t ) = 

1 

M 

∫ 

∂V C 

ρC ( r ) u r r dS ( r ) . (2.5.3) 

The second term in eq. ( 2.5.1 ) is the translation due to surface loads, d σ , that is 

d σ ( t ) = 

1 

M 

∫ 

∂V 
σ ( r , t ) r dS ( r ) . (2.5.4) 

Expanding u and σ into spherical harmonics, one can find that d cm 

is e xclusiv ely related to their degree-1 components. Subtracting d cm 

from u , one can get the displacement field in the CM frame, that is u cm . Correspondingly, an additional mass of −�ρ d cm 

·e r is added to
inter nal boundaries. Again, integ rals in eqs ( 2.5.2 )–( 2.5.3 ) are e v aluated with the two-point Gauss–Legendre quadrature rule directly in the
spatial domain. Practically, we calculate d cm 

and u cm as follows: 
(1) Suppose the surface load at the current step i is σ i , and the converged displacement field of the last step is u i −1 in the FE frame, then

for the first iteration of the current step, d cm 

is calculated by inserting σ i and u i −1 into eqs ( 2.5.2 )–( 2.5.4 ) while u cm 

= u i −1 – d cm 

. 
(2) After obtaining the displacement field of iteration 1 of the current step, u i , d cm 

is calculated by inserting σ i and u i into eqs
( 2.5.2 )–( 2.5.4 ) and u cm 

= u i − d cm 

; 
(3) Repeat (2) for further iterations by calculating d cm 

and u cm 

of the current iteration with u i from the last iteration, until u i converges. 

3  T H E  I T E R AT I O N  S C H E M E  

Since we are following the IBF approach of Wong & Wu ( 2019 ), the iteration scheme here is similar to theirs. Suppose u i −1 and φi −1 are
displacement and potential solutions from the last iteration (or step) i −1, then the solution to displacement u i of the current iteration (or step)
i is obtained by solving the equilibrium equation 

∇ · τ ( u i ) + b ( u i −1 , φi−1 ) = 0 (3.1) 

with ABAQUS, subject to surface loading pressure P = σ i g 0 and potential pressure P = −ρc φi −1 together with a Winkler foundation at the
CMB. Here, τ ( u i ) and b ( u i −1 , φi −1 ) are the internal stress and body force at i , respecti vel y. φi is then obtained by inserting u i into eq. ( 2.2.9 )
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Figure 1. Two experiments showing how computation time changes with the number of CPUs in calculating the gravitational potential. Both experiments 
adopt the homogeneous compressible earth model 1a (Section 5.2 ) with Experiment 1 using a 2 ◦ × 1 ◦ grid for depths < 670km and a 4 ◦ × 2 ◦ grid for depths 
> 670km, and Experiment 2 using a unifor m g rid of 2 ◦ × 1 ◦. Experiment 2 involves 833 040 3-D elements which is approximately twice of that of Experiment 
1 (473 940). We did each experiment seven times; the mean computation time is treated as the y -axis value corresponding to each number of CPUs and the 
standard deviation is taken as the error bar value. 
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r (2.2.13). Ho wever , there are two differences from the iteration scheme in Wong & Wu ( 2019 ): 
(1) In Wong & Wu ( 2019 ), when solving the equilibrium equation at the current step i , ABAQUS also needs to solve the equation for

revious steps 1, 2, . . . , i −1 . Here, by making use of the restart function, ABAQUS stores solutions at previous steps 1, 2, . . . , i −1 and only
ocuses on solving the equilibrium equation at i . With this improvement, the iteration scheme is ∼5 times faster than that of Wong & Wu
 2019 ); 

(2) As stated in Section 2.5 , to view the displacement field in the CM frame, we subtract the translation of COM from the displacement
alculated by ABAQUS. With this treatment, we find the displacement solution converges with up to 2 iterations less. 

The reader is referred to Wong & Wu ( 2019 ) for more details about the iteration scheme. 

 C O M P U TAT I O NA L  E F F I C I E N C Y  O F  F E M I B S F  

he proposed computational scheme here is associated with solving the equation of equilibrium with commercial FE packages and solving
oisson’s equation with codes written by us. The computation efficiency for the former is fully controlled by commercial FE packages; we
annot change the commercial codes to change the computation scheme, and thus, we do not discuss it in detail here. Ho wever , we note
hat ABAQUS is equipped with parallel computation which can be implemented on a single node with multiple cores. Thus, more CPUs
rovide faster calculations, which we observed in practice. On the other hand, as mentioned in Section 2.2 , we also implemented parallel
omputation with OpenMP commands in solving Poisson’s equation. To demonstrate its efficiency, we did two experiments with different
rid resolutions for a homogeneous compressible earth model 1a (Section 5.2 ): the first experiment uses a 4 ◦ × 2 ◦ grid for depths > 670 km
nd a 2 ◦ × 1 ◦ grid for depths < 670 km, and the second uses a uniform grid of 2 ◦ × 1 ◦ with the number of 3-D elements (833 040) being
pproximately twice of that of Experiment 1 (473 940). The computation cost versus the number of CPUs on a Linux machine for the two
xperiments is shown in Fig. 1 : for both experiments the computation time indeed decreases with the increasing number of CPUs, implying
 successful implementation of parallel computation of the gravitational potential. In addition, we note that the computation cost decreases
n proportion (from 40 to ∼10 min for Experiment 1 and from 15 to ∼5 min for Experiment 2) to the number of CPUs increasing from
 to 4 but does not decrease proportionally (and in fact by a much less extent) when CPUs increases from 4 to 28. The latter relati vel y
ow efficiency is caused by increased and less efficient interprocessor communication among the CPUs as well as the fact that more CPUs
equires more time spent on creation of pri v ate v ariables, memory and computation task assignment. The minimum amount of time for a
hole solution (Abaqus and Poisson equation solutions) cycle is achieved with 28 CPUs at ∼90 and 171 min for experiments 1 and 2,

especti vel y. 

 VA L I DAT I O N  

o validate our code/algorithm, we compare solutions generated with FEMIBSF with analytical solutions (Wu & Peltier 1982 ) for homogeneous
odels, and with numerical solutions from other established software for a layered model. In the following, we will first introduce these

oftware, and then show comparison results. 

art/ggad354_f1.eps
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Table 1. Material properties for the homogeneous compressible (1a), homogeneous incompressible (1b) and layered compressible (2a) models. 

Layer 

Lower 
radius 
(km) 

Upper 
radius 
(km) 

Density, ρ
(kg m 

−3 ) 

Young’s 
modulus, E 

(Pa) 
Poisson’s 

ratio, ν
Viscosity, 
η (Pa ·s) 

Shear 
modulus, μ (Pa) 

The second 
L áme 

parameter, λ
(Pa) 

1a 
1 0.00 6371.00 5517 3.9325E + 11 0.3542 1.00E + 21 1.4519E + 11 3.5288E + 11 

1b 
1 0.00 6371.00 5517 4.3556E + 11 0.5000 1.00E + 21 1.4519E + 11 3.5288E + 15 

2a 
1 0.00 3485.5 10 977 Inviscid core, not modelled but boundary condition at the CMB considered 
2 3485.5 5200.0 5074 6.2410E + 11 0.2925 3.20E + 21 2.4143E + 11 3.4033E + 11 
3 5200.0 5701.0 4527 4.5980E + 11 0.2730 1.60E + 21 1.8060E + 11 2.1719E + 11 
4 5701.0 5971.0 3882 2.8300E + 11 0.2920 5.00E + 20 1.0952E + 11 1.5375E + 11 
5 5971.0 6256.0 3442 1.8870E + 11 0.2901 5.00E + 20 7.3134E + 10 1.0108E + 11 
6 6256.0 6371.0 3192 1.5470E + 11 0.2845 1.00E + 22 6.0218E + 10 7.9499E + 10 
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5.1 Software used for comparison 

5.1.1 IBF 

It is a Fortran 90 code written by Michael ChingKit Wong. The code is based on the IBF approach which represents all body forces in each
finite element by their volumetric mean and solves the equilibrium equation iteratively with ABAQUS. The IBF code/algorithm is suitable
for computing the viscoelastic responses of 1-D layered incompressible or compressible Earth models subject to spherical harmonic loading. 
Its validity has been verified by comparing the Love number results with those obtained with the NMM and the IST method (Wu 2004 ). More
details of IBF can be found in Wong & Wu ( 2019 ). 

5.1.2 ICEAGE 

This software uses Fortran and was developed by Georg Kaufmann. It applies the viscoelastic normal-mode method, thus can be used for
sphericall y symmetric, radiall y v ar ying (1-D) ear th models (Kaufmann 2004 ). Kaufmann & Lambeck ( 2000 ; 2002 ) describe the theory
implemented in ICEAGE in more details. The software can be used for incompressible but also compressible calculations. Latest modelling
results were presented, for example, in Kierulf et al. ( 2021 ) and Reusen et al. ( 2023 ). Selected results that can be used for benchmarking are
available since 1997 at http://rses.anu.edu.au/geod ynamics/GIA benchmark/ind ex.html . 

5.1.3 VILMA-C 

This Fortran code was developed by Yoshiyuki Tanaka and Volker Klemann. It is based on the spectral-finite element method (hereafter
SFEM) proposed by Martinec ( 2000 ) of computing the viscoelastic relaxation of a spherical Earth with 3-D viscous structure. The SFEM has
been extended to include compressibility (Tanaka et al. 2011 ), 3-D elasticity (Tanaka et al . 2009 ) as well as 3-D anelasticity (Huang et al.
2021 ). The elastic deformation for a homogeneous compressible earth model computed by VILMA-C fits to that computed by the Peltier-Wu
formulism (Wu & Peltier 1982 ), while the viscoelastic deformation for 1-D stratified compressible earth models calculated by VILMA-C has
been verified by a numerical Laplace integration method (Tanaka et al. 2009 ). 

5.2 Homogeneous models 

We first validate our results for incompressible and compressible homogeneous models, where density, elastic parameters and viscosity are 
all constants. This is vitally important because for homogeneous models, there are exact analytical elastic solutions (Wu & Peltier 1982 ),
which numerical solutions must match reasonably well. For incompressible homogeneous models, exact analytical solutions also exist in the 
isostatic limit (Wu & Peltier 1982 ; Hanyk et al. 1999 ; Spada et al. 2011 ). But models with compressible layers and constant density result in
long-term unstable behavior (Plag & J üttner 1995 ; Hanyk et al. 1999 ; Vermeersen & Mitrovica 2000 ; Klemann et al. 2003 ). In Table 1 , we
show the density, Young’s modulus, and Poisson’s ratio values for compressible model 1a and incompressible model 1b. Table 2a shows the
resolution and total number of nodes and 3-D elements used for 1a and 1b. 

5.2.1 Variations of modelled surface displacement and gravitational potential with latitude 

We start with looking at how FEMIBSF-computed surface displacement and gravitational potential vary with latitude. Since we apply a single
harmonic load, σP n ( θ ) (where P n ( θ ) is the Legendre function and θ the colatitude), it is expected that the computed vertical displacement

http://rses.anu.edu.au/geodynamics/GIA_benchmark/index.html
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Table 2a. The horizontal and vertical resolutions at different radii and the total number of 
nodes and elements for models 1a and 1b for different har monic deg rees ( n ). The grid size 
followed by the layering thickness (or thickness of the finite element) are shown for different 
layers indicated by the radius range. 

1a/1b 
Degree ( n ) 1 2 5 15 

Radius (km) 0.0000 −3480.0 2 ◦ × 4 ◦, 485.7 km/2 ◦ × 4 ◦, 485.7 km 

3480.0 −5100.0 2 ◦ × 4 ◦, 405.0 km/2 ◦ × 4 ◦, 405.0 km 

5100.0 −5701.0 2 ◦ × 4 ◦, 150.25 km/2 ◦ × 4 ◦, 200.3 km 

5701.0 −5971.0 1 ◦ × 2 ◦, 90.0 km/2 ◦ × 4 ◦, 90.0 km 

5971.0 −6271.0 1 ◦ × 2 ◦, 60.0 km/2 ◦ × 4 ◦, 150.0 km 

6271.0 −6311.0 1 ◦ × 2 ◦, 40.0 km/2 ◦ × 4 ◦, 40.0 km 

6311.0 −6371.0 1 ◦ × 2 ◦, 30.0 km/2 ◦ × 4 ◦, 30.0 km 

Number of elements 473 940/178 200 
Number of nodes 509 490/188 370 

Figure 2. The spatial variation of ratios of displacement/potential with respect to Legendre function for the compressible model 1a for (a) radial displacement 
( u ), (b) horizontal displacement ( v ), (c) load-induced potential ( � 2 ) and (d) deformation potential ( � 3 ). Shown here are results at the elastic limit. Blue dots 
are for FEMIBSF results and orange and red lines for analytical results. Note that the y -axis values refer to the ratios. 
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 u ), horizontal displacement ( v ), load potential ( φ2 ) and deformation potential ( φ3 ) are proportional to the excitation, meaning the ratios,
 ( θ )/ P n ( θ ), v ( θ )/[ ∂ θ P n ( θ )] [where ∂ θ P n ( θ ) is the first-order deri v ati ve of P n ( θ )], φ2 ( θ )/ P n ( θ ) and φ3 ( θ )/ P n ( θ ), have to be constant. Fig. 2
hows the variation of these ratios for degrees 2 and 5 for model 1a at the elastic limit, with lines indicating analytical values calculated
ith the Peltier–Wu formalism (Wu & Peltier 1982 ; Tromp & Mitrovica 1999 ) and dots denoting our numerical solutions. It can be observed

hat for both displacement and potential, the calculated ratios are almost constant. Only at latitudes close to the roots of P n or ∂ θ P n ( θ ) do
eviations appear. For the horizontal displacement, ho wever , the ratios deviate from a constant also near the polar latitudes. In the following,
e investigate the reason behind this phenomenon. 

We note that at the radius 5701 km, that is depth 670 km (the boundary between the lower and upper mantle), two different regular
atitude-longitude grids, 1 ◦ × 2 ◦ and 2 ◦ × 4 ◦ are used for the upper and lower mantle, respecti vel y (Table 2a ). This non-conformal mesh
as the advantage of accommodating less nodes in the lower mantle (so increasing computation speed) but also creates additional nodes that
re used in the upper mantle but not in the lower mantle, that is the so-called hanging nodes (e.g. Fries et al. 2011 ). To see if the hanging
odes are related to horizontal displacement deviations near polar areas, we did three experiments with conformal meshes of different sizes
where the hanging nodes disappear): experiments 1 has a resolution of 2 ◦ × 4 ◦ which is lower than the non-conformal mesh resolution, while
xperiments 2 and 3 have resolutions of 1 ◦ × 2 ◦ and 1 ◦ × 1 ◦, respecti vel y, which are higher than the non-conformal mesh resolution. It can
e seen that although a lower resolution is applied in experiment 1, the horizontal displacement de viations tow ards the polar area are greatly
educed compared to solutions based on the non-conformal mesh resolution (Fig. 3 ). Similarly, conformal meshes applied in experiments 2
nd 3 are beneficial in reducing the deviations, with higher resolutions leading to smaller deviations and the deviations being less than 0.01
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Figure 3. The variation of v ( θ )/[ ∂ θ P n ( θ )] of (a) degree 2 and (b) degree 5 for compressible model 1a for three experiments with conformal meshes of different 
regular grid sizes: experiment 1 (ex1) has a resolution of 2 ◦ × 4 ◦, experiment 2 (ex2) has a resolution of 1 ◦ × 2 ◦, and experiment 3 (ex3) a resolution of 1 ◦ ×
1 ◦. Also shown are the analytical solutions (Degree 2/5, analytical) and the numerical solutions (Degree 2/5, FEMIBSF) for a non-conformal mesh shown in 
Table 2a . 
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for both degrees 2 and 5 (Fig. 3 ). This level of deviations is acceptable given that the magnitude of horizontal displacements and that of ∂ θ
P n ( θ ) become two orders and one order of magnitude smaller, respecti vel y, when approaching the polar regions. Thus, we regard that hanging
nodes, resolutions and numerical errors are the main causes of horizontal displacement deviations in polar areas. 

5.2.2 Comparison of Love numbers 

We now compare loading Love numbers (LLNs) h , l and k based on the FEMIBSF method with analytical solutions [again based on the
PeltierWu formalism (Wu & Peltier 1982 )] for models 1a and 1b in Table 3a . These LLNs are computed with the resolutions described in
Table 2a . It is shown that, for degrees 1, 2 and 5, the differences in h , l and k between our solutions and the analytical solutions are in
general less than 2 per cent in both the elastic and viscous limits (for incompressible model 1b). This can be regarded as a rather good
match, considering the inevitable error caused by numerical integration and interpolation used in calculating displacement, potential and body 
force. For degree 15, the differences in LLNs increase for both compressible and incompressible models. For the compressible model 1a, the
differences are not greater than 3.1 per cent, still a reasonably good match. For the incompressible model 1b, the difference in h is less than
3 per cent, but the differences are a bit larger ( ∼8 per cent) for l and k. We note that although hanging nodes exist at the lower-upper mantle
boundary of model 1a (Table 2a ), the errors in FEMIBSF-modelled Love numbers h , l and k up to degree 15 are less than 3 per cent, which
can be regarded as a minor impact. In addition, Table 3a reveals that the higher the spherical harmonic degree, the larger the differences
in h , l and k between analytical and finite-element solutions, which is consistent with Zhong et al. ( 2003 ) and Geruo et al. ( 2013 ). As they
argued, resolving shorter wavelength (higher spherical harmonic degree) displacement and potential requires a higher FE resolution. This is 
a rather general comment on the difference between numerical and analytical solutions. In the following, we explore in detail the reason for
the generation of the error. 
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Figure 4. Comparison of the time evolution of loading Love numbers of degrees 2 and 5 for the compressible model 1a and the incompressible model 1b. Blue 
dots are for model 1a and lines for model 1b. The subplot A is for h , B is for l and C is for k . 
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Table 3b shows the difference between the modelled and analytical solutions of load potential φ2 , that is the driving potential of GIA. It
an be seen that the absolute value of the modelled φ2 ( φ2 is ne gativ e) is less than its anal ytical v alue; moreover, as the resolution is fixed for
ll degrees (Table 2a ) the difference between modelled and analytical φ2 increases with degree ( n ) because resolving shorter wavelength φ2

equires higher resolution. As a consequence, the modelled deformation potential φ3 ( φ3 is positive), that is the responding potential of GIA
hich scales with the modelled φ2 , is smaller than its analytical solution with the difference increasing with n as well (starting from n = 2;

ee Table 3a for k FEMIBSF results). It can be inferred that the absolute value of modelled φ1 ( φ1 is ne gativ e), that is the full potential of GIA
eing the sum of φ2 and φ3 but dominated by φ2 , is also smaller than its analytical value. Wong & Wu ( 2019 ) have shown that the surface
ressure by the load and the self-gravity −∇( ρ0 φ1 ) · e r are the two dominant initial driving forces of Ear th’s defor mation, with the latter
cting against the former. Since –φ1 is smaller its anal ytical v alue in magnitude, −∇( ρ0 φ1 ) · e r is smaller than its anal ytical v alue as well. It
ollows that there should be a larger deformation than the theoretical one in the elastic limit. This is confirmed in Table 3a by larger –h and
l than their anal ytical v alues (degree 15 l for incompressible model 1b shown in Table 3a is an exception due to the insufficient horizontal
esolution adopted, as will be demonstrated in Table 4a ) . 

Note that, to reduce the numerical errors in deformation potential φ3 as well as those in vertical and horizontal displacements, we can
se the analytical solution to φ2 in our calculations for harmonic loads . Ho wever , for realistic load distributions, analytical solutions to φ2

o not exist. Since our theory and code is designed for realistic load simulations, we do not apply the analytical solutions here, but adopt
he numerical integration method to calculate φ2 and test how accurate this integration is under the given resolution. From Table 3a we can
bserve that under the current resolution, the errors in degree 15 Love numbers l and k for model 1b are largest, being much larger than 3
er cent. To reduce these relative larger errors and to further test the accuracy of our computation scheme, we did two more experiments
ith a degree 15 load for model 1b but using higher spatial resolutions, namely experiment 2 and 3 with resolutions of 2 ◦ × 2 ◦ and 1 ◦ ×
 

◦, respecti vel y (we refer to experiment 1 as the one using the resolution from Table 2a , i.e. 2 ◦ × 4 ◦). Not surprisingly, as the resolution
ncreases, larger amount of mass density at Earth’s surface gets sampled and so the modelled driving potential Ф2 approaches its analytical
alue with the difference decreasing from 6.49 to 2.81 per cent (Table 4b ) (it follows that the modelled driving force of GIA gets close to
ts theoretical value as well). As a consequence, the errors in modelled deformation potential Ф3 , and the horizontal displacement decrease
ignificantly from being greater than 200 and 8 per cent (for Love numbers l and k , respecti vel y) to being less than 1.5 and 3.5 per cent
Table 4a ). Therefore, we demonstrate that increasing the resolution reduces the error in the modelled driving potential (as well as the driving
orce) of GIA, which leads to accuracy improvement in modelled displacement and deformation potential. 

.2.3 Unstable modes for compressible model 1a 

he compressible model 1a adopted here is the same as the one considered in Hanyk et al. ( 1999 ) and Vermeersen & Mitrovica ( 2000 ). It
as been shown that due to violation of the Williamson–Adams (WA) stability condition, model 1a is subject to the Ra yleigh–Ta ylor (RT)
nstability. To see if FEMIBSF can reproduce the instability, we examine in Fig. 4 the evolution of LLNs with time for models 1a and 1b. It
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Table 2b. Same as Table 2a but for model 2a. 

2a 
Degree (n) 1 2 5 15 

Radius (km) Lower mantle 3485.5 −5200.0 2 ◦ × 4 ◦, 81.5 km 2 ◦ × 4 ◦, 285.5 km 1 ◦ × 1 ◦, 285.5 km 

5200.0 −5701.0 2 ◦ × 4 ◦, 83.5 km 2 ◦ × 4 ◦, 125.3 km 1 ◦ × 1 ◦, 125.3 km 

Upper mantle 5701.0 −5971.0 2 ◦ × 4 ◦, 54.0 km 1 ◦ × 2 ◦, 67.5 km 1 ◦ × 1 ◦, 67.5 km 

5971.0 −6256.0 2 ◦ × 4 ◦, 57.0 km 1 ◦ × 2 ◦, 57.0 km 1 ◦ × 1 ◦, 57.0 km 

Lithosphere 6256.0 −6371.0 2 ◦ × 4 ◦, 28.8 km 1 ◦ × 2 ◦, 28.8 km 1 ◦ × 1 ◦, 28.8 km 

Number of elements 332 100 497 520 1 473 840 
Number of nodes 343 980 532 980 1 546 560 

Table 3a. Loading Love numbers h , l and k comparison between finite element (FEMIBSF) and analytical (an) results for the homogeneous earth models 1a 
and 1b for degrees ( n ) 1, 2, 5 and 15 as well as their difference (error) in per cent. For model 1b, the degree 1, 2 and 5 values at the isostatic limit are the 
values at 20 ka (thousand years) after loading because we found that Love number values remain constant after ∼7.5 ka (see Fig. 4 ). The degree 15 value is 
the value at 25 ka. LLNs were calculated with the resolutions shown in Table 2a . 

1a, elastic limit 
n h FEMIBSF h an Error (per cent) l FEMIBSF l an Error (per cent) k FEMIBSF k an Error (per cent) 

1 −1.1828E + 00 −1.1827E + 00 0.01 −8.5775E-01 −8.5660E-01 0.13 −9.9815E-01 −1.0000E + 00 0.19 
2 −5.8392E-01 −5.8167E-01 0.39 −1.2522E-02 −1.2200E-02 2.65 −2.1996E-01 −2.2009E-01 0.06 
5 −7.8259E-01 −7.7766E-01 0.63 1.7091E-02 1.7002E-02 0.52 −1.4698E-01 −1.4761E-01 0.43 
15 −9.3041E-01 −9.2332E-01 0.77 1.1810E-02 1.1454E-02 3.10 −6.4592E-02 −6.6333E-02 2.70 

1b, elastic limit 

n h FEMIBSF h an Error (per cent) l FEMIBSF l an Error (per cent) k FEMIBSF k an Error (per cent) 
1 −1.0002E + 00 −1.0001E + 00 0.01 −1.0000E + 00 −1.0001E + 00 0.01 −9.9516E-01 −1.0000E + 00 0.48 
2 −3.3644E-01 −3.3360E-01 0.85 −1.0092E-01 −1.0008E-01 0.84 −2.0020E-01 −2.0016E-01 0.02 
5 −5.1473E-01 −5.1345E-01 0.25 −2.8234E-02 −2.8006E-02 0.81 −1.3783E-01 −1.4003E-01 1.58 
15 −6.5404E-01 −6.7162E-01 2.62 −3.9772E-03 −4.3331E-03 8.21 −5.9687E-02 −6.4996E-02 8.17 

1b, isostatic limit 

n h FEMIBSF h an Error (per cent) l FEMIBSF l an Error (per cent) k FEMIBSF k an Error (per cent) 
1 −1.0007E + 00 −1.0001E + 00 0.06 −9.8201E-01 −1.0001E + 00 1.81 −9.9502E-01 −1.0000E + 00 0.50 
2 −1.6659E + 00 −1.6667E + 00 0.04 −4.9152E-01 −5.0000E-01 1.70 −9.9201E-01 −1.0000E + 00 0.80 
5 −3.6614E + 00 −3.6667E + 00 0.14 −1.9691E-01 −2.0000E-01 1.55 −9.8020E-01 −1.0000E + 00 1.98 
15 −1.0250E + 01 −1.0333E + 01 0.76 9.7500E-02 −6.6667E-02 246 −9.2260E-01 −1.0000E + 00 7.74 

Table 3b. Comparison of load-induced potential Ф2 (driving potential of GIA) for the homogeneous compressible and incom- 
pressible models 1a and 1b, respecti vel y, between finite element (FEMIBSF) and analytical (an) results. Ф2 is computed using 
the resolutions shown in Table 2a . 

1a 1b 
n Ф2 FEMIBSF (J/kg) Ф2 an (J/kg) Error (per cent) Ф2 FEMIBSF (J kg −1 ) Ф2 an (J kg −1 ) Error (per cent) 

1 1.0445E + 02 1.0469E + 02 0.23 1.0419E + 02 1.0469E + 02 0.48 
2 1.0429E + 02 1.0469E + 02 0.39 1.0385E + 02 1.0469E + 02 0.81 
5 1.0378E + 02 1.0469E + 02 0.87 1.0275E + 02 1.0469E + 02 1.86 
15 1.0175E + 02 1.0469E + 02 2.81 9.7894E + 01 1.0469E + 02 6.49 
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is evident that for the incompressible model 1b, the solutions to h , l and k are stable, all reaching the isostatic limit after ∼5 ka for degree 2
and ∼10 ka for degree 5. Ho wever , for compressible model 1a the solutions to h , l and k do not converge: unstable modes are apparent for h
and k after ∼10 ka for degree 2 and after a longer timescale for degree 5, while the instability for l appears as early as ∼3 ka. The instability
is associated with the strength and characteristic time scale of unstable modes. As pointed out b y Han yk et al. ( 1999 ) and Vermeersen &
Mitrovica ( 2000 ), the characteristic time scale of the highest-strength unstable mode RT1 for vertical displacement and perturbed potential
is ∼10 ka for degree 2 and increases with increasing spherical harmonic degrees; for the horizontal displacement, since the strengths of the
unstable modes are much larger than that of the stable modes, the unstable modes can appear much earlier in the time evolution of Love
number l . To sum up, it is shown here that FEMIBSF can directly reveal the unstable modes in the time domain, the existence of which is an
important characteristic of compressible earth models. 

5.3 The lay er ed model 

In this section, we verify our results for a six-layer compressible model 2a (see Table 1 for material properties and Tables 2b and 5a for the
resolution) which has been considered in Wong & Wu ( 2019 ). This model has a similar viscosity profile to VM5a, a 1-D viscosity model
frequently used in GIA modelling (Peltier et al. 2015 ). We apply single harmonic loads with a Heaviside history. 
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Table 4a. Degree 15 Love numbers comparison for model 1b between analytical solutions ( h an , l an and k an ) and numerical solutions based on FEMIBSF 
( h FEMIBSF , l FEMIBSF and k FEMIBSF ) from three e xperiments. Experiments 1, 2 and 3 hav e increasing unifor m g rids of 2 ◦ × 4 ◦, 2 ◦ × 2 ◦ and 1 ◦ × 2 ◦, 
respecti vel y. 

Elastic limit 
Experiment h FEMIBSF h an Error (per cent) l FEMIBSF l an Error (per cent) k FEMIBSF k an Error (per cent) 

1 6.5404E-01 6.7162E-01 2.62 −3.9772E-03 −4.3331E-03 8.21 −5.9687E-02 −6.4996E-02 8.17 
2 6.5620E-01 −6.7162E-01 2.30 −4.500E-03 −4.3331E-03 3.85 −5.9900E-02 −6.4996E-02 7.84 
3 6.6820E-01 −6.7162E-01 0.51 −4.400E-03 −4.3331E-03 1.54 −6.2700E-02 −6.4996E-02 3.53 

Isostatic limit 

Experiment h FEMIBSF h an Error (per cent) l FEMIBSF l an Error (per cent) k FEMIBSF k an Error (per cent) 
1 −1.0250E + 01 −1.0333E + 01 0.76 9.7500E-02 −6.6667E-02 246 −9.2260E-01 −1.0000E + 00 7.74 
2 −1.0282E + 01 −1.0333E + 01 0.49 −7.4900E-02 −6.6667E-02 12.35 −9.3440E-01 −1.0000E + 00 6.56 
3 −1.0329E + 01 −1.0333E + 01 0.04 −6.7600E-02 −6.6667E-02 1.40 −9.6790E-01 −1.0000E + 00 3.21 

Table 4b. Same as 4a but for the Load-induced potential Ф2 (driving potential 
of GIA). 

Experiment 
Ф2 FEMIBSF 

(J kg −1 ) 
Ф2 an 

(J kg −1 ) 
Error 

(per cent) 

1 −9.7894E + 2 −1.0469E + 02 6.49 
2 −9.9211E + 2 −1.0469E + 02 5.23 
3 −10.175E + 2 −1.0469E + 02 2.81 

Table 5a. The horizontal resolutions used for model 2a in fiv e e xperiments with FEMIBSF for a degree 15 spherical harmonic 
load. The vertical resolution is fixed for the five experiments and the same as that shown in Table 2b for degree 15. 

Experiment 1 2 3 4 5 

Radius (km) Lower mantle 3485.5 −5200.0 2 ◦ × 4 ◦ 1 ◦ × 2 ◦ 1 ◦ × 1 ◦ 2 ◦ × 4 ◦ 2 ◦ × 4 ◦
5200.0 −5701.0 2 ◦ × 4 ◦ 1 ◦ × 2 ◦ 1 ◦ × 1 ◦ 2 ◦ × 4 ◦ 2 ◦ × 4 ◦

Upper mantle 5701.0 −5971.0 2 ◦ × 4 ◦ 1 ◦ × 2 ◦ 1 ◦ × 1 ◦ 1 ◦ × 2 ◦ 1 ◦ × 2 ◦
5971.0 −6256.0 2 ◦ × 4 ◦ 1 ◦ × 2 ◦ 1 ◦ × 1 ◦ 1 ◦ × 2 ◦ 1 ◦ × 2 ◦

Lithosphere 6256.0 −6371.0 2 ◦ × 4 ◦ 1 ◦ × 2 ◦ 1 ◦ × 1 ◦ 1 ◦ × 2 ◦ 0.5 ◦ × 1 ◦
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.3.1 Love numbers comparison 

t has been shown that for model 2a, the unstable modes are pronounced only after more than a hundred thousand years of loading, that is
he timescale of one glacial–interglacial cycle (Wong & Wu 2019 ). To reduce computational efforts, our calculations are restricted to the first
0 ka. We compare our results with numerical solutions from VILMA-C in Fig. 5 (see the caption of Fig. 5 for resolutions used in the Love
umber computations). Inspection of Fig. 5 shows that our solutions (dotted line) match those from VILMA-C (solid line) rather well for h, l
nd k of degrees 1, 2 and 5, with the relative differences between FEMIBSF and VILMA-C being less than 0.8 per cent for h , less than 2.5
er cent for l and less than 0.8 per cent for k . For degree 15, results for h agree quite well between FEMIBSF and VILMA-C with the relative
ifferences being less than 1.3 per cent, while the differences for l and k are larger than 3.0 per cent. The particularly large relative difference
or l is due to its small absolute magnitude, being two orders of magnitude smaller than that of h and close to 0 at ∼2 ka (Figs 5 and 6 ). The
arge differences for l and k , as we will see below, are associated with resolution. 

To investigate the influence of resolution for the layered compressible model 2a on degree 15 Love numbers, we did three experiments
sing FEMIBSF with increasing uniform regular grid resolutions (see Table 5a for resolutions used in experiments 1, 2 and 3) and three
xperiments using VILMA-C with increasing uniform Gaussian–Legendre grid resolutions (see Table 5b for resolutions). Note that, to
inimize the impact of vertical resolution, VILMA-C uses much finer vertical resolution than FEMIBSF. The obtained Love number results

or these experiments are shown in Fig. 6 . It can be observed that for VILMA-C, increasing the horizontal (compare resolutions of experiments
 and 2) or vertical (compare resolutions of experiments 2 and 3) resolution changes the modelled degree 15 Love numbers h , l and k minorly
by less than 0.5 per cent) which implies that Love number solutions calculated with VILMA-C reach convergence. Thus, we treat solutions
y VILMA-C as the standard solutions, and deviations from these solutions as errors. On the other hand, as expected, increasing the resolution
educes the differences in modelled Love numbers (for l and k in particular) between FEMIBSF and VILMA-C, and when the resolution
eaches that of Experiment 3 for FEMIBSF, that is 1 ◦ × 1 ◦, the Love number curves of FEMIBSF and VILMA-C become rather close for
 and l (compare FEMIBSF and VILMA-C curves for experiments 1, 2 and 3 in Figs. 6 a, 6 b and 6 c). The reason is that with increasing
esolution, the driving potential φ2 calculated with FEMIBSF gets closer to its theoretical value (Fig. 6 d), which leads to the modelled driving
orce of GIA being closer to its theoretical value. In addition, we note that in the case of Experiment 3 with FEMIBSF, the difference in Love
umber k between FEMIBSF and VILMA-C is as large as 4.5 per cent, which means a higher resolution is still needed. But, we also observed
hat for FEMIBSF, if the modelled responding potential of GIA, that is φ3 , (which is theoretically in proportion to the modelled φ2 ) is divided
y the modelled driving potential φ2 (instead of the theoretical φ2 ), then the obtained Love number k values fit perfectly those of VILMA-C
see Figs 5 and 6 for the k Love number results labelled as ‘De gree 15, FEMIBSF, e x3, M’). The resulting differences are less than 1 per cent
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Figure 5. Loading Love numbers ( h , l and k ) comparison between VILMA-C and FEMIBSF for the compressible model 2a. FEMIBSF Love numbers are 
computed using the resolution shown in Table 2b while VILMA-C results are obtained with the resolution shown in Table 5b . The Love number k results 
labelled as ‘Degree 15, FEMIBSF, ex3, M’ is obtained by dividing the φ3 values by the modelled value of φ2 instead of its theoretical value (see Fig. 6 d for 
the difference between theoretical φ2 and modelled φ2 by FEMIBSF). Note that, it is the modelled value of φ2 that drives GIA in our modelling. ex1 and ex3 
refer to experiments 1 and 3, respecti vel y. See Table 5 for the resolutions used in each experiment. 

Figure 6. Resolution experiments for model 2a Love numbers and load potential Ф2 of degree 15. Three tests, ex1, ex2 and ex3 referring to experiments 1, 2 
and 3, respecti vel y, were performed for FEMIBSF and VILMA-C. The Love number k curve labelled ‘Degree 15, FEMIBSF, ex3, M’ is the same as that in 
Fig. 5 . See Table 5a and Table 5b for the resolution of each experiment used by FEMIBSF and VILMA-C, respectively. 
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Table 5b. The resolutions used for model 2a in three experiments with VILMA-C for spherical harmonic 
load of degree 15 (as well as degrees 1, 2 and 5). 

Experiment 1 2 3 

Radius (km) Lower mantle 3485.5 −5200.0 40 km 40 km 40 km 

5200.0 −5701.0 40 km 40 km 40 km 

Upper mantle 5701.0 −5971.0 10 km 10 km 10 km 

5971.0 −6256.0 5 km 5 km 5 km 

Lithosphere 6256.0 −6371.0 5 km 5 km 2 km 

Number of Gaussian–Legendre grids for each layer 98 × 256 386 × 1024 386 × 1024 

Figure 7. Comparison of degree 15 LLNs of model 2a for experiments with different conformal and non-conformal meshes. See Table 5 for the specification 
of each experiment. 

(
 

t  

p

5

I  

a  

d  

2  

e  

c  

a  

u  

b
 

C  

e  

g  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/3/2231/7271390 by D

elft U
niversity of Technology user on 30 O

ctober 2023
except the one at the elastic limit when the absolute k value is as small as −0.06). This is reasonable because it is the modelled value of φ2

hat drives GIA instead of its theoretical value. To sum up, increasing spatial resolution leads to improvement in modelled displacement and
otential by FEMIBSF for a layered compressible model in addition to homogeneous models. 

.3.2 Consequences of hanging nodes for modelled displacement and potential 

n section 5.2 , we showed that hanging nodes at the lower-upper mantle boundary of the homogeneous compressible earth model 1a have
 minor impact on Love numbers h , l and k up to degree 15 at the elastic limit but lead to relati vel y large errors in modelled horizontal
isplacement towards polar latitudes. Here, we further investigate the consequence of hanging nodes within the lay ered compressib le model
a for degree 15 Love numbers not only at the elastic limit but also in the viscous regime (up to 10 ka). Two more experiments, that is
xperiments 4 and 5, using non-conformal grids have been done with FEMIBSF to achieve this purpose: compared to experiment 1 (using a
onfor mal g rid of 2 ◦ × 4 ◦), experiment 4 has a higher resolution of 1 ◦ × 2 ◦ in the upper mantle and lithosphere, and so hanging nodes exist
t the lower-upper mantle boundary (depth 670 km, see Table 5a ), while experiment 5 has higher resolutions of 1 ◦ × 2 ◦ and 0.5 ◦ × 1 ◦ in the
pper mantle and lithosphere, respecti vel y, and so hanging nodes exist at both the lower-upper mantle boundary and the mantle-lithosphere
oundary (depth 115 km, see Table 5a ). 

Fig. 7 shows the Love number solutions by FEMIBSF from the aforementioned experiments and the converged solutions by VILMA-
 which act as the standard solutions. Compared to FEMIBSF experiment 1, higher resolutions in the upper mantle and lithosphere in
xperiments 4 and 5 lead to more accurate solutions to Love number k and � 2 (Figs 7 c and d) , not surprising because more mass density
ets sampled, but poorer solutions to Love numbers h and l , especially in the viscous regime (Figs 6 a and b). The latter can be traced
ack to the hanging nodes at the lower-upper mantle boundary in both experiments 4 and 5, as well as the mantle-lithosphere boundary in
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Figure 8. Comparison of Love number solutions by IBF and FEMIBF (the version of FEMIBSF without considering the potential stress at the CMB). 
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experiment 5. In particular, hanging nodes at the mantle–lithosphere boundary (experiment 5) lead to even poorer solutions to horizontal and
vertical displacement (Figs 7 a and b). In contrast, if a conformal mesh with a higher resolution than that of experiment 1 is adopted without
creating hanging nodes, for example the 1 ◦ × 2 ◦ resolution in experiment 2, the numerical solutions are not only improved for the driving
and responding potential but also for the vertical and horizontal displacements (Fig. 7 ). 

6  A P P L I C AT I O N S  

6.1 The effect of potential stress at CMB on displacement and gravitational potential at Earth’s surface 

The impact of a fluid core on static deformation and the gravitational potential of the mantle and lithosphere can be modelled by considering
the effects of the buoyancy force and potential stress at the CMB (Section 2.4 ). The essential point is whether this impact can be revealed at
the surface of the Earth, which might be detected/confirmed by modern space geodetic techniques such as GNSS and GRACE. Thus, in this
section we examine the role of the potential stress in shaping surface displacement and gravitational potential (geoid) through modelling. 

Fig. 8 compares the Love numbers between FEMIBF (the version of FEMIBSF without considering the potential stress) and IBF (Wong
& Wu 2019 ). It can be seen that the solutions obtained from IBF which also do not take into account potential stress are well matched by the
FEMIBF solutions with relative differences generally less than 1 per cent. This confirms the validity of the FEMIBF solutions. Fur ther more,
the differences between FEMIBSF and FEMIBF solutions (shown in Fig. 9 ) indicate that potential stress at the CMB has a considerable effect
on degree 2 Love numbers (with differences as large as 0.08, 0.03 and 0.05 for h , l and k , respecti vel y), a minor effect on degree 5 Love
numbers (differences up to 0.01 for h , l and k ) and virtually no impact on degree 15 Love numbers. This is reasonable as the wavelength
of degree 2 displacement and potential penetrates much deeper than those of degrees 5 and 15. Additionally, it is shown that at the elastic
limit (i.e. t = 0 ka), the impact of potential stress is negligible or extremely small (differences less than 0.01), and it increases to a maximum
between 2000 and 7000 yr, depending on the component considered. This highlights the low sensitivity of elastic deformation and potential,
but the high sensitivity of viscous deformation and potential at the Earth’s surface to the potential stress at the CMB. To summarize, the
impact of potential stress at the CMB is more pronounced for low-degree (such as degree 2) viscous deformation/potential at the Earth’s
surface and is thus more likely to be detected through GNSS or GRACE observations of such degrees. 

6.2 Solutions for a disc load example 

In this section, we present the first results of a realistic loading scenario using FEMIBF. We chose FEMIBF instead of FEMIBSF because
as we demonstrated in Section 6.1 , the impact of the potential force at the CMB is only significant for low degree loads. We use a disc ice
load of 1000 m thickness and a radius of 10 ◦, together with a Heaviside loading history. This is the same configuration that was used in the
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Figure 9. Love number differences between FEMIBSF and FEMIBF solutions which arise from the potential stress at the CMB. 

Figure 10. Comparison of the vertical displacement and its rates computed by FEMIBF with those by ICEAGE and VILMA-C. The horizontal shading lines 
in the panel (d) indicate the uncertainties of GNSS measurements. 
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ncompressible GIA code benchmark by Spada et al. ( 2011 , test T1/2). Our Earth model, M3-L70-V01, ho wever , has a compressible Poisson’s
atio of 0.28. FEMIBF computes the vertical, horizontal and geoid displacements, as well as their rates, at 0, 2, 4, 6 and 10 ka after Heaviside
oading. To reduce computational cost while maintaining solution accuracy, FEMIBF uses adaptive meshing with a 0.25 ◦ grid spacing in the
oading area and its near field, and 4 ◦ for the rest of the Earth (without vertical variations). 

The results show that all three types of displacement increase in magnitude with time (between 0 and 10 ka), but their rates decrease
panels A and C of Figs 10 –12 ). The dominant signal at all epochs is the vertical displacement rate, reaching as high as −5 mm a −1 at 10 ka in
he loading area. The characteristics of the spatial distribution of the displacement field and its rate do not change with time, with vertical and
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Figure 11. Same as Fig. 10 but for the horizontal displacement. 

Figure 12. Same as Fig. 10 but for the geoid displacement. 
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geoid displacement and their rates concentrated in the loading area and horizontal displacement and its rates (virtually) symmetrical about
the ice margin. 

Comparison with the results generated by ICEAGE and VILMA-C reveals a satisfactory agreement (panels B of Figs 10–12 ), with
better than 2 m for vertical displacement ( < 1 per cent), 4 m for horizontal displacement and 0.4 m for geoid displacement ( < 1 per cent).
The disagreement between FEMIBF and VILMA-C results is usually smaller than that between FEMIBF and ICEAGE results. The relati vel y
large disagreement in horizontal displacement between FEMIBF and ICEAGE occurs at the ice edge, which can be due to differences in grid
representations of the load and numerical precision. Most importantly, the agreement for geoid displacement rates is better than 0.2 mm a −1 ,
and for vertical and horizontal displacement rates is mostly better than the uncertainties of GNSS measurements, being 0.4 and 0.2 mm a −1 ,
respecti vel y (Kierulf et al. 2021 ) (panels D of Figs 10 and 12 ). This makes FEMIBF a suitable tool for realistic GIA loading studies of
displacement rates measured by GNSS. 

art/ggad354_f11.eps
art/ggad354_f12.eps


Commercial finite element approach to modelling GIA 2251 

7

T  

g  

r  

d  

a  

t  

h
 

f  

t
 

r  

s  

h  

G

A

T  

a  

a  

Z  

r  

f  

c  

r

A

P  

t  

s  

V  

P  

P

D

T

R

A

A

A

B

B

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/3/2231/7271390 by D

elft U
niversity of Technology user on 30 O

ctober 2023
 C O N C LU S I O N S  

he new FEMIBSF method introduced here uses commercial FE packages for modelling the GIA process on a 3-D compressible, self-
ravitating spherical Earth. An advantage of commercial FE packages is that they are publicly a vailable, w ell tested, highly efficient and the
esults are highly reliable. In addition, users can easily modify it for other dedicated geophysical or geodynamic studies of large-scale Earth
eformations. Our method leverages finite element techniques to calculate a range of GIA-related parameters, including dilitation, surface
nd body forces, radial displacement and gravitational potential. Unlike other methods that use spherical harmonics, FEMIBSF operates in
he spatial domain, reducing the risk of high-degree load contributions leaking in the solution. The GIA-induced degree-1 deformation is also
andled properly by FEMIBSF. 

We have validated FEMIBSF by comparing results to other independently developed models and software, including the Peltier-Wu
ormulism, IBF, ICEAGE and VILMA-C. Our findings indicate that the accuracy of the solution is dependent on the spatial resolution, and
hat a non-conformal mesh with hanging nodes should be avoided. 

Using FEMIBSF, we investigated the impact of the gravitational potential force from the fluid core on Earth’s deformation. Our
esults showed that this force has a significant impact on viscous long wavelength (such as degree 2) deformation and potential at Earth’s
urface. Finally, we demonstrated the applicability of FEMIBSF by using it in a realistic load case and finding that the resulting vertical and
orizontal displacement rates agreed with those from the two independent software ICEAGE and VILMA-C to within the uncertainty of
NSS measurements. 
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Geophysik der Universit ät G öttingen. 
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P P E N D I X  A :  C L A S S I C A L  F I N I T E  E L E M E N T  E Q U  A  T I O N S  A D O P T E D  B Y  F E M I B S F  

O  D O  I N T E R P O L AT I O N,  I N T E G R AT I O N  A N D  C O M P U T E  G E O M E T R I C  A R E A  A N D  

O LU M E  

he earth model considered here is spherical and made up of 3-D brick elements with 8 nodes (of the type C3D8 in ABAQUS). For the k th
hysical element L k ( Fig. A1 ), points 1–4 and 5–8 construct a lower and upper surface, respecti vel y, with the same radius ( r ) but different
olatitude ( θ ) and longitude ( ϕ). Some of these surfaces are where the driving forces of GIA such as the loading and supporting pressures on
arth’s surface and core–mantle boundary (CMB), respecti vel y, are applied. The spherical coordinates for points 1–8 can be transformed into
artesian coordinates ( x i , y i , z i ) ( i = 1, 8), w hich are then mapped to the coordinates of a first-order isoparametric element R k ( F ig. A1 ) with
oints 1–8 mapped to points 1´–8 ́ successi vel y. The purpose of such mapping is to move the complex calculations in the physical element L k

o the standard and easier calculations in the isoparamtric element R k , which will be shown in the following. 
igure A1: Configuration of the k th element. 
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Let ( g i , h i , s i ) be the coordinates of points 1´–8 ́ in R k with g i = ± 1, h i = ± 1 and s i = ± 1 ( i = 1, 8). It follows that (e.g. Zienkiewicz
et al. 2005 ) the point ( x, y, z ) within L k can be interpolated by 

x ( g, h, s ) = 

8 ∑ 

i= 1 
N i ( g, h, s ) x i , 

y ( g, h, s ) = 

8 ∑ 

i= 1 
N i ( g, h, s ) y i , 

z ( g, h, s ) = 

8 ∑ 

i= 1 
N i ( g, h, s ) z i , (A1) 

where the i th shape function is known as 

N i ( g, h, s ) = 

1 

8 
( 1 + g i g ) ( 1 + h i h 

) ( 1 + s i s ) . (A2) 

This interpolation method is identical to the so-called trilinear interpolation. The deri v ati ves of x , y and z with respect to g , h and s
simply read 

∂x 

∂g/h/s 
= 

8 ∑ 

i= 1 

∂ N i 

∂g/h/s 
x i , 

∂y 

∂g/h/s 
= 

8 ∑ 

i= 1 

∂ N i 

∂g/h/s 
y i , 

∂z 

∂g/h/s 
= 

8 ∑ 

i= 1 

∂ N i 

∂g/h/s 
z i . (A3) 

This set of equations can be used now to calculate the surface area and element volume which further facilitate the calculation of average
surface and body forces. Let the infinitesimal surface area on L k , for example on the 5–6–7–8 plane, be denoted by d S. This area can be
mapped to a surface area d S´ = d g d h on the 5´–6´–7´–8´ plane of R k through 

d S = ‖ J s‖ d g d h = 

√ (‖ J S,xy ‖ 2 + ‖ J s,yz ‖ 2 + ‖ J s,zx ‖ 2 
)

d g d h, (A4) 

where the Jacobian matrices are given by 

J S,xy = 

[ 

∂x 
∂g 

∂y 
∂g 

∂x 
∂h 

∂y 
∂h 

] 

, J S ,y z = 

[ 

∂y 
∂g 

∂z 
∂g 

∂y 
∂h 

∂z 
∂h 

] 

, J S,zx = 

[ 

∂z 
∂g 

∂x 
∂g 

∂z 
∂h 

∂x 
∂h 

] 

. (A5) 

Note that || J S,xy || , || J S,yz || and || J S,zx || are absolute values of the determinants of J S,xy , J S,yz and J S,zx , respecti vel y. Due to mapping,
calculating the surface area S k of element L k is done in the reference frame R k with 

S k = 

1 
∫ 

−1 

1 
∫ 

−1 
‖ J S ‖ d g d h , (A6) 

which is then e v aluated with the two-point Gauss–Legendre quadrature rule by 

S k ∼= 

4 ∑ 

j= 1 
‖ J S 

(
h j , g j , 1 

) ‖ = 

∑ 

‖ J S 
(

± 1 √ 

3 
, ± 1 √ 

3 
, 1 

)
‖ . (A7) 

Similarly, the infinitesimal volume dV in L k can be mapped through 

d V = ‖ J V ‖ d h d g d s, (A8) 

where the Jacobian matrix is 

J V = 

⎡ 

⎢ ⎣ 

∂x 
∂g 

∂y 
∂g 

∂z 
∂g 

∂x 
∂h 

∂y 
∂h 

∂z 
∂h 

∂x 
∂s 

∂y 
∂s 

∂z 
∂s 

⎤ 

⎥ ⎦ 

. (A9) 

The volume of L k is again calculated on R k by 

V k 
∼= 

8 ∑ 

j= 1 
‖ J V 

(
h j , g j , s j 

) ‖ = 

∑ 

‖ J V 
(

± 1 √ 

3 
, ± 1 √ 

3 
, ± 1 √ 

3 

)
‖ , (A10) 

using the same two-point Gauss–Legendre quadrature rule. 
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PPENDIX B: THE FE METHOD OF INTERPOLATING RADIAL DISPLACEMENTS 

he GIA-induced radial displacement across a density jump needs to be specifically treated. The proposed approach here uses ABAQUS to
olve the equation of equilibrium for GIA (Section 2.3 ) with the Cartesian displacements of all 8 nodes of each element as one of the outputs
Appendix A ). Taking advantage of this nodal output for element L k (Fig. A1 ), we interpolate the displacement within the element in the R k

rame (Fig. A1 ), similar to the interpolation of coordinates, by 

 x = 

8 ∑ 

i= 1 
N i ( g, h, s ) u xi , 

 y = 

8 ∑ 

i= 1 
N i ( g, h, s ) u yi , 

 z = 

8 ∑ 

i= 1 
N i ( g, h, s ) u zi , (B1) 

here u xi , u yi and u zi are nodal displacements in the x , y and z direction of element L k , respecti vel y, while u x , u y and u z are displacements
ithin the element R k with directions g , h and s . It follows that the deri v ati ve of u x , u y and u z with respect to g , h and s are 

∂u x 

∂g/h/s 
= 

8 ∑ 

i= 1 

∂ N i 

∂g/h/s 
u xi , 

∂u y 

∂g/h/s 
= 

8 ∑ 

i= 1 

∂ N i 

∂g/h/s 
u yi , 

∂u z 

∂g/h/s 
= 

8 ∑ 

i= 1 

∂ N i 

∂g/h/s 
u zi . (B2) 

Applying the transformation rule on vectors between the spherical and Cartesian coordinate system, one can obtain the radial displacement
s 

 r = 

x u x 

r 
+ 

y u y 

r 
+ 

z u z 

r 
. (B3) 

Differentiating u r in R k and making use of eq. ( A1) , one can get ⎡ 

⎢ ⎣ 

∂u r 
∂g 
∂u r 
∂h 
∂u r 
∂s 

⎤ 

⎥ ⎦ 

= J V 

⎡ 

⎢ ⎣ 

u x 
r − xu r 

r 2 
u y 
r − yu r 

r 2 
u z 
r − zu r 

r 2 

⎤ 

⎥ ⎦ 

+ 

⎡ 

⎢ ⎣ 

∂u x 
∂g 

∂u y 
∂g 

∂u z 
∂g 

∂u x 
∂h 

∂u y 
∂h 

∂u z 
∂h 

∂u x 
∂s 

∂u y 
∂s 

∂u z 
∂s 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x 
r 
y 
r 
z 
r 

⎤ 

⎥ ⎦ 

, (B4) 

here J V is the volumetric Jacobian matrix given in eq. ( A9 ). Alternatively, one can interpolate the radial displacement and its derivative
ithin the element by 

 r = 

8 ∑ 

i= 1 
N i ( g, h, s ) u ri (B5) 

nd 

∂u r 

∂g 
= 

8 ∑ 

i= 1 

∂ N i 

∂g 
u ri , 

∂u r 

∂h 

= 

8 ∑ 

i= 1 

∂ N i 

∂h 

u ri , 
∂u r 

∂s 
= 

8 ∑ 

i= 1 

∂ N i 

∂s 
u ri . (B6) 

PPENDIX C: POTENTIAL IMPLEMENTATION OF GIA ROTATIONAL FEEDBACK WITH FEMIBSF 

IA causes perturbations of Earth’s moments of inertia which further affect the angular velocities of Earth’s rotation. This directly leads to
hanges in the length of day and polar wander of the rotational pole (Wu & Peltier 1984 ; Martinec & Hagedoorn 2005 ; Mitrovica et al. 2005 ;
aulson et al. 2005 ; Geruo et al. 2013 ; Peltier et al. 2022 ). Moreover, it raises an additional centrifugal potential � (Wu & Peltier 1984 ;
itrovica et al. 2005 ; Martinec & Hagedoorn 2014 ) which has consequences on the equilibrium equation of GIA (eq. 2.3.1 ) and the sea level

quation (SLE). 
When implementing the rotational feedback with FEMIBSF, first the change in moment of inertia needs to be calculated ( cf . Hu et al.

017 ) from which the angular velocity, polar wander, length of day and centrifugal potential follow. Then, the centrifugal potential � needs
o be added to the perturbed gravitational potential φ1 in eq. ( 2.3.1 ). This will introduce a centrifugal force to each FE body of the solid Earth
nd so induce additional deformations and gravitational potential changes, which induces a change in moment of inertia and hence a new
ngular velocity. Therefore, an iteration for each time step as done in the FEMIBSF is required to calculate these rotational feedbacks. In
ddition, 3-D viscosity can have a strong effect on the moment of inertia of the surface loading and its deformation. This impact has to be
onsidered in calculating rotational feedbacks for a laterally heterogeneous Earth. 
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The SLE with rotational feedback can be included with FEMIBSF method as well. For realistic time and space dependent surface ice
and ocean loads, the regular SLE (without rotational feedback) at the Earth’s surface and ( θ, φ, t ) is given by (e.g. Wu 2004 ): 

S ( θ, φ, t ) = 

[
φ1 ( θ, φ, t ) 

g 
− U 

( θ, φ, t ) + c ( t ) 

]
O n ( θ, φ, t ) , (C1) 

where c( t) = − M I ( t) 
ρw A o ( t) 

− 1 
A o ( t) 

〈 φ1 
g − U 〉 

ocean 
, and U ( θ, φ, t ) , φ1 ( θ, φ, t ) , O n ( θ, φ, t ) , A o ( t ) , M I ( t ) , ρw , g are the radial displacement and

the per turbed g ravitational potential, the time-dependent Ocean Function, the area of the ocean basins, the mass loss history of the ice, the
density of water, gravitational constant at the Earth’s surface, respecti vel y, and < > ocean represents integration over the ocean basins. The
changing water load S( θ, φ, t ) ∗ ρw can be updated iteratively as surface load σ in oceans (see Section 2.3.3 ) in FEMIBSF. The inclusion of
rotational feedback in the SLE is important for sea level studies but the computation can be a little burdensome for a 3-D Earth (see Paulson
et al. 2005 ; Geruo et al. 2013 ). Ho wever , the degree-2 component of lateral heterogeneity from seismic tomographic models or nonlinear
rheology is weak, so mode coupling can be neglected. That means rotational feedback can be computed in the same way as for a laterally
homogeneous Earth (e.g. Li et al. 2018 ). The equation for the computation of the SLE with rotational feedback is: 

S ( θ, φ, t ) = 

[
φ1 ( θ, φ, t ) 

g 
− U 

( θ, φ, t ) + G 

T ⊗ � + c ( t ) 

]
O n , (C2) 

where c( t) = − M I ( t) 
ρw A o ( t) 

− 1 
A o ( t) 

〈 φ1 
g − U + G 

T ⊗ � 〉 
ocean 

. Comparing with the above eq. ( C1 ) for regular SLE, the extra term G 

T ⊗ � is the
tidal or rotation-induced sea level change and can be obtained by convoluting � ( θ, φ, t ) , the perturbed rotational/centrifugal potential, with
G 

T , the Green’s function for tidal induced sea level change (e.g. Peltier et al. 2022 ). The SLE with rotational feedback can be solved using the
same iterative procedure for the regular SLE, except the extra rotational feedback term is included. The details of adding rotational feedback
in FEMIBSF can be found in sections 4.2 and 6.6 of Peltier et al. ( 2022 ). 
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