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Summary

All living systems possess the ability to evolve. This ability has allowed life to adopt a large diver-

sity of shapes, colors, sizes and lifestyles. However, despite being a fundamental property of life,

our knowledge of what makes living systems evolvable is limited. The fact that evolution can be

sometimes be hopelessly unpredictable while in other cases it follows only a small number of

predictable paths has puzzled evolutionary biologists for decades. An important step towards

resolving this problem has been the discovery that non-additive effects between mutations, a

phenomenon coined epistasis, can act as a source of evolutionary constraint. Importantly, the

limited number of accessible adaptive pathways in conditions where constraints are pervasive

provides opportunities for prediction. In this thesis, we explore how these constraints can arise

from the biochemical interactions within the cell. Aside from answering fundamental questions

in biology, the ability to predict evolution will open up unprecedented possibilities, ranging from

the engineering of living systems to the development of novel treatments for disease.

We use polarity establishment in the budding yeast Saccharomyces cerevisiae as a model sys-

tem to study evolutionary dynamics. Budding yeast proliferates exclusively through asymmetric

cell divisions and establishing an axis of polarity is therefore a crucial part of the cell cycle. Per-

turbing the machinery responsible for polarity establishment by deleting an important polarity

gene (BEM1) strongly diminishes the chances of survival. Interestingly, it has been shown these

defects canbe largely compensatedduring evolution by inactivating other genes (BEM3 andNRP1)
in a conserved order. Furthermore, this evolutionary trajectory occurs repeatably in during ex-

periments, which suggests that it could have been predicted. Here, we present our progress

towards understanding how the accessibility of this pathway is shaped by the molecular interac-

tions in the cell.

In chapter 2, we review examples of studies that experimentally show how epistatic inter-

actions can arise from underlying molecular interactions, with a focus on regulatory networks.

We discuss these examples at three levels of biological organization: (1) within regulatory inter-

actions, (2) within regulatory networks and (3) between regulatory networks. Comparing these

different studies reveals that the necessary information to make predictions varies depending

on the scale of the system.

In addition to genetic architecture, the selective environment plays a crucial role during adap-

tation. Importantly, cells must adequately respond to unpredictable environmental shifts to in-

crease their chances of survival. Responsiveness to environmental change requires integrating

signaling pathways with other cellular functions. This can lead to pleiotropy, a phenomenon

where a single gene influencesmultiple traits. In Chapter 3, we study how the adaptive response

to a pleiotropic mutation is affected by environmental complexity. We find that regardless of

whether the environment is static or dynamic, the responsiveness of cell polarity to environ-

mental signals can recover during adaptation. This is surprising, since cells adapted in a static

environment do not experience direct selective pressures to improve this trait. We propose that

pleiotropic interactions may be an important structural component of cellular networks that al-

ters the phenotypic response to selection pressures, leading to unexpected results.

vii



Summary

The relation between genotype and fitness is often presented in the form of fitness land-

scapes. Their ability to capture the number of accessible evolutionary pathways leading to higher

fitness makes them of central interest for predictive models of evolution. Unfortunately, experi-

mentally constructing large and unbiased fitness landscapes remains challenging. In chapter 4,

we introduce a method to quantify the fitness of gene disruption mutants using SATAY, a trans-

poson mutagenesis screen that was recently developed for S. cerevisiae. We show that the aver-

aging over the sequencing read counts of different transposon insertion sites provides a proxy

for fitness that is robust across replicate SATAY experiments. However, our fitness estimates dif-

fer substantially from those obtained using other experimental procedures. We discuss several

possible explanations for these inconsistencies.

In chapter 5, we go one step beyond prediction and explore the possibilities to exercise con-

trol over the accessibility of evolutionary pathways. To do so, we make use of the high level of

reproducibility of the adaptive pathway that is taken after the deletion of the polarity protein

Bem1. We investigate the possibilities to control the accessibility of this trajectory through the

rational design of epistatic interactions. Our results indicate that the gene encoding for an actin-

binding protein (ABP1) has the desired epistatic interaction pattern. We hypothesize how the

ability of ABP1 to act as a control knob for pathway accessibility might have been predicted from

its functional relation to cell polarity.

During evolution, the deleterious effects ofmutations at one locus can often be compensated

by additional mutations elsewhere in the genome. It has previously been shown that defects in

cell polarity caused by the loss of Bem1 can be compensated through the additional deletion

of Bem3 and Nrp1. The fact that functionality can be restored through additional gene dele-

tions suggests that the protein interaction network is rewired such that an alternative pathway

for polarity establishment is formed. In chapter 6, we investigate how compensatory evolution

of the polarity module affects the molecular interactions in the cell. Our results show that the

three gene deletions have genome-wide consequences for the tolerance of genes to transposon

disruptions. These changes extend beyond the originally perturbed pathway and impact multi-

ple, seemingly unrelated, cellular processes. We discuss the cellular components that are likely

involved in the alternative pathway for polarity establishment.

Taken together, our work demonstrates the complexity of evolution: the effects of mutations

resonate throughout the interaction network, affecting multiple cellular functions at once. Mov-

ing towards evolutionary predictions will therefore likely involve taking a genome-wide approach

to understand how molecular interactions in the cell promote or inhibit adaptation. The results

presented here encourage further investigation into the mechanisms by which gene loss can

lead to functional changes of other genes.
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Samenvatting

Alle levende systemen beschikken over het vermogen om te evolueren. Deze eigenschap heeft

het leven in staat gesteld om een grote diversiteit aan vormen, kleuren, groottes en levensstijlen

aan te nemen. Hoewel evolutie een fundamentele eigenschap van het leven is, is onze kennis van

wat levende systemen evolueerbaar maakt beperkt. Het feit dat evolutie soms hopeloos onvoor-

spelbaar kan zijn, terwijl het in andere gevallen slechts een klein aantal voorspelbare paden volgt,

heeft evolutionaire biologen de afgelopen decenia voor een raadsel gesteld. Een belangrijke stap

naar het oplossen van deze puzzel is de ontdekking dat niet-additieve interacties tussen muta-

ties, een fenomeen dat epistase wordt genoemd, de mogelijkheden voor evolutie kan beperken.

Vooral condities waarin er door deze beperkingen maar een klein aantal toegankelijke evolu-

tionaire paden zijn bieden mogelijkheden voor het doen van voorspellingen. In dit proefschrift

onderzoeken we hoe deze beperkingen kunnen ontstaan uit de biochemische interacties binnen

de cel. Naast het beantwoorden van fundamentele vragen in de biologie zal het vermogen om

evolutie te voorspellen ongekende mogelijkheden openen, variërend van de ontwikkeling van

levende systemen tot de creatie van nieuwe behandelingen voor ziekten.

We gebruiken cel polarisatie in de gist Saccharomyces cerevisiae als een modelsysteem om

evolutionaire dynamiek te onderzoeken. Gistcellen vermenigvuldigen zich uitsluitend door mid-

del van asymmetrische celdelingen en daardoor is het vormen van een polariteitsas een cruciaal

onderdeel van de celcyclus. Het verstoren van hetmechanisme voor polarisatie door een belang-

rijk gen (BEM1) te verwijderen vermindert sterk de overlevingskansen. Wat interessant is, is dat

deze verstoring tijdens de evolutie grotendeels gecompenseerd kan worden door andere genen

(BEM3 en NRP1) in een vaste volgorde te inactiveren. Daarnaast is dit evolutionary traject zeer

reproduceerbaar tijdens experimenten, wat suggereert dat het voorspeld had kunnen worden.

Hier presenteren we onze voortgang in het begrijpen van hoe de toegankelijkheid van dit pad

wordt beïnvloed door de moleculaire interacties in de cel.

In hoofdstuk 2 bespreken we voorbeelden van studies die experimenteel aantonen hoe

epistatische interacties kunnen ontstaan vanuit moleculaire interacties, met een focus op re-

gulerende netwerken. We bespreken drie verschillende niveaus van biologische organisatie: (1)

binnen regulerende interacties, (2) binnen regulerende netwerken en (3) tussen regulerende net-

werken. Uit het vergelijken van deze verschillende studies blijkt dat de benodigde informatie om

evolutionaire voorspellingen te doen afhangt van het niveau waarop gekeken wordt.

Naast de genetische opmaak speelt ook de omgeving een belangrijke rol tijdens de evolutie.

Cellen moeten namelijk adequaat reageren op onvoorspelbare veranderingen in hun omgeving

om hun overlevingskansen te vergroten. Reactivermogen op een veranderende omgeving ver-

eist dat signaalroutes met andere celprocessen worden geïntegreerd. Dit kan leiden tot pleio-

tropie, een fenomeen waarbij een enkel gen invloed heeft op meerdere eigenschappen van de

cel. In Hoofdstuk 3 onderzoeken we hoe de adaptieve respons op een pleiotropische mutatie

wordt beïnvloed door de complexiteit van de omgeving. We constateren dat, ongeacht of de

omgeving statisch of dynamisch is, de responsiviteit van de celmorfologie op omgevingssigna-

len tijdens adaptatie kan herstellen. Dit is verrassend, aangezien cellen die zijn aangepast aan
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Samenvatting

een statische omgeving geen directe selectiedruk ervaren om deze eigenschap te verbeteren.

We stellen voor dat pleiotropische interacties een belangrijk structureel onderdeel van cellulaire

netwerken kunnen zijn dat de fenotypische respons op selectiedruk kan veranderen, wat leidt

tot onverwachte resultaten.

De relatie tussen genotype en fitheid wordt vaak gepresenteerd in de vorm van fitnessland-

schappen. Hun vermogen om het aantal toegankelijke evolutionaire paden naar een hogere

fitness vast te leggen, maakt ze van centraal belang voor voorspellende modellen van evolutie.

Helaas blijft het experimenteel construeren van grote en onvertekende fitnesslandschappen een

uitdaging. In hoofdstuk 4 introduceren we een methode om de fitheid van mutanten met een

verstoord gen te kwantificeren met behulp van SATAY, een transposon-mutagenese screening

die recentelijk is ontwikkeld voor S. cerevisiae. We laten zien dat het gemiddelde aantal verkre-

gen DNA-sequenties per transposon insertie een fitheidswaarde geeft die consistent is tussen

herhaalde SATAY experimenten. We bespreken een aantal mogelijke verklaringen voor deze ver-

schillen.

In hoofdstuk 5 gaan we een stap verder dan voorspelling en onderzoeken we de mogelijk-

heden om controle uit te oefenen over de toegankelijkheid van evolutionaire paden. Om dit te

doen, maken we gebruik van de hoge mate van reproduceerbaarheid van het adaptieve pad dat

wordt gevolgd na het verwijderen van het polariteitseiwit Bem1. We bekijken de mogelijkheden

om de toegankelijkheid van dit traject te controleren door het rationeel ontwerpen van epista-

tische interacties. Onze resultaten geven aan dat het gen dat codeert voor een actine-bindend

eiwit (ABP1) het gewenste epistatische interactiepatroon vertoont. We stellen een hypothese op

over hoe de mogelijkheid van ABP1 om als controleknop te fungeren voor de toegankelijkheid

van het evolutionaire pad voorspeld had kunnen worden op basis van zijn functionele relatie

met de celpolariteit.

Tijdens de evolutie kunnen de schadelijke effecten van mutaties op één locatie vaak gecom-

penseerd worden door aanvullende mutaties elders in het genoom. Eerder is aangetoond dat

defecten in celpolarisatie die zijn veroorzaakt door het verlies van Bem1 gecompenseerd kunnen

worden door Bem3 en Nrp1 uit te schakelen. Het feit dat deze functie hersteld kan worden door

extra genen uit te schakelen suggereert dat de eiwitinteracties in de cel zich herstructureren zo-

dat er een alternatief mechanisme voor celpolarisatie ontstaat. In hoofdstuk 6 bekijken we hoe

compensatie van defecten in celpolarisatie de moleculaire interacties in de cel beïnvloedt. Onze

resultaten laten zien dat het uitschakelen van de drie genen consequenties heeft voor de toleran-

tie voor transposon-interrupties van een groot aantal genen in het genoom. Deze consequenties

beperken zich niet alleen tot genen van de initieel verstoorde functie, maar raken ook genen uit

andere, ogenschijnlijk niet-gerelateerde, cellulaire processen.

Tot slot toont onswerk de complexiteit van evolutie: de effecten vanmutaties resoneren door

het hele interactienetwerk, waarbij tegelijkertijd meerdere cellulaire functies worden beïnvloed.

Het streven naar het doen van evolutionaire voorspellingen zal waarschijnlijk een genoomwijde

benadering vereisen om te begrijpen hoe moleculaire interacties in de cel de aanpassing bevor-

deren of belemmeren. De hier gepresenteerde resultaten zijn een aanmoediging voor verder

onderzoek aan naar de mechanismen waardoor genverlies kan leiden tot functionele verande-

ringen van andere genen.
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1
Chapter 1

I think nature’s imagination is so much greater than man’s,
she’s never going to let us relax

— Richard P. Feynman
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1. Introduction

Life is perplexingly diverse. Looking only at the phylogenetic tree of fungi, we can already see

a large variety of shapes, colors, sizes and lifestyles (Figure 1.1). Amazingly, this diversity has

originated from a single ancestor through a process of random mutation and selection. This

evolutionary process has allowed living systems to change their characteristics in such a way

that they better fit their environment. But how do you change something as complex as a living

cell, without breaking it? Somehow, living systems are able to walk the fine line between being

hopelessly unstable at short timescales and too robust to evolve on long timescales. The ability to

evolve is undoubtedly rooted in the set of physical interactions that define a living cell. However,

we are still profoundly unaware as to how the design of these interaction networks allows them

to reconcile robustness with evolvability. In this thesis, we link the evolutionary dynamics of

a cellular function to the molecular mechanism that generates this function. Here, we give an

introduction of the known mechanisms that affect evolution and how they relate to intracellular

organization.

a) b)

Figure 1.1. Diversity in the fungal tree of life.(a) Phylogenetic tree of the fungal kingdom. (b) Represen-

tative species from several major fungal lineages. (A) Crown coral. (B) Witch’s butter. (C) Flowerpot parasol.

(D) Pearl oyster mushroom. (E) Snow fungus. (F) Turkey tail. (G) Baker’s yeast. (H) Fission yeast. (I) Mucor
mucedo. (J) Corn smut. (K) Aspergillus oerlinghausenensis. (L) Fly agaric Amanita muscaria. (M) Entomophthora
muscae. (N) Rozella allomycis parasitizing the chytrid Allomyces. (O) Monoblepharis macrandra. (P) Coemansia
braziliensis. (Q) Piptocephalis repens. (R) Mortierella elongata. (S) Rhizopus spp.. (T) Penicillium digitatum. Im-

ages reprinted from Li et al. (2021) with permission conveyed through Copyright Clearance Cente

1.1. Evolution by natural selection

To understand the factors that facilitate and constrain evolution, we must know the mechanism

that drives evolutionary change. Arguably the most important mechanism through which popu-

lations can evolve to better fit their environment (adaptation) is natural selection (Darwin 1809-

1882, 1859). The theory of natural selectionwas developed in the 19th century during the famous

expedition of Charles Darwin. While controversial at first, the theory eventually became so well

accepted that natural selection and evolution started to be used interchangeably (Fisher, 1930).

However, it is important to realize that not all changes in a trait during evolution are the result

2



1

1.2. Genetic constraints

of natural selection. Several other mechanisms of evolution have since then been identified,

and importantly, these do not always result in adaptation. For a trait to evolve through natural

selection, the following four conditions must be met (Godfrey-Smith, 2007):

1. There must be variation. Within a population, different versions of a trait must exist for

the trait to evolve through natural selection. These variations typically arise from random

genetic mutations.

2. Variations in a trait must lead to differences in the fitness of individuals. Consequently,

certain individuals within the population are more successful in reproduction than others.

3. The trait must be heritable. There needs to be a correlation between the variant of the trait
in a parent and that in the offspring it produces.

4. There must be competition. Individuals within the population must compete for limited

resources.

The combination of these four conditions will cause the individuals with the highest repro-

ductive success (fitness) to eventually take over the population. Thus, through natural selection

a population will evolve to better fit its environment. This process requires no rational inter-

vention or tinkering: genetic variants that have higher fitness are simply generated by random

genetic mutations and pass on their characteristics to the next generation in the form of genes.

However, despite the random origin of mutations, what variants are possible and how they can

increase fitness is subject to constraints. The factors that act as a source for these evolutionary

constraints are discussed in the next sections.

1.2. Genetic constraints

Evolving organisms are bound by constraints. If we would examine the evolutionary history of an

organism, we would see that only a subset of the countless forms wemight envision are realized.

Thus, while often inventive, the possibilities for evolution are not limitless. Constraints play a

pivotal role in our ability to predict evolution: the less options there are, the more certain we can

be about the course that evolution will follow.

Some constraints exist simply because living systemsmust obey the laws of physics (Kempes

et al., 2019). For instance, arthropods cannot exceed a certain maximum body size because

they would not be able to support the excessive weight of their exoskeleton. A second form of

constraint stems from the way in which the genotype of an organism is linked to its fitness. It

is this type of evolutionary constraint, called genetic constraint, that is the primary focus of this

thesis. In this section, we will discuss two forms of genetic constraint: pleiotropy and epistasis.

Pleiotropy

Organisms are often complex systems that need to adapt to their environment in multiple differ-

ent ways. For example, the flowering success of a tree will depend on both its ability to withstand

the weather conditions and its ability to utilize the soil as a source of nutrients. Pleiotropy occurs

when a single mutation affects multiple aspects of an organism’s phenotype. This is a conse-

quence of a non-modular mapping from the genotype of an organism to its phenotype. For

example, a mutation will have pleiotropic effects when it inactivates a protein that acts in path-

ways related to two distinct traits. If this causes the traits to negatively correlate, this generates

3
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1. Introduction

adaptive trade-offs as both traits cannot be simultaneously optimized (Guillaume & Otto, 2012;

Kessi-Pérez et al., 2016; MacLean et al., 2004). Importantly, it has been mathematically shown

that populations adapt more slowly and through mutations of smaller effect size as the extent

of pleiotropy increases (Fisher, 1930; Orr, 2000). Because we tend to perceive non-modularity

as complex, this effect of pleiotropy has been labelled as the cost of complexity (Orr, 2000; Welch

& Waxman, 2003). Intuitively, the cost of complexity can be understood using the analogy of a

microscope that needs to be focused on a plane (Welch & Waxman, 2003). If this microscope

is complex (it has many knobs and settings) and its components are interconnected (each knob

affects several settings), then large adjustments are likely to adversely affect at least one of the

settings. Instead, only small changes have a reasonable chance of enhancing focus. The degree

of pleiotropy in real organisms and the extent to which the cost of complexity affects their evolu-

tion is, however, still a matter of active debate (Hill & Zhang, 2012; McGuigan et al., 2014; Wagner

& Zhang, 2011).

Epistasis

The same mutation can have different phenotypic effects depending on the genetic context in

which it occurs. An intriguing example of this effect can be found in the inherited blood disorder

thalassemia. Inheritance of either the allelic version of the gene encoding for α- or β- thalessemia

leads to blood disorders (Nagel, 2005). However, co-inheritance of both alleles ameliorates the

severity of these disorders (Penman et al., 2009). Such a dependency of the phenotypic effect

of a mutation on the allelic status of other loci is referred to as epistasis (Bateson et al., 1909;

Phillips, 1998). Whether epistasis suppresses or aggravates the effect of a mutation depends on

themolecular cause of the gene-gene interaction (Lehner, 2011). For example, if two proteins are

both necessary to form a molecular complex then the effect of their simultaneous deletion will

not be much different from deleting only one of them: in both cases, the complex is destroyed.

Alternatively, if two proteins separately catalyze the same reaction, the deletion of one of them

will have only mild effects on fitness, but their simultaneous deletion can be lethal.

From theperspective of evolutionary constraints, sign epistasis is a particularly important form

of epistasis (Kvitek & Sherlock, 2011; Weinreich et al., 2005). Rather than changing the effect

size, sign epistasis alters the sign of the fitness effect that a mutation has (Kogenaru et al., 2009;

Phillips, 2008). Identifying the molecular causes of sign epistasis has proven to be challenging

(Nghe et al., 2018), but a common metaphor used to describe how it can emerge is that of a

matching key and lock (Taute et al., 2014). Changing either the key or the lock individually is

deleterious, as this leads to a loss of recognition. However, simultaneouslymutating both the key

and lock allows the system to explore novel functionalities that increase fitness without having

loss of recognition as an intermediate step. Thus, under the condition that every mutation must

improve fitness to contribute to adaptation, only trajectories in which both the lock and key

mutate together are accessible. Similar to this example, sign epistasis generally constrains the

order in which mutations can occur during adaptive evolution (Anderson et al., 2015; Kvitek &

Sherlock, 2011; Weinreich, 2006). Specifically, pervasive sign epistasis can render the majority of

evolutionary trajectories to higher fitness inaccessible (Kvitek & Sherlock, 2011; Weinreich et al.,

2005), thereby increasing the predictability of the course that evolution will take.
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1.3. Frommolecules to networks

Cells are composedof a variety ofmolecules ranging fromproteins andDNA to lipids andmetabo-

lites. Thesemolecules do not work in isolation, but act together in a dynamic network to perform

different cellular functions (Barabási & Oltvai, 2004; Han, 2008). Importantly, what these net-

works look like has implications for evolution. First of all, the molecular interactions in cellular

networks are the cause of epistasis and pleiotropy, which were discussed in the previous section.

Second, the global topology of the network is one of the factors that controls the robustness of

the cell to perturbations. Here, we discuss the current understanding of the link between the

global network topology and robustness.

Advances in molecular biology havemade it possible to map the interactions between biolog-

ical molecules on a system wide level (Bader et al., 2008; Ghadie et al., 2018; Legrain et al., 2001).

Studies that have created suchmaps for protein-protein interactions (PPI) have found that these

networks typically contain a few proteins with many interactions, and many proteins with few

interactions (Barabási & Oltvai, 2004; Spirin & Mirny, 2003). In fact, the number of proteins 𝑃
with 𝑘 interactions in a PPI network was found to approximately follow a power law:

𝑃 (𝑘) ∼ 𝑘−𝛾 . (1.1)

Here, 𝛾 is the network’s degree exponent that determines the amount of variation in the

number of interaction partners (also know as the degree) of the proteins in the network: as 𝛾
becomes smaller, the variation increases asymptotically towards a uniform distribution. For bi-

ological networks, 𝛾 is typically found to be in the range of 2 < 𝛾 < 3 (Albert, 2005; Barabási &
Albert, 1999). Because there is no typical degree that can be used to describe all nodes in the

network, networks that follow a power law are described as scale free. Why biological networks

tend to have a scale free structure is currently unclear: some have proposed that it is the result

of the mechanism through which networks expand during evolution (Barabási & Albert, 1999),

while others have argued that it is due to differences in the intrinsic ability of proteins to gain

new interactions (Caldarelli et al., 2002).

An important structural feature of scale free networks is that it contains several sub-networks

consisting of nodes that are more densely connected to each other than to other nodes (Han et

al., 2004; Spirin & Mirny, 2003). These densely connected sub-networks are, in turn, connected

to each other through high-degree proteins (hubs). Interestingly, studies have shown that hub

proteins are more likely to be essential for survival than low degree proteins (Batada et al., 2006;

Hahn & Kern, 2005; Jeong et al., 2001; Peng et al., 2015). This correlation between essentiality

and degree might appear to be an obvious consequence of the central role hub proteins play in

the overall connectivity of the network, but several other explanations have been proposed (see,

for example, He and Zhang (2006)).

The scale-free structure of networks, where a few highly connected proteins take a central

position, has been reported to increase the robustness of the network to random perturbations

(Albert et al., 2000; Kitano, 2002; Whitacre, 2012). If a protein is removed from the network at

random, the chance that this protein is an essential hub protein is low. Thus, most random

mutations will not greatly impact the topology of the network, suggesting that they will have a

limited effect on phenotype. This demonstrates that the structure of biological networks can

already impact evolutionary dynamics.
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1.4. Transposon mutagenesis screens

Central to predicting evolution is understanding how genotype relates to fitness (de Visser et

al., 2018). A relatively new technique to explore the fitness contribution of genes on a genome-

wide scale is transposon insertion site sequencing (TIS) (Cain et al., 2020; Goodman et al., 2011;

Langridge et al., 2009; van Opijnen & Camilli, 2013). TIS makes use of transposons (also called

jumping genes), which are pieces of DNA that can migrate between different locations in the

genome (McClintock, 1950). Transposons occur naturally in the genomes of many organisms,

where they play an important role in generating genetic diversity (Bourque et al., 2018; Kidwell

& Lisch, 1997; Makałowski et al., 2019; O’Donnell & Burns, 2010). TIS methods have harnessed

these mutagenic properties of transposons to generate complete libraries of gene deletion mu-

tants in a single step (Schrevens&Sanglard, 2021). The exact details of the techniquediffer across

versions of TIS, but here we give an overview of the three steps that are common to (nearly) all

TIS screens: library generation, library expansion and high-throughput sequencing.

Library generation

The collection of all mutants that are used in a TIS screen is called themutant library (Jacobs et al.,
2003; Michel et al., 2017; van Opijnen et al., 2009). Mutant libraries are created by introducing

an exogenous transposon system into a strain of interest (Cain et al., 2020). Here, the fact that

this system is exogenous is important to prevent the interference of possible endogenous trans-

posons (Kawakami et al., 2017; Schrevens & Sanglard, 2021). The transposon system consists

of two components: a protein (called the transposase) and the genetic sequence that embod-

ies the transposon (Lorenzo et al., 1998; Schrevens & Sanglard, 2021). Mutations are generated

by inducing the transposase-mediated translocation of the transposon from its donor sequence

(typically a plasmid) to a random location in the host genome. By doing this in a controlled man-

ner, a collection of mutants is created that each carry a single transposon in their genome at a

unique location. The insertion of the transposon into the genome disrupts the endogenous se-

quence and is typically assumed to cause a loss-of-function mutation when it occurs in a coding

region (Michel et al., 2017; van Opijnen et al., 2009). The number of independent mutants that

are generated through this process is called the complexity of the library (Chao et al., 2016; Mah-

mutovic et al., 2020). Thus, a more complex library means that it consists of a more genetically

diverse population of mutants. The degree to which the mutant library reflects all possible mu-

tations that could have been realized by transposon mutagenesis is referred to as the saturation
of the library. However, how the term saturation is used in practice tends to depend on the aim

with which the TIS screen is performed. For example, while some use it to refer to the fraction

of all possible transposon insertion sites that are occupied (Chao et al., 2016), others use it to

describe the fraction of possible gene disruption mutants that are represented in the TIS screen

(Michel et al., 2017).

Library expansion

The fitness of themutants that are present in the library is assessed through a competitive fitness

assay. This fitness assay is referred to as the library expansion. It is important to note that the

library expansion step does not generate new mutants, but rather allows the existing mutant

population to “expand” through reproduction (Chao et al., 2016; Michel et al., 2017; van Opijnen

et al., 2009). The principle behind the library expansion step is that fitter mutants will increase

in abundance relative to less fit mutants. Thus, after the library expansion, the relative fitness of

6
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a mutant is expected to correlate with its abundance.

High-throughput sequencing

After the library expansion step, the mutant population is pooled and the genomic DNA is ex-

tracted. The relative abundance of eachmutant in the library is subsequently estimated through

sequencing of the pooled genomic DNA sample. To increase the efficiency of sequencing, TIS

relies on methods to identify and enrich the transposon-genome junctions such that targeted

sequencing of these junctions can be performed. Examples of methods that are used to enrich

the transposon-genome junctions are polymerase chain reaction (PCR) amplification (Michel et

al., 2017; van Opijnen et al., 2009) and bead based extraction (Goodman et al., 2009; Goodman

et al., 2011). After sequencing the transposon genome junctions, mutant abundance can be esti-

mated from the number of sequencing reads that map to a genomic location. Genomic locations

with a high number of sequencing reads are considered to be dispensable regions, while those

that have a low read count or are void of reads correspond to (nearly) essential regions.

1.5. Thesis aim and outline

In this thesis, we study how the functional organization of the cell at the molecular level can

facilitate and constrain evolution. To do so, we take advantage of an evolutionary trajectory in

Saccharomyces cerevisiae that has been demonstrated to be highly reproducible. Our work on

this subject is organized into the following chapters:

Chapter 2: Predicting evolution using regulatory architecture.

Epistasis is an important source of evolutionary constraint that can profoundly increase the pre-

dictability of evolutionary trajectories. However, it is often unclear how observed epistatic in-

teractions relate to the genetic makeup of an organism. In this chapter, we review recent ad-

vancements in the identification of the mechanistic causes of epistasis across different levels of

biological organization. We do so with a particular focus on gene regulatory networks.

Chapter 3: Pleiotropy can drive adaptive changes in traits required for survival

in novel environments.

Evolving the ability to respond to environmental change should depend on whether it provides

a fitness advantage. Responsiveness is therefore expected to be a specific feature of evolution

in a dynamic environment. However, pleiotropic effects of mutations can change the correlation

between how traits evolve and selection pressures from the environment. In this chapter, we

evolve a polaritymutant that is unable to appropriately respond to environmental change in both

a static and dynamic environment. We find that regardless of whether the environment is static

or dynamic, the responsiveness to environmental change recovers during evolution. We propose

that pleiotropic interactionsmay be an important structural component of cellular networks that

allows cells to improve their fitness in unseen environments.

Chapter 4: SATAY as amethod to determine the fitness effect of gene disruptions

on a genome-wide scale.

One requirement to predict evolution is knowledge of the mapping between the genotype of an

organism and its fitness. By definition, this information is embedded in the concept of the fitness

landscape. However, fitness landscapes have a highly dynamic structure that changes across

7
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genetic backgrounds and environments. Most methods that are currently used to systematically

map the structure of fitness landscapes are either not flexible enough to capture these dynamics

or can only be used to map small regions of the fitness landscape. In this chapter, we develop a

method to estimate the fitness of gene disruption mutants on a system-wide level using the TIS

screen SATAY.

Chapter 5: Epistasis allows simple control over the accessibility of evolutionary

trajectories.

Epistasis has an important role in generating genetic constraints that make evolutionary trajecto-

riesmore reproducible. At the same time, epistasic interactionsmight be a potential engineering

tool that would allow control over evolutionary pathways. In this chapter, we test the feasibility

of exploiting epistasis for this purpose. Using the TIS screen SATAY, we show that the deletion of

a single gene might be sufficient to block the preferred evolutionary trajectory.

Chapter 6: Compensatory evolution changes the global structure of the genotype-

to-fitness map.

Bem1 is a core polarity protein of Saccharomyces cerevisiae. Loss of Bem1 is sub-lethal, but cells

can recover to almost the wild-type fitness level through the step-wise deletion of two other pro-

teins (Bem3 and Nrp1). The fact that compensation can be achieved through additional gene

deletions suggests that the protein interaction network rewires in such a way that an alterna-

tive pathway is established. In this chapter, we show that compensatory evolution through gene

deletions causes global changes in the fitness contribution of genes. Based on the functional

annotations of the genes that have an altered fitness contribution, we propose the cellular path-

ways that are likely involved in the alternative pathway for polarity establishment.
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Chapter 2

Nothing in biology makes sense except in the light of evolution

— Theodosius Dobzhansky
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2.1. Introduction
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Abstract The limits of evolution have long fascinated biologists. However, the causes of

evolutionary constraint have remained elusive due to a poor mechanistic understanding of

studied phenotypes. Recently, a range of innovative approaches have leveraged mechanistic

information on regulatory networks and cellular biology. These methods combine systems

biology models with population and single-cell quantification and with new genetic tools, and

they have been applied to a range of complex cellular functions and engineered networks. In

this article, we review these developments which are revealing the mechanistic causes of

epistasis at different levels of biological organization —in molecular recognition, within a single

regulatory network, and between different networks— providing first indications of predictable

features of evolutionary constraint.

2.1. Introduction

Elucidating the range of possibilities and limitations of evolutionary adaptation has been one of

the most evocative and complex problems in biology (Bell et al., 2010; Wright, 1932). Evolution

is sometimes strikingly rapid but can also display long-term stagnation for reasons that often re-

main obscure. Resolving this conundrum is central to understanding natural and laboratory evo-

lution, and important to harnessing evolutionary optimization in protein and cellular engineering

applications. At a conceptual level, a wide variety of causes have been invoked to explain why

new functions may fail to evolve: Those functions may be impossible biochemically (Beardmore

et al., 2011) or physically (Dill et al., 2011), a sufficiently strong selection may be absent (Gavrilets

& Hastings, 1993), or, alternatively, an organism’s genetic makeup may hamper evolution (De

Visser & Krug, 2014; Lobkovsky & Koonin, 2012). Indeed, functional improvements that require

multiple genetic changes are difficult to acquire by fixing each mutation one by one. The first

empirical studies of such genetic interdependencies were enabled by systematic genetic recon-

struction of evolutionary intermediates and laboratory evolution (Bridgham et al., 2006; Lindsey

et al., 2013; Lunzer et al., 2005; Poelwijk et al., 2007; Poelwijk et al., 2019; Weinreich, 2006). Still,

we have only begun to scratch the surface of this multifaceted issue.

It has proven useful to break down the problem of genetic interdependence into a few el-

ementary types of pairwise genetic interactions (De Visser & Krug, 2014; Lobkovsky & Koonin,

2012). Briefly, reciprocal sign epistasis refers to cases in which two independent disadvantageous
mutations are simultaneously required for an improved phenotype or fitness (Poelwijk, Tănase-

Nicola, et al., 2011). It is reciprocal, because both mutations influence each other’s effect, and it

is described using the term “sign”, because the fitness effects of the mutations switch between

A version of this chapter has been published as Nghe P, de Vos MGJ, Kingma E, et al. Predicting Evolution Using Regulatory

Architecture. Annu Rev Biophys. 2020;49:181-197.
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negative and positive. It is this type of interaction that constrains adaptive evolution the most,

since it implies that both mutations must be fixed simultaneously in a selective sweep – a topic

that is discussed further in Section 2.2. Evolution is less constrained when only one of the two

mutations switches its effect between negative and positive, which is referred to as regular sign
epistasis (Weinreich, 2006). In this case, some evolutionary pathways are inaccessible to adaptive

evolution, but others remain possible. Finally, one can distinguish between two cases that do not

restrict adaptive pathways: magnitude epistasis, where the occurrence of onemutation alters the

magnitude of the fitness effect of another mutation, and no epistasis, where mutational effects

on fitness are additive (Poelwijk et al., 2007).

One of the major challenges in current evolutionary research is to go beyond description

and toward prediction. In this context, the notion of epistasis is useful because it provides the

capacity to classify and quantify evolutionary constraints. However, it only provides a part of the

picture, since it does not address the underlying molecular mechanisms. Recently, a series of

studies exploited knowledge about the architecture of regulatory networks to begin filling this

void. The rationale for these studies is that this type of knowledge provides a mechanistic basis

for notions such as constraint and epistasis, which by themselves are mechanism independent.

One can determine how the quantifiable network properties, like topology, expression levels of

constituent genes, ormolecular affinities, affect phenotype and fitness. Moreover, mathematical

modeling may be used to extensively explore the range of possible phenotypes, thus opening

up the possibility to predict constraints and epistasis.

This early stage of exploration of constraints in network evolution is characterized by a com-

bination of experimental and theoretical innovations, and has focused on elementary questions.

For instance, do regulatory trade-offs limit evolution, or can they also accelerate it? Are down-

stream regulatory elements constrained differently than upstream elements? Does pleiotropy

within networks frustrate or facilitate their evolution? In this review, these efforts are organized

into three sections, each considering a different level of biological organization, ranging from

single molecular interactions to highly interconnected networks.

2.2. Epistasis in regulatory interactions

Intermolecular binding is at the heart of all regulatory networks, whether it occurs between

membrane-associated effector proteins and kinases to transduce signals (Podgornaia & Laub,

2015) or between transcription factors and their DNA binding sites to regulate gene expression

(Balleza et al., 2009; Poelwijk, de Vos, et al., 2011). In this section, we will consider studies of how

the physical binding of macromolecules impacts epistasis in a regulatory system, how environ-

mental changes modulate epistasis, and the relationship of these factors to the predictability of

epistasis and evolutionary constraint.

To function, transcription factors must bind their own cognate DNA binding site while avoid-

ing others. It has been proposed that such specific molecular recognition represents an archi-

tectural feature that gives rise to epistasis (Poelwijk, Heyning, et al., 2011). The rationale is that

changing such lock-key systems requiresmodifications in both key (transcription factor) and lock

(binding site), as changing only one of them yields nonmatching combinations Figure 2.1a). Since

scenarioswhere two (ormore) genetic changes occur in the same (selection) period are rare, such

an architecture could prohibit mutational trajectories to improved phenotypes under positive se-

lection.
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(a) Molecular recognition in cellular regulation. The specific binding of a dimeric transcription factor (light

green) to a DNA binding site, which allows expression control of a downstream gene (blue), can be seen as

a lock-key interaction. Mutating both binding partners produces new lock-key combinations, while mutating

either yields non-functional ones, as shown by systematic mutagenesis (Nghe et al., 2018). (b) Schematic di-

agrams illustrating how environmental change can affect the epistatic interactions between two mutations

a-to-A and b-to-B. Mutations are depicted as vectors, and denote the change in fitness in environment 1

(Env1) and environment 2 (Env2). No genetic constraints: Both mutations improve fitness, independent of

the environment and the genetic background. GXE interaction: The environment changes the sign of a mu-

tational effect (of b-to-B), independently of the genetic background. The mutation b-to-B lowers fitness in

Env1 and hence is inaccessible by adaptive evolution, but becomes accessible when changing to Env2. GxG

interaction: The mutational effects depend on the genetic background, but not on the environment. Here,

both mutational effects change sign depending on the genetic background (but not the environment), and

thus correspond to reciprocal sign epistasis. GxGxE interaction: Both the environment and the genetic back-

ground determine the mutational effect. Here, the effect of b-to-B changes sign depending on the genetic

background, but only in Env1. (c) Schematic of an adaptive landscape in two environments. Nodes (circles)

indicate genotypes, arrows indicate mutational steps of increasing fitness. Gray scale depicts fitness, with

darker tones indicating higher fitness. Note that this schematic depiction does not include the full genetic

multidimensionality of an adaptive landscape, e.g. it does not contain all pair wise genetic interactions which

may form epistatic motifs. (Caption continues on next page).

19



2

2. Predicting evolution using regulatory architecture

(Continued from previous page). Without genetic constraints, all mutations are additive and hence all tra-

jectories from the lowest fitness genotype (white) to the optimum (black) are accessible. GxE interaction:

Mutational effects deviate from additivity in Env2 (red circles, detrimental mutants). Yet the landscape can

be crossed in Env1, by alternating between Env1 and Env2 (dotted lines). GxG interaction: In both environ-

ments the mutations are detrimental, with correlated effect in both environments, block direct access to

the optimum by the creation of an adaptive valley. The landscape cannot be crossed by single step muta-

tions under positive selection. GxGxE interaction: In both environments, mutations deviate from additivity as

detrimental mutations block direct access to the optimum by the formation of an adaptive valley in each en-

vironment. Yet the location of these mutants is different in both environments and a part of the landscapes

are anti-correlated. Therefore, these landscapes can be crossed by single step mutations under fluctuating

selection in Env1 and Env2 (dotted lines).

These core ideas are testable experimentally, as has been done using the archetypal model

system of transcriptional regulation: the lac operon in Escherichia coli (de Vos et al., 2015). Owing
to decades of mutational and physiological study of this regulatory system, it is known that a few

key operator base pairs and a few amino acid residues in the binding interface of the lac repres-
sor determine binding specificity (Lehming et al., 1990; Sartorius et al., 1989). Consistent with

the predictions, these key residues indeed display reciprocal sign epistasis: Mutations in both

the DNA binding site and repressor allowed binding improvements, while mutations in either

one alone only led to deterioration. Six key sites in the transcription factor and the binding site

weremutated. Of the 720 possiblemutational pathways going from one specifically binding tran-

scription factor-operator pair to another, none of the trajectories contained only mutations that

improved the phenotype. From an adaptive landscape perspective, these data thus indicated

local optima separated by a valley (de Vos et al., 2015).

Regulation allows cells to respond to environmental cues. The lac repressor, for instance, al-
lows repression of the lac operon in the absence of lactose, and expression in its presence, by

inducing a conformational change in the transcription factor that lowers its affinity to the DNA

binding site. The lac repressor should thus be able to not only bind the operator, but also to

efficiently release it in the presence of lactose. Analysis of the 720 possible mutational trajec-

tories of the lac repressor-operator combinations in this second environment also showed that

none of the mutational trajectories allowed continuous improvements. However, alternating be-
tween the two environments did open up adaptive trajectories with constant improvements for

each mutation. With a computational method that describes the mutational and environmental

transitions as a Markov process, the crossing rate from the initial to the final genotype for all

trajectories in the landscape, including detours, could be determined. Interestingly, this rate is

found to be maximal when the rate of environmental switches compares with the mutation rate

(de Vos et al., 2015).

Cross-environmental trade-offs appeared to be responsible for the adaptive accessibility of

adaptive trajectories: Sequences that were suboptimal peaks in one environment were trans-

formed into valleys in the other environment, thus allowing escape from a suboptimum (Figure

2.1b, c). In other cases, inaccessible downward slopes were turned into accessible ascending

slopes upon environmental change, allowing adaptive trajectories to surf (Mustonen & Lässig,

2009) these slopes with positive selective coefficients. Evolutionary constraints can thus be over-

come by environment-dependent ratcheting that allows the crossing of otherwise inaccessible

regions in sequence space (de Vos et al., 2015; Steinberg & Ostermeier, 2016).

This highlights the major that the environment plays in the accessibility of biological func-
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tions during selection, by modulating genotype-genotype interactions (Figure 2.1b). This is im-

portant for more than just regulatory systems, as constraints due to mutations in nonregulatory

but coding sequences can be affected as well by environmental change. A study that focused

on environment-dependent fitness effects, constructed the genotype space of five mutations in

the genome of E. coli and measured the phenotype of these genotypes in 1,920 environments

(Flynn et al., 2013). The fitness effects of the mutations significantly changed in 203 environ-

ments. Moreover, by focusing on the adaptive landscapes involving all interactions among these

fivemutations in the three environments with themost distinct effects, they observed significant

changes in the topography of the adaptive landscape; thus epistatic interactions also differed in

the different environments.

Environment-dependent epistasis can also affect the ability of a population to adapt to an

environment that is gradually becoming more challenging. In laboratory evolution experiments,

the rate of environmental change (which modulates the selective pressure), as well as the chem-

ical nature of the environment (which determines the genotypes that may confer a benefit), de-

termined whether evolving populations could keep up with the imposed environmental change

(Gorter et al., 2018; Lindsey et al., 2013). Environmental circumstances can thus alter the sign of

a mutational effect, its epistatic interactions with other genetic changes (Figure 2.1b), and thus

the course of evolution (de Vos et al., 2018).

The level of ruggedness of genotype-phenotype landscapes does not appear to be specific to

the lac repressor system. A computational analysis based on the in vitro affinity between tran-

scription factors and their binding sites in eukaryotes found that most of these landscapes were

relatively rugged (Aguilar-Rodríguez et al., 2017), that is, they were neither as rugged as those

obtained from randomly shuffled genotypes, nor purely additive. Nonetheless, many of these

landscapeswere highly navigable, withmutational trajectories inwhich binding affinity increased

at each mutational step. Does this imply a form of evolutionary optimality of the transcription

factor – binding site combinations found in nature? Starr et al. found hundreds of alternative

transcription factor protein sequences that use diverse binding mechanisms, but perform their

function at least as well as the transcription factor that has historically evolved. As they noted,

this indicates that “the outcome of evolution depends on a serial chain of compounding chance

events” (Starr et al., 2017, p. 409). Thus, they argue that, if evolution had begun from a different

ancestral starting point in sequence space, then different genetic and biochemical forms would

probably have evolved.

The evolution of regulatory functions can also be constrained by multiple physical interac-

tions. In a regulatory system containing DNA-binding sites for both the RNA polymerase and a

transcription factor, both of these proteins compete for binding to an overlapping binding site

on the DNA (Lagator, Paixão, et al., 2017). Lagator, Paixão, et al. (2017) measured the pheno-

types of both single and double mutants; based on a thermodynamic model in which the sign

andmagnitude of the individual mutational effects served as input, they could predict the effects

of double mutations. Such models, which take into account key functional parameters, may set

the stage for the further prediction of epistasis and, thus, the course of evolution based on the

data available for single mutants.

2.3. Epistasis in regulatory pathways

In this section, we discuss recent studies that have sought to quantify epistasis between genes

that act within a regulatory pathway. Unlike the proteins discussed in the previous section, these
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proteins do not necessarily interact physically, but rather by performing one regulatory function

together. We examine the generality and consequences of such functional yet nonphysical in-

teractions and propose interpretations of recent experiments based on phenotype-to-fitness

models, also called geometric models. A first interpretation is that network structure can indeed

explain how epistasis between two genes arises. However, it is not a direct proxy: One cascade

structure can display different types of sign epistasis, depending on other details such as the

nature of the variable environment. Second, geometric models can provide a unified framework

to interpret both the evolutionary and the more classical phenotypic interpretations of epista-

sis, such as mutations that can mask the phenotypic effects of other mutations. Finally, one can

define general conditions for sign epistasis to arise in any system: It does so when the optimal

value of one phenotypic parameter, like the binding constant of a transcription factor, depends

on another phenotypic parameter within the network. These findings highlight how functional

dependencies within regulatory networks can induce strong constraints in fitness landscapes.

Epistasis was originally used for scenarios in which certain genetic backgrounds masked mu-

tation-induced phenotypic variation (Phillips, 2008). Such epistatic interactions between loci

across the genome are expected from a purely functional basis, without necessarily implying

direct physical interactions between mutated residues, as is, for instance, typically the case for

genes within developmental pathways (Peter & Davidson, 2011). Mechanistic biochemical mod-

els indicate that genes in parallel metabolic pathways tend to interact negatively, as the flux

catalyzed by a gene can be compensated by flux in a parallel branch, redundantly allowing pro-

duction of a same final metabolite. However, genes in series within a chain should interact posi-

tively, as the removal of any of the catalytic species would strongly reduce the overall metabolic

flux (Szathmáry, 1993). This suggests a direct relationship between the network wiring and the

observed epistasis (Lehner, 2011; Segrè et al., 2005). However, the sign changes that are key to

adaptive fixation were not considered in any of these studies. In parallel, the idea of Fisher geo-

metric models has gainedmomentum to explain epistasis from biological mechanisms and their

function. In this case, generic Gaussian functions describe how fitness depends on a few pheno-

typic parameters. Although it is heuristic, this assumption can reproduce statistical distributions

of epistasis with few parameters (G. Martin et al., 2007) and generate a large variety of epistasis

distributions (Gros et al., 2009; Weinreich et al., 2005). This phenotypic view of epistasis and the

classical genetic view are starting to be reconciled using geometric models that describe pheno-

type–fitness relationships in mechanistic terms, using information on the network in question.

This approach has so far mainly been applied to small, well-characterized networks (Corson &

Siggia, 2012; Cotterell & Sharpe, 2013; Nghe et al., 2018; Szathmáry, 1993). While lacking the full

cellular context, these studies have revealed general causes of epistasis, and could serve as a

basis for more phenomenological long-term evolutionary models (G. Martin, 2014).

As genes typically represent distinct DNA regions,mutations in one gene logically do not affect

the biochemical parameters of another gene, such as its binding constant or enzymatic activity.

This genetic modularity has been exploited recently to predict epistasis between genes (Nghe

et al., 2018). For instance, in the lac operon, a mutation in the transcription factor binding region

impacts expression level, and a mutation in the LacZ gene affects catalytic rates independently,
although they do both participate in the same physiological function. The independence of mu-

tation effects on different genes applies to regulatory cascades, a ubiquitous regulatory motif in

cells, where an upstream gene y regulates the expression of a downstream gene x, which itself
regulates an output gene (Figure 2.2a). Crucially for epistasis, mutational steps that affect the
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phenotypic parameters X are orthogonal to mutational steps that affect the phenotypic parame-

ters Y within the phenotype space. Thus, either X or Y changes at each mutational step, but not

simultaneously.

The resulting epistasis predictions could be verified experimentally by systematically combin-

ing mutations within the different transcription factors that together form a regulatory cascade

and quantifying their input–output relationships, as in Reference (Nghe et al., 2018). Based on

that study, we discuss how functional relationships between genes produce epistasis and how

they can be explained by the shape of the phenotype-fitness functions. We distinguish three

major classes of fitness functions.

First, consider a fitness that varies monotonically with phenotypic parameters X and Y, such
as the binding affinity of the transcription factor for its operator (Figure 2.2a). This case arises,

for example, when the fitness (or performance) would correspond directly to the output for any

fixed input that does not vary in time. We recover the classical notion of phenotypic epistasis,

as illustrated in Figure 2.2b: A mutation with a strong effect on X (in the most extreme case a

knock-out) cancels any observable variation of the output that could be caused by changes in

Y. Additionally, it is not possible to generate sign epistasis in this scenario. As discussed further
below, this is generally the case when the optimal value for X does not depend on Y and vice

versa.

A second, qualitatively distinct, scenario is when the optimum of Y does depend on X, while
the optimal value of X does not depend on Y (Figure 2.2c). This situation is foundwhen the fitness
corresponds to the dynamic range of the cascade, as quantified by the difference between the

minimal andmaximal output expression levels, in response towidely varying input signals, as has

been shown in Reference (Nghe et al., 2018) . The landscape of this fitness function can generate

sign epitasis, with the specific property that only mutations in gene x can lead to decreasing

fitness. This is most easily seen when Y is at its optimum but X is not: Reaching a better X-
Y combination cannot be achieved by mutating Y first, as it is already at its maximum in the

current X background. However, fitness can increase in a stepwise manner, as X is not yet at its
maximum and thus can be improved. In this example, the evolutionary hierarchy reflects the

functional hierarchy: The upstream gene x must be mutated first because the optimum of the

downstream gene y must be well tuned to accommodate X expression but not the converse.

The last case is when the optimum of Y depends on X and the optimum of X depends on

Y (Figure 2.2d). This scenario is observed, for example, when the fitness again corresponds to

the dynamic range of the output but in response to input signals with variations over a smaller

range. By the same geometric reasoning as above, there are starting phenotypes leading to a

decrease in fitness when mutating x first or when mutating y first. This “or” relationship can

become an “and”, as exemplified in the mutational trajectory of Figure 2.2d, where reaching a

better combination X-Y in a stepwise manner requires first decreasing the performance of the

cascade, independently of the mutated phenotype. This scenario of reciprocal sign epistasis can

be understood as a purely functional version of lock-key constraints. It should be noted that

geometric models exist where both x-related and y-related sign epistasis exist, but they do not

combine into reciprocal sign epistasis. For example, as shown in Reference (Nghe et al., 2018),

slightly tilted Gaussian geometric models do not combinemere sign epistasis into reciprocal sign

epistasis, but strongly tilted Gaussian models do.

Hierarchy within a cascade can be applied to interpretation of epistasis in a negative feedback

loop in the galactose regulatory system in yeast (Peng et al., 2015): Mutants of the downstream
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Predicted sign epistasis in a regulatory cascade. (a) A transcriptional cascade, where an input signal, such

as an inducer, modulates the expression level of the upstream gene y, which itself expresses a transcription
factor that regulates a downstream gene x, which in turn regulates the level of an output gene. Systematic

combinations of mutations in genes x and y allow testing for the effect of combined changes in the phe-

notypic parameters respectively called X and Y, as has been explored in Reference (Nghe et al., 2018). For

example, X may be the binding constant of regulatory protein x to the promoter of the output gene. (b) Sce-

nario yieldingmagnitude epistasis. (Top) The performance or fitness of the system ismeasured as the output

level in response to a single input that is fixed in time, as it would be in a constant environment. (Middle) The

corresponding phenotype-to-fitness relationship is computed as a function of parameters X and Y, for exam-

ple, the binding constants of the transcription factors x and y to their target promoters, using amathematical

model (Nghe et al., 2018). Red arrows represent the two ways by which mutations leading from X1 to X2 and

from Y1 to Y2 can be combined to optimize fitness. Importantly, given the independent effects of mutations

on X and Y, trajectories are parallel to the axis. Given that, in this case, fitness increases with both X and Y,

themaximum values of X as a function of Y and of Y as a function of X, respectively denoted Xopt and Yopt, are

the straight thick gray lines on the right-hand side and top of the landscape, respectively. (Bottom) Given that

Xopt and Yopt are independent of, respectively, Y and X, the geometric model can only generate magnitude

epistasis. (c) Scenario yielding regular sign epistasis. (Top) Fitness is the total output range F=outmax – outmin

in response to a variable environment providing wide input variations, with the input going down to zero

(signal is absent). (Caption continues on next page).
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(Continued from previous page). (Middle) Fitness is optimal for intermediate values Xopt of X for fixed Y

and Xopt is the thick gray curved line that varies as a function of Y. In the example mutational trajectories

(red arrows), one path leads to a decreasing step when mutating X first (circled minus sign). (Bottom) The

starting phenotype X1 is optimal given Y1; thus, mutating it can only lead to decreased fitness, causing the

sign epistasis. (d) Scenario yielding reciprocal sign epistasis. (Top) The output is evaluated in response to a

more restricted range of input signals (the minimum input does not reach zero). (Middle) Both Xopt and Yopt

are curved, and can lead to decreasing fitness when mutating X or Y first. (Bottom) The mutual dependence

of the optima of X and Y on each other’s values can generate reciprocal sign epistasis patterns.

GAL80 gene mask mutations in the upstream GAL3 gene. This corresponds to the geometric

model in Figure 2.2b, where the output corresponds to the intensity of the feedback, and muta-

tions cause strong knock-down effects. Epistatic effects from regulatory structure also appear

when integrating signals at the same promoter, as studied by mutating a lambda phage pro-

moter repressed by the protein CI (Lagator, Sarikas, et al., 2017). In this case, loss-of-functions

in polymerase recruitment mask loss-of-functions in CI repression, but CI binding allows tuning

expression in the presence of mutated but functional polymerase recruitment, corresponding

again to the scheme in Figure 2.2b. The main point to note is that epistasis is predominantly

explained by the regulatory logic, as opposed to the pleiotropy caused by physical interactions

(Lagator, Sarikas, et al., 2017), indicating a modularity in mutational effects, even within a single

regulatory sequence.

Epistasis caused by the functional dependence between the components of a network is also

observed in incoherent feedforward network motifs (Schaerli et al., 2018), which integrate an

environmental signal via two regulatory loops into a single output promoter that defines the

phenotype. In this case, the mutational effects were measured in regulatory loops comprising

either a double activator or a double repressor cascade. When mutations were introduced into

the cis-regulatory regions of the networks at each node separately, not all of the possible pheno-

typic states were accessible. This suggests that the optimal phenotypic parameters of one gene

depend on the phenotypic parameters of other genes. However, when mutations were intro-

duced in the cis-regulatory regions of the individual nodes simultaneously, this barrier could be

overcome through epistasis between the cis-regulatory region mutations. Overall, these results

support the idea that epistasis originates from the tuning of genetically independent phenotypic

parameters with respect to each other.

Overall, we have seen how to use functional dependences to identify causes of sign epista-

sis: Sign epistasis arises when the optimum of a module needs to be adjusted to the state of

another module. Generalization to a large number of phenotypic dimensions is possible (Nghe

et al., 2018) and suggests that phenotypes whose phenotypic optima are mutually dependent

(independent) generate ruggedness (smoothness) in genotype-to-fitness landscapes. The inter-

play between phenotypes and their optimality is also crucial during network rewiring, where the

accessibility of evolutionary paths requires finely tuned steps to preserve function (Sorrells et al.,

2015). So far, most mutational scanning studies can be interpreted in large part through loss of

function within networks. Revealing sign epistasis systematically will instead require the combi-

nation of mutations with mild phenotypic effects in the relative proximity of their optima (Gros

et al., 2009).
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2.4. Epistasis between networks

In the previous sections, we discuss how epistasis constrains the evolution of regulatory inter-

actions and networks. A focus on the physical (Diss & Lehner, 2018; Starr & Thornton, 2016)

or functional (Boucher & Jenna, 2013; Yang et al., 2017) features of these regulatory systems

allowed prediction of epistasis within a network of interest. Another situation arises when se-

lection drives interactions between networks. An interesting example is a recent experimental

evolution study in Saccharomyces cerevisiae (Laan et al., 2015). In S. cerevisiae, formation of a

polarized spot of the GTPase Cdc42, a protein that cycles between an active GTP-bound state

and an inactive GDP-bound state, is an essential part of the cell cycle. As polarization serves as a

paradigm for symmetry breaking, a large amount of experimental and theoretical work has been

dedicated to identifying the major components of this network and their interactions (Halatek

et al., 2018; S. G. Martin, 2015). The knowledge that this work has generated makes this network

an attractive system to study adaptive pathways. Laan et al. (2015) applied a strong perturba-

tion to this module by deleting a scaffold protein with a central role in symmetry breaking. The

subsequent adaptation to the loss of this component was restricted by sign epistasis, which con-

strained the order in which other network components were mutated, leading to reproducible

mutational pathways acrossmultiple parallel lineages. Surprisingly, thismutational pathway con-

sisted of the inactivation of proteins rather than changes to their biochemical properties, which

was confirmed by reconstructing the mutational pathway observed from natural evolution by

synthetically deleting the genes. Another puzzling finding was that the epistatic interactions that

determined the adaptive pathway were not exclusively among known network components, but

also included a protein that was not considered to be part of the polarization network. Thus,

despite its well-studied nature, information about the interaction network was insufficient to

explain the relevant epistasis. This example highlights a generic challenge when the system in-

creases in size. Many selective pressures, particularly in response to strong perturbations, elicit

mutations throughout the genome, which limits predictive approaches.

The above discussion indicates that a trait can be restored by co-opting networks with some

functional overlap, rather than by reconstructing lost components. How the particular gene dele-

tions that facilitate this process in the polarity network do so remains elusive, but it is known that

networks involved in other cellular processes can affect polarity establishment (Slaughter et al.,

2013; Woods et al., 2016) This mode of adaptation appears to not be specific to the example

described above: A large-scale study that tracked the adaptive response of S. cerevisiae to 187

different single-gene knock-outs showed that compensatory mutations following gene deletions

often partially restore affected traits without restoring the original genomic expression pattern

(Szamecz et al., 2014). Thus, evolution can exploit other networks to rescue perturbed cellular

functions (Hottes et al., 2013; Rojas Echenique et al., 2019) by changing the connections between

redundant and connected networks, rather than by restoring the original network (Figure 2.3a-d).

Accessible pathways thus do not always depend only on the topology of the perturbed net-

work, but also on that of compensating networks and on their interconnections. When insight

into the relevant network features is incomplete, it is not straightforward to functionally explain

the observed epistasis, let alone offer predictions. Another consequence of networks being inter-

connected is that they typically give rise to pleiotropy: Not only is one trait affected by multiple

networks ormutations, but one network ormutation also affectsmultiple traits. Such pleiotropic

properties have long been thought to have important consequences for evolving populations:

For example, they are considered to maintain genetic variation (Zhang & Hill, 2005), produce
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trade-offs (Cooper & Lenski, 2000; MacLean et al., 2004) and be an important cause of the per-

sistence of genetic diseases (Amell et al., 2018; Carter & Nguyen, 2011).

The questions that naturally arise are: Howprevalent is pleiotropy in cellular networks? Which

adaptive processes cannot be considered without the context of the entire cellular interaction

network? The view of universal pleiotropy, where a mutation can potentially affect all selectable

traits, is implicit in the original geometric model from Fisher (Fisher, 1930) and has been the

dominant view for many years (Stearns, 2010). Within this view, one may consider whether the

number of evolutionary constraints increases as the number of traits increases, seemingly con-

tradicting the emergence and adaptability of complex organisms (Orr, 2000). Due to practical

challenges in empirically determining the degree of pleiotropy in organisms, the discussion re-

mainedmainly based on theoretical models. However, newmolecular biology techniques and in-

teraction network databases have sparked attempts to empirically quantify the number of pleio-

tropic genes in actual biological systems. For example, Wang et al. (2010) used large data sets

containing effects of gene deletions on different traits to determine the total pleiotropy on a

genome-wide scale for S. cerevisiae, C. elegans and M. musculus (Wang et al., 2010). Comparison

to random gene-trait relationships suggested that cellular networks are mostly modular, with

only a small percentage of traits (1-9% of the traits included for analysis) affected by pleiotropic

genes. This result would advocate the view of modular pleiotropy, where sets of traits covary,

and only a subset of genes within a network exhibit pleiotropic effects.

However, a common objection is that pleiotropic interactions can remain undetected due to

experimental noise and detection limits. The absence of a standardizedmethodology for extract-

ing statistically significant interactions from experimental data has led to significant variations in

the estimates of genes with pleiotropic interactions, with a possible bias for modular pleiotropy

(Hill & Zhang, 2012). The development of new, more sensitive methods for the extraction of sig-

nificant interactions from databases is required to settle this debate (Koch et al., 2017; Tyler et al.,

2016).

Although the discussion on the extent of pleiotropy is far from resolved, the notion that pleio-

tropic interactions exist and impact evolutionary trajectories is widely accepted (Wagner & Zhang,

2011). As discussed above, pleiotropy can lead to epistatic interactions between components of

different networks, and both epistasis and pleiotropy make evolution dependent on the genetic

background. To understand howpleiotropy affects evolution, it is useful to focus on this interplay

between pleiotropic and epistatic interactions. Epistasis is broadly believed to guide evolution by

imposing constraints, and from a network perspective, antagonistic pleiotropy (AP) is considered

to play a central role in constraining the evolution of networks. The negative correlation between

different traits in AP can make it difficult to simultaneously optimize multiple traits and can thus

restrict the number of accessiblemutational pathways (Figure 2.3d). The extent of AP in yeastwas

examined by Qian et al. (2012). They tested 4,642 nonessential genes for antagonistic pleiotropy

by performing competition experiments of null mutants together with the wild type in different

environmental conditions (Qian et al., 2012). At least 13.6% of the analyzed genes displayed AP

in the considered environments, indicating its importance in restricting mutational pathways. In-

terestingly, they found signs that antagonistic interactions between networks could bemitigated

by changes in trans-regulatory molecules that regulate gene expression, rather than in DNA reg-

ulatory or coding sequences. The ability of trans-regulatory molecules to serve as a source for

alleviating constraints is surprising, considering that their evolution is typically regarded to be

heavily constrained itself due to their extensive interaction networks (Prud’homme et al., 2007;
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Voordeckers et al., 2015).

How trans-acting elements can resolve AP and alleviate constraints is illustrated by a study

of the pheromone response pathways between different yeast species (Sorrells et al., 2015).

Haploid yeast cells can exist in two different mating types, a and α. In response to sensing

pheromones of the opposite mating type, each of these upregulates the expression of genes

required for the pheromone response pathway. Although the upregulation of some of these

genes is mating type specific (expression in a or α), a large portion overlaps in both mating types

(expression in a and α). In both mating types, the upregulation of these genes is induced by

the conserved transcription factor Ste12. Despite the conserved function of Ste12, Sorrells et

al. (2015) found that different species maintained different network structures for the upregula-

tion of mating type specific genes: In Saccharomyces, mating type a specific genes (asgs) contain

motifs for the direct binding of Ste12, while Kluyveromyces and Candida required transcriptional
coregulators for induction of the same genes. However, evolution of a regulatory network for

asgs where Ste12 is recruited by coregulators to one where Ste12 directly binds asg promoters

appeared to be inaccessible: Introduction of the Ste12 binding sites of the Saccharomyces clade
into the Kluyveromyces clade resulted in a loss of regulation (Figure 2.3e-f). Instead, the addition
of a repressor for asg expression to the regulatory network of mating type α cells was required

prior to introducing Ste12 binding sites to prevent their (mis)expression in α cells ( Figure 2.3g-i).

Note that understanding why the pheromone response pathway in a cells cannot directly

evolve additional binding sites for asgs requires knowledge of the structure of the pheromone

response pathway in α cells. Otherwise, the requirement for evolving a repressor for asgs would

appear as a hidden parameter in the epistatic landscape, similar to those that appear as hidden

parameters for the polarization network of S. cerevisiae described above. The way in which in-

teractions between these pheromone response networks constrain evolution shows surprising

similarities to sign epistasis between components within a single module: The adaptation in one

network becomes beneficial only when the structure of the other network changes (Figure 2.3e).

It is tempting to consider the analogy between AP and sign epistasis, but how concepts from

epistasis relate to pleiotropy in networks remains to be investigated. Apart from AP, which con-

strains evolution, interactions that result in a positive correlation in the fitness level of different

traits have been found to drive coevolution of traits that are not under selection. For example,

Jerison et al. (2017) found that populations of budding yeast adapting to growth at high temper-

ature also improved growth at standard growth temperatures, although the molecular basis of

this was not elaborated. This shows how pleiotropic networks and the environment can interact

to give surprising evolutionary results. Unraveling these interactions at the molecular level, sim-

ilar to what has been done for epistatic interactions of the lac operon (de Vos et al., 2015), can

reveal new concepts that would explain adaptive pathways at both the inter- and the intranet-

work levels.

28



2

2.4. Epistasis between networks

Ste12

αsgs
Ste12

asgs
Ste12

αsgs
Ste12

asgs

Ste12

αsgs
Ste12

asgs

Ste12

αsgs
Ste12

asgs

Ste12

αsgs
Ste12

asgs
Ste12

a cell

α cell

Ste12

Ste12 Ste12 Ste12

Pathway inaccessible Pathway accessible

Direct adaptation
asgs regulation 

Reorganization
αsgs regulation

Adaptation asgs
regulation 

e

as
g 

ex
pr

es
si

on a cell

 α cell

f

as
g 

ex
pr

es
si

on g

as
g 

ex
pr

es
si

on h

as
g 

ex
pr

es
si

on i

as
g 

ex
pr

es
si

on

2

1

Fitness trait 2

Fi
tn

es
s 

tr
ai

t 1

Trait 1 (under
selection)

Trait 2 (not
under selection)

Loss of component 
network trait 1

Network trait 2 Order of mutations 
determined by network trait 2

1

Fitness trait 2

Fi
tn

es
s 

tr
ai

t 1

Fitness trait 2

Fi
tn

es
s 

tr
ai

t 1 AP
PP

2

1

Fitness trait 2

Fi
tn

es
s 

tr
ai

t 1 3

1

2

1
3

1

2

a) b) c) d)

Figure 2.3. Pleiotropic interactions can facilitate and constrain evolution. (a-d) When the networks of

two traits share interactions, but only one network is under selection, the network not under selection can

compensate for mutations in the other network. (a) The initial pathway (green highlight) leads to activation

of a trait-defining node (encircled blue node) through a shared component (purple node). (b) Deletion of

a central component in the network of trait 1 decreases fitness of the trait. (c) The network of trait 2 can

buffer this deletion by taking over some of the interactions of network 1 through the deletion of other com-

ponents, (d with the order in which these deletions can take place being constrained by the interactions

between the network of trait 1 and the network of trait 2, which can provide a reconstruction the activation

pathway. Only pathways that improve trait 1 are accessible (green shaded area); they can have both posi-

tive pleiotropic (PP, from mutation 1 to 2) or antagonistic pleiotropic (AP, from mutation 2 to 3) effects on

trait 2. (e-i) When both traits are under selection, connected networks can lead to additional constraints. (e)

The two transcription networks regulating mating pathways in yeast both use the transcription factor Ste12,

causing them to partially overlap. (f) This overlap prevents the evolution of Ste12 binding motifs in a cells, as

this causes misexpression of asgs in αcells. (g-i) To maintain correct regulation of asgs during evolution, the

transcription network of αcells must first reorganize to obtain an inhibitor for asg expression, which releases

the constraint on the evolution of Ste12 binding motifs in a cells.
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2.5. Conclusions

It is evident that evolutionary constraints are inherently interconnectedwith phenotypes. Indeed,

the genetic interactions that underlie constraint are quantified by their impact on phenotypes

and fitness (De Visser & Krug, 2014; Lobkovsky & Koonin, 2012). As highlighted in this chapter,

epistasis offers a route to predict evolutionary constraint and potential – one of the major goals

of evolution research. At the same time, owing to the overwhelming complexity of this pheno-

typic puzzle, and its many missing pieces, such prediction insights have been difficult to achieve.

This humbling reality remains to a large extent, as is also clear from the studies reviewed above.

At all levels of biological organization that we address, one encounters unknowns that pose lim-

its to general predictive frameworks. For instance, it is not known if the presence of adaptive

valleys is general for molecular interactions other than the well-studied lac system, how the geo-

metric landscape prediction method can be applied to naturally occurring pathways, and which

redundant networks will be able to compensate for the loss of core cellular functions.

Nonetheless, this new wave of quantitative studies provided the first tools to predict key epi-

stasis features. Within the wide range of studied systems, notable parallels and differences were

observed. Specific recognition was found to produce reciprocal sign epistasis, but its limiting ef-

fects on adaptation could be mitigated by environmental interactions. The last section showed

that interactions between networks can overcome constraint by providing components that are

coopted into altered functions. In both cases, additional interactions could alleviate existing con-

straints, even as the type of interaction differed. This makes intuitive sense, since those extra

interactions (with the environment and with other networks) can be seen as dimensions that are

orthogonal to the initial genotypic space, and thus can allow escape from suboptima. Antago-

nistic pleiotropy played a role in both processes, with mutations having contrasting effects on

different phenotypes and networks.

The level of prediction was found to depend on the scale of the system, as well as on the

selective pressures acting on it. At the smallest scale – that of molecular binding – epistasis was

merely implied by the specific nature of the recognition andultimately dependedon the details of

the molecular binding interface; the resulting genotype-phenotype map required experimental

reconstruction (de Vos et al., 2015). Notably, such molecular details no longer appeared rele-

vant at the intermediate scale of a single pathway, where epistasis instead emerged in a more

predictable fashion from the network topology (Lagator, Paixão, et al., 2017; Lagator, Sarikas,

et al., 2017; Nghe et al., 2018). The key changes in binding affinity could be achieved by a wide

spectrum of mutations, suggesting that a coarse-grained description suffices when studying evo-

lution at the network scale. This is a promising realization: As larger systems are considered (Ro-

jas Echenique et al., 2019), the basis of constraint does not necessarily become less predictable.

However, for the largest scale considered in this chapter – that of networks interacting in core

cellular functions – it was shown that predictions are more challenging because such networks

are more interconnected with unknown factors (Laan et al., 2015; Szamecz et al., 2014).

Approaches similar to the ones discussed here, which exploit any functional information for

the prediction of constraint, can be appliedmore broadly. For instance, it is intriguing to consider

epistatic constraints in RNA molecules (Li & Zhang, 2018) and metabolic networks (Bachmann

et al., 2017), as well as in the evolution of complex traits (Carlborg & Haley, 2004), ecosystems

(Kassen & Rainey, 2004) and disease (Moore, 2003).
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Chapter 3

The most exciting phrase to hear in science, the one that heralds new discoveries,
is not ‘Eureka!’ but ‘That’s funny. . . ’

— Isaac Asimov
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3.1. Introduction
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Pleiotropy drives evolutionary repair of the re-

sponsiveness of polarized cell growth in to en-

vironmental cues

Enzo Kingma, Eveline T. Diepeveen, Leila Iñigo de la Cruz, Liedewij Laan

Abstract The ability of cells to translate different extracellular cues into different intracellular

responses is vital for their survival in unpredictable environments. In Saccharomyces cerevisiae,
cell polarity is modulated in response to environmental signals which allows cells to adopt

varying morphologies in different external conditions. The responsiveness of cell polarity to

extracellular cues depends on the integration of the molecular network that regulates polarity

establishment with networks that signal environmental changes. The coupling of molecular

networks often leads to pleiotropic interactions that can make it difficult to determine whether

the ability to respond to external signals emerges as an evolutionary response to

environmental challenges or as a result of pleiotropic interactions between traits. Here, we

study how the propensity of the polarity network of S. cerevisiae to evolve toward a state that is
responsive to extracellular cues depends on the complexity of the environment. We show that

the deletion of two genes, BEM3 and NRP1, disrupts the ability of the polarity network to
respond to cues that signal the onset of the diauxic shift. By combining experimental evolution

with whole-genome sequencing, we find that the restoration of the responsiveness to these

cues correlates with mutations in genes involved in the sphingolipid synthesis pathway and

that these mutations frequently settle in evolving populations irrespective of the complexity of

the selective environment. We conclude that pleiotropic interactions make a significant

contribution to the evolution of networks that are responsive to extracellular cues.

3.1. Introduction

Polarity establishment, the ability to generate an asymmetric distribution of cellular constituents,

plays an important role in many of the biological functions that are observed throughout the

tree of life (Jabbarzadeh, 2019). The dynamics of polarity establishment is regulated by an intri-

cate network of molecular interactions, many of which are evolutionary conserved (Chiou et al.,

2017; Etienne-Manneville, 2004; Thompson, 2013). What allows these networks to be versatile

while maintaining a relatively high degree of conservation is their ability to generate different re-

sponses to various extracellular signals (Dickinson, 2008; Saito, 2010; Waltermann & Klipp, 2010).

This featuremakes it possible for the polarized appearance of cells to vary between environmen-

tal contexts (Granek et al., 2011).

Responsiveness to extracellular signals requires the integration of the polarity network with

other molecular networks that either directly or indirectly translate these signals into an intracel-

lular response (Broach, 2012; Granek et al., 2011; Mutavchiev et al., 2016; Saito, 2010; Salat-

Canela et al., 2021; Waltermann & Klipp, 2010). An issue of integrated networks is that the

A version of this chapter has been published as Kingma E, Diepeveen ET, Iñigo de la Cruz L, Laan L. Pleiotropy drives evolu-

tionary repair of the responsiveness of polarized cell growth to environmental cues. Front Microbiol. 2023;14:1076570.
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decrease in modularity that arises when networks become coupled can frustrate evolvability

(Fisher, 1930; Hartwell et al., 1999; Kirschner & Gerhart, 1998; Wagner & Altenberg, 1996; Wag-

ner & Zhang, 2011). Because coupled networks become interdependent, the likelihood that a

single mutation affects multiple phenotypic traits, an effect known as pleiotropy (Fisher, 1930;

Wagner & Zhang, 2011), increases. Such pleiotropic effects are indeed frequently reported for

genes involved in the establishment of cell polarity (Bauer et al., 1993; Prunskaite-Hyyryläinen et

al., 2014; Zou et al., 2008). As antagonistic effects, where a mutation that is beneficial to one trait

negatively affects a second trait (Austad & Hoffman, 2018; Mauro & Ghalambor, 2020; Paaby &

Rockman, 2013), are considered to be more common than synergistic effects, pleiotropy is gen-

erally expected to constrain the number of accessible mutations during evolution in complex

environments that select on multiple traits (Fisher, 1930; Orr, 2000; Waxman & Peck, 1998; J. J.

Welch & Waxman, 2003). In turn, evolution in simple environments may not be constrained by

pleiotropic interactions, but can instead lead to the deterioration of networks regulating unused

traits (Fraebel et al., 2017; MacLean et al., 2004; Qian et al., 2012; Rose & Charlesworth, 1980).

Thus, themolecular details of adaptive evolution of the polarity network are expected to depend

on the environment: complex environments only allow mutations that preserve the integrity of

coupled networks, while the released constraint in simple environments allows the system to ex-

plore alternative evolutionary pathways, but at the cost of the disintegration of unused networks

and a loss of the ability to respond to environmental cues. However, whether these theoretical

expectations form a general rule for the evolution of pleiotropically connected traits and if ex-

ceptions can be identified based on the molecular basis of their pleiotropic interactions is still a

point of discussion (Agrawal & Stinchcombe, 2009; Jerison et al., 2020).

An attractive system to study the effect of pleiotropic interactions on the evolution of cell po-

larity is the yeast Saccharomyces cerevisiae. S. cerevisiae has adopted asymmetric cell division as

its main mode of proliferation andmust therefore establish an axis of polarity once per cell cycle

(Chiou et al., 2017; Martin & Arkowitz, 2014). In addition, its polarity network is integrated with

several different signaling networks to allow different growthmodes in response to environmen-

tal cues, such as those that signal cell cycle progression (Yoshida & Pellman, 2008), filamentous

growth (Cullen & Sprague Jr., 2012) and the activation of stress response pathways (Saito, 2010;

Waltermann & Klipp, 2010). Here, we study whether the polarity network can restore its cou-

pling to signaling networks after this coupling has been lost due to a genetic perturbation and

how this restoration depends on selective pressures from the environment. In addition, we dis-

cuss whether known connections between the polarity network and other signaling pathways

are able to explain our observed patterns of adaptation. To do this, we use a bem3Δnrp1Δ strain

of S. cerevisiae that has previously been demonstrated to be defective in polarity establishment

during vegetative growth (Laan et al., 2015). We show that this genetic perturbation also disrupts

the responsiveness of the polarity network to an environmental shift that induces cells to change

their metabolic program. Using a combination of experimental evolution and whole-genome se-

quencing, we find that adaptive mutations that restore the responsiveness of the polarity net-

work to this environmental insult emerge frequently and reproducibly in evolving populations

and that their occurrence is surprisingly insensitive to the complexity of the environment.
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3.2.1. Deletion of BEM3 and NRP1 distorts cellular adaptation during the diauxic

shift

The combined deletion of BEM3 and NRP1 has been shown previously to cause defects in polar-
ity establishment that exceed the summed effects of their individual deletion (Laan et al., 2015),

meaning they exhibit epistasis (Phillips, 2008). The existence of epistatic interactions between

these mutations suggests a functional relation between Bem3 and Nrp1. This is surprising, be-

cause while Bem3 is known as a GTP Activating Protein (GAP) for Cdc42, the master regulator of

cell polarity (Etienne-Manneville, 2004), Nrp1 has never been implicated to be involved in polarity

establishment before. Instead, based on the current knowledge about its function, Nrp1 is best

described as a prion forming protein that localizes to stress granules formed under conditions

of glucose stress (Buchan et al., 2008; Kroschwald et al., 2015). This led us to hypothesize that

the deletion of BEM3 and NRP1may have consequences for the ability of the polarity network to

respond to environmental cues that signal different growth modes.

We tested this hypothesis in the context of the ability of S. cerevisiae to performdiauxic growth

between glucose and ethanol. In the presence of extracellular glucose, S. cerevisiaemaintains a

rapid mode of growth by alcoholic fermentation of glucose. The ethanol produced during alco-

holic fermentation can be used as an alternative energy source when extracellular glucose drops

below a critical level, but only in the presence of extracellular oxygen. The transition from the

fermentation of glucose to the respiration of ethanol, a growth phase known as the diauxic shift,

is characterized by several physiological changes (Galdieri et al., 2010), which includes changes

in the polarized distribution of the actin cytoskeleton (De Virgilio & Loewith, 2006; Galdieri et al.,

2010).

We qualitatively determined the effects of deleting BEM3 andNRP1 on the coupling of (diauxic
growth) glucose sensing to cell polarity by imaging bem3Δnrp1Δ cells during the diauxic shift (Fig-

ure 3.1a). The diauxic shift was induced by switching from growth media containing glucose as

the sole carbon source to one where ethanol was the sole carbon source using a microfluidic

device. A wild-type strain subjected to these conditions displayed the expected behavior, which

consisted of rapid growth on glucose followed by a short growth pause at the time of the media

switch, after which growth was resumed on ethanol media, but at a slower rate compared to

growth on glucose media (Brauer et al., 2005). Overall, bem3Δnrp1Δ cells followed the same pat-

tern that we observed for the wild-type cells, but critically failed to produce buds during growth

on ethanol media. Instead, isotropic growth was sustained in these cells up to the point where it

induced cell death by lysis. Based on the link between polarity defects and an increase in cell size,

we deduced that our observations for the bem3Δnrp1Δ phenotype are the result of the inability

of the polarity network to respond appropriately to the physiological changes that occur during

the diauxic shift. Specifically, while bem3Δnrp1Δmutants are generally less fit than the wild-type

strain, the cellular defect that leads to a lower fitness differs between conditions of standard

vegetative growth and conditions where the cells must respond to the diauxic shift. During vege-

tative growth (2% glucose in Figure 3.1a) bem3Δnrp1Δ cells proliferate, but do so at a slower rate

than wild-type cells. After the media switch (transition from 2% glucose to 3% ethanol in Figure

3.1a) bem3Δnrp1Δ cells enlarge, but are unable to divide.

Next, we quantified the effect of deleting BEM3 and NRP1 on the diauxic shift using Optical

Density (OD) measurements of population growth in order to obtain growth curves for each
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strain (Figure 3.1b, d). The diauxic shift was clearly visible in the growth curves as a transition pe-

riod between two exponential growth phases with different growth rates. For technical reasons

(see Supplementary Figure S3.1), we used media containing a high glucose concentration (2%)

to quantify growth before the diauxic shift and a lower glucose concentration (0.1%) to quantify

growth after the diauxic shift. We extracted the growth rate during the exponential phase be-

fore and after the occurrence of the diauxic shift by calculating the slope of the linear portion of

the growth curve when plotted on a semi-log scale. These values were subsequently converted

into their corresponding doubling times (𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 and 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡). This analysis revealed that

bem3Δnrp1Δ populations have a significantly longer doubling time than the wild-type both be-

fore and after onset of the diauxic shift (Figure 3.1c, e). While it is expected that the overall fitness

defect of bem3Δnrp1Δ mutants will lead to longer doubling times both before and after the di-

auxic shift, we argue based on our microfluidic experiment (Figure 3.1A) that the physiological

cause that leads to a lower doubling time is different between the two conditions. Before the

diauxic shift, bem3Δnrp1Δ cells divide at a slower rate than the wild-type strain due to a defect

in polarity establishment which causes a longer 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡. In contrast, 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 is affected by

both the slower division rate and the higher death rate of bem3Δnrp1Δ cells as the polarity defect

becomes much more severe at the onset of the diauxic shift. In support of this idea, we found

that bem3Δnrp1Δ populations stop growing at a significantly lower OD than wild-type popula-

tions after the diauxic shift (ratio wild-type: bem3Δnrp1Δ = 2.25, Figure 3.1f), while both strains

enter the diauxic shift at approximately the same density (ratio wild-type: bem3Δnrp1Δ = 1.15,

Figure 3.1f). We therefore interpret these results as indications that the defects in polarity es-

tablishment caused by the deletion of BEM3 and NRP1makes the polarity network insensitive to

environmental cues that signal the onset of the diauxic shift. The loss of responsiveness to these

cues causes an inability to establish a polarity site when the physiological changes related to the

diauxic shift have taken place, leading to prolonged isotropic growth and an increase in cell size.

3.2.2. Recoupling of polarity establishment to sensing networks does not require

a complex environment

We sought to determine whether the environment is the decisive factor that controls the adap-

tive value of restoring the cellular response to the diauxic shift during evolution. To do this, we

took an experimental approach and evolved several parallel wild-type and bem3Δnrp1Δ popu-

lations in two frequently used set-ups for experimental evolution (Figure 3.2). In the first setup,

the batch culture, nutrient levels vary over time and cells experience periods of glucose deple-

tion several times throughout the experiment (Brauer et al., 2005; Gresham & Dunham, 2014).

Mutations that allow cells to correctly coordinate the physiological changes necessary to pass

through the diauxic shift with those that regulate polarity establishment are therefore expected

to be beneficial during evolution in a batch culture set-up, as this extends the overall number of

progeny that a cell can produce before each passage. In the second set-up, the glucose limited

continuous culture, nutrient concentrations remain constant after a steady state is reached and

growth is maintained at a constant rate (Brauer et al., 2005; Gresham & Dunham, 2014). These

constant environmental conditions have the consequence that cells do not induce the majority

of the cellular responses that are associated with the diauxic shift (Brauer et al., 2005). Thus, the

ability to perform diauxic growth appears as a dispensable trait during evolution in a continuous

culture. Based on the theoretical assumptions that traits that do not experience selective pres-

sure (1) tend to deteriorate and (2) are unlikely to fixmutations that improve their function during
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Figure 3.1. The bem3Δnrp1Δ mutation causes defects in pre- and post-diauxic growth. (a) Time-lapse

series of the diauxic shift. The wild-type and bem3Δnrp1Δ strain were subjected to a switch from 2% glucose

media to 3% ethanol media after 8 hours in 2% glucose media. The images show that while the wild-type

strain is able to resume growth, the bem3Δnrp1Δ cells increase in size without producing daughter cells.

Scale bars represent 10 µm. (b) Growth curves of a wild-type (blue) and the bem3Δnrp1Δmutant (black) when

grown in 2% glucose media. This data was used to obtain a measure for 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡. Red dots indicate the

point of diauxic shift, dashed lines represent the Standard Error of the Mean (SEM). (c) Doubling time of the

wild-type strain and the bem3Δnrp1Δ mutant during growth before the diauxic shift is entered (𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡).

(d) Growth curves of a wild-type (blue) and the bem3Δnrp1Δ mutant (black) when grown in 0.1% glucose

media. This data was used to obtain a measure for 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡. Red dots indicate the point of diauxic shift,

dashed lines represent the SEM. (e) Doubling time of thewild-type strain and the bem3Δnrp1Δmutant during

growth after passing through diauxic shift is entered (𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡). (f) Comparison of the OD at which the

bem3Δnrp1Δmutant and the wild-type strain enter the diauxic shift and their OD at stationary phase when

grown in YP + 0.1% glucose. The plot shows that while both strains enter diauxic shift at around the same

density, the final density of the populations differ. *p-value < 0.05, **p-value < 0.005, Welch’s t-test.

43



3

3. Pleiotropy drives evolutionary repair of the responsiveness of polarized cell growth in to

environmental cues

evolution, we expect restoration of diauxic growth by bem3Δnrp1Δ populations to emerge only

during batch culture evolution.
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Figure 3.2. Overviewof the scheme for experimental evolution. Apolaritymutant that displays sensitivity

to environmental stress is obtained after the deletion of the genes BEM3 and NRP1. To assess the role the

environment plays during the evolution of a network that is responsive to environmental signals, this mutant

is evolved in an environment in which the stress level fluctuates (batch culture) and an environment where

the stress level is constant (continuous culture).

We evolved a total of 14 bem3Δnrp1Δ populations and 2 wild-type populations in the glucose

limited continuous culture for 70 generations. The parameter 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 was used as a proxy for

adaptations that restore the polarity defect caused by the deletion of BEM3 andNRP1, but that do
not necessarily improve the ability of the polarity network to respond to cues that signal the on-

set of the diauxic shift. Alternatively, 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 was used as a proxy for adaptations that improve

the response of cells to the diauxic shift. The values of 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 and 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 of the evolved cell

lines were determined by reviving the evolved population from a frozen stock andmeasuring the

change in OD over time in media containing 2% and 0.1% glucose, respectively. This procedure

is the same as what was done to determine 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 and 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 for the ancestral wild-type

and bem3Δnrp1Δ populations (see Figures 3.1 1b, d and the section 3.4). Comparison of 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡

between the evolved populations and their ancestor (Figure 3.3a) revealed that all evolved popu-

lations had either a similar or lower value for 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 relative to their ancestor. In contrast, we

find that for 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 half of the evolved bem3Δnrp1Δ populations (7/14) had a lower doubling

time, while the other half (7/14) had a longer doubling time relative to their ancestor, indicating

that changes in diauxic growth do not affect fitness in a continuous culture. A similar trend for

𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 and 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 was visible for our two evolved wild-type populations. Taken together,

these observations support our initial view that a continuous culture selects for faster vegetative

growth, but not diauxic growth.

The finding that some of bem3Δnrp1Δ populations evolved in the continuous culture show

improvements in 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 could be explained by a possible interdependence of 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 and

𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡: improvements in 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 may be caused by mutations that increase the overall rate

of cell division and these mutations will therefore also lead to improvements in 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡. How-

ever, these mutations do not necessarily also resolve the high death rate of bem3Δnrp1Δ mu-

tants at the start of the diauxic shift (Figure 3.1a), which may be a major factor that determines
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Figure 3.3. Experimental evolution of bem3Δnrp1Δ mutants in a constant and variable environment.

(a) (Top) In a continuous culture, both nutrient concentration and cell density remain constant over time. (Bot-

tom) Scatter plot of 𝑇𝑃𝑅𝐸−𝑆ℎ𝑖𝑓𝑡 against 𝑇𝑃𝑂𝑆𝑇−𝑆ℎ𝑖𝑓𝑡 14 evolved bem3Δnrp1Δ lines and 2 wild-type populations

after 70 generations of evolution in a continuous culture. Dashed lines indicate the values of 𝑇𝑃𝑅𝐸−𝑆ℎ𝑖𝑓𝑡 and

𝑇𝑃𝑂𝑆𝑇−𝑆ℎ𝑖𝑓𝑡 of ancestral bem3Δnrp1Δ strain. Error bars show the SEM. (b) (Top) In a batch culture there are

periodic fluctuations over time in nutrient concentration and cell density. (Bottom) Scatter plot of 𝑇𝑃𝑅𝐸−𝑆ℎ𝑖𝑓𝑡
against 𝑇𝑃𝑂𝑆𝑇−𝑆ℎ𝑖𝑓𝑡 for 8 evolved bem3Δnrp1Δ lines and 2 wild-type lines after 300 generations of evolution

in a batch culture. Dashed lines indicate the values of 𝑇𝑃𝑅𝐸−𝑆ℎ𝑖𝑓𝑡 and 𝑇𝑃𝑂𝑆𝑇−𝑆ℎ𝑖𝑓𝑡 of ancestral bem3Δnrp1Δ
strain. Error bars show the SEM. (c) Time-lapse of evolved lines CCE1 and CCE2 (continuous culture) during a

sudden switch from 2% glucose media to 3% ethanol media (dashed red line). The images show that evolved

line CCE1 contains cells that have a response to this environmental change that is phenotypically similar to

the response of the wild-type strain. Evolved line CCE2 has a response that resembles the response of the

ancestral bem3Δnrp1Δ, but with a smaller increase in cell size (see Figure 3.1a). Scale bars represent 10 µm.
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𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡. To verify that a decrease in 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 relates to adaptations that resolve the high

death rate, we imaged cells from the evolved population with the lowest (fastest growing, CCE1)

and highest (slowest growing, CCE2) value for 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 during the diauxic shift (Figure 3.3c) us-

ing the same microfluidic set-up we used in Figure 3.1. In agreement with our expectations, the

results showed that the phenotype of CCE1 after switching to ethanol media was qualitatively

more similar to that of our ancestral wild-type strain and CCE1 cells were able to resume pro-

liferation after the diauxic shift. Alternatively, the phenotype of CCE2 was more similar to the

ancestral bem3Δnrp1Δ strain, as CCE2 cells enlarged and were frequently unable to divide after

the onset of the diauxic shift.

We evolved 8 bem3Δnrp1Δ and 2 wild-type populations in a batch culture with a daily pas-

saging procedure. We initially maintained the same number of generations for evolution as we

had done for the continuous culture (70 generations), but after assessing our proxies for fitness

we were unable to identify any significant changes in the values of 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 and 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 be-

tween the evolved populations and their ancestors (Supplementary Figure S3.2). We assumed

that this is due to the frequent population bottlenecks that occur during the passaging of the pop-

ulations, which can slow down the rate of adaptation by purging beneficial mutations from the

population (Wein & Dagan, 2019). We provide an estimate of the effect of population bottlenecks

on the fixation dynamics of beneficial mutations in Supplementary Section 3.5.1, which shows

that bottlenecks vastly increase the expected number of generations that are required before a

beneficial mutation that fixates in the population will emerge. To compensate for this effect of

population bottlenecks, we allowed our batch culture experiment to run for an additional 230

generations such that the total number of generations was 300.

We found that all evolved populations grew faster than their ancestors, both before and after

the diauxic shift (Figure 3.3b). The fact that we do not observe populations that evolve toward a

state where the doubling time after the diauxic shift becomes longer suggests that these path-

ways are inaccessible during evolution in a batch culture. Taken together, these results imply

that the environmental variability that exists in the batch culture imposes constraints on the di-

auxic growth pattern that can be attained during evolution, allowing only those where growth

on both nutrients is improved, while the stable environment of the continuous culture releases

some of these constrains. As a result, phenotypes that have evolved to perform well during the

diauxic shift, presumably through evolutionary repair of the polarity defects caused by deleting

BEM3 and NRP1, only reproducibly emerge in a batch culture. However, although the degree of

reproducibility is lower, similar phenotypes do frequently evolve in a continuous culture. This

indicates that evolutionary constraints imposed by the environment are not sufficient to explain

the restoration of the responsiveness of the polarity network to cues of the diauxic shift during

evolution.

3.2.3. Populations with a restored responsiveness to extracellular cues accumu-

late mutations in genes related to the sphingolipid synthesis pathway

To understand themolecular basis of the different adaptations of 𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡 and 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 we ob-

served in our continuous andbatch cultures, weperformedWholeGenomeSequencing (WGS) on

the 22 evolved bem3Δnrp1Δ lines and the 4 evolvedwild-type controls and compared them to the

genome of their wild-type ancestor (see section 3.4). We looked for patterns of parallel evolution

by restricting our analysis to genes that were mutated in at least 2 different populations evolved

in the same environment. This resulted in a total of 88 genes that acquired non-synonymous
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mutations or indels in 2 or more evolved populations (including the wild-type lines).

The most notable environment-specific mutations were the early stop codons in WHI2 that
frequently occurred in the populations evolved in the continuous culture: 12 out of 14 evolved

bem3Δnrp1Δ and both evolved wild-type controls had mutated WHI2. Disruptive mutations in

WHI2 have also been reported in other experimental evolution studies that used nutrient lim-

ited continuous cultures (Hong & Gresham, 2014; Kvitek & Sherlock, 2013) and these mutations

therefore likely provide a general advantage during adaptation to nutrient-limiting conditions.
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Figure 3.4. The mutational spectrum of different phenotypic subgroups that emerged after exper-

imental evolution of bem3Δnrp1Δ populations. The mutant specific mutations found in each gene for

evolved continuous culture lines that decreased their respiration rate, evolved continuous culture lines that

increased their respiration rate and evolved batch culture lines. Genes are grouped according to their cel-

lular process GO-term. All genes shown were only mutated in the bem3Δnrp1Δ populations and not in the

wild-type populations, with the exception of WHI2 and SWI1, which were also found to be mutated in the

wild-type populations evolved in the continuous culture.

Because we saw the same phenotype emerge in the batch culture and continuous culture

(populations that decreased 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡), we questioned whether the molecular basis of these

adaptations were similar. In total, 22 genes were mutated in at least 2 of the bem3Δnrp1Δ lines

evolved in each environment. We grouped these genes according to their Biological Process
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Gene Ontology (GO) annotation on the Saccharomyces Genome Database. This revealed that

populations evolved in a continuous culture had more mutations in genes involved in the stress

response, while populations from the batch culture had slightly more mutations in genes re-

lated to transcription and translation. We then split the evolved populations into two groups:

those that evolved to decrease 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 (7/14 populations of the continuous culture and 8/8

populations of the batch culture) and those that evolved to increase 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 (7/14 populations

of the continuous culture and 0/8 populations of the batch culture). Interestingly, populations

with a decreased 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 had more mutations in lipid metabolic genes than those that did

not decrease 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡. Of the 14 bem3Δnrp1Δ populations that were evolved in the contin-

uous culture, 6/7 populations with a decreased 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 had mutations in the IPT1, while we
only found mutations in this gene in 1/7 populations with an increased 𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡 (Figure 3.4). In

the batch culture populations, 2/8 had acquired mutations in IPT1, while 3/8 had mutations in

SUR1. Notably, Ipt1 acts directly downstream of Sur1 in the pathway for the synthesis of complex

sphingolipids (Dickson et al., 2006; Morimoto & Tani, 2015; Thevissen et al., 2000).

Based on this correlation we hypothesize that, after the deletion of Bem3 and Nrp1, the ro-

bustness of the polarity module during the diauxic shift can be (partially) restored by changes in

the lipid composition of the plasma membrane. Interestingly, this strategy appears to be dom-

inant for repairing the defect caused by the deletion of BEM3 and NRP1 regardless of whether
diauxic growth is part of the selective environment.

3.3. Discussion

The ability to respond to environmental cues is a crucial factor for the survival of organisms in

complex environments. For example, studies have indicated that pathogens increase the likeli-

hood of successfully infecting a host by adjusting their physiology to match the host’s circadian

rhythm (Kahl Lisa et al., 2022). Here, we used a genetically perturbed strain of S. cerevisiae to
investigate the contribution of the environment in shaping a polarity network that can translate

the extracellular signals for diauxic growth into an intracellular response. We show that the dele-

tion of BEM3 and NRP1 has previously unknown consequences for polarity establishment that

diminishes its capacity to respond to these extracellular signals and impedes the ability of cells

to successfully navigate through the diauxic shift. Which molecular mechanisms are affected by

the deletion of BEM3 and NRP1 in such a manner that it leads to the observed phenotype are

not addressed in this study. However, the results from several other studies that have looked

at the relationship between environmental stress and cell morphology allow us to formulate a

hypothesis on how the deletion of BEM3 and NRP1 causes the decoupling of cell polarity from
diauxic growth. The link between cell morphology and environmental stress is frequently pro-

posed to be a consequence of the loss of polarity of the actin cytoskeleton induced by stress

factors (Balguerie et al., 2002; Homoto & Izawa, 2018; Sivadon et al., 1995; Uesono et al., 2004).

Failure to repolarize the actin cytoskeleton following environmental stress, either due to the

severity of the stress conditions (Homoto & Izawa, 2018) or due to the loss of a genetic compo-

nent required for repolarization (Balguerie et al., 2002; Sivadon et al., 1995), results in enlarged

cells. The similarity of these hypertrophied cells under conditions of environmental stress to

the phenotype of bem3Δnrp1Δmutants we observe during a transition from glucose-containing

media to ethanol-containing media suggests they are caused by a defect in a similar pathway.

Indeed, the depletion of glucose, one of the hallmark cues for entry into the diauxic shift (Brauer

et al., 2005), has also been shown to cause the rapid and transient depolarization of actin in wild-
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type cells (Uesono et al., 2004; Vasicova et al., 2016). The repolarization of actin in the context of

glucose depletion depends on the activation of the respiratory metabolism (Uesono et al., 2004),

as cells with dysfunctional mitochondria do not repolarize actin (Uesono et al., 2004; Vasicova

et al., 2016). Thus, one possibility is that the deletion of BEM3 and NRP1 causes defects in respira-
tion. However, we consider this unlikely based on our observation that bem3Δnrp1Δ cells are still

able to grow, although only isotropically, in media containing ethanol as the only carbon source.

In addition, if mitochondrial dysfunction were the cause of the observed phenotype, mutations

related to mitochondrial function would be expected to arise during our evolution experiments,

but this was not the case.

Instead, our results suggest that the defects in diauxic growth of bem3Δnrp1Δ mutants are

suppressed by mutations in the sphingolipid synthesis pathway. Interestingly, the genes IPT1
and SUR1) that were frequently mutated in evolved bem3Δnrp1Δ populations with a (partially)

restored ability to pass through the diauxic shift are also known to suppress the sensitivities to

stress and starvation that arise after the deletion of genes that encode for the amphiphysin-like

proteins Rvs161 and Rvs167 (Balguerie et al., 2002; Desfarges et al., 1993). Rvs161 and Rvs167

have a direct role in regulating the polarity of the actin cytoskeleton (Amberg et al., 1995; Breton

& Aigle, 1998; Munn et al., 1995; Sivadon et al., 1995; Sivadon et al., 1997) and their loss causes

defects in the depolarization and repolarization dynamics of actin during stress in an equivalent

manner as has been described for glucose stress in the section above (Bauer et al., 1993; Crouzet

et al., 1991; Sivadon et al., 1995). Suppression of these defects through the deletion of IPT1 or
SUR1 has been reported to act by preventing the full depolymerization of actin under stressful

conditions (Balguerie et al., 2002), thereby relieving some of the consequences of an inability

to repolarize actin. Extrapolating these findings to bem3Δnrp1Δ mutants, this implies that the

evolutionary repair of diauxic growth in bem3Δnrp1Δ populations acts by directly modulating

actin dynamics using sphingolipid synthesis as a control knob. Similarly, the pleiotropic effects

resulting from the deletion BEM3 and NRP1 are therefore likely a consequence of the dual role of
actin in polarized growth and stress response pathways (Ho & Bretscher, 2001; Leadsham et al.,

2010; Smethurst et al., 2014) that couples polarity establishment to the diauxic shift.

It remains unclearwhy the consequences of deletingBEM3 andNRP1 are different for the actin
dynamics required during vegetative growth and the actin dynamics under stressed conditions.

Much alike to what happens under conditions of stress, the actin cytoskeleton must depolarize

and repolarize during the cell cycle to switch between modes of isotropic and polarized growth

(Ahn et al., 2001; Bi & Park, 2012; Lew & Reed, 1993; Pruyne & Bretscher, 2000; M. D. Welch

et al., 1994). However, our results show that polarized growth during the vegetative cell cycle is

not strongly affected by the deletion of BEM3 and NRP1, while polarized growth after the stress
response of the diauxic shift is strongly diminished. This suggests that cell cycle-related polariza-

tion of actin may be regulated by a different pathway than the polarization of actin during the

stress response. We find that, despite that theymay be regulated by different pathways, the abil-

ity to performpolarized growth in both contexts can be restored bymutations in genes related to

sphingolipid synthesis. Surprisingly, the fixation of these mutations that restore both vegetative

and diauxic growth does not strongly depend on the complexity of the environment. Instead, we

frequently see them emerge in populations evolved under constant conditions where improved

diauxic growth appears to have no selective benefit, as is supported by our result that nearly all

populations evolved in the continuous culture inactivateWHI2, which encodes for a protein that
initiates the stress response during nutrient depletion (Kaida et al., 2002; Radcliffe et al., 1997;
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Saul et al., 1985; Sudbery et al., 1980). Interestingly, a recent study investigating the adaptive re-

sponse of Escherichia coli to different temperature fluctuation regimes also found that the same

mutations frequently evolve in parallel in a manner that does not depend on the dynamics of

the selective environment (Lambros et al., 2021). A large-scale phenotypic assay revealed that

the evolved strains generally became closer to the phenotype of their ancestor under a large

number of conditions, leading to the hypothesis that an innate evolutionary response of an or-

ganism in a stressful environment is to evolve in such a way that their physiology resembles that

of their (fitter) ancestor in unstressed conditions. Overall our results agree with this hypothesis,

as we find that genetically perturbed cells frequently evolve to bettermatch the cellular response

of their ancestor, even in unseen environmental conditions. Possible explanations for why the

fixation of mutations that restore the cellular response to conditions beyond those experienced

during adaptation would be preferred are that (1) these mutations might occur more frequently

in the population because they constitutemutational hotspots or (2) their fixation is purely driven

by the fitness benefit that they confer to vegetative growth and the restored diauxic growth is

merely a side effect of a pleiotropic interaction network. In conclusion, our results demonstrate

that the evolution of interaction networks that can sense and respond to different environmen-

tal signals should not always be interpreted as adaptive, but may instead be a consequence of a

strong integration between different interaction networks regulating different cellular functions.

Such an integration of different interaction networks may also be able to explain observations

of the seemingly purposeless emergence of phenotypic plasticity, the ability of an organism to

adjust its phenotype to its environment, during evolution in constant environmental conditions

(Fraebel et al., 2020).

3.4. Methods

3.4.1. Yeast strains and media preparation

All strains used in this study are derived from the W303 background and are MATa haploid cells.
We used yLL132a as our wild-type strain and yLL143a as our bem3Δnrp1Δ strain (Laan et al.,

2015), which has the same genetic background as yLL132a, but with BEM3 and NRP1 replaced
with, respectively, the natMX4 (clonNAT-Nourseothricin resistance) and hphMX4 (Hygromycin B

resistance) cassettes. For batch culture evolution experiments, standard richmedia (10 g/L Yeast

Extract, 20 g/L Peptone and 20 g/L Dextrose) was used and was prepared by dissolving 50 g/L

from a premixed batch of ingredients (Sigma-Aldrich) in H2O. For chemostat evolution experi-

ments the same premix was used, but supplemented with 19 g/L extra Yeast Extract and 9.5 g/L

extra Peptone to obtain a final dextrose concentration of 1 g/L. A total of 0.1 mg/mL Ampicillin

was added to the chemostat media as a safeguard against bacterial contamination. Microscopy

experiments were performed in Synthetic Complete (SC) media prepared from Complete Sup-

plement Mixture without amino acids, riboflavin and folic acid (750 mg/L), Yeast Nitrogen Base

(6.9 g/L) and either Dextrose (2% w/v) or Ethanol (3% v/v) as a carbon source. All media was filter

sterilized to avoid degradation of components during autoclaving.

3.4.2. Experimental Evolution of Continuous Cultures

Multiplexed Chemostat Array Set-Up

We performed our evolution experiments in a dextrose limited chemostat environment by set-

ting up a multiplexed chemostat array of 16 cultures according to the protocol from Miller et al.

(2013). YP 0.1%D media was filter sterilized directly into a 10 L glass carboy. During the run,
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fresh media was provided to the cultures from this carboy by using a peristaltic pump fitted

with Marprene tubing. The correlation between rotation speed and media flow rate was em-

pirically determined by measuring the effluent volume at different rotation speeds. Aquarium

pumps were used tomaintain the positive pressure inside the culture chambers required for the

removal of excess culture volume, to keep the cultures aerated and mixed. To minimize evapo-

ration and maintain sterility, air from the pumps was first routed through gas washing bottles

and 0.45 µm PFTE filters before entering the culture chambers. The temperature was regulated

at 30°C using heat bocks.

Initialization of Multiplexed Arrays

We initialized our multiplexed chemostat arrays by allowing the culture chambers to fill with

media until the volume exceeded 20 mL. We dissolved cells from a glycerol stock in YP 0.1 %D

media and used to inoculate the cultures by aseptically injecting 4mL into each culture chamber.

In total, 14 bem3Δnrp1Δ cultures and 2 wild-type cultures were inoculated using this procedure.

With the peristaltic pump turned off and the aquarium pumps turned on, the bem3Δnrp1Δ cul-

tures were left to grow for 4 days and the wild-type cultures were left to grow for 2 days until

they reached saturation (batch phase growth). After the cultures reached saturation, the culture

volume was set at 20±1 mL while performing the zero time point sampling.

Sampling Regimen

All cultures were sampled twice a week. Samples were taken by replacing the effluent bottles

with sterile sampling bottles and collecting the effluent on ice over a period of approximately 2

hours. Directly after sampling, 1mL of each collected sample wasmixed with 500 µL glycerol and

stored at -80°C. Optical Density (OD) measurements at 600 nm were taken of each sample in 10

mm plastic cuvettes using a photospectrometer (Nanodrop 2000C). When necessary, samples

were diluted with YP to obtain a final OD of between 0.1-1.5. All samples were diluted in the

same media used for blanking the photospectrometer. Effluent volumes were measured daily

with a graduated cylinder from which the volume could be read with 0.5 ml precision. On days

that sampling took place, the effluent volume of samples was determined after the standard

procedure for sampling (glycerol stocks and OD measurements).

Calculation of Dilution Rates and Generation Times

We calculated the dilution rate D of each sample in our multiplexed chemostat array from the

effluent volume using the following formula:

𝐷 =
𝑉𝐸𝑓𝑓

𝑡 ⋅ 𝑉𝐶𝑢𝑙𝑡
. (3.1)

Here, 𝑉𝐸𝑓𝑓 is the measured effluent volume, 𝑡 is the time that has passed since the last sam-

pling and 𝑉𝐶𝑢𝑙𝑡 is the culture volume. At steady state, the growth rate equals the dilution rate

(Gresham & Dunham, 2014), allowing the number of generations 𝐺 that have passed to be cal-

culated by:

𝐺 = 𝑡 ⋅ 𝐷
ln 2

. (3.2)
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Experimental Evolution of Batch Cultures

Batch culture evolution experiments were started with 10 bem3Δnrp1Δ and 2 wild-type cultures.

The cultureswere derived froma singlebem3Δnrp1Δ anda singlewild-type liquid culture initiated

froma glycerol stock and grown to saturation for 2 days in YP 2%D in a roller drum (set at 40 RPM)

at 30°C. After the cultures reached saturation, 10 µL of each starter culturewas diluted into 10mL

of fresh YP 2 %D and were placed back into the roller drum. The cultures were diluted by 10 µL

into 10mL of fresh YP 2 %D every 24±2 h. After each dilution, the OD at 600 nm of the remaining

culturewasmeasured using the sameprocedure as described above for the chemostat evolution

experiment. Because batch cultures involve frequent population bottlenecks that can reduce

genetic variation and possibly purge beneficial mutations (Gresham & Dunham, 2014; Gresham

& Hong, 2014), it might take longer for an adaptive mutation to settle in the population. To

compensate for this effect, the number of generations that the populations were evolved in a

batch culture setting was increased to 300 generations (an additional 230 generations compared

to the populations evolved in a continuous culture).

Growth Curve Measurements

Growth curves were obtained by measurements using a plate reader (Tecan Infinite 200 Pro).

Cells were inoculated from a glycerol stock in YP 0.1 %D liquid media and grown to saturation

for 2 days in a roller drum at 30°C. On the day of the measurement, the saturated cultures were

diluted 1000X into fresh YP 2 %D tomeasure the pre-diauxic doubling time (𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡) or fresh YP

0.1 %D to measure the post-diauxic doubling time (𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡). 100 µL of this culture was pipet-

ted into each well of a sterile 96-well plate (NuncTMEdge 2.0, Thermo ScientificTM) with the edge

moats filled with 1.7 mL of sterile H2O. Each plate containedmultiple technical replicates of each

sample. As a control for contamination and to allow for background subtraction for downstream

processing, 8 wells were filled with blank medium. Measurements were taken during incubation

at 30°C in the plate reader using the following protocol: First, the cells were shaken for 1000 s

(linear shaking, 1 mm amplitude) without measurement. After this, the absorbance of each well

was measured every 7 min with intermittent shaking (260 s, linear, 1 mm amplitude) for 48 h.

Growth Parameter Calculations

Doubling times for pre-diauxic (𝑇𝑃𝑅𝐸−𝑠ℎ𝑖𝑓 𝑡) and an post-diauxic (𝑇𝑃𝑂𝑆𝑇−𝑠ℎ𝑖𝑓 𝑡) growth were extracted

from the growth curvemeasurement in YP 2%D and YP 0.1 %D, respectively. First, themeasured

OD values were blanked using the time average value of one of the wells containing blankmedia.

Then, the data was converted to semi-log data by taking the natural logarithm of the blanked

OD values. A home written MATLAB script was used to fit a line to the linear portion of the semi-

log data to obtain the growth rate during pre-diauxic or post-diauxic growth (figure S3.1). These

growth rates were converted into doubling times using the following relation:

𝑇𝑑 = ln 2
𝜇

,

where 𝑇𝑑 is the doubling time corresponding to the growth rate 𝜇 obtained from the slope of

the linear fit

3.4.3. Microscopy & Microfluidics

Cells were grown to log phase in SC media containing 2% dextrose. Clumps of cells were dis-

sociated prior to imaging by sonicating (Q500 Sonicator, QSonica) in a sealed Eppendorf tube
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using a cup horn at 70% amplitude for 2 minutes (cycle of 30 seconds pulse on, 15 seconds pulse

off). After sonication, each sample was diluted to the same optical density in fresh Synthetic

Complete media containing 2% dextrose. Cells were trapped in a microfluidic culture chamber

(CellASIC ONIX Y04C-02, Merck – Millipore) after flushing the culture chambers with fresh media

for 20 minutes using a pressure of 8 psi. Brightfield images were taken with a Nikon Eclipse

Ti-E inverted Microscope using a 60x objective (Plan Apo λ 60X oil, NA: 1.40) with 1 minute inter-

vals. During imaging, cells were maintained in a constant flow of media using a pressure of 1 psi.

Cells were subjected to a media switch by changing from an inlet with SC media containing 2%

dextrose to an inlet with SC media with 3% ethanol after 8 hours of imaging.

3.4.4. DNA extraction, Illumina library preparation & Whole Genome Sequencing

We extracted genomic DNA from liquid cultures grown for two overnights for each of the 16

chemostat samples, 10 serial dilution samples and a non-evolved yLL132a ancestor with the

MasterPure YeastDNAPurificationKit (Epicentre,Madison,WI, USA) following themanufacturer’s

protocol. We included a RNase A (Qiagen, Hilden, Germany) treatment step in the protocol and

collected DNA in a final volume up to 30 µL H2O. We pooled up to three extractions per sample

using the Genomic DNA clean & Concentrator kit (Zymo Research, Irvine, CA, USA), following

the supplied protocol. We eluted DNA in a final volume of 30 µL. We assessed DNA quality by

0.8 % agarose gel electrophoresis and quantity by fluorometry using a Qubit 4.0 Fluorometer

(Invitrogen, Carlsbad, CA, USA). Samples were individually barcoded and pooled into a single

library with the NEB Next Ultra DNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA)

and sequenced on a HiSeq machine (Illumina, San Diego, CA, USA) by Novogene (Bejing, China).

3.4.5. WGS Data analysis

We first checked raw paired-end reads (150 bp) for quality with the FASTQC toolkit (version

0.11.7).1 We removed low quality ends (Quality scores <20; and first 9 bases of all reads), and

removed duplicates with the FastX toolkit (version 0.0.14).2 We downloaded the R64-1-1 S. cer-

ervisiae genome from the Saccharomyces GenomeDatabase (SGD)3 and used it as our reference.

We indexed the reference genome with the Burrows-Wheeler Aligner [BWA; version 0.7.17; (Li &

Durbin, 2010)], and SAMtools [version 1.8; (Li & Durbin, 2009; Li, 2011)], and generated a dictio-

nary with Picard (version 2.18.5).4 We mapped sequences from all samples individually to the

reference with BWA-MEM sorted and indexed mapped reads into a BAM file with SAMtools. We

performed multisample SNP calling and additional indexing with SAMtools and BCFtools (ver-

sion 1.8). We plotted and checked statistics, e.g., TS/TV and quality of sites and read depth, with

BCFtools. These statistics were used to filter out SNPs and Indels with low quality sites (QUAL >

30), low read depth (DP > 20), and variants in close proximity to gaps (SnpGAP 10). We annotated

the VCF file with snpEff [version 4.3T; (Cingolani et al., 2012)] with R64- 1-1.86. We then retrieved

variants (SNPs and indels) of interest through comparison of variants between the reference

strain, the ancestor strains, and the evolved strains. We excluded variants that were different

between R64 and all our W303 samples, as these merely display differences between the two

genetic backgrounds [see e.g., Ralser et al. (2012)]. Synonymous variants, variants in non-coding

regions, and stop retained variants were excluded. Mutations in telomeric regions and in Long

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://hannonlab.cshl.edu/fastx_toolkit/
3http://www.yeastgenome.org/ (accessed September 2018)
4https://broadinstitute.github.io/picard/
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Terminal Repeats (LTRs) were excluded from analysis due to the natural variation that occurs in

the genomic sequence of these regions. To find causative mutations, we looked for genes that

mutated in at least two evolved lines, excluding those that appeared only in the mutant line(s)

from one environment and the wild-type line(s) of the other environment. From the resulting list

of genes, genes corresponding to dubious or uncharacterized Open Reading Frames (ORFs) were

removed according to their description on SGD. Two genes (RPS29B and ECM33) had acquired the
same mutation across all 22 parallel evolved bem3Δnrp1Δ lines that sweeped the population,

suggesting that these mutations were acquired in the ancestor before the different cell lines

were split. Although these mutations might have some fitness benefit in the bem3Δnrp1Δ back-

ground, they do not explain the adaptation we observe during our evolution experiments and

we therefore excluded them from further analysis. We used the OncoPrint function from the

ComplexHeatmap package (Gu et al., 2016) available in R (version 4.2.3) to visualize the relevant

mutations in our evolved lines as a heatmap.
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3.5. Supplement

3.5.1. Estimation of relative fixation times

Serial dilution approaches for experimental evolution often include severe population bottle-

necks which affect the fixation time of beneficial mutations. Here, we provide an estimate of

how the fixation time of a beneficial mutation in a batch culture population relates to the fixation

time of the samemutation in a continuous culture. The total fixation time 𝑇𝑓𝑖𝑥 can be subdivided

in the following two components:

𝑇𝑓𝑖𝑥 = 𝑇𝑚 + 𝑇𝑠, (3.3)

where 𝑇𝑚 is the time it takes for amutation to emerge that will eventually fix and 𝑇𝑠 is the time

it takes for this mutation to sweep the population. For the classical case of a large population of

fixed size, it has been derived that the fixation probability of a beneficial mutation is proportional

to the selective coefficient 𝑠 (Haldane, 1927). Because population size is large (𝑁𝑐 ∼ 109) and
remains roughly constant in a continuous culture, we use this result to approximate the fixation

probability of mutations for samples evolved in the chemostat:

𝑃 (𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡) ≈ 2𝑠. (3.4)

Which is valid for small values of 𝑠 (𝑠 ≪ 1). In the batch culture evolved samples, population

size does not remain constant, but rather fluctuates during each serial passaging between the

values 𝑁0 (∼ 106) and 𝑁𝑓 (∼ 109). Here, 𝑁𝑓 is the number of individuals just before reseeding

the population in fresh media and𝑁0 is the number of individuals just after reseeding, such that

𝑁0 = 𝐷 ⋅ 𝑁𝑓 with 𝐷 the dilution factor. Wahl et al. (2002) have shown that periodic bottlenecks

caused by serial passaging reduce the fixation probability by a factor 𝐷[ln𝐷]2 , such that the

fixation probability in a batch culture can be approximated as:

𝑃 (𝑏𝑎𝑡𝑐ℎ) ≈ 2𝑠 ⋅𝐷[ln𝐷]2 (3.5)

If we now calculate the relative fixation probabilities between the two environment using the

𝐷 = 0.001 dilution factor we have used in our experiments, we find:

𝑃 (𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡)
𝑃 (𝑏𝑎𝑡𝑐ℎ)

≈ 2𝑠
2𝑠 ⋅𝐷[ln𝐷]2

= 1
𝐷[ln𝐷]2

≈ 21. (3.6)

Thus, for an equal rate of beneficial mutations in both conditions we can expect that it will take

approximately 21 fold more generations for a mutation to emerge that eventually fixes in the

batch culture relative to the continuous culture. We can therefore write that:

𝑇𝑚,𝑏𝑎𝑡𝑐ℎ ≈ 21 ⋅ 𝑇𝑚,𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡. (3.7)

For the sweeping times (in generations) of mutations that fix in the batch culture, we use the

approximation for large populations that are evolved through serial passaging given by Campos

and Wahl (2009):

𝑇𝑠,𝑏𝑎𝑡𝑐ℎ ≈ 2∕𝑠 ln𝑁0. (3.8)

In the continuous culture the change in mutant frequency can be modelled as a Moran pro-

cess of a well-mixed population, for which the fixation time is of the order (Antal & Scheuring,

2006; M Altrock & Traulsen, 2009; Tkadlec et al., 2019):
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𝑇𝑠,𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡 ≈ (1 + 2
𝑠
) ln𝑁𝑐 ≈

2
𝑠
ln𝑁𝑐 , (3.9)

where we have used that 𝑠 ≪ 1 for the last approximation on the right hand side. Using this

equation, we can calculate the ratio of seeping times in the two environments:

𝑇𝑠,𝑏𝑎𝑡𝑐ℎ

𝑇𝑠,𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡
≈

2∕𝑠 ln𝑁0

2∕𝑠 ln𝑁𝑐
=

ln𝑁0

ln𝑁𝑐
= 2

3
, (3.10)

where we have used that 𝑁0 = 106 and 𝑁𝑐 = 109. Taken together, we see that for the total

fixation time in the batch culture we obtain:

𝑇𝑓𝑖𝑥,𝑏𝑎𝑡𝑐ℎ = 𝑇𝑚,𝑏𝑎𝑡𝑐ℎ + 𝑇𝑠,𝑏𝑎𝑡𝑐ℎ ≈ 21 ⋅ 𝑇𝑚,𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡 +
2
3
𝑇𝑠,𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡. (3.11)

Thus, the difference in fixation times of beneficial mutations in the batch culture and chemo-

stat is dominated by the larger number of mutations that need to be sampled in a batch culture

before a mutation emerges that fixates in the population.

To roughly estimate the expected number of generations it would take for the for a beneficial

mutation to reach fixation in the chemostat, we consider a mutation that has a selection coeffi-

cient 𝑠 = 0.1. For comparison, this mutation would decrease the doubling time of a bem3Δnrp1Δ
mutant from 𝑇𝑑 = 110 to 𝑇𝑑 = 100 minutes. The time for a de novo generated mutation with this

selection coefficient to arise in the population can be estimated by:

𝑇𝑚,𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡 =
1

𝑁𝑐 ⋅ 𝑈𝐵 ⋅ 𝜌(𝑠) ⋅ 𝑃 (𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡)
≈ 1

𝑁𝑐 ⋅ 𝑈𝐵 ⋅ 𝜌(𝑠) ⋅ 2𝑠
. (3.12)

Here, 𝑈𝐵 is the rate at which beneficial mutations occur per cell division and 𝜌(𝑠) is the prob-
ability that a beneficial mutation has a selection coefficient of s or higher. To determine 𝜌(𝑠), we
assume that the distribution of fitness effects follows an exponential distribution (Barlukova &

Rouzine, 2021; Good et al., 2012; Kassen & Bataillon, 2006; Orr, 2003) with a mean of 𝜎 = 0.01:

𝜌(𝑠) = ∫

∞

𝑠

1
𝜎
𝑒−𝑠∕𝜎 (3.13)

Taking the beneficial mutation rate to be of the order 𝑈𝐵 ∼ 10−5 per cell per generation, we
obtain the result that the expected number of generations it will take for a beneficial mutation

to occur that escapes drift is

𝑇𝑚,𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡 ∼ 11 generations. (3.14)

The time it takes for this mutation to sweep the population can be calculated using equation

3.9, which for 𝑠 = 0.1 gives:

𝑇𝑠,𝑐ℎ𝑒𝑚𝑜𝑠𝑡𝑎𝑡 ∼ 207 generations. (3.15)

These results show that while we expect that beneficial mutations arise after only few gener-

ations in the chemostat, these mutations sweep through the population at a relatively slow rate.

Converting the values of 𝑇𝑚 and 𝑇𝑠 of the chemostat to the expected values for the batch culture

using equation 3.11 results in:

𝑇𝑚,𝑏𝑎𝑡𝑐ℎ ∼ 231 generations (3.16)
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and

𝑇𝑠,𝑏𝑎𝑡𝑐ℎ ∼ 138 generations. (3.17)

Thus, the situation is reversed in the batch culture: beneficial mutations emerge only spar-

ingly due to the loss of genetic variation caused by the population bottlenecks, but once they

emerge these mutations sweep through the population faster than in a continuous culture. This

result is in agreement with our finding that bem3Δnrp1Δ populations evolved through serial dilu-

tions show no significant difference in their phenotype compared to their ancestor after 70 gen-

erations. Comparing the total fixation times to the true number of generations that we evolved

the bem3Δnrp1Δ populations in the two conditions indicates that beneficial mutations in the

batch culture (evolved for 300 generations, expected 𝑇𝑓𝑖𝑥 = 369 generations) are expected to

be closer to fixation than beneficial mutations in the chemostat (evolved for 70 generations, ex-

pected 𝑇𝑓𝑖𝑥 = 218 generations). An important remark is that in our calculation of the fixation

times, we have assumed that beneficial mutations are rare enough that they only emerge in

succession and never simultaneously, thereby ignoring clonal interference (Desai & Fisher, 2007;

Desai et al., 2007; Gerrish & Lenski, 1998). Clonal interference is likely to play a larger role in

continuous culture than in batch cultures due to the larger amount of genetic variation and may

further reduce the speed of evolution.

Estimation of population sizes

The approximate population sizes were determined from the optical density (OD600) measure-

ments taken of the growing populations in the two environments. These measurements show

that the OD600 is∼ 3 for populations growing in the chemostat and∼ 10 for populations growing
in the batch culture just before passaging. Using the approximation that a population with an

OD600 of 1 contains of the order 107 cells/ml (Day et al., 2004) and the total culture volumes of

20 ml for the chemostat and 10 ml for the batch culture, we find that both the chemostat and

batch culture populations contain of the order of 109 individuals.
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3.5.2. Supplementary figures
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Figure S3.1. Lowglucosemedia induces earlier diauxic shift, allowing better quantification of growth after the

diauxic shift. (a,b)When grownonhigh glucose (2%)media, most of the biomass is produced by fermentation.

(c,d) Lowering the glucose concentration to 0.1% induces an earlier diauxic shift and improves visualization

andquantification of growth after the shift. Dashed lines indicate the period of exponential growth for growth

in YP+2% glucose (blue) and for growth in YP+0.1% glucose (red). Although the diauxic shift phase is clearly

visible in both cases as a temporary cessation of growth (indicated by the red dots), the high OD at which the

diauxic shift occurs in 2% glucose media makes it unsuitable to quantify growth beyond this point due to the

possible non-linear relationship between cell density and absorbance at high OD values. Conversely, in 0.1%

glucose media the diauxic shift occurs at a relatively low density, decreasing the amount of signal relative

to the noise during pre-diauxic growth. Therefore, population doubling times before passage through the

diauxic shift (𝑇𝑃𝑅𝐸−𝑆ℎ𝑖𝑓𝑡) were determined from growth data in 2% glucosemedia, while population doubling

times after passage through the diauxic shift (𝑇𝑃𝑂𝑆𝑇−𝑆ℎ𝑖𝑓𝑡) were obtained from growth data 0.1% glucose

media.
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Figure S3.2. Scatter plot of 𝑇𝑃𝑅𝐸−𝑆ℎ𝑖𝑓𝑡 vs 𝑇𝑃𝑂𝑆𝑇−𝑆ℎ𝑖𝑓𝑡 after 70 generations in a batch culture. After 70 gen-

erations of evolution in a batch culture the evolved cell lines were still phenotypically highly similar to their

ancestral strains. This was the case for both the bem3Δnrp1Δmutants and the wildtype strains.
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Figure S3.3. Growth curves of selected evolved lines CCE1, CCE2 and SDE1. (a,b) Bulkmeasurements in (a) 2%

dextrose and (b) 0.1% dextrose media of selected evolved mutant lines CCE1 and CCE2 from the continuous

culture experiment together with the mutant ancestor strain. (c,d) Bulk measurements in 2% dextrose (c)

and 0.1% dextrose (d) media selected evolved mutant line SDE1 from the batch culture experiment. Dashed

lines display the SEM.
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Chapter 4

A police officer finds a drunk man late at night crawling on his hands and knees on a
sidewalk under a streetlight. Questioned, the drunk man tells her he’s looking for his

wallet. When the officer asks if he’s sure that he dropped the wallet here, the man replies
that he thinks he more likely dropped it across the street. Then why are you looking over
here? asks the befuddled officer. Because the light’s better here, explains the drunk man.

— David H. Freedman

Science is a bit like the joke about the drunk who is looking under a lamppost for a key
that he has lost on the other side of the street, because that’s where the light is.

It has no other choice.

— Noam Chomsky
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4.1. Introduction

x

Saturated transposonanalysis in yeast as aone-

step method to quantify the fitness effects of

gene disruptions on a genome-wide Scale

Abstract Transposon insertion site sequencing (TIS) is an extremely powerful tool that has

greatly advanced our knowledge of functional genomics. However, studies using TIS often focus

on gene essentiality and neglect possibly interesting but subtle differences in the importance of

genes for fitness. As shown by other studies, expanding the analysis of TIS data to allow a

quantitative estimate of fitness has important applications in genetics and evolutionary biology.

Here, we present a method to estimate the fitness of gene disruption mutants on a quantitative

level using data obtained from a TIS screen developed for the yeast Saccharomyces cerevisiae
called SATAY. We show that using the average read count per transposon insertion site

provides a metric for fitness that is robust across biological and technical replicate experiments.

Importantly, the ability to resolve differences between gene disruption mutants with low fitness

crucially depends on the inclusion of insertion sites that are not captured by the sequencing

data to determine the mean read count. In contrast, increasing the sequencing depth is an

ineffective strategy to improve the resolution of the fitness estimates, indicating that SATAY

datasets typically reside far from the condition where every insertion site is represented by at

least one read. While our method generates reproducible results across replicate SATAY

datasets, the obtained fitness distribution differs substantially from those obtained using other

techniques. Currently, it is unclear whether these inconsistencies caused by technical or

biological differences. Our findings underscore the importance of exploring the variability in

fitness distributions across different genetic backgrounds and environments.

4.1. Introduction

Measuring the phenotype of gene deletion mutants has been instrumental to our understand-

ing of cell and evolutionary biology. In particular, the relation between genotype and fitness is

a key element to move from descriptive to predictive evolutionary models. This mapping from

genotype to fitness is typically conceptualized in the form of a fitness landscape. Importantly, the

degree to which evolution can be predicted depends on the structure of this fitness landscape.

Theoretical work has shown that the ruggedness of this landscape (that is, the number of fitness

peaks) is an important feature that controls the predictability of evolutionary pathways (Bank et

al., 2016; Franke et al., 2011; S. Kauffman&Levin, 1987; S. A. Kauffman&Weinberger, 1989). How-

ever, the construction of empirical fitness landscapes remains challenging. Traditional methods

to determine fitness are based on growth measurements of reconstructed mutants harbouring

the mutation of interest. These approaches are generally low-throughput, allowing only a hand-

ful of mutations to be assessed each time (Chou et al., 2011; Hietpas et al., 2011; Lozovsky et al.,

2009; Mira et al., 2015; Weinreich, 2006). As the field of evolutionary biology is moving towards a

more holistic view, there has been an increased demand in the past decades for techniques that

allow evaluation of a large number of mutants in a single assay (De Visser & Krug, 2014; de Visser
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et al., 2018).

While complete fitness maps at the resolution of single point mutations are still experimen-

tally infeasible (Johnson et al., 2023), considerable progress has beenmade inmethods to analyze

fitness in large libraries of gene disruption or deletion mutants. One of the earliest examples of

these high-throughput methods is the Synthetic Genetic Array (SGA) which was developed for

yeast (Baryshnikova, Costanzo, Dixon, et al., 2010; Baryshnikova, Costanzo, Kim, et al., 2010; Yan

Tong & Boone, 2006) and for bacteria (Butland et al., 2008). A striking achievement of the SGA

was the construction of a global map of genetic interactions between non-essential genes of the

Saccharomyces cerevisiae genome (Costanzo et al., 2010; Costanzo et al., 2016; Usaj et al., 2017).

However, the automated SGA workflow relies on robotics for library construction and fitness as-

says (Baryshnikova, Costanzo, Dixon, et al., 2010; Giaever & Nislow, 2014; Kuzmin et al., 2021),

which profoundly reduces its general accessibility due to associated costs. As a consequence,

SGA has only been used sparingly and the majority of the reported fitness values are derived

from a single mutant library. This is a crucial limitation of SGA, as it is known that fitness effects

can strongly depend on genetic background. For example, a large scale study by van Leeuwen

et al., 2020 showed that an astonishing 17% of the annotated essential genes of budding yeast

were found to be dispensable in a different genetic context. Thus, methods to estimate the fit-

ness effect of gene disruptions on a genomewide scale should ideally be easily applicable across

different genetic backgrounds and environmental conditions.

Newer andmore flexible techniques for high-throughput fitnessmeasurements are based on

pooled fitness assays, followed by next-generation sequencing to detect changes in mutant fre-

quencies (Smith et al., 2009). In Barcode sequencing (Bar-seq), mutant genomes are tagged with

a unique nucleotide sequence that allows their identification after sequencing (D. G. Robinson

et al., 2014). Read counts are then typically converted into a metric for fitness by calculating the

log-frequency slope of each barcode measured between two timepoints (Johnson et al., 2019;

Venkataram et al., 2016; Wetmore et al., 2015). Although the pooled assay of Bar-seq greatly

facilitates the fitness assessment, it has the same issues as SGA with regard to the laborious

steps required for mutant library construction (Wetmore et al., 2015). In addition, the number of

mutants that can be assessed in a single Bar-seq experiment is relatively low (typically between

1,000-5,000) due to the limited availability of unique barcodes (Johnson et al., 2019; Venkataram

et al., 2016; Wetmore et al., 2015). An alternative to Bar-seq that allows simple de-novo genera-
tion ofmutant libraries and is not limited by barcode availability is transposon insertion sequenc-

ing (TIS). TISmethods utilize the ability of transposons to randomly translocate between different

molecules of DNA to generate a library of gene disruptionmutants (Cain et al., 2020; van Opijnen

et al., 2009; van Opijnen & Camilli, 2013). Typically, transposon mutagenesis is efficient enough

to produce libraries consisting of more than 100,000 mutants. A single library will often contain

multiple mutants carrying disruptions at different locations in the same gene (Michel et al., 2017;

Rifat et al., 2021; van Opijnen et al., 2009). Asmutants are identified based on the the transposon

insertion site by sequencing the transposon-genome junction, the genomic library preparation

and bioinformatics analysis of TIS data are relatively complex. However, protocols have been

developed that combine TIS with Bar-seq to simplify these steps (Wetmore et al., 2015).

Despite its experimental flexibility, TIS has only scarcely been used to generate quantitative

fitnessmaps of gene disruptions on a global scale (vanOpijnen et al., 2009; vanOpijnen & Camilli,

2012; van Opijnen et al., 2014). In essence, the approach of estimating gene disruption fitness

from read count frequencies is similar for TIS and Bar-seq. (van Opijnen et al., 2009) have indeed
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used the log-fold change in read count frequency to quantify fitness from TIS data of Streptococ-
cus pneumoniae with results that were in good agreement with measured growth rate of gene

deletion strains. However, methods developed to estimate fitness for one version of TIS can in

general not directly be applied to other TIS variants for the following two reasons. First, different

variants of TIS may suffer from their own type of insertional bias that depends on the specific

type of transposon system that is used (Chao et al., 2016; Green et al., 2012). The ubiquity of

insertion biases in TIS is becoming increasingly clear, as deep analyses are uncovering biases for

transposons with a previously assumed uniform insertion profile (DeJesus et al., 2017; Green et

al., 2012). Second, some transposons used in TIS can only insert at specific nucleotide sequences

(Goodman et al., 2009; van Opijnen et al., 2009), while others can insert anywhere in the genome

(Biery, 2000; Michel et al., 2017; van Opijnen & Levin, 2020). This difference in accessible inser-

tion sites can lead to marked differences in the expected complexity (the number of different

mutants present) of the TIS library. As a consequence, the typical number of reads acquired per

mutant can vary substantially between different TIS protocols.

Non-
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Figure 4.1. Illustration of the aim of this chapter. While existing methods for analyzing TIS data primarily

categorize genes as either essential or non-essential based on transposon insertion density, our goal is to

establish a method that quantifies the fitness effect of losing a non-essential gene on a more gradual scale.

Recently, a TIS method named SAturated Transposon Analysis in Yeast (SATAY) has been de-

veloped for the yeast Saccharomyces cerevisiae. In their original paper, Michel et al., 2017 used

SATAY to identify changes in the fitness contribution of genes in different genetic and environ-

mental contexts through a one-on-one comparison of their transposon insertion density. While

effective, this approach can only identify fitness changes for the same gene across datasets, and

not for different genes within the same dataset. In addition, it neglects possible subtle differ-

ences that are reflected in read count but not in the insertion density. Here, we describe an

approach to generate quantitative fitness maps from read count data obtained from a single

SATAY dataset (Figure 4.1) which is based on models frequently used to analyze count data from

RNA-seq experiments (D. G. Robinson et al., 2014). We demonstrate that including transposon

insertions that are not visible through sequencing due to low abundance is crucial for resolving

fitness differences in the lower end of the spectrum. Furthermore, we show that our method

generates reproducible results across technical and biological replicate experiments, but has

substantial differences with fitness and genetic interaction maps produced with Bar-seq and

SGA in other studies.
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4.2. Results

4.2.1. Bias correction methods

Insertions near gene edges are less likely to result in loss of gene function

The read counts in TIS datasets are generally expected to correlate with mutant fitness, as fitter

mutants will increase in frequency during the growth assay. However, in practice this correla-

tion between fitness and read counts becomes obscured due to noise derived from stochastic

growth trajectories and population sampling. An effective way to reduce the influence of these

biological and technical noise sources on the fitness estimates is to average over several repli-

cate measurements of the same mutant. Studies using TIS often assume transposon insertions

to result in complete loss of gene function (vanOpijnen et al., 2009). Under this assumption, read

counts obtained from different insertion sites within the same gene can be considered replicate

measurements of the same gene deletion mutant and their averaging is justified. However, in

other TIS systems it has been found that insertions near the 5’ and 3’ end of a gene are less likely

complete loss of gene function (Jacobs et al., 2003). Similarly, studies using SATAY have reported

that genes considered to be essential can sometimes tolerate insertions close to the gene ends

while central regions remain empty (Michel et al., 2017). If this higher tolerance to insertions

near gene ends is a general phenomenon affecting all genes, averaging the read counts of the

entire coding region of a gene would create a bias in the fitness estimate.

We examined whether there exists a general trend of higher read counts for insertions close

to gene edges that can be observed on a genome-wide level. To do so, we segmented the open

reading frames of all annotated genes in the genome into 20 equally sized bins, such that each

bin amounts to 5% of the coding sequence (Figure 4.2a). For each segment, we then calculated

the average number of reads per transposon insertion that mapped to the respective segment.

For genes annotated as non-essential, we observed that insertions within the first and last 10%

of a gene tend to acquiremore reads than insertions in the central 80% of the gene, although this

effect is weak (Figure 4.2b). However, this non-uniformity was clearly visible for genes annotated

as essential (Figure 4.2c). This difference between essential and non-essential genes is expected,

as the fitness difference between a complete and partial knock-out should typically be larger

for essential genes. Interestingly, the read count profile of essential genes shows that the bias

towards higher read counts is strongest for insertions close to the stop codon. This likely reflects

the mechanism for gene inactivation of the MiniDS transposon, which is based on creating gene

truncations by introducing several early stop codons in the open reading frame (Michel et al.,

2017) . Thus, insertions that lead to truncations close to the C-terminal part of the protein will

often still allow the protein to (partially) retain its functionality.

Since insertions that do not lead to full gene knockouts invalidate the averaging over the read

counts of different insertion sites, we excluded all insertions that map within the first or last 10%

of a coding region. However, even after removal of these insertion sites we find that the aver-

age read count distributions for essential and non-essential genes still overlap to some extent

(Figure 4.2d). This indicates that using only the average read count as a metric for fitness does

not allow us to distinguish essential from non-essential genes. A possible cause of this effect is

that insertions in the essential regions of a gene remain unobserved because the corresponding

mutants are lost before they can be sequenced. Neglecting these unobserved insertions means

that our fitness estimates would be based completely on insertion sites that, for biological or

technical reasons, have a higher read count than the typical insertion site. As a result, the fitness
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estimates become biased towards higher values and the ability to resolve fitness differences for

low-fitness mutants is lost. In support of the idea that unobserved insertion sites play a role in

this bias, we find that the consecutive span of insertion sites that appear unoccupied tend to

be longer for essential genes (Figure 4.2e). Thus, essential genes are therefore ideally identified

using other analysis methods, for example those based on the insertion-free span (DeJesus et al.,

2013; Griffin et al., 2011).

Correcting for the preferential insertion of MiniDS at pericentromeric sites

Mutants that are rare after the fitness assay, either because they grow poorly or have a high

death rate, are likely to be lost during the sampling steps leading up to sequencing. Hence, the

insertion sites associated with these mutants remain undiscovered in the final SATAY dataset

(Figure 4.3a). While this loss of rare transposon mutants forms the basis for the identification of

essential genes, it can distort the relation between mutant fitness and the read counts per inser-

tion site. Specifically, including only insertion events that are observable from the sequencing

data increases the susceptibility of the fitness estimate to gene disruption mutants that behave

differently than average. In addition, it puts the lower boundary for the average read count at 1,

which severely reduces the number of distinct fitness levels that can be resolved for lower fitness

values.

One approach to reduce these distortions is to include the undiscovered insertion sites in

the fitness estimate as insertion sites with a read count of zero. This makes the fitness value of a

gene dependent on the combination of the average read count per insertion site and the fraction

of insertion sites that yield a read count larger than zero. To determine the number of insertion

sites with zero reads for each gene, we use the global insertion density post-library expansion to

infer an expected insertion rate. However, an issue with this approach is that the probability of

insertion of the MiniDS transposon in SATAY depends on the distance of the insertion site to the

centromeric regions of the chromosome. Because the MiniDS transposon preferentially inserts

close to its excision site, the experimental design of SATAY has been reported to yield higher

transposondensities in pericentromeric regionswhen compared tomore distal regions. To verify

the existence this centromere bias in our insertion data, we plotted the cumulative insertion

count as a function of varying distances to the centromere (Figure 4.3b). This analysis indeed

revealed an enrichment of transposons in genomic regions that are closer than approximately

200 kb from a centromere. We confirmed that this effect is not due to a lower density of essential

genes compared to non-essential genes in pericentromeric regions (Figure S4.1). Thus, if left

unaddressed, this bias would lead to underestimation of the expected insertion rate for genes

close to centromeres.

Ideally, a bias-corrected curve for the transposon insertion rate should follow the trend of

the empirical data, while smoothing out any high frequency fluctuations. This is because such

fluctuations are likely caused by the specific genetic content of the different genomic regions.

We assessed two methods to model and correct for the centromeric bias: (1) a power-law and

(2) a 4𝑡ℎ order polynomial (Figure 4.3c). While the plot of cumulative insertion count against

distance seems to approach a power-law relationship, inspection of the residuals revealed that

the fit systematically over- and underestimates different sections of the curve (Figure 4.3c and d).

The increased flexibility of a 4𝑡ℎ order polynomial provided a better approximation for distances

smaller than 200 kb, but began to fluctuate wildly for larger distances (Figure 4.3c and d).

Based on these findings, we decided to use the polynomial function to model the changes
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Figure 4.2. Transposon insertions near the start and end of a gene are less likely to generate a gene

knockout. (a) To identify a possible dependence of the read counts on the position of a transposon inser-

tion within a gene, we split the open reading frame of each gene in 20 equally sized segments. Each segment

therefore covers 5% of the coding region of a gene. For every segment we calculated the average read count

per insertion site to obtain a profile along the coding region. (b) Profile of the read counts against the po-

sition within the coding sequence, averaged over all non-essential genes. The profile shows that insertions

near the start and stop codon of a gene obtain a slightly higher read count than insertions in the central 80%

of the coding region. (c) This effect is visibly stronger for genes that are annotated as essential, indicating

that insertions near the gene edges do not cause a full gene knockout. (d) The read count per insertion aver-

aged over the central 80% of the coding region for essential and non-essential genes. While essential genes

typically have a lower average read count per insertion site than non-essential genes, their distributions still

overlap. (e) Histogram of the largest span that appears free of insertions, expressed as a fraction of the

gene’s length. The distribution for essential genes has a tail towards longer insertion free spans (up to the

full length of the coding region), while the spans are typically shorter for non-essential genes.
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in the insertion rate up to distances 200 kb from the centromere while assuming a constant in-

sertion rate beyond 200 kb. This assumption is based on the idea that the centromeric bias is a

‘memoryless’ feature, such that the insertion rate no longer depends on the distance to the cen-

tromere beyond a certain point. Furthermore, we note that the insertion rate at 200 kb inferred

from the polynomial fit closely matched the insertion rate obtained when fitting a linear curve

to the portion of the curve for distances of 200 kb and larger (Figure 4.3b and d). By taking the

derivative of the polynomial fit with respect to the distance from the centromere, we obtain the

global trend of changes in the insertion rate. Importantly, this estimate does not capture the local

fluctuations in insertion rate, which are likely caused by the specific properties of genes at differ-

ent positions along the chromosome. Overall, the insertion rate varied between approximately

0.12 bp−1 for regions close to the centromere to 0.067 bp−1 for more distal regions. Because

centromere bias should not play a significant role for regions very far from the centromere, we

artificially flattened the fitted curve by setting a constant rate for positions located more than

200 kb away from the centromere. In summary, we use the following equation to determine a

bias corrected insertion rate 𝜆:

𝜆(𝑟𝑐) =

⎧

⎪

⎨

⎪

⎩

𝑎0 + 𝑎1𝑟𝑐 + 𝑎2𝑟2𝑐 + 𝑎3𝑟3𝑐 , for 𝑟𝑐 < 2 ⋅ 105

𝜆(𝑟𝑐 = 2 ⋅ 105), for 𝑟𝑐 ≥ 2 ⋅ 105
(4.1)

Where 𝑟𝑐 is the distance from the centromere in base pair and 𝑎0−3 are the coefficients ob-

tained from least squares polynomial fit. Because we assume that the insertion rate remains

approximately constant over the span of a gene’s coding sequence, the expected number of

insertions for a gene 𝑔 is calculated by multiplying the insertion rate with gene size:

𝐸(𝑋𝑔) = 𝜆(𝑟𝑐−𝑔) ⋅ 𝐿𝑔 , (4.2)

with 𝑟𝑐−𝑔 the distance from gene 𝑔 to the centromere measured from the gene’s center and

𝐿𝑔 the length of the gene in basepairs. The number of zero read count sites is then estimated

to be equal to the difference between 𝐸(𝑋𝑔) and the number of observed insertions 𝑂(𝑋𝑔) when
𝐸(𝑋𝑔) > 𝑂(𝑋𝑔) (Figure 4.3a). When the number of observed insertions exceeds their expected

value, we conclude that no unobserved insertions sites exist for that gene. We find that this

procedure is able to correct for the skew in the expected number of insertion sites that produce

zero reads for genes close to the centromere (Figure S4.2).

To determine whether our model of the expected insertion rate was effective at identifying

the larger fraction of undiscovered insertion sites in annotated essential genes, we plotted the

difference in the expected and observed insertion counts for all genes (Figure 4.3e). Here, we

consider this difference to reflect the number of transposon insertions that remain undiscov-

ered after sequencing. It can be seen that for nearly all essential genes, the expected insertion

density is higher than what is found from the sequencing data. Alternatively, for non-essential

genes, the difference between expected and observed insertion counts follows a Gaussian-like

distribution around zero that partially overlaps with the distribution for essential genes. Thus,

including undiscovered insertion sites provides additional information on essentialty, although

not sufficient to distinguish essential from non-essential genes. Nevertheless, our results show

that including these unobserved insertion sites to estimate fitness is crucial to resolve differences

between low-fitness mutants.
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Figure 4.3. Correcting for the insertion bias near centromeres to determine the expected transposon

insertion rate of genes. (a) The goal of calculating the expected insertion rate is to estimate the number

of insertion sites that produce no reads because the mutants were lost during the sampling of the popula-

tion due to their low abundance. (b) The empirical insertion rate depends on the distance of a gene to the

centromere. To visualize this bias we determined the number of transposons that mapped within a distance

𝑟𝑐 from the chromosome centromere for different values of 𝑟𝑐 , as done previously by Michel et al. (2017).

The plots of the cumulative insertions for the two halves of each individual chromosome are shown as gray

lines, the averaged curve is shown as a blue line. The non-zero intercept of a linear fit of the portion of the

average curve for distances 𝑟𝑐 >300 kb demonstrates the existence of the centromere bias in our dataset.

(c) The averaged cumulative plot for distances 𝑅𝑐 <400 kb was fitted with an exponential function and a 4th

order polynomial. While the power law function does approximate the shape of the curve, it systematically

under- and overfits different portions of the curve. Overall, the 4th order polynomial better approximates

the curve. (d) The approximated empirical insertion rate by the fitted power law and polynomial functions.

The plot shows that while the approximation by the polynomial function is better for 𝑟𝑐 <200 kb, the poly-
nomial starts to oscillate for larger distances. (e) The difference between the expected (E(X)) and observed

(O(X)) transposon insertion rates for essential and non-essential genes. While the average difference is close

to zero for non-essential genes, it becomes positive for essential genes.
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4.2.2. Estimating fitness from read counts in SATAY

Calculating mean mutant fitness

Estimating the fitness effect of gene disruptions based on SATAY data relies on the relation be-

tween the observed read counts and mutant abundance. Specifically, fitter mutants proliferate

more rapidly than less fitmutants, increase their relative abundance in the population and finally

produce more read counts. The challenge of determining fitness from SATAY data can therefore

be formulated as estimating the fitness parameter 𝜇𝑔 , which we will refer to as the growth rate,

using the observed read counts 𝑦𝑔,𝑖 at the insertion location 𝑖 within gene 𝑔. While we will refer

to and treat 𝜇𝑔 as a growth rate, we note that the interpretation of 𝜇𝑔 is significantly different

from the conventional meaning of a growth rate in biology. Typically, growth rate is measured

as the rate of population expansion during the exponential growth phase. Hence, by proposing a

relation between growth rate and read counts we implicitly assume that the population remains

in the exponential phase for the complete duration of the fitness assay. In reality, the length of

the different growth phases (lag, exponential, stationary) can vary substantially between genetic

backgrounds. All these variations will impact mutant abundance and are implicitly incorporated

in the parameter 𝜇𝑔 rather than being explicitly modeled. However, we treat 𝜇𝑔 as the rate at

which the mutant would have grown if it had remained in the exponential phase. Importantly,

we assume that the abundance of a mutant with fitness 𝜇𝑔 increases over time according to the

Malthusian growth model:

𝑁𝑔,𝑖(𝑡) = 𝑁𝑔,𝑖(𝑡0) ⋅ 2𝜇𝑔 𝑡. (4.3)

Here,𝑁𝑔,𝑖(𝑡) denotes the number of mutant cells that carry a transposon insertion at position

𝑖 in gene 𝑔 at time 𝑡. We use the notation 𝜇𝑔 rather than 𝜇𝑔,𝑖 to emphasize that each gene deletion

mutant can be characterized by a single growth rate. Mutant abundance after a growth period 𝑡
is inferred from the number of reads that map to the location 𝑦𝑔,𝑖. The partial distortion caused
by the sampling and PCR amplification steps before sequencing yields an additional noise term

𝜖 in the relationship between mutant abundance and read count:

𝑦𝑔,𝑖 = 𝑁𝑔,𝑖 ± 𝜖 = 𝑁𝑔,𝑖(𝑡0) ⋅ 2𝜇𝑔 𝑡 ± 𝜖. (4.4)

Since read count values are limited to non-negative integers, we expect the distribution of 𝑦𝑔,𝑖
of a gene 𝑔 to be Poisson-like. TheMaximum Likelihood Estimator (MLE) of a Poisson distribution

is equal to the sample mean, giving:

�̂�𝑔 =
1
𝑛𝑔

∑

𝑖∈𝑔
𝑦𝑔,𝑖. (4.5)

Where 𝑛𝑔 is the total number of transposons that aremapped to gene 𝑔 and �̂�𝑔 is the MLE esti-

mator of the read counts 𝑦𝑔 that would be obtained for the gene deletion mutant in the absence

of noise. We emphasize that �̂�𝑔 will only be the MLE estimator of 𝑦𝑔 if it is ensured that all 𝑦𝑔,𝑖 in
equation 4.5 are different realisations of sampling the same mutant with deleted gene 𝑔. Using
this estimator for 𝑦𝑔 , we can rewrite equation 4.4 to get the following expression for 𝜇𝑔 :

𝜇𝑔 =
log2(�̂�𝑔)

𝑡
. (4.6)
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Here, we have omitted the term log2(𝑁𝑔,𝑖(𝑡0)) that would appear in equation 4.6 based on the
assumption that the likelihood of multiple transposons inserting into the same genomic location

is low, such that 𝑁𝑔,𝑖(𝑡0) = 1 and log2(𝑁𝑔,𝑖(𝑡0)) = 0.
To be able to compare the fitness values obtained from different experimental repetitions,

possibly with different growth times, the growth ratesmust be scaled to that of the non-mutated

ancestral strain. As other studies have shown that the majority of gene deletions have only a

minor effect on fitness, we take the median of the distribution of growth rates to represent the

fitness of the ancestral strain:

𝑤𝑔 =
𝜇𝑔

𝜇𝑟𝑒𝑓
=

log2(�̂�𝑔)
𝜇𝑟𝑒𝑓

,with 𝜇𝑟𝑒𝑓 = median[log2(�̂�𝑔)], (4.7)

with𝑤𝑔 the scaled fitness value of a mutant with gene 𝑔 deleted. The additional benefit of the
expression shown in equation 4.7 is that it does not depend on time. Thus, our fitness estimate

depends only on the average read count per insertion site.

Notice that for some genes the fitness value can be negative. These genes contain an excess

of zero read count sites, resulting in an average read count value �̂�𝑔 smaller than one. Because

many insertion mutants are lost during the sampling steps of SATAY, a negative fitness value is

not necessarily caused by a higher death rate of the gene deletion mutant. Instead, it should be

interpreted tomean that the low effective growth rate of themutant is so low that it is frequently

lost from the population after the sampling steps. As such, the abundance of genes that are

ascribed a negative fitness value will depend on the size of the population bottleneck and the

difference in growth rate between the fastest and slowest growing mutants.

Variance of the fitness estimates

The identification of fitness differences that are statistically significant requires a method to esti-

mate the uncertainty of the found fitness values. In the previous section, we proposed that the

distribution of read counts obtained from insertions in the same gene (𝑦𝑔,𝑖) is Poisson-like. How-
ever, other studies have shown that the variance in read counts from independent replicates are

generally overdispersed compared to the Poisson distribution (Anders & Huber, 2010; Limdi &

Baym, 2023). This overdispersion is caused by biological noise that is superimposed the sequenc-

ing noise. Thus, if insertions mapping to different sites within the same gene represent different

biological replicates, we would expect to observe this overdispersion in our read counts. We

tested for overdispersion by plotting the average read count per insertion site against the vari-

ance for all genes (Figure 4.4c). This mean-variance relationship revealed that our data indeed

displayed overdispersion compared to a Poisson model. To account for this overdispersion, we

decided to use a Negative Binomial tomodel count noise, which is frequently used in the analysis

of RNA-seq data (Love et al., 2014; M. D. Robinson et al., 2010; M. D. Robinson & Smyth, 2007a,

2007b; Zhang et al., 2013). We used the following parameterization of the Negative Binomial

which relates its mean and variance through the overdispersion parameter 𝛼:

⎧

⎪

⎨

⎪

⎩

𝐸(𝑌𝑔) = 𝜇𝑔 .

𝑉 𝑎𝑟(𝑌𝑔) = 𝜎2
𝑔 = 𝜇𝑔 + 𝛼𝜇2

𝑔 .
(4.8)

In this equation, 𝛼 regulates the degree of overdispersion relative to the Poisson model: as 𝛼
shrinks to 0, our model becomes equivalent to a Poisson. Hence, the term 𝛼𝜇2

𝑔 can conveniently

be interpreted as the variance due to biological noise that is added to the sampling noise.
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Figure 4.4. The steps of the procedure to calculate fitness from transposon insertion data. (a) First, the

expected number of insertion events is calculated for each gene, using the global insertion profile to correct

for the centromere bias. The expected number of insertions is then compared to the observed number of

insertions to determine the number of sites that have an insertion but produce no reads. These sites are

included as sites that have zero read counts. (b) After adding the zero read count sites, outliers are removed

using the range between the 5th and 95th percentiles of the data. (c) Finally, the mean and variance of the

read counts at different insertion sites are used to determine the average and uncertainty, respectively, of

the fitness of a gene deletion mutant. To provide a robust robust estimate for the variance, information is

shared between genes by fitting the global mean-variance relationship with an overdispersed Poissonmodel.

The resulting fit allows us to determine the variance based on the mean read count of a gene based on the

assumption that this mean-variance relationship is a property of the dataset.
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To estimate 𝛼 we assumed that (1) it can be estimated independently from the distribution

mean and (2) that all genes in a single dataset share the same value for 𝛼. Our assumption that

𝛼 and 𝜇 can be determined independently is justified by the fact that our fitness estimates are

based on a single library and all read counts are therefore conditional on the same sequencing

depth. Under these conditions, the MLE estimator for 𝜇 will always be the sample mean, regard-

less of the value of 𝛼. We use the following regression equation to estimate 𝛼 using Ordinary

Least Squares (OLS) regression of the empirical mean-variance relationship:

(𝑦𝑔,𝑖 − �̂�𝑔)2 − �̂�𝑔
�̂�𝑔

= 𝛼�̂�𝑔 . (4.9)

Where the value of the estimator �̂�𝑔 is found using equation 4.5. An example of the resulting

fit for themean-variance relationship obtainedwith this regressionmodel is shown in Figure 4.4c.

To account for the possibility that, for biological reasons, some genes have a higher variance than

what is found when using the trended dispersion fit, we take the maximum of each genes indi-

vidual sample variance and the variance obtained from equation 4.8 to prevent underestimation

of the true variance:

Var(𝑌𝑔) = max
(

𝜎2
𝑔,𝑡𝑟𝑒𝑛𝑑 , 𝜎

2
𝑔,𝑠𝑎𝑚𝑝𝑙𝑒

)

. (4.10)

4.2.3. Reproducibility of the fitness estimates

Fitness values are reproducible across replicate SATAY experiments

An important requirement for the applicability of SATAY for global fitness maps of gene disrup-

tion mutants is that the fitness estimates are reproducible between replicates of the same ge-

netic background. To test this robustness, we created 11 replicate SATAY datasets using a wild

type strain of Saccharomyces cerevisiae from the W303 background. All 11 datasets are derived

from the same wild-type transformed with a plasmid carrying the machinery to induce transpo-

sonmutagenesis (Michel et al., 2017; Michel et al., 2019), but were subsequently split at different

steps of the experimental procedure (Figure 4.6). Specifically, from the resulting transformation

plate four colonies were picked (indicated as replicates B1-B4 in Figure 4.5) and used to generate

four independentmutant libraries. For replicates B1 andB2, we sequenced themutant library ob-

tained after library expansion respectively six times (replicates B1_T1-T6) and three times (repli-

cates B2_T1-T3) (Figure 4.5). We refer to datasets obtained from individual colonies on the trans-

formation plate as biological replicates, as the difference between these libraries are (although

not exclusively) caused by differences in population composition and randombirth/death events

during library expansion. Alternatively, datasets obtained by re-sequencing the same library sev-

eral times are referred to as technical replicates, as these exclusively contain the noise caused

by random sampling during the sequencing process. Thus, this should allow us to distinguish

the relative contribution of biological noise from the technical noise that results from limited

sequencing of the samples.

To determine the reproducibility of our fitness estimates obtained from SATAY datasets using

the procedure described in the previous sections, we compared the fitness values for each non-

essential gene obtained from different technical (B1_T1 vs. B1_T2) and biological replicates (B1

vs. B2). We excluded genes for which the expected number of transposon insertions was less

than five (𝐸(𝑋) < 5) on the basis that we have too little information from these genes to reliably

estimate fitness. The results in Figure 4.6 show that fitness values are well correlated between
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Figure 4.5. Overview of the experimental procedure used to determine the reproducibility of the

fitness values across different replicate experiments. Biologial replicates B1-B4 are different clones of

a single wild-type strain transformed with plasmid pBK549. For two of the biological replicates (B1 and B2),

the extracted genomic DNA was sampled and sequenced multiple times, yielding the technical replicates

B1_T1-6 and B2_T1-3.

technical replicates (𝜌 = 0.97, Figure 4.6a) and biological replicates (𝜌 = 0.91, Figure 4.6c), although
the variance appears slightly higher between biological replicates.

In addition to a strong correlation of the fitness values between replicates, we furthermore

find that for all samples the Distribution of Fitness Effects (DFE) contains a single peak with a

skewed tail with a skew towards lower fitness values (4.6b and e). This is in agreement with the

expected shape of the DFE when advantageous mutations are rare and most mutations have

neutral or deleterious effects. We therefore conclude that fitness estimates basedon read counts

from SATAY datasets are reproducible across replicates of the same genetic background.

Fitness estimates correlate poorly with estimates based on the Yeast Gene Dele-

tion collection

Although we find that the fitness estimates strongly correlate between replicate experiments

(Figure 4.6), we wanted to investigate whether we would be able to reproduce the fitness values

and epistatic interactions reported by other studies. Of particular interest for this purpose is

the study by Qian et al., 2012, as they used Bar-seq to determine the fitness effects of gene

disruptions. While fitness estimates are determined from read counts in both Bar-seq and SATAY,

we need to account for the slight difference in the definition of fitness to compare our results to

the results of Qian et al., 2012. Specifically, Qian et al., 2012 use the following definition:

𝑤𝑔 =
(

𝑃 ′𝑃𝑤𝑡

𝑃𝑃 ′
𝑤𝑡

)1∕𝑡

. (4.11)

Where 𝑃 ′ and 𝑃 ′
𝑤𝑡 are the mutant and wild-type frequencies, respectively, at the start of the

competition experiment, 𝑃 and 𝑃𝑤𝑡 are their frequencies at the end and 𝑡 is the number of gen-
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Figure 4.6. Fitness estimates from SATAY are reproducible across replicate experiments. (a) The es-

timated fitness effect of gene disruptions for all genes of technical replicate 1 plotted against its estimated

value in technical replicate 2. The identity lined (red dashed line) is shown as a reference for perfect corre-

lation between the two replicates. (b) The fitness distributions of technical replicate 1 (top) and technical

replicate 2 (bottom). Essential genes are represented by gray transparent bars. (c) Same plot as in (a), but for

two biological replicates. (d) The fitness distributions of biological replicate 1 (top) and biological replicate 2

(bottom). Annotations are the same as in (b).

82



4

4.2. Results

erations over which the competition is evaluated. We therefore converted our fitness estimates

to the same scale by setting 𝑃 equal to �̂�𝑔 (equation 4.2), 𝑃𝑤𝑡 equal to median[�̂�𝑔] and both primed

variables equal to 1. The number of generations spent in library expansion is estimated to be

approximately 10. Our adjusted fitness equation therefore becomes:

𝑤𝑔 =
( �̂�𝑔
median[�̂�𝑔]

)1∕10

. (4.12)

Figure 4.7a shows that there is a very poor correlation between the fitness values obtained

by the two methods. In particular, the DFE obtained by Qian et al., 2012 is much more centered

around neutral fitness effects (that is, a fitness value of 1) and contains less spread compared to

theDFE obtained fromSATAY. Thus, many genes thatwould be considered to have a near-neutral

fitness cost when deleted based on the data by Qian et al., 2012 are classified as deleterious in

our fitness estimates from SATAY. These differences indicate that the fitness values obtained

from SATAY datasets may be condition specific and cannot be generalized without further con-

siderations of the experimental design.

Despite the low correlation with the data from Qian et al., 2012, we wanted to examine if

the fitness values obtained from SATAY could nevertheless be used to identify known epistatic

interactions between genes. To this end, we compared the fitness values obtained from a wild-

type strain with those from a bem3Δ mutant (Figure 4.7b). Interestingly, we do observe more

variation between these two samples than we see for biological replicates of the same genetic

backgrounds (Figure 4.6). In theory, genes that interact with BEM3 will lie further away from the

identity line than those that do not, since their fitness effect will either be suppressed (positive

epistasis) or aggravated (negative epistasis) in the bem3Δ genetic background relative to their

effect in the wild-type background. We annotated the positive and negative genetic interactors

of BEM3 that have been identified by an SGA screen (Costanzo et al., 2016) in Figure 4.7b to

see if we could identify any correlation between the distance of the datapoint from the identity

line and its annotation as a genetic interactor. Note that although a different metric is used to

calculate fitness (colony size), this SGA screen makes use of the same collection of gene deletion

mutants (Giaever & Nislow, 2014) as Qian et al., 2012 to screen for genetic interactions. We find

that most annotated genetic interactors do not deviate more from the identity line than other,

non-interacting, genes and are therefore not clearly identifiable. Hence, we would not be able

to recover all of the genetic interactions of BEM3 reported by Costanzo et al., 2016 if we would

base our analysis solely on the fitness values we obtain through our analysis of SATAY datasets.

Therefore, similar to what we found for the fitness values obtained by different methods, the

ability to predict epistatic interactions using the method for fitness estimation from SATAY data

used here is either poor or inconsistent with other datasets.

4.2.4. Fitness resolution does not improve with increasing sequencing depth

While our fitness estimates are substantially different from those presented by Qian et al., 2012

and Costanzo et al., 2016, our results in Figure 4.6 demonstrate that they exhibit minimal vari-

ation across replicate SATAY datasets. However, some applications may have specific require-

ments for the level of uncertainty in the fitness estimates. For example, if one wishes to resolve

subtle differences in fitness it is desirable to design the experiment such that the highest possi-

ble accuracy is obtained. In these cases, it is useful to know how the experimental design can be

modified to improve the accuracy of the fitness estimates. Intuitively, a simple way to improve
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Figure 4.7. The fitness values obtained from SATAY datasets only weakly correlate with the values

reported by other studies. (a) Plot of the fitness values of gene deletion mutants reported by Qian et al.,

2012 against the fitness values obtained from a SATAY dataset in this study. The top and side panels show

the DFE densities. The dashed line represents the identity line. (b) Plot of the fitness values of gene deletion

mutants generated using SATAY in a bem3Δ genetic background against the fitness values of the same gene

deletion mutants generated in a wild-type (WT) genetic background (both from this study). Positive and

negative genetic interactors of BEM3, as annotated by Costanzo et al., 2016, are shown as green and red

datapoints, respectively.

the accuracy of the fitness estimates would be by increasing the sequencing depth. Specifically,

deeper sequencing should allow better resolution of deleterious fitness effects (Limdi & Baym,

2023), as low-abundance mutants are often lost when sampling the population. As sequencing

depth increases, an important point is where all insertions are represented by at least one read.

We refer to this as the saturation point of sequencing. When sequencing saturation is reached,

the information on mutant fitness is completely contained in the read counts and should no

longer depend on the insertion density, as all unique insertion sites have been identified.

We attempted to determine the point of sequencing saturation for SATAY libraries bymerging

the datasets of technical replicates B1_T1-6 (Figure 4.8a). Because these technical replicates are

resamplings of the same DNA sample, their merging results in a dataset that is equivalent to

a deeper sequencing of the sample in a single sequencing run. To estimate which portion of

this merged dataset needs to be sampled in order to obtain at least one read count for each

unique transposon insertion event, we computationally sampled from thismerged dataset using

a hypergeometric model. Figure 4.8b shows how the number of mapped transposon insertions

changes as the number of sampled reads increases. The rate at which new transposon insertions

are found slightly decreases when sampling more reads. However, even with the exceptionally

high sequencing depth of the entire dataset (approximately 100million reads), we donot observe

evident signs of saturation. This is also reflected by the fact that the median read count per

transposon barely increases as the sequencing depth increases (4.8b,c), which indicates that the

majority of insertion sites are represented by a relatively small number of reads. The inability

to reach the saturation point limits the benefit of acquiring additional reads for the accuracy

of fitness estimation. As is shown in Figure 4.8d, there is no clear improvement in the relative

squared error of the mean of our fitness estimates when using datasets with a higher total read

count. Although saturation may be reached for even further increased sequencing depth, we
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consider going beyond 100 million reads impractical for any general application. We therefore

conclude that deeper sequencing of samples is an ineffective strategy to improve the resolution

of the fitness estimates.
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Figure 4.8. Increasing sequencing depth does not improve the accuracy of fitness estimate. (a) The ef-

fect of sequencing depth on the accuracy of the fitness estimates was determined by pooling the transposon

insertion data of the six technical replicates B1_T1-B1_T6 and randomly sampling a subset of 𝑛 reads without
replacement from this pooled dataset. (b) The number of observed independent transposon insertions (red)

and the average and median read count per insertion site (blue) as a function of the number of sampled

reads. (c) The read count distribution for varying levels of the sequencing depth. The distribution has been

cut off at a maximum value of 20×103 reads/transposon. (d) The distribution of the relative standard error

of the fitness estimates across different genes for different levels of sequencing depth.

4.3. Discussion

We developed a method to quantify the fitness of gene deletion mutants based on data from

the transposon mutagenesis screen SATAY. Our approach differs from other methods that de-

termine fitness from pooled assays in that our estimates are based onmeasurements of a single

timepoint rather than the log-frequency change between two successive timepoints. Estimating

fitness from a single timepoint required the assumption that all mutants are equally abundant

at the start of library expansion (Equation 4.6). It is true that this assumption neglects the effect

of altered growth conditions as the population is transferred from one media type to another

during the SATAY protocol (Michel & Kornmann, 2022). However, we anticipate that the impact of

this media transfer on the growth trajectories is limited, as most transposition events occur dur-

85



4

4. Saturated Transposon Analysis in Yeast as a One-step Method to Quantify the Fitness Effects

of Gene Disruptions on a Genome-Wide Scale

ing the saturated phase in induction media (Michel et al., 2019). As a result, each mutant should

only pass though a limited number of cell cycles before the transfer to the library expansion

media. Moreover, it is important to recognize that sampling the population to measure mutant

frequencies inevitably influences their growth trajectories. The distortion in growth caused by

sampling can be particularly significant during early timepoints when mutant frequencies tend

to be low.

To compare the fitness values obtained from different datasets, we rely on normalization

to the median fitness of the population. This approach implicitly assumes that the majority of

gene disruptions have a neutral effect on fitness. While we find that normalization to themedian

works well when the fitness distribution is unimodal, it is unlikely to produce reliable results for

multimodal distributions. Conceptually, multimodal fitness distributions may arise when there

are a small number of mutants that have a significantly higher fitness than the starting strain.

Thus, the ability to compare fitness values from different datasets will depend on the fitness of

the different genotypes present in the mutant library. This limitation has been addressed by Li

and Zhang (2018), who showed that while providing accurate fitness ranks, fold-enrichmentmea-

sures can yield biased proxies for fitness. Although computationally more intensive, approaches

that explicitlymodel the growth trajectories ofmutants during library expansionmay be a robust

alternative for normalization of multimodal distributions (Schlecht et al., 2017).

Gene deletion mutants from pre-constructed gene deletion libraries have been found to con-

tain secondary mutations that compensate for the fitness defects caused by deleting a gene

(Giaever & Nislow, 2014; Teng et al., 2013; van Leeuwen et al., 2016). In SATAY, mutant libraries

can be easily generated de novo for each experiment, making the fitness estimates less suscep-

tible to the accumulation of secondary mutations. However, the complex relation between read

count and fitness does increase the risk of introducing bias in the fitness values for the following

reasons.

First, gene disruptions resulting from transposition may not always be equivalent to a full

gene deletion, which can lead to underestimation of the fitness effect of a gene deletion. We

indeed observed that insertions close to the 3’ and 5’ ends of a gene are often associated with a

higher read count (Figure 4.2a,b). Excluding insertion events that map close to the gene edges is

a relatively simplemethod to correct for this bias. However, it has been shown that the fitness ef-

fect of a transposon insertion also depends on the specific protein domain that it affects (Michel

et al., 2017). The presence of multiple domains in an open reading frame therefore causes a

more complex relation between read count and the position of an insertion within a gene. Cor-

recting for such domain effects requires the grouping of insertions according to which domain

they affect. While this would allow a more refined mapping of fitness based on domain-wise

rather than a gene-wise fitness values, the spatial clustering of insertions based on their read

count value is a complex problem that is beyond the scope of this study. Hence, the method pre-

sented here does not account for these domain effects and the reported fitness values should

be interpreted as an average of the domain-wise fitness.

Second, using the average read count over all insertion sites within a gene as a metric to

determine fitness makes the fitness estimate dependent on the mapping accuracy of the reads.

Misalignment of reads derived from the same transposon insertion event causes them to be-

come spread out over a larger genomic region. This leads to lower fitness values, as the reads

mapping to a gene will now be divided by a larger number of transposons to obtain the average.

Because the miniDS transposon used in the SATAY screen can insert at any basepair, it has a rel-
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atively higher susceptibility to this artefact compared to other TIS methods that use transposons

that can only insert at specific nucleotide sequences. A possible sign thatmapping accuracy plays

a role in our datasets is the fact that we are unable reach the point of sequencing saturation of

the library, where each unique transposon insertion is represented by at least one read (4.8b,c).

In addition, the number of identified unique transposon insertions is for a given total read count

is systematically higher than what is reported by other studies using SATAY (Michel et al., 2017;

Michel et al., 2019). One way to address the misalignment of reads is to discard reads with an

alignment score below a certain threshold. However, this may disproportionately affect genes

with a coding sequence that does not allow accurate alignment (such as those with repeated

regions) which can artificially lower their read count.

Wehave shown that themethod to estimate fitness presented in this chapter generates repro-

ducible results across replicate SATAY experiments performed in the same genetic background.

However, there was only a weak correlation with the fitness values reported by other studies

and we were unable to retrieve epistatic interactions between genes that have been annotated

based on SGA screens. We provide two explanations for this lack of consistency. First, we com-

pared our results to the fitness values that were obtained from a pre-constructed gene deletion

collection (Costanzo et al., 2016; Giaever et al., 2002; Qian et al., 2012). In pre-constructed gene

deletion collections, mutants usually pass through several rounds of replication after their con-

struction before they are subjected to a fitness assay. This gives the opportunity for secondary

mutations that can potentially mask the defects caused by the primary gene deletion to set in the

population. It has indeed been shown that several mutants in the yeast gene collection harbour

such compensatory mutations (Teng et al., 2013; van Leeuwen et al., 2016). Libraries created

with SATAY are less likely to suffer from secondary mutations because the fitness assay usually

follows directly after library creation. As a consequence, fitness values based on measurements

of the yeast gene deletion collectionmay overestimate the number of neutral genes compared to

results obtained with SATAY, which is in agreement with our observation that the DFE obtained

by Qian et al., 2012 is much narrower than ours (Figure 4.7a). The second explanation is that

the dissimilarities are caused by the different genetic background used by other studies (S288C

(Costanzo et al., 2016; Giaever & Nislow, 2014; Qian et al., 2012), whereas we have used W303).

Because the fitness effect of a gene deletion can depend on the allelic status of genes elsewhere

in the genome, the observed inconsistencies may simply reflect a fundamental difference of the

fitness landscape of the two genetic backgrounds. It is difficult to determine the extent to which

the fitness landscape can be expected to diverge between genetic backgrounds, as relatively few

studies have assessed fitness on the genome wide scale and most of these are based on the

same collection of gene knock-outs. However, comparative studies of the genetic interaction

maps of different species have shown that their structure can strongly vary (Tischler et al., 2008),

although some level of conservation does appear to exist (Deshpande et al., 2013; Dixon et al.,

2008; Roguev et al., 2008).

In conclusion, the method we present here allows reproducible quantification of fitness from

the read count data obtained from SATAY experiments. However, we hope the considerable

differences between our results and fitness and genetic interaction maps produced with other

methods will encourage initiatives to determine the amount of variation in these maps across

genetic backgrounds and environments.
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4.4. Methods

4.4.1. Strains

All strains used in this study are of the W303 genetic background and are derived from a single

parental strain (see table 4.1). The parental strain was made heterotrophic for adenine (ade−)
by replacing the ADE2 gene with the URA3 marker using homologous recombination, followed

by counterselection against the URA3 marker with 5-fluoro-orotic acid to obtain a clean gene

deletion. bem3Δ and nrp1Δ strains were created using homologous recombination to replace

the endogenous genes with the natMX4 and hphMX4 cassettes, respectively. Strains were stored

at -80°C as frozen stocks in 40% (v/v) glycerol.

4.4.2. Media

Standard culturing and growth assays were performed in YPD (10g/L Yeast extract, 20 g/L Pep-

tone, 20 g/L dextrose), SC (6.9 g/L Yeast nitrogen base, 0.75 g/L Complete supplement mixture,

20 g/L dextrose). For ade− strains, standard growth media was supplemented with 20 mg/L ade-

nine just before incubation. Liquid media for the preculture and induction steps of SATAY were

prepared according to the recipe in table 4.2. After preparation, the media was filter sterilized

using Rapid-Flow Sterile Disposable Filter Units (Nalgene) and stored at 4°C until use. Liquid me-

dia for the reseed step of SATAY was prepared by autoclaving 2.6 L of MiliQ water in a 5 L flask.

400 ml of a 7.5X concentrated solution of the nutrients was prepared separately and filter steril-

ized. To prevent the degradation of media components, this concentrate was stored in the dark

at 4°C until used. On the day of reseed, the concentrate was aseptically added to the 5 L flask

containing 2.6 L of MiliQ water and mixed. Solid media was prepared by adding 20 g/L agar and

30 mM Tris-HCl (pH 7.0) to the liquid media recipe and autoclaving the mixture for 20 minutes at

121°C. 20 mg/L adenine was aseptically added after autoclaving, unless plates were intended to

be selective for adenine auxotrophy.

4.4.3. SAturated Transposon Analysis in Yeast (SATAY)

Library generation

SATAY libraries were generated based on the procedure described by Michel et al., 2019, which

is a modification of the original protocol (Michel et al., 2017) to allow transposition to occur in

liquid media. ade− cells were transformed with plasmid pBK549 (Michel et al., 2019), which was a

kind gift from Benoît Kornmann, according to a lithium acetate transformation protocol (Gietz &

Schiestl, 2007). To screen for clones transformed with the intact version of plasmid pBK549 (see

Michel and Kornmann, 2022 for details on the different species of pBK549), 12-24 colonies were

picked from the transformation plate, re-streaked on fresh SD-ADE and SD-URA plates and incu-

bated for 3 days at 30°C. For clones that showed full growth on SD-URA plates while producing a

small number of colonies on SD-ADE plates, cells were scraped from the SD-URA plate and used

to inoculate 25 ml of preculture media (table 4.2) at an OD600 of 0.20-0.28. Precultures were

grown on an orbital platform shaker at 160 rpm, 30 °C until the OD600 was between 5-7 (∼20h).
The saturated precultures were used to inoculate 200ml of inductionmedia at an OD600 of 0.10-

0.27 and grown for 52 hours to allow transposition to occur. The efficiency of transposition was

monitored by plating samples of the liquid induction cultures on SD-ADE at T=0 and T=52 hours

and scoring the number of colonies on these plates after 3 days of incubation at 30 °C. After 52

hours of induction, the resulting transposon mutagenesis libraries were reseeded in 3 liters of

reseed media at an OD600 of 0.21-0.26. Typically, this meant that around 7 million transposon
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mutants were reseeded per library. Reseeded libraries were grown for 92 hours at 140 rpm, 30

°C. At the end of reseed, cells were harvested by centrifugation of the reseed cultures at 5000 xg

for 30 minutes. Cell pellets were stored at -20 °C.

Genomic DNA extraction

A 500 mg frozen pellet was resuspended in 500 µl cell breaking buffer1 and distributed into

280 µl aliquots. 300 µl of 0.4-0.6 mm glass beads (Sigma-Aldrich, G8772) and 200 µl of Phe-

nol:Chloroform:isoamyl alcohol 25:24:1 (Sigma-Aldrich, P2069) were added to each aliquot and

cells were lysed by vortexing the samples with a Vortex Genie 2 at maximum speed at 4°C for 10

minutes. 200 µl of TE buffer was added to each lysate, after which the samples were centrifuged

at 16100x g, 4°C for 5 minutes. After centrifugation, the upper layer (∼400 µl) was transferred to
a clean eppendorf tube. 2.5 volumes of 100% absolute ethanol was added to each sample and

mixed by inversion to precipitate the genomic DNA. After precipitation, the DNA was pelleted

by centrifugation at 16100x g, 20°C for 5 minutes. The supernatant was removed and the DNA

pellet was resuspended in 200 µl of 250 µg/ml RNAse A solution (qiagen, Cat. No. 19101). the

resuspended DNA pellets were incubated at 55°C for 15 minutes to allow digestion of the RNA.

After digestion, 20 µl 3M, pH 5.2 sodium acetate (Merck) and 550 µl 100% absolute ethanol was

added to each sample and mix by inversion. DNA was pelleted by centrifugation at 16100x g,

20°C for 5minutes. Pellets were washed with 70% absolute ethanol and dried at 37°C for 10min-

utes or until all ethanol had evaporated. The dried pellets were resuspended in a total volume

of 100 µl MiliQ water and the concentration of the genomic DNA samples was quantified on a

0.6% agarose gel using the Eurogentec Smartladder 200bp-10kb as a reference. Prepared DNA

samples were stored at -20°C or 4°C until used.

Library sequencing

To prepare genomic DNA samples for sequencing, 2x2 µg of DNA from each sample were trans-

ferred to non-stick microcentrifuge tubes and digested with 50 units of DpnII and NlaIII in a

total volume of 50 µl for 17 hours at 37°C. After digestion, the restriction enzymes were heat-

inactivated by incubating the samples at 65°C for 20minutes. Digestion results were qualitatively

assessed by visualization on a 1% agarose gel stained with Sybr-Safe. Successfully digested DNA

samples were circularized in the same tube using 25 Weiss units of T4 DNA ligase (Thermo Sci-

entific, Catalog #EL0011) at 22°C for 6 hours in a total volume of 400 µl. After ligation, the circu-

larized DNA was precipitated using 1ml 100% absolute ethanol, 20 µl 3M, pH 5.2 sodium acetate

(Merck) and 5 µg linear acrylamide (invitrogen, AM9520) as a carrier. DNA was precipitated for at

least 2 days at -20°C. Precipitated DNA was pelleted by centrifugation for 20 minutes at 16100x

g at 4°C and washed with 1 ml of 70% ethanol. After washing, the DNA was re-pelleted by cen-

trifugation for 20 minutes at 16100x g at 20°C, the supernatant was removed and pellets were

dried for 10 minutes a 37°C. Each dried pellet was resuspended in water and used as a template

for 20 PCR reactions of 50 µl.

For samples sequenced on the Illumina HiSeq platform (yLIC136), PCR amplification of the

transposon genome-junctions, sequencing and sequence alignment were performed by Agnès

Michel and Benoît Kornmann (Oxford). For samples sequenced on the Illumina NovaSeq 6000

platform (yWT01a, yLIC137), the transposon-genome junctions were amplified using the bar-

coded primers 1 and 2 (table 4.3) for DpnII digested DNA or primers 3 and 4 (table 4.3) for

12% Triton X-100, 1% SDS, 100 mM NaCl, 100 mM Tris-HCl pH8.0, 1 mM EDTA
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of Gene Disruptions on a Genome-Wide Scale

NlaIII digested DNA on a thermal cycler (Bio-Rad C1000 Touch) with the block settings shown

in table 4.4. PCR amplified samples were purified using the NucleoSpin Gel and PCR cleanup kit

(Macherey-Nagel) and quantified on the NanoDrop 2000 spectrophotometer (Thermo Scientific).

For each sample, equal ratios (w/w) of DpnII and NlaIII digested DNA were pooled. Library prepa-

ration and sample sequencingwere performed byNovogene (UK) Company Limited. Sequencing

libraries were preparedwith the NEBNext Ultra II DNA Library Prep Kit, omitting the size selection

and PCR enrichment steps. Libraries were sequenced using Paired-End (PE) sequencing with a

read length of 150 bp.

Sequence alignment

FASTQ files obtained from the HiSeq platform were analyzed by Agnès Michel and Benoît Korn-

mann (Oxford) using their in-house pipeline for sequence processing and alignment (Michel & Ko-

rnmann, 2022). FASTQ files obtained from the NovaSeq 6000 platform were demultiplexed into

DpnII and NlaIII digested DNA samples based on the barcodes introduced during PCR amplifica-

tion. Read pairs with non-matching barcodes were discarded. After demultiplexing, the forward

read of each read pair was selected and the sequences upstream of primer 688_minidsSEQ1210

(Michel et al., 2017) and downstream of the DpnII (GATC) or NlaIII (CATG) restriction site were

trimmed. All demultiplexing and trimming steps were executed with BBduk integrated into a

home-written pipeline written in Bash. After trimming, the forward reads were aligned to the

S288C reference genome (versionR64-2-1_20150113)with the Transposonmapper pipeline (Iñigo

de la Cruz et al., 2022 version v1.1.4) using the following settings:

• Data type: ’Single-end’

• Trimming software: ’donottrim’

• Alignment settings: ’-t 1 -v 2’

4.4.4. Analysis of essential genes

Genes were marked as essential based on their annotation on the Saccharomyces Genome

Database (Cherry et al., 2012, accessed on 03/17/2006)

4.4.5. Centromere bias correction

Centromere bias was estimated based on the global transposon insertion density profile (see Fig-

ure 4.3). The insertion density profile was fitted with a third-degree polynomial using the polyfit

function from the Numpy package (version 1.21.5). The derivative of the fitted polynomial was

determined with the polyder function from the Numpy package (version 1.21.5). To calculate the

distance (in bp) of a gene to the corresponding chromosome centromere (𝑟𝑐−𝑔 in equation 4.1),

the coordinates of each centromere were obtained from the Saccharomyces Genome Database

(accessed on 02/06/2022). Either the start or stop position of the centromere was used to calcu-

late distance, depending on which was closest to the gene of interest. Because the transposon

insertion count can only take on discrete values, the value of the expected number of transposon

insertions in a gene (𝐸(𝑋𝑔) in equation 4.2) was rounded down to the nearest integer.

4.4.6. Fitness and variance calculation

Fitness values were based on the mean read count of transposon insertions that mapped to the

central 80% of the coding region of a gene. Reads that exceeded 1.5 times the 5-95 percentile
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range of the read distribution of a gene were classified as outliers and removed. The 5-95 per-

centile range was determined using the stats module available from the Scipy package (Virtanen

et al., 2020, version 1.7.3) If the number of insertion sites used to calculate fitness was less than

5 after outlier removal or if all remaining insertion sites had a read count of 0, the fitness value

was set to undetermined and not used for comparisons with other datasets.

The variance of the fitness estimates was determined from the observed mean-variance re-

lationship of all genes (Figure 4.4c). The mean-variance relationship was fitted with equation 4.9

using the OLS function available from the Statsmodels module. The obtained variance estimates

were used to calculate the standard error of the fitness values with the following equation:

𝑆𝐸𝑔 =

√

𝑉𝑔
√

𝑛
(4.13)

Where 𝑆𝐸𝑔 is the standard error of gene 𝑔, 𝑉𝑔 is the variance of gene 𝑔 estimated according

to equation 4.10 and 𝑛 is the number of transposon insertions that have been mapped to the

coding sequence of gene 𝑔.

4.4.7. Genetic interactions of BEM3
Genetic interactions ofBEM3were downloaded fromTheCellMap.org ((Usaj et al., 2017), accessed

on 13/07/2022). A stringent cut-off was used for the significance level of negative (GI-score<
−0.12, p-value< 0.05) and positive (GI-score> 0.16, p-value< 0.05) genetic interactions. Interac-
tions annotated as dubious or those that were reported to have been affected by a suppressor

mutation were excluded. In addition, only those interactions that were derived from fitnessmea-

surements of gene deletion strains (and not conditional knockouts) were used.
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4.6.1. Supplemental figures
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Figure S4.1. Essential and non-essential genes are distributed in a similar manner across the chro-

mosome. Plot of the number of essential and non-essential genes for a specified distance 𝑟𝑐 from the cen-

tromere. The distributions do not show a clear enrichment of essential genes over non-essential genes in

pericentromeric regions.
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Figure S4.2. Polynomial fit of the observed transposon density across the genome corrects for the

pericentromeric insertion bias of theMiniDS transposon. The difference between the expected (E(X)) and

observed (O(X)) insertion density for all genes is plotted against the distance of the gene to the centromere.

(a) Using the global average to estimate the expected insertion rate results in a systematic overestimation

of the insertion density of genes close to the centromere. This overestimation is visible as a skew towards

negative values for genes close to the centromere. (b) Using a polynomial fit of the observed insertion rate

corrects for this skew.
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that have low fitness when disrupted depends on a combination of the average read count and the insertion

density.
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4.6.2. Supplementary tables

Table 4.1. List of strains used in this chapter

Name Purpose Ancestor Genotype Reference

yLIC135 Parental strain yLL3a

Mat𝛼
can1-100
leu2-3,112
his3-11,15
ura3 0

BUD4 from S288C
ade2Δ::

Laan et al., 2015

yLIC137

Identification of genetic

interactions of BEM3
(data Fig. 4.7b)

yLIC135

Mat𝛼
can1-100
leu2-3,112
his3-11,15
ura3 0

BUD4 from S288C
ade2Δ::
bem3::natMX4

This study

yWT01a

Identification of the genetic

interactions of BEM3
(data Fig. 4.7b)

Comparison with fitness

values obtained from

Bar-seq (data Fig. 4.7a)

yLIC135

Mat𝛼
can1-100
leu2-3,112
his3-11,15
ura3 0

ade2Δ::

This study
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Table 4.2. Liquid media used for SATAY library generation. YNB: Yeast Nitrogen Base. CSM: Complete Sup-

plement Mixture. Ura: Uracil. Ade: Adenine

Step Media Components

Preculture SD-Ura+0.2% Glucose

+2% Raffinose

• YNB w/o Amino Acids (6.8 g/L)

• CSM -Ura (0.77 g/L)

• Glucose (2 g/L)

• Raffinose (20 g/L)

• Adenine (20 mg/L)

Induction SD-Ura+2% Galactose • YNB w/o Amino Acids (6.8 g/L)

• CSM -Ura (0.77 g/L)

• Galactose (20 g/L)

• Adenine (20 mg/L)

Reseed SD-Ade+2% Glucose • YNB w/o Amino Acids (6.8 g/L)

• CSM -Ade (0.78 g/L)

• Glucose (20 g/L)

Table 4.3. List of primers used in this chapter

# Name Barcode Sequence (5’-3’)

1 HT50_688_minidsSEQ1210 HT50
GCC ACA TAT TTA CCG ACC GTT ACC

GAC CGT TTT CAT CCC TA

2 E2_HT48_MiniDS_RV HT48

AGG TCA GTC ACA TGG TTA GGA CGC

AGA GCT GAA ACG AAA ACG AAC GGG

ATA AA

3 HT60_688_minidsSEQ1210 HT60
TAG GAT GAT TTA CCG ACC GTT ACC

GAC CGT TTT CAT CCC TA

4 E2_HT49_MiniDS_RV HT49

AGG TCA GTC ACA TGG TTA GGA CGC

AGA TAG ACA ACG AAA ACG AAC GGG

ATA AA
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Table 4.4. PCR amplification protocol

Step Temperature Time

1 95 ºC 3 min

2 95 ºC 30 sec

3 55 ºC 30 sec

4 72 ºC 3 min

Go to step 2 (35x)

6 72 ºC 10 min

7 4 ºC Inf

Table 4.5. Characteristics of the SATAY libraries used in this chapter. Reads that map to the coding sequence

of ADE2 were excluded when determining the reported values.

Strain
Biological

Replicates
# clones

Technical

Replicates

# of reads

mapped

# of transposons

mapped

yWT01a

B1 7.1x106

B1_T1 15341620 964082

B1_T2 14133484 942484

B1_T3 15803098 948445

B1_T4 16963682 955841

B1_T5 21601243 1012544

B1_T6 18749208 980674

B2 8.6x106

B2_T1 21301610 1107947

B2_T2 17979884 1062241

B2_T3 22407804 1152751

B3 7.9x106 — 21870779 1010354

B4 9.9x106 — 18792166 1168784

yLIC137 — — 11341842 597351
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Chapter 5

The best way to predict the future is to design it.

— Richard Buckminster Fuller





5

5.1. Introduction

x

Controlling theaccessibility of evolutionary tra-

jectories with epistasis

Abstract The ability to control evolution has important applications in healthcare, industry

and synthetic biology. An important theoretical and experimental finding has been that

epistatic interactions between mutations can act as a major determinant for the accessibility of

evolutionary pathways. Thus, epistatic interactions could, in principle, be used as a design

element for the evolutionary control of biological systems. However, to our knowledge,

exerting control over evolutionary pathways using epistatic interactions as a design element

has not yet been attempted. Therefore, it is currently unclear whether the adaptive response of

a cell can be controlled through the rational design of its genotype. In this chapter, we

experimentally test the possibility of using epistasis to control evolution through a single

genetic change. Specifically, we aim at finding genes that allow a weak form of control by

rendering the most likely trajectory inaccessible. To this end, we exploit a previously mapped

evolutionary trajectory of the polarity network of Saccharomyces cerevisiae for which it was
shown that the inactivation of the protein Bem3 rapidly and reproducibly follows after the

deletion of the protein Bem1. Using the genome-wide screen SATAY, we find two genes that

may make this pathway inaccessible when deleted without strongly affecting the fitness of the

wild-type genetic background. In addition, our data suggest that at least one of these two genes

that can act as a switch for pathway accessibility could have been predicted based on a shared

functional domain with Bem1. Our data therefore suggest that controlling the accessibility of

evolutionary trajectories through epistasis can be achieved by single gene deletions.

5.1. Introduction

The effect of a genetic mutation depends on the genetic background in which it occurs (Carlborg

& Haley, 2004; Fenster et al., 1997; Phillips, 2008). This context dependency, called epistasis

(Bateson et al., 1909; Phillips, 1998), can cause the same oncogenic mutation in two healthy

individuals to lead to the formation of cancer in one, but not the other individual (Nadeau, 2001).

In a similar manner, epistatic interactions between mutations are an important determinant for

which set of mutations improve fitness during evolution (De Visser & Krug, 2014; Domingo et al.,

2019; Phillips, 2008). Specifically, theoretical and experimental studies have shown that epistasis

can constrain the order in which mutations occur by making certain combinations inaccessible

during natural selection (de Vos et al., 2015; Kauffman &Weinberger, 1989; Neidhart et al., 2014;

Poelwijk et al., 2019; Sailer & Harms, 2017; Weinreich et al., 2005). These epistatic constraints

often underlie patterns of reproducible evolutionary trajectories that have been observed both

at intra-genic (de Vos et al., 2015; Weinreich, 2006) and inter-genic (Cooper et al., 2008; Laan et

al., 2015; R. Woods et al., 2006) levels. As reproducibility implies the possibility of prediction, this

raises the question of whether epistatic constraints can be used as a design element to control

the mutational trajectory that will be taken in response to a given perturbation. This question

is becoming increasingly relevant with the development of synthetic biological systems and the
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increasing application of genetically modified organisms in industrial processes.

In this chapter, we explore the feasibility of controlling evolutionary trajectories through epi-

static interactions between mutations. We focus on a weak form of control where a chosen

mutational pathway is rendered inaccessible. Central to achieve this type of control are muta-

tions that exhibit strong sign epistasis. Sign epistasis makes the sign of the fitness effect of a

mutation dependent on genetic background (Kogenaru et al., 2009; Nghe et al., 2018; Poelwijk

et al., 2011), which can lead to conditional essential genes in severe cases. The deletion of a gene

that is conditionally essential between the subsequent mutational steps of an evolutionary tra-

jectory should effectively block the mutational pathway. However, to be applicable to the design

of biological systems the effect of deleting this conditionally essential gene should have minimal

effects on the desired phenotype of the starting strain. It is unclear whether both these features

can be reconciled through the deletion of a single gene or if this would require a more complex

set of mutations.

To study the possibility of directing evolutionary pathways through a single genetic change,

we use a previously mapped evolutionary trajectory of the polarity network of Saccharomyces
cerevisiae. In S. cerevisiae, polarity establishment is a vital part of the cell cycle and failure to

polarize leads to cell death (Irazoqui et al., 2003; Laan et al., 2015; Martin & Arkowitz, 2014; B.

Woods et al., 2015). As in all eukaryotes, polarization is centered around the evolutionary con-

served RhoGTPase Cdc42which cycles between an inactiveGDP-bound and an activeGTP-bound

form (Etienne-Manneville, 2004). In late G1, active Cdc42 accumulates at a single site on the cor-

tical membrane where it induces the further asymmetric organization of internal cellular com-

ponents (Chiou et al., 2017; Martin & Arkowitz, 2014). According to the current understanding of

the mechanism for cell polarization, the scaffold protein Bem1 plays a key role in mediating the

positive feedback loop for the accumulation of active Cdc42 on the membrane (Freisinger et al.,

2013; Irazoqui et al., 2003; Klünder et al., 2013; Martin, 2015). Specifically, Bem1 plays a crucial

role in connecting the localization of active Cdc42 to the guanine exchange factor (GEF) Cdc24.

It achieves this by binding both proteins simultaneously at distinct domains, thereby enhancing

the rate of Cdc42 activation (Chiou et al., 2017; Martin & Arkowitz, 2014). Deletion of Bem1 is

not lethal, but severely diminishes the ability of cells to efficiently polarize (B. Woods et al., 2015).

Interestingly, Laan et al. (2015) demonstrated that following the deletion of the Bem1, loss-of-

function mutations in a gene coding for GTPase-activating protein Bem3 occur almost inevitably

as compensatory mutations during experimental evolution. This high degree of reproducibility

may allow us to control the adaptive response of cells to the loss of Bem1. Here, we asses the

possibility to block this pathway through the deletion of genes that are nearly neutral in a bem1Δ
genetic background, but become essential or strongly deleterious in a bem1Δbem3Δ background

(5.1). To do this, we use the genome-wide transposon mutagenesis screen SATAY (Michel et al.,

2017) to look for genes that display the desired pattern of essentiality and dispensability. Fur-

thermore, using the results of this screen we assess (1) how numerous the possibilities are for

blocking such amutational pathway and (2) whether genes that hold the desired properties have

any functional relationship to the starting (bem1Δ) or the suppressor (bem1Δbem3Δ) mutations.
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Figure 5.1. Illustration of the devised strategy to prevent the occurrence of compensatory mutations

in BEM3 after the loss of BEM1. (a) Fitness diagram of the evolutionary recovery after the loss of BEM1.
In the known evolutionary trajectory (solid red line, circular markers), the fitness defects incurred by the

loss of BEM1 are largely recovered by the subsequent inactivation of BEM3. This pathway could be made

inaccessible by the deletion of a hypothetical gene X if the loss of gene causes the bem1Δ bem3Δ mutant

to have a lower fitness than the bem1Δmutant (dashed blue line, square markers). Ideally, the loss of gene

X has a negligible effect on fitness in the wild-type genetic background, which would allow this genotype to

persist in natural populations. (b) Graphical depiction of the fitness landscape shown in panel (a). The loss

of gene X should switch the bem1Δ bem3Δ from rescued to inviable, while leaving the fitness of the other

genotypes unchanged.

5.2. Results

5.2.1. Construction of a conditional bem1Δ strain using the auxin-inducible de-

gron

The deletion of BEM1 has been reported to result in an exceptionally low proliferation rate (Ch-

enevert et al., 1992; B. Woods et al., 2015). While SATAY is a versatile tool that can be used to

determine the fitness effect of deleting a gene across genetic backgrounds, its application to

genotypes that have a low fitness contains several pitfalls. First, the low proliferation rate com-

plicates the construction of a mutant library. Second, low fitness strains are more likely to accu-

mulate secondary mutations that compensate the fitness defect. Indeed, it has been shown that

selective sweeps of compensatory mutations can occur within several generations in a bem1Δ
population (Laan et al., 2015). As a consequence, the obtained results no longer represent the

presumed genetic background.

Because the bem1Δ strain represents a low fitness genotype that will likely introduce the

above-mentioned artifacts into the SATAY screen, we decided to construct a conditional knock-

down of Bem1 using the auxin-inducible degron (AID) system (Nishimura et al., 2009; Papagian-

nakis et al., 2017). The AID-system uses the plant degradation signalling pathway to conditionally

deplete a protein of interest. Briefly, the fusion of a protein to the AID tag results in the ubiqui-

tination and subsequent degradation of the protein when plant hormone auxin is added to the

growth media (Papagiannakis et al., 2017; Shetty et al., 2019). The concentration of auxin in the

external media controls the protein degradation rate, with higher auxin concentrations result-

ing in a faster protein degradation rate. When the degradation rate exceeds the synthesis rate,
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the protein is fully depleted, effectively generating a knockdown strain. Thus, the conditional

depletion of Bem1 would allow us to construct the mutant library for SATAY in a strain that has

a fitness similar to the wild-type, while performing the competitive fitness assay in a strain that

is phenotypically a bem1Δmutant.
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Figure 5.2. The strain carrying the Bem1-AID construct is phenotypically similar to a bem1Δ strain in

the presence of auxin. (a) Schematic depiction of the construct used to fuse Bem1 to the AID tag. Due to

the presence of the AID tag, Bem1 gets degraded in the presence of auxin (IAA). (b) Live-cell microscopy of

the Bem1-AID strain growing in the absence (-) and presence (+) of IAA. In the absence of auxin, the strain

proliferates rapidly and has morphology similar to that of a wild-type strain. In the presence of 0.1 mM

indole-3-acetic acid (IAA), cells divide substantially slower and become abnormally large. (b) The doubling

times of a wild-type strain and three replicate Bem1-AID strains (R1-R3) during growth in media with varying

concentrations of IAA. Due to the large difference in doubling times between the strains, the y-axis is shown

on a logarithmic scale. The graph shows that the doubling time plateaus in the Bem1-AID strains at the lowest

IAA concentration tested (0.1mM), indicating that full depletion of Bem1-AID is achieved at this concentration.

The doubling time of the wild-type strain is moderately affected by high concentrations of IAA, as has been

reported by Nicastro et al. (2021).

A conditional Bem1 knockdown strain was created by fusing the C-terminus of endogenously

expressed Bem1 to the AID tag (Figure 5.2a, top). We determined the sensitivity of this strain to

auxin using live-cell microscopy (Figure 5.2a, bottom). Bem1-AID cells were grown either in the

absence or in the presence of 0.1 mM natural auxin (Indole-3-acetic acid, IAA). The presence of

IAA profoundly altered the morphology of the cells after 60 minutes of growth, causing them to

grow into large unbudded cells. This phenotype is similar to what has been reported for germi-

nating bem1Δ spores (Laan et al., 2015). We therefore conclude that our Bem1-AID construct is

responsive to IAA degradation signalling.

To determine the auxin concentration at which Bem1 is fully depleted and therefore consti-

tutes a Bem1 knockdown, we quantified the doubling time of Bem1-AID populations at various

concentrations of IAA during growth over a period of 90 hours (Figure 5.2b). In the absence

of IAA (0 mM), the growth curve of Bem1-AID strains was highly reproducible across replicate

experiments and their doubling was similar to that of the wild-type strain. This confirms our ob-

servation by live-cell microscopy that the tagging of the Bem1 C-terminus has negligible effects

on phenotype in the absence of IAA. In contrast, the addition of auxin caused highly variable
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growth characteristics and strongly decreased the growth rate for all IAA concentrations tested.

The doubling time plateaus at the lowest IAA concentration (0.1 mM), indicating that Bem1-AID

is fully depleted at this concentration. However, to be certain that the effect of IAA lasts for the

full duration of the competitive fitness assay of SATAY, we decided to use a concentration of 0.25

mM IAA in our SATAY screens.

5.2.2. Identifying candidate genes for evolutionary control through epistatic in-

teractions

As stated in section 5.1, we are looking for genes that, when deleted, prevent the occurrence

of loss-of-function mutations in BEM3 after the loss of BEM1. We used SATAY in three genetic

backgrounds to identify such genes: the wild-type, BEM1-AID and BEM1-AID+bem3Δ genetic back-

grounds. Bem1 was depleted in the BEM1-AID and BEM1-AID+bem3Δ genetic backgrounds by

adding 0.25 mM IAA the start of the competitive fitness assay. To maintain equivalent environ-

mental conditions, the same amount of IAA was added during SATAY screens of the wild-type

strain.

In principle, the read counts obtained from each transposon insertion reflects the abundance

of a particular mutant and could be used to determine changes in gene deletion fitness across

genetic backgrounds. However, we found that the average read count per transposon insertion

site correlates poorly between replicate experiments of BEM1-AID and BEM1-AID+bem3Δ strains
(Figure S5.1c,d). This poor correlation appears to be due to large differences in fitness between

different mutants, which causes a large fraction of the reads to map to the coding region of a

small number of genes. We therefore decided to not use read counts for our analysis and instead

look for epistatic interactions based on the transposon insertion density, which shows a strong

correlation between replicate experiments (Figure S5.1). To validate the use of insertion density

as a metric for changes in gene dispensability, we compared our wild-type and BEM1-AID SATAY

datasets to see if we could identify known synthetic rescue interactions of BEM1. We found that

all annotated synthetic rescue genes were enriched for transposon insertions in the BEM1-AID
dataset relative to the wild-type dataset (Figure S5.2).

The first requirement to render the trajectory from a bem1Δ mutant to a bem1Δbem3Δ mu-

tant inaccessible by the deletion of a third gene is that this third gene has a strongly altered

degree of dispensability between the two genetic backgrounds. To identify genes with this char-

acteristic, we created a volcano plot that compares the transposon insertion density of all an-

notated coding sequences between a BEM1-AID and a BEM1-AID+bem3Δ strain (Figure 5.3a). We

considered the fitness effect of gene disruption to be strongly different between the two strains

if the average insertion density of a gene was at least twice as high in the BEM1-AID strain relative
to the BEM1-AID+bem3Δ strain and the p-value (student’s t-test) was at least 0.1. In total, 330

genes were classified to be strongly enriched for transposon insertions in the BEM1-AID strain

compared to the BEM1-AID+bem3Δ strain.
The second requirement is that the deleted gene should not strongly affect the fitness of the

bem1Δ mutant. Due to the low fitness of the bem1Δ mutant, a gene deletion will be effectively

lethal if it is deleterious in this background and can therefore not exist in nature. Alternatively, if

the gene deletion is beneficial in the bem1Δ background, this mutation would not only block the

trajectory to a bem1Δbem3Δ genotype, but also redirect the bem1Δ mutant to a new trajectory

towards higher fitness. Because we expect the fitness effects of individual gene disruptions to

average out over larger genomic regions, we consider genes to be neutral when their insertion

111



5

5. Controlling the accessibility of evolutionary trajectories with epistasis

0 1 2 3 4 5 6
0

100

200

300

400

0 1 2 3 4 5 6
0

100

200

300

400

log
2
(fold-change)

Bem1-AID 

neutral 1323

genes

1796

genes

330

genes

G
e

n
e

 c
o

u
n

t

G
e

n
e

 c
o

u
n

t

Normalized insertion rate Normalized insertion rate

WT neutral

Strong effect

genes
ABP1

ADH1

b) c)

-2 0 2 4 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-l
o

g
1

0
(p

-v
a

lu
e

)

ABP1

ADH1

BEM3

a)

Figure 5.3. The genesABP1 andADH1have the desired epistatic interaction profile to control evolution.
(a) Volcano plot in which the transposon insertion density of genes in the BEM1-AID strain are compared to

the insertion density of genes in the bem3Δ BEM1-AID strain. The fold-change in insertion density of a gene

between the two genetic backgrounds is shown on the x-axis. The significance level (p-value, student’s t-test)

of this fold-change is shown y-axis. Each dot in the plot represents a single gene. Genes that have a posi-

tive fold-change are enriched for transposons in the BEM1-AID strain relative to the bem3Δ BEM1-AID strain.

Genes were considered to have a strong difference in fitness effect between the two genetic backgrounds if

their log2(fold-change) is larger than 1 and the p-value is larger than 0.1. A total of 330 genes satisfy these

criteria. (b) Histogram of the transposon insertion density of genes in the BEM1-AID strain normalized to the

chromosomal insertion density of the chromosome on which the gene is located. The average value of two

replicate experiments is shown. Genes were considered to have a neutral effect on fitness if their normal-

ized insertion density was between 0.8 and 1.2. A total of 1796 genes satisfy this criterion. (c) Histogram of

the transposon insertion density of genes in the wild-type strain normalized to the chromosomal insertion

density of the chromosome on which the gene is located. The average value of two replicate experiments is

shown. Genes were considered to have a neutral effect on fitness if their normalized insertion density was

between 0.8 and 1.2. A total of 1323 genes satisfy this criterion. The Venn diagram in the center shows that

two genes, ABP1 and ADH1, fall in all of the aforementioned categories.
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density lies between 0.8 and 1.2 times the average density of the chromosome on which they

are located (Figure 5.3b). Based on this criterion, we found 1796 genes that have a near neutral

effect when deleted in the BEM1-AID strain.

The last requirement is that the gene deletion should be nearly neutral in the wild-type strain.

A neutral fitness effect would allow this genotype to persist in natural environments where there

may be competition with a wild-type population. In addition, neutrality suggests that the pheno-

type resulting from the gene deletion is equivalent to that of a wild-type strain, which may be a

desirable property in the context of, for example, industrial applications. Using the same crite-

rion for neutrality as used for the BEM1-AID strain, we found 1323 neutral genes in the wild-type

(Figure5.3c).

There are two genes (out of 6605 genes) that fulfill all three described requirements for con-

trol of the evolutionary trajectory: ADH1 and ABP1. Adh1 is an alcohol dehydrogenase that is

required for the production of ethanol during fermentation and deletion of ADH1 severely com-

promises anaerobic growth (Ida et al., 2012; Smidt et al., 2012). As its known molecular function

is metabolic, the emergence of ADH1may be a consequence of a difference in growth conditions

between the strains. Abp1 is an actin binding protein involved in the regulation of actin dynamics

and endocytosis (Guo et al., 2018; Quintero-Monzon et al., 2005). Interestingly, actin mediated

transport and endocyotosis are considered to be processes related to polarity establishment

(Freisinger et al., 2013) and may therefore have a functional link with the defect incurred by the

loss of BEM1. All together, our results suggest that controlling pathway accessibility based on

epistatic interactions can be done through single gene deletions.

5.2.3. Domain analysis reveals functional relation between Abp1 and Bem1

SATAY uses the MiniDS transposon to randomly disrupt genes throughout the genome. Because

theMiniDS transposon contains several stop codons in all frames of the transposon that truncate

the expressed protein when inserted into a coding region, SATAY allows analysis at the level of

protein domains (Michel et al., 2017). We used this feature to obtain a more detailed picture of

the functional defect caused by the deletion of BEM1 and how this relates to the function of the

two candidate genes (ADH1 and ABP1).
As expected, we find that the transposon insertion profile of BEM1 shows a strong skew to-

wards insertions close to the 3’ end of the gene (Figure 5.4a, b). Mutants with gene truncations

near the 3’ end are able to escape the IAA induced depletion of Bem1 through expression of

Bem1 without the AID-tag. Interestingly, insertions generating shorter truncations of Bem1 also

appear to partially alleviate the fitness defect caused by the BEM1 knockdown. Starting from the

3’ gene end, the shortest fragment of BEM1-AID that still seems to tolerate transposon insertions

end approximately halfway of the second SH3 domain (Figure 5.4a). This suggests that compen-

sation of the fitness effects of BEM1 knockdown relies on the two SH3 domains, while the PX and

PB1 domains are (to some degree) dispensable. The transposon insertion density in the approxi-

mate region between the second SH3 domain and the PX domain decreases after the deletion of

bem3 in the BEM1-AID genetic background (compare the regions delineated by the read dashed

box in Figure 5.4a and b). The deletion of BEM3 in the bem1Δ backgroundmay therefore provide

a fitness benefit by compensating for the loss of the SH3 domains of Bem1. Intriguingly, ABP1,
which emerged as one of the candidate genes for evolutionary control, encodes for a proteinwith

an SH3 domain at its C-terminus (Figure 5.4c,d). The ability of ABP1 to control the accessibility of
the adaptive pathway from a bem1Δ strain to a bem1Δbem3Δ strain may therefore be a result
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of its functional relation to the defect introduced by deleting BEM1. In conclusion, we propose

that functional relations may provide a means to predict genes that control the accessibility of a

given evolutionary trajectory through their epistatic interaction network.
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Figure 5.4. The deletion of BEM3 alters the transposon insertion pattern across the domains of Bem1

in the BEM1-AID strain. (a-b) The transposon insertion profile along the BEM1 gene in (a) two replicate BEM1-
AID strains and (b) two replicate BEM1-AID+bem3Δ strains (b). The protein domains of Bem1 are shown at

the bottom of each panel. The plots show that a region containing part of the PX domain and part of the

second SH3 domain of Bem1 are enriched for transposon insertions in the BEM1-AID strains relative to the

BEM1-AID+bem3Δ strains (region delineated by the dashed box). This suggests that compensation of the

fitness defect incurred by the loss of BEM1 through the subsequent inactivation of BEM3 is related to the SH3
domain of Bem1. (c-d) The insertion pattern in the ABP1 gene in (c) a BEM1-AID and (d) a BEM1-AID+bem3Δ
background. The protein domain annotations show that Abp1 also contains an SH3 domain, indicating a

possible functional link to Bem1.

5.3. Conclusions

Epistasis has been recognized as an important determinant for evolution since the introduction

of the adaptive landscape metaphor by Sewall Wright (Wright, 1932). As the tools for mapping

epistasis on a genome-wide scale become increasingly available, we can now study whether it is

possible to reshape the structure of the adaptive landscape to exert control over adaptive path-

ways. In this chapter, we have used a reproducible evolution trajectory of the polarity network

of S. cerevisiae to determine if evolutionary trajectories can be controlled through epistatic in-

teractions. Specifically, we screened for genes with an epistatic interaction pattern that would

prevent the occurrence of inactivating mutations in BEM3 after the deletion of BEM1, but leave
thewild-type phenotype unmodified. Using the genome-wide screen SATAY, we found two genes
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that appear to fit these criteria: ADH1 and ABP1.
The fact that we only find two genes (out of a total of 6600) that have the desired character-

istics suggests that the options to control evolution through the deletion of a single gene may

not be numerous. However, it is likely that our experimental design limits the sensitivity of our

screen and we can therefore not formulate a conclusive statement on the prevalence of such

genes from our results. In particular, we chose to perform the SATAY screen using a conditional

knockdown of the BEM1 gene (implemented with the AID degradation system) to prevent the

accumulation of secondary mutations. Although this approach increases the interpretability of

our results by strongly reducing the occurrence of secondary mutations, it has the drawback

that the AID-degron system is an easy mutational target through which the conditional mutants

can be reverted to the wild-type phenotype. As a result, large fitness differences exist between

themutants present in our SATAY screens, ranging from those that have a near lethal phenotype

(bem1Δ) to those with a neutral phenotype (wild-type). Therefore, a small group with high fitness

will quickly dominate the population (S5.3) which limits the amount of information we obtain on

genes with neutral and deleterious fitness effects, as thesemutants are rapidly diluted out of the

population. This effect plays a role in both our screens of the BEM1-AID and the BEM1-AID-bem3Δ
mutants, although to a lesser extent. In addition, the number of genes might have been higher

if the thresholds for neutrality and synthetic lethality were chosen more leniently.

Interestingly, one of the two candidate genes that emerged fromour screen, ABP1, appears to
have a functional connection to polarity establishment and Bem1. Abp1 promotes the nucleation

of actin polymers from the Actin Related Protein (ARP) 2/3 complex by binding to acting through

its actin depolymerization factor (ADF)-homology domain (Michelot et al., 2013; Quintero-Monzon

et al., 2005). In addition to regulating actin dynamics, it links the actin network to the endocyto-

sis network by binding proteins with its SH3 domain (Colwill et al., 1999; Lila & Drubin, 1997;

Warren et al., 2002). Intriguingly, a domain analysis of the transposon insertion pattern of BEM1
suggested that the fitness defects incurred by the deletion of BEM1 are partially alleviated by pro-
tein truncations that allow expression of the two SH3 domains of Bem1 (Figure 5.4). This finding

is supported by the study of Grinhagens et al. (2020) which showed that the central SH3 domain

of Bem1 can rescue the phenotype of bem1Δ cells. However, it has been shown that the binding

properties of SH3 domains are often not conserved between proteins and depend on their rel-

ative position to other domains within the same protein (Dionne et al., 2021), making it difficult

to infer whether the domain of Abp1 could functionally replace an SH3 domain of Bem1. In addi-

tion, the precise mechanism that would make the beneficial effect of deleting BEM3 in a bem1Δ
background dependent on Abp1 remains unclear, although the findings that Bem3 depends on

the endocytosis machinery for its localization to the bud site (Mukherjee et al., 2013) and may

share common binding partners with Abp1 might provide (Drees et al., 2001) a starting point to

elucidate such a mechanism. Second, Abp1 has been shown to exhibit conditional essentiality

with other proteins. In wild-type cells, the deletion of ABP1 shows no significant phenotype (Dru-
bin et al., 1990), but becomes lethal when combined with the deletion of the endocytosis related

genes such as SLA1, SLA2 and SAC6 (Garcia et al., 2012; Holtzman et al., 1993). This demonstrates

that Abp1 is able to buffer for essential functions, and we hypothesize that this may allow it to

compensate for the loss of BEM1, but only through a somewhat more complex relationship that

depends on the presence of BEM3. Furthermore, the neutrality of an ABP1 deletion in a wild-type
strain creates a realistic likelihood that a genetic background in which the deletion of bem3Δ
following the deletion of bem1Δ is not permitted may exist in natural populations.
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Our results indicate that the accessibility of evolutionary pathways can be controlled through

epistasis. In particular, our analysis implies that this control can be achieved through a single

genetic change. Furthermore, considering that Abp1 and Bem1 both have an SH3 domain and

that the two proteins have a role in overlapping cellular functions, our findings suggest that it

may be possible to identify genes that allow this type of control from their functional annotations.

However, this prompts the question why other proteins with an SH3 domain did not emerge as

candidate genes in our screen. Indeed, it has been estimated that between 23-25 proteins with

an SH3 domain exist in the yeast proteome (Mirey et al., 2005). While we do not provide direct

evidence that makes Abp1 a more likely candidate than other SH3 containing proteins, we argue

that the context inwhich the protein-protein interaction takes place likely plays an important role.

This is supported by reports that have shown that, although the sequence of the SH3 domain is

conserved, which interactions the domain participates in depends on the other domains present

in the host protein (Dionne et al., 2021) and on cellular context (Zarrinpar et al., 2003). Thus, the

functional relation between the protein that allows epistatic control of evolutionary trajectories

and the initially induced genetic perturbation may be complex.
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5.4.1. Strains

The auxin inducible degron (AID) system used in this study requires the introduction of two com-

ponents: the AID-tag that targets a protein of interest for degradation and OsTIR1, which is re-

quired for ubiqitination of the AID-tag in the presence of auxin. TheOsTIR1-3XMyc gene fragment

was obtained from plasmid pOsTIR1w/oGFP (Addgene catalog # 102883) through PCR amplifica-

tionwith primers Seq4_Fwd and Seq4_Rev and integrated at theHO locus of strain yWT01a via ho-

mologous recombination, yielding strain yWT02a. Correct integration and sequence integrity of

the integrated OsTIR1 construct in yWT02a was verified by Sanger sequencing (Macrogen), which

showed no deviations from the expected sequence. For the construction of a gene fragment that

allows the conditional depletion of Bem1, plasmid pG23A (Addgene catalog # 102884) was mod-

ified using Gibson assembly to replace the sequences coding for the CDC14 N-terminus and the

downstream flanking site with those of BEM1. The BEM1-mCherry-AID gene fragment was ampli-

fied by PCR with primers Bem1-mCherry-FW-AID and Bem1-mCherry-FW-AID and transformed

into strain yWT02a, resulting in strain yWT03a. The integrated BEM1-mCherry-AID in yWT03a was

verified with Sanger sequencing (Macrogen), which revealed a single SNP (A to T conversion) at

position 1433 of the coding sequence of BEM1. This variant occurs naturally in the S288C ge-

nomic background of S. cerevisiae, and it was therefore assumed to have no detrimental effects

on the functionality of Bem1. Finally, the endogenous BEM3 locus of yWT03a was replaced with

the natMX4 marker to obtain strain yWT04a. Strains were stored at -80°C as frozen stocks in

40% (v/v) glycerol. Plasmids pOsTIR1w/oGFP (Addgene plasmid # 10288) and pG23A (Addgene

plasmid # 102884) were a gift from Matthias Heinemann.

5.4.2. Media

Standard culturing and growth assays were performed in YPD (10g/L Yeast extract, 20 g/L Pep-

tone, 20 g/L dextrose), SC (6.9 g/L Yeast nitrogen base, 0.75 g/L Complete supplement mixture,

20 g/L dextrose). For ade− strains, standard growth media was supplemented with 20 mg/L ade-

nine just before incubation. Liquid and solid media for SATAY were prepared as described in

section 4.4.2 and table 4.2. 0.1 M stock solutions of indole-3-acetic acid (IAA) were prepared by

dissolving 175 mg IAA in 2 ml of 100% absolute ethanol. The final volume was adjusted to 10

ml, adding additional ethanol when necessary to prevent precipitation of IAA. The stock solution

was filter sterilized using a 0.2 µm syringe filter, aliquoted and stored at -20°C.

5.4.3. Microscopy

Cellswere grownovernight fromaglycerol stock in 10ml liquid SCmedia (using the low-fluorescence

version of CSM). The next day, cells were diluted in fresh SC media. For Bem1 depletion experi-

ments, IAA was added to a final concentration of 0.1 mM. 100 µm of the diluted cell suspension

was transferred to a well of a glass bottom 96 well plate (Greiner Bio-One, #655097) that was

pre-coated with Concanavalin A (20 minute incubation at room temperature with 200 µm of 0.1

mg/ml Concanavalin A solution). Microscopy imageswere acquired on aNikon Ti eclipse inverted

wide-field microscope equipped with a cage incubator (Okolab) to maintain the temperature at

30°C. Images were obtained everyminute in brightfield (100ms exposure time) and RFP (555 nm

excitation, 100 ms exposure time, 15 % laser intensity, Z-stack) channels with a 60x oil objective.

Because Bem1-mCherry-AID was not visible in the acquired images, data from the RFP channel

is not shown.
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5.4.4. Growth assays

Cells were grown overnight from a glycerol stock in 10ml YPDmedia. The next day, the cells were

diluted to an OD600 of 0.1 (measured on a Nanodrop 2000 spectrophotometer) and IAA was

added from the 0.1 M stock solution to a final concentration of either 0 mM, 0.1 mM, 0.25 mM or

0.50 mM. Cells were vortexed and the cell suspension was distributed over multiple wells of a 96

well plate (Thermo Fisher, #267427), with eachwell containing 100µl of cell suspension. The edge

moats of the well plate were filled with 1.5 ml sterile MiliQ water and the plate was sealed with

parafilm to minimize evaporation. The 96 well plates were incubated in a plate reader (Biotek

Epoch 2) set to 30 °C with a 1 °C gradient between the top and bottom of the plate. Density

measurements at 600 nm were taken every 7 minutes over a period of 4 days, with continuous

linear shaking (567 cycles per minute, 3 mm amplitude) in between measurements. Doubling

times were extracted from the growth curves using an in-house Matlab code.

5.4.5. SATAY library generation

SATAY libraries were generated based on the protocol developed by Michel et al. (2019). The

procedures for transposition, DNA extraction and circularization were performed as described

in section 4.4.3. Transposon-genome junctions were PCR amplified with barcoded primers 1 and

2 (table 4.3) when genomic DNA was digested with DpnII and primers 3 and 4 (table 4.3) when

genomic DNAwas digested with NlaIII. PCR amplification was performed on a thermal cycler (Bio-

RadC1000 Touch)with the block settings shown in table 4.4. PCR amplified sampleswere purified

using the NucleoSpin Gel and PCR cleanup kit (Macherey-Nagel) and quantified on the NanoDrop

2000 spectrophotometer (Thermo Scientific). For each sample, equal ratios (w/w) of DpnIII and

NlaII digested DNAwere pooled. Library preparation and sample sequencing were performed by

Novogene (UK) Company Limited. Sequencing libraries were prepared with the NEBNext Ultra

II DNA Library Prep Kit, omitting the size selection and PCR enrichment steps. Libraries were

sequenced on the NovaSeq 6000 platform (Illumina) set to Paired-End (PE) sequencing with a

read length of 150 bp.

5.4.6. Volcano plots

The number of transposons mapping to a chromosome (both in coding and non-coding regions)

was determined from the WIG output file of the transposonmapper Python package (Iñigo de

la Cruz et al., 2022). This value was divided by the chromosome length (in bp) given by the

S288C reference genome (release R64-3-1_20210421) available on SGD to obtain the insertion

rate of each chromosome. The insertion rate per genewas calculated from the output data of the

transposonmapper package (per_gene_file) and scaled to the insertion rate of the correspond-

ing chromosome. The scaled insertion rates were used to determine changes in gene disruption

tolerance between SATAY libraries through volcano plots. The log2-fold changes of each gene

shown in the volcano plots were calculated with the average scaled insertion rate of replicate

libraries. P-values were generated using the unequal variance independent t-test available from

the SciPy library in Python (Virtanen et al., 2020). Gene deletions were defined as neutral if its

scaled insertion rate was between 0.8 and 1.2.

5.4.7. Domain analysis

Bem1 domains were obtained from the PROSITE database (Sigrist et al., 2013). Domain coordi-

nates were manually converted into a General Feature Format 3 (GFF3) file. This GFF3 file was
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imported into the IGV genome viewer (version 2.12.3, Robinson et al. (2011)) together with a wig-

gle (WIG) file containing the SATAY data and visualized against the sacCer3 genome annotation.
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Figure S5.1. Transposon density strongly correlates between replicates while the read counts per

transposons insertion site is weakly correlated. (a-b) The relation in transposon density of all annotated

genes between different replicates of the (a) BEM1-AID and (b) BEM1-AIDbem3Δ strains. The plots show a

strong correlation between replicates of the same genetic background. (c-d) The relation in the average read

count per insertion site of all annotated genes between different replicates of the (c) BEM1-AID and (d) BEM1-
AIDbem3Δ strains. The plots show that the average read count per insertion site is highly variable between

replicates of the same strain. Dashed lines represent the identity line. 𝜌: Pearson’s correlation coefficient.
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Figure S5.2. Genes that are annotated as synthetic rescue genes are enriched for transposon inser-

tions in BEM1-AID strain relative to the wild-type strain. Volcano plot of the log2 fold-change of gene

insertion density (ratio Bem1-AID:WT) against the significance value of the fold change (p-value, student’s

t-test). The plot shows that genes that have been annotated to rescue the bem1Δ phenotype have a higher

insertion density in Bem1-AID strains than in wild-type strains. Gene annotations were retrieved from the

saccharomyces genome database (SGD).
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Figure S5.3. Using the AID system to conditionally knockdown Bem1 reduces the resolution of the

SATAY screen. The fraction of reads mapping to each annotated gene is shown for two replicates of (a) a

BEM1-AID+BEM3 strain, (b) a BEM1-AID+bem3Δ strain and (c) a wild-type strain. Data points that stand out

above the average are shown in red. The plots show that in the BEM1-AID+BEM3 and the BEM1-AID+bem3Δ
strains a large fraction of the reads is mapped to a small set of 4-5 genes. These genes likely suppress the

fitness defects caused by knockdown of Bem1 with the AID system. As a consequence, there is a smaller

number of reads available to distinguish between the fitness level of the remaining genes. In the wild-type

strains, reads are spread more uniformly across genes.
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5.6.2. Supplementary tables

Table 5.1. List of primers used in this chapter

# Name Sequence (5’-3’)

1 Seq4_Fwd AAT TAT CCT GGG CAC GAG

2 Seq4_Rev ACT GTA AGA TTC CGC CAC

3 Bem1-mCherry-FW-AID
ACC TAG TGA ATC TTC CCG ATT ATA TAT CTC

GCT C

4 Bem1-mCherry-FW-AID AGG GAG CCA CAT TAT CCT TTGACA CAT ATG
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The idea that a few people have about the gene being the target of selection is
completely impractical; a gene is never visible to natural selection, and in the genotype, it

is always in the context with other genes, and the interaction with those other genes
make a particular gene either more favorable or less favorable. [...] In the 30s and 40s, it
was widely accepted that genes were the target of selection, because that was the only

way they could be made accessible to mathematics, but now we know that it is really the
whole genotype of the individual, not the gene. Except for that slight revision, the basic

Darwinian theory hasn’t changed in the last 50 years.

— Ernst Mayr
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6.1. Introduction

x

Compensatory evolution changes the global struc-

ture of the genotype-to-fitness map

Abstract Polarity establishment plays an important role in biological functions that are

observed throughout the tree of life. In the budding yeast Saccharomyces cerevisiae the
formation of a polarized spot of the protein Cdc42 is an essential part of the cell cycle, as it

marks the position of new bud formation. Disruption of this process due to the loss of a core

polarity protein (Bem1) leads to a severe decrease in viability. Interestingly, these detrimental

effects can be almost completely compensated during evolution by the subsequent deletion of

two other proteins (Bem3 and Nrp1). The fact that gene deletions are sufficient to restore

fitness suggests that the interaction pattern of the remaining proteins has changed in such a

way that an alternative pathway for Cdc42 polarization is established. However, how gene

deletions mediate these changes and whether it has local or global consequences for the

protein interaction network is unknown. In this chapter, we use SATAY, a recently developed

transposon mutagenesis screen developed for S. cerevisiae, to determine the consequences of

compensatory evolution for gene importance on a genome-wide scale. Our results show that

the deletion of Bem1, Bem3 and Nrp1 causes changes in the gene disruption tolerance for

genes throughout the genome. In addition, these changes affect multiple distinct cellular

processes, in some cases making genes related to seemingly vital functions become

dispensable. We conclude that compensatory evolution can cause drastic rearrangements in

cellular physiology that will likely impact the adaptive response to future genetic perturbations.

6.1. Introduction

Cellular functions are properties that emerge from a dense network of interactions between

proteins, DNA, RNA and other small molecules. The advent of genomics and proteomics tech-

niques that facilitate the mapping of these interactions has sparked several efforts towards gen-

erating complete maps of biological interaction networks (the interactome) (Barabási & Oltvai,

2004; Fromont-Racine et al., 1997; Yu et al., 2008), with the aim of unraveling how sub-structures

within this network are related to cellular functions (Dunn et al., 2005; Gavin et al., 2002; Girvan

& Newman, 2002; Han, 2008; Hartwell et al., 1999). However, biological networks are dynamic

entities that can dramatically change their structure and functional relations over evolutionary

timescales (Ghadie et al., 2018). For example, a study comparing the interactomes of two re-

lated yeast species found that the interaction partners of orthologous proteins were often not

conserved across species, suggesting that each had adapted to their own ecological niche by

rewiring their protein interaction network (Das et al., 2013). On shorter evolutionary timescales

it has been shown that network rewiring plays a role in the acquired resistance of tumor cells to

therapeutic intervention (Komurov et al., 2012), allowing cells to proliferate despite the inhibition

of a protein that was deemed to be essential for survival.

Despite the importance of network rewiring for adaptive evolution, relatively little is known

about how adaptive mutations change the structure of biological networks. Specifically, it is
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unclear to what degree the effects of network rewiring remain contained within (sub-)modules

of the network or if it changes the global topology. In addition, whether the network topology

or functional relations between genes dominates the dynamics of rewiring still needs to be de-

termined. An attractive cellular function to study the dynamics of biological networks during

evolution is cell polarity. Nearly all cells possess the ability to polarize (Arkowitz & Iglesias, 2008;

Thompson, 2013), which demonstrates that it is a strongly conserved function throughout evo-

lution. At the same time, the composition of the protein network that regulates cell polarity has

been found to be highly dynamic on evolutionary timescales (Diepeveen et al., 2018; Thompson,

2013). This combination of functional conservation and structural variability indicates that po-

larity establishment can be achieved through several degenerate pathways (Goryachev & Leda,

2017). Interestingly, a recent study in Saccharomyces cerevisiae has shown that the fitness ef-

fects of deleting a core polarity protein can be nearly completely compensated during evolution

through a pathway consisting of only gene deletions (Laan et al., 2015). The fact that compensa-

tion can be achieved through gene deletions only and does not require mutations that change

protein function suggests that the gene deletions promote the manifestation of an alternative

pathway for polarity establishment by inducing changes in the interactome.

Because S. cerevisiae proliferates exclusively through asymmetric cell division (budding), po-

larity establishment is an essential part of the cell cycle and failure to polarize leads to cell death

(Chiou et al., 2017; Laan et al., 2015; Martin & Arkowitz, 2014). As in nearly all eukaryotic species,

its polarity network is centered around the cycling of the small GTPase Cdc42 between an in-

active GDP-bound state and an active GTP-bound state (Chiou et al., 2017; Etienne-Manneville,

2004; Martin & Arkowitz, 2014). Only the active state of Cdc42 is able to signal to downstream

effectors to induce an assymetric distribution of cellular constituents and the formation of a

single polarized cap of active Cdc42 on the plasma membrane is therefore a prerequisite for

bud formation. Mathematical models have proposed that a mechanistic requirement for the for-

mation of a single polar cap is the existence of a non-linear positive feedback loop that drives

Cdc42 activation (Freisinger et al., 2013; Goryachev & Leda, 2017; Klünder et al., 2013). Currently,

the pathway considered to be the major contributor to this positive feedback loop relies on the

scaffold protein Bem1 (Freisinger et al., 2013; Klünder et al., 2013), which simultaneously binds

Cdc42 and its activator, the guanine nucleotide exchange factor (GEF) Cdc24 (Bose et al., 2001;

Zheng et al., 1995). This causes clusters of active Cdc42 to contain enriched concentrations of

Cdc24, locally increasing the rate of Cdc42 activation in amanner that correlates with cluster size

(Irazoqui et al., 2003; Klünder et al., 2013; Kozubowski et al., 2008). Although the axis of polarity

generated by this mechanism is normally directed by spatial landmarks, it is sufficient to drive

polarity establishment at a random location when spatial cues are absent (symmetry breaking).

The central role of Bem1 for Cdc42 polarization is supported by observations that the deletion of

Bem1 strongly diminishes the ability of cells to initiate bud formation (Bendert & Pringle, 1991;

Chenevert et al., 1992). Furthermore, local recruitment of Bem1 to a predetermined site on the

plasma membrane using optogenetics is sufficient to direct the position of bud formation (Witte

et al., 2017). In addition to Bem1-mediated positive feedback, a second pathway based on actin

based delivery of vesicles carrying Cdc42-GTP to the bud site has been suggested to act in parallel

and contribute to cell polarization (Slaughter et al., 2009; Slaughter et al., 2013; Wedlich-Soldner

et al., 2003). In this alternative pathway, clusters of active Cdc42 would increase the local rate

of Cdc42-GTP delivery via actin-based vesicle transport by promoting the nucleation of actin fil-

aments (Wedlich-Soldner et al., 2003). However, recent theoretical models have proposed that

134



6

6.1. Introduction

actin based delivery may antagonize rather than enhance the formation of the polar cap using

the argument that the concentration of Cdc42-GTP on transport vesicles is too low compared to

the concentration at the polar cap (Layton et al., 2011; Savage et al., 2012; Woods et al., 2016).
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Figure 6.1. Investigating the consequences of compensatory evolution for the genotype-fitness map.

(a) Polarity establishment involves the formation of an anisotropic distribution of Cdc42, which is shown here

in green. In budding yeast, several pathways have been proposed to contribute to the polarization of Cdc42

(endo-/exocytosis, spatial landmarks and reaction diffusion). In this chapter, we study the effects of compen-

satory evolution in response to a strong genetic perturbation of the reaction-diffusion pathway. (b) Deletion

of the polarity protein Bem1 can be compensated by additionally deleting Bem3 and Nrp1 in a conserved or-

der. The result is a polarity mutant (bem1Δbem3Δnrp1Δ) that has a fitness nearly equal to that of a wild-type
strain. (c) We determine the effects of compensatory evolution by comparing the disruption tolerance of all

genes on a genome-wide scale in the wild-type strain and the polarity mutant using transposonmutagenesis.

This allows us to identify the set of proteins that have an increased or decreased importance for fitness in

the polarity mutant.

In this chapter, we investigate the genome-wide consequences of compensatory evolution

of the polarity network (Figure 6.1). To do so, we focus on the reproducible evolutionary trajec-

tory mentioned above, in which the loss of Bem1 is compensated by loss-of-function mutations

in Bem3 and Nrp1 (Laan et al., 2015). Using the saturated transposon analysis in yeast (SATAY)

(Michel et al., 2017), we determine which genes display an altered tolerance to transposon in-

sertions after all three proteins (Bem1, Bem3 and Nrp1) are deleted. Surprisingly, we find that
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the compensatory mutations impact a large number of genes and that these genes are related

to a variety of cellular processes, suggesting extensive interactome rewiring. We conclude that

mutations that compensate the defects of a single function can have global consequences for

cellular physiology.

6.2. Results

6.2.1. Compensatory evolution of the polarity module leads to global changes in

gene disruption tolerance

The deletion of Bem3 and Nrp1 is sufficient for the nearly complete compensation of the defects

in polarity establishment caused by the loss of Bem1 (Laan et al., 2015). The fact that this com-

pensation can be achieved through gene deletions only suggests that the remaining proteins

have an altered interaction pattern such that it allows cell polarity to be established through a

degenerate pathway. How the gene deletions mediate these changes in the interaction pattern

and whether it induces local or global changes in the interaction network is unknown.

To objectively search for genes that have changed their physiological role after compensatory

evolution, we performed a SATAY screen in the wild-type and bem1Δbem3Δnrp1Δ genetic back-

grounds. We used the rationale that genes that become associated with a new function after the

deletion of Bem1, Bem3 and Nrp1 are likely to have a different effect on fitness when deleted in

the two genetic backgrounds. Thus, changes in the transposon insertion pattern should allow us

to identify genes that play a role in the degenerate pathway for polarity establishment. In order

to resolve smaller changes in fitness, we used the total read count rather than insertion density.

However, we found that the raw read counts show substantially more variability between repli-

cate experiments than the insertion density (see S6.1), an effect that has been described to be

caused by artificial spikes in the read counts (DeJesus & Ioerger, 2013, 2016; Parekh et al., 2016).

To reduce the impact of these spikes on our analysis, we implemented the non-linear normaliza-

tionmethod proposed by DeJesus and Ioerger (2016). This normalization substantially improved

the correlation between replicate datasets (see section 6.6.1).

A pairwise comparison between six wild-type SATAY libraries and six bem1Δbem3Δnrp1Δ li-

braries revealed significant (padj < 0.05) differences in the fitness impact of 882 genes between

the two genetic backgrounds (Figure 6.2 and Figure S6.3). Importantly, applying the same sig-

nificance threshold to compare datasets within the same genetic background did not yield any

significantly different genes. Interestingly, among the identified genes, 468 exhibited increased

tolerance to disruptions in the polarity mutant, while 414 displayed reduced tolerance relative

to the wild-type strain (Figure 6.2c).

Collectively, these findings demonstrate that compensatory evolution within the polarity net-

work affects the fitness impact of genes throughout the genome. Notably, while some of these

genes (such as SPA2, BNI1, and AXL2) are associated with polarity establishment, others (such as

DYN1, CWP2, and MEC1) lack clear connections to cell polarity, indicating global effects on cell

physiology. Furthermore, the observation that nearly equal numbers of genes become less or

more important for survival suggests that compensatory evolution reshapes the relative impor-

tance of cellular processes rather than causing to a general decline in mutational robustness.
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Figure 6.2. Adaptation of the polarity network globally changes the fitness contribution of genes. (a)

To determine changes in the effect of gene disruptions on fitness between a wild-type and polarity mutant,

we generated six replicate SATAY datasets per strain. For each strain, reads that mapped to the same gene

were summed and the mean and variance of this summed read count across replicates was determined.

The mean and variance were respectively used to calculate a fold change and p-value for the difference in

fitness effect between the two genetic backgrounds. (b) Volcano plot of the p-value and log fold-change (FC)

for all annotated genes in the yeast genome when comparing the wild-type to the polarity mutant. A positive

log fold-change indicates that disruption of the gene is less detrimental in the wild-type than in the polarity

mutant, a negative log fold-change indicates the reverse. P-values were determined using Welch’s t-test and

corrected for multiple hypothesis testing with the Benjamini-Hochberg procedure. Genes with a p-value

below the significance threshold (padj < 0.05) are annotated in red. Grayed out data points correspond to

genes that were deleted in the polarity mutant genes are the differences between the genetic backgrounds

of the two strains. (c) Approximately 14% of the genes have a significantly altered tolerance to transposon

disruptions between the wild-type strain and the polarity mutant. Of these significant genes, a nearly equal

ratio has a negative and positive log fold-change. Slightly more genes with a negative log-fold change have

been annotated as essential than genes with a positive log-fold change.
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6.2.2. Network centralities do not correlate with the probability of altered gene

importance

The large number of genes that contribute differently to fitness between the wild-type strain

and the polarity mutant suggests that the deletion of Bem1, Bem3 and Nrp1 causes extensive

rewiring of the protein interaction network. Interestingly, the ability of a protein to participate in

new interactions during evolution has been linked to its topological role within the protein inter-

action (PPI) network (Alvarez-Ponce et al., 2017; Fraser & Hirsh, 2004; Fraser et al., 2002; Joy et al.,

2005). For example, proteins that interact withmany other proteins have been found to bemore

likely to be essential for survival than those with fewer interactions, a phenomenon known as

the lethality-centrality rule (Jeong et al., 2001). As essential genes are often conserved throughout
evolution (Giaever et al., 2002; Winzeler et al., 1999), this implies a negative correlation between

the rate of protein evolution and the number interactions the protein engages in (Fraser & Hirsh,

2004; Fraser et al., 2002). Based on this proposed link between the adaptive potential of a pro-

tein and its position within the PPI network, one hypothesis is that a similar relation might exist

between PPI structure and the probability that a gene deletion has a different fitness effect in

the two genetic backgrounds. The existence of such a relation would indicate that it is possible

to build a predictive model of interactome rewiring during compensatory evolution based on

mapped protein interactions.

To identify a possible relation, we constructed a PPI network for the proteome of S. cerevisiae
based on the physical interactions annotated in the BioGRID database. This resulted in an undi-

rected network containing 3799 proteins (nodes) and 17205 interactions (edges). Although this

network is incomplete (only about 65% of an estimated total of 5800 proteins are included in

the network (Mackiewicz et al., 2002)), we were able to validate the lethality-centrality rule in this

network based on a positive correlation between the number of interactions a protein has and

the increased likelihood that the protein is essential (Figure S6.4). The existence of the centrality-

lethality rule in the PPI network indicates that important topological properties of the network

are preserved, despite that it contains only a subset of all known proteins in S. cerevisiae.
There are several other measures that can be used to describe the role of a protein with re-

spect to different structural features of the PPI network. These measures are generically known

as centralities, as they describe how central (important) each node is for a given structural com-

ponent of the network (Koutrouli et al., 2020). For example, nodes with a high degree are often

described to be important for the connectivity of the network and based on this feature onemay

expect that the loss of a high degree node has a strong detrimental effect on fitness. Alterna-

tively, their ability to interact with many other proteins may facilitate their interaction with novel

partners during network rewiring.

Here, we focus on three widely used centralities: degree, betweenness and closeness. Degree
centrality ranks nodes based on their number of direct physical interactors. Betweenness centrality
describes whether a node acts as a bridge between groups of nodes and therefore mediates the

flow of information between them. The loss of nodes with a high betweenness disrupts this flow

of information between communities in the network. Finally, closeness centrality relates to the

ability of a node to quickly communicate with many other nodes in the network. In contrast to

degree, closeness is not limited to the immediate neighbours of a node, but is instead based

on the average distance from a given node to all other nodes in the network. Here, distance is

defined as the number of edges that need to be traversed to in order to reach a second node in

the network. The distribution of these centralities in our PPI network is shown in Figure 6.3

138



6

6.2. Results

We looked for a relation between these three parameters and the likelihood that a protein is

encoded by a gene that has a different importance between the wild-type strain and the polarity

mutant. None of the three centralities showed a correlation with the likelihood that a gene has

a changed effect on fitness. Instead, we found that this likelihood was more or less uniformly

distributed across degree, betweenness and closeness centrality values (figure 6.4). Similarly, we

did not find a relationship between the values of these centralities and the effect size of changes

in gene disruption tolerance.
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Figure 6.3. Centralities in the protein-protein interaction network of S. cerevisiae. (a) Depiction of

the multi-validated protein-protein interaction network (PPI). Nodes are colored according to their degree

𝑘 (blue: 𝑘 ≤ 3, green: 4 ≤ 𝑘 ≤ 10, red: 𝑘 > 10). Essential genes are shown as square nodes, non-essential

genes are shown as circles. For clarity, only nodes that are connected to the main network are shown. The

complete network can be found in Figure S6.4. (b-d) Distributions of the (b) degree, (c) closeness and (d)

betweenness centralities of the PPI network. The centrality values of the two deleted proteins, Bem1 and

Bem3, and the master regulator for cell polarity, Cdc42, are indicated by red dashed lines. The value of Nrp1

is not shown because Nrp1 is absent in the multi-validated dataset, which is likely due to the fact that Nrp1

is an understudied protein.

These results suggest that, at least for the interaction network used here, centralitymeasures

of the PPI are uninformative for the prediction whether a gene will attain an altered role after

compensatory evolution.
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Figure 6.4. Centrality measures in the protein-protein interaction network do not correlate with an

altered tolerance to gene disruption. (a) The degree centrality 𝑘 is determined by counting the number of

edges 𝑒𝑖𝑗 a node has connecting it to other nodes in the network. The example graph shows a node 𝑖 with
a degree of three. The plot shows the conditional likelihood P(DI) that a node with degree 𝑘 has an altered

disruption tolerance. (b) The betweenness centrality 𝑏𝑐 provides a measure for the importance of a node

for the information flow in the network based on the number of shortest paths that pass through that node.

In the example there are two shortest paths 𝜎𝑖𝑗 from node 𝑖 to node 𝑗, but only one of these paths passes
through node 𝑣. The plot shows the conditional likelihood P(DI) that a node with betweenness 𝑏𝑐 has an
altered disruption tolerance. (c) The closeness centrality reflects the distance of a node to all other𝑁 nodes

in the network based on the average shortest path 𝑑(𝑖, 𝑗). The example graph shows a node 𝑖 with a shortest
pathlength of two to node 𝑗. The plot shows the conditional likelihood P(DI) that a node with closeness 𝑐𝑐 has
an altered disruption tolerance. For all centralities shown in (a-c), the distribution of P(DI) is approximately

uniform.
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6.2.3. Compensatory evolution affects a broad range of cellular processes

We had already found that compensatory evolution of the polarity network affects genes related

to other processes than polarity establishment (figure 6.2). However, it is still unclear whether

the observed changes reflect a shift in importance at the level of a gene’s individual function

or rather at the level of the pathway in which the gene product acts. If the latter case is true,

we expect to find clusters of functionally related genes in our dataset, as the loss of any of the

proteins that act cooperatively in the same pathway will perturb the same process. Alternatively,

in the former case most genes should be functionally unrelated.

To distinguish between these two cases, we constructed a functional interaction map of the

genes that were found to have a significantly different tolerance to disruption between the wild-

type strain and the polarity mutant. To construct this functional map, we used the interactions

available from the STRING database (Doncheva et al., 2019; Szklarczyk et al., 2019; Szklarczyk et

al., 2021). The STRING database infers functional associations between proteins by integrating in-

formation from several sources, which includes textmining, annotatedmolecular complexes and

computationally predicted interactions. As such, the interactions obtained from this database

are based on the notion that functionally related proteins do not necessarily interact physically,

making it distinct from a PPI network. Moreover, the database scores each interaction based

on the quality of the evidence, allowing more weight to be given to high-confidence interactions

during downstream processing steps.

We found that the functional interactionmapwas represented by a single connected network

with only few disconnected nodes. This demonstrates that the vastmajority of the genes that are

affected by compensatory evolution are functionally related. Interestingly, plotting the degree

distribution of the connected part of the network revealed that the distribution approximately

follows a power law, suggesting that the network is scale free. A hallmark of scale-free networks

is that they consist of smaller sub-graphs that are connected to each other through hubs. We

therefore expected that the connected network could be fragmented into smaller clusters that

may reveal the relevant cellular process association of each gene.

To identify these clusters, we ran the Markov Cluster (MCL) algorithm (Van Dongen, 2008) on

the functional association network using the STRING interaction score as weights. This resulted

in 120 clusters, of which 49 contained three or more genes. Because we are unable to discuss

the biological meaning of all these clusters, we focus on the seven largest clusters as these likely

represent the major pathways affected by compensatory evolution. We performed an enrich-

ment analysis of the biological process gene ontology (GO) terms to see if we could identify the

process related to each cluster. All seven clusters showed a a clear enrichment and none of

the clusters were enriched for the same GO term. Five clusters consisted of genes related to

cellular homeostasis (translation, metabolism, signalling, chromatin remodeling and ribosome

biogeneses), while two consisted of genes related to specific cellular functions (cell polarity and

microtubule dynamics). Four of the five clusters related to cellular homeostasis (the signalling

cluster was the exception) predominantly contained genes that were less tolerant to disruption

in the polarity mutant. This could indicate that the loss of Bem1, Bem3 and Nrp1 causes an in-

tolerance to fluctuations in metabolites and protein copy numbers. The same predominance

was present in the cluster related to cell polarity, which suggests that compensatory evolution

through gene deletions causes an increased dependence on pathways that may act in parallel to

the one perturbed (discussed in the next section). Surprisingly, all genes in the cluster enriched

for microtubule dynamics are more tolerant to disruption in the polarity mutant than in the
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wild-type strain. Thus, dynamic microtubules appear to be relatively dispensable in the polarity

mutant, which is unexpected considering their role in vital processes such as organelle mobility

and spindle positioning.

In conclusion, these results show that many of the genes affected by compensatory evolution

after the loss of Bem1 are functionally associated, indicating that changes are induced on the

level of pathways rather than individual genes. However, only a minority of the affected genes

can be directly related to polarity establishment, which demonstrates that these changes go

beyond the originally perturbed pathway.

6.2.4. Identification of an alternative pathway for polarity establishment

The discovery that the set of genes affected by the compensatory evolution of the polarity net-

work contained a large cluster associated with polarity establishment (figure 6.5c) prompted us

to analyze this cluster inmore detail. In particular, we considered it likely that the genes that were

originally associated with polarity establishment play an important role in forming an alternative

pathway for polarity after the loss of Bem1, Bem3 and Nrp1. We therefore manually annotated

the molecular complex or pathway of each gene and found that most could be assigned to one

of the following: the axial landmark, the polarisome and the endocytic pathway. In the sections

below, we give an overview of how each of these complexes and pathways relate to the genes

affected by compensatory evolution and how they might promote polarity establishment in the

absence of a Bem1-mediated feedback loop.

The axial landmark

In wild-type haploid yeast cells, budding occurs next to, but not at, the previous division site. The

structure that directs bud formation towards this location is a molecular complex consisting of

four proteins (Bud3, Bud4, Axl1 and Axl2) known as the axial landmark (Chant, 1995). These four

proteins assemble into a ring-like structure on themembrane during theMphase of the cell cycle,

guided by the remnants of the septin ring of the previous budding event. The majority of this

ring (Bud3, Bud4 and Axl1) forms only transiently during the M phase and early G1, but a patch

of Axl2 remains present on the membrane throughout the cell cycle (Gao et al., 2007; Kang et al.,

2012). Axl2 has been proposed to play a key role in providing the spatial cue for axial budding

based on observations that the presence of Axl2, but not Bud3, Bud4 or Axl1, is a prerequisite

for an axial budding pattern (Fujita et al., 2004; Kang et al., 2004). The other three proteins of the

axial landmark complex have instead been implied to serve as regulators for Axl2 localization

and activity (Gao et al., 2007; Kang et al., 2012).

Recent work has shown that Cdc42 polarization induced by landmark proteins occurs in two

phases of the cell cycle: in early G1 before START (as marked by the nuclear exit of Whi5) and

in late G1 after START (Miller et al., 2020; Moran et al., 2019). These two phases of Cdc42 polar-

ization appear to be required for the complete assembly of the components necessary for cell

division (Kang et al., 2018; Lai et al., 2018; Miller et al., 2020). Interestingly, it has been suggested

that distinct positive feedback loops drive Cdc42 polarization towards the axial landmark before

and after START (Moran et al., 2019). In both phases of polarity establishment, Axl2 connects the

axial landmark complex to the polarization machinery by recruiting Bud5, a GEF which activates

the small GTPase Rsr1. Active Rsr1-GTP in turn induces polarity establishment through either of

two pathways depending on whether the signal for START has been passed. During pre-START

polarization, Rsr1-GTP binds to Cdc42-GDP. This interaction mediates the conversion of Cdc42-
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GDP into active Cdc42-GTP by the landmark component Bud3, which has been reported to show

GEF activity for Cdc42 in addition to its role in landmark assembly (Kang et al., 2014). The re-

quirement for Bud3 to act as a GEF for Cdc42 appears to be supported by reports that Cdc24 is

sequestered in the nucleus prior to START and is therefore unable to participate in Cdc42 activa-

tion (Nern & Arkowitz, 2000; Shimada et al., 2000). Notice that the functionality of this pathway

would not require Bem1 (Miller et al., 2020; Witte et al., 2017). Alternatively, after START has been

passed and Cdc24 is released from the nucleus, Rsr1-GTP binds both Cdc42-GDP and Cdc24 to

initialize the Bem1-mediated feedback loop for Cdc42 polarization and direct the polarity axis

towards the axial landmark.

Our data shows that the deletion of Axl2 in the polarity mutant has a profoundly more nega-

tive effect on fitness than in a wild-type strain, indicating that the communication between this

landmark protein and the Cdc42 polarity module plays an important role during bud formation

in the polarity mutant. This is further supported by the similar trend for components of the Rsr1-

GTPase module (the GAP Bud2, the GEF Bud5 and the GTPase Rsr1), which functionally connects

Axl2 to Cdc42 polarity. In addition, we find that the deletion of Gic1 and Gic2 have an increased

negative effect on fitness. Gic1 and Gic2 were initially considered to be Cdc42 effectors, but have

lately also been implied to play a role upstream of Cdc42 during polarity establishment by re-

ducing the diffusion rate of Cdc42-GTP on the membrane (Kang et al., 2018; Miller et al., 2020),

thereby stabilizing the polar cap. It has been proposed that this stabilizing effect of Gic1 and

Gic2 relies on their interaction with PIP2 on the plasma membrane (Kang et al., 2018). Consis-

tent with this, we find that Inp51, which regulates the PIP2 levels, becomes more important in

the bem1Δbem3Δnrp1Δ background.

At first sight, this pattern appears to suggest that pre-START polarization, which is mediated

by the GEF activity of Bud3, is capable of promoting post-START polarization and bud emergence

in the polarity mutant. This would allow the cells to surpass the requirement of Bem1 activity

for efficient polarity establishment. However, if polarity establishment in bem1Δbem3Δnrp1Δ
cells would be purely based on the redundancy of the pre- and post-START polarization mech-

anisms, we would expect to see a strong switch in the essentiality of Bud3 (from non-essential

to essential) and Cdc24 (from essential to non-essential). Instead, we find that the tolerance to

disruptions in the BUD3 is even slightly increased, while CDC24 appears to be essential in both

the wild-type strain and the polarity mutant. Thus, the mechanism for polarity establishment in

bem1Δbem3Δnrp1Δ cells remains dependent on Cdc24 to act as a GEF for Cdc42.

The polarisome

The polarisome is a molecular complex that forms at the incipient bud site. It is generally consid-

ered to consist of seven components (Spa2, Pea2, Bni1, Bud6, Aip5, Msb3 and Msb4), although

the role of Msb3 and Msb4 in the formation of this complex is still unknown (Xie & Miao, 2021).

Localization of the polarisome during bud formation is dependent on active Cd42 as the Cdc42-

effector Gic2 recruits the components Bud6, Bni1 and Spa2 to the incipient bud site (Chen et

al., 2012; Jaquenoud & Peter, 2000). At the bud site, Spa2 acts as a scaffold and mediates the

assembly of the complex by binding different components of the polarisome (Sheu et al., 1998).

Within the polarisome, the proteins Bni1, Bud6 and Aip5 form the nucleation-core that promotes

the assembly of F-actin cables towards the bud site (Xie & Miao, 2021). Thus, formation of the

polarisome is crucial for the directed transport of membrane components towards the bud site

and hence for polarized growth.
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Figure 6.6. Genes coding for proteins related to the spatial landmark proteins become important for

fitness in the polarity mutant. (Left) The physical subnetwork of proteins related to the spatial landmark

for which the corresponding gene was found to have an altered contribution to fitness between the wild-

type strain and polarity mutant. As in figure 6.5, node color scales with the magnitude and sign of the fitness

effect, node size scales according to the significance level (adjusted p-value). The graph shows that most

genes coding for axial landmark proteins (Axl2), proteins of the Rsr1-GTPase module (Bud2, Bud5, Rsr1) and

interacting proteins (Gic1, Gic1) become less tolerant to disruption in the polarity mutant. In contrast, com-

ponents of the bipolar landmark (Rax1, Bud9, Bud7) become more tolerant to disruption. (Right) Illustration

of the currently proposed mechanism through which the axial landmark can promote Cdc42 polarization.

We find that several core components of the polarisome (Spa2, Bni1, Pea2, Bud6) appear as

having a decreased tolerance to disruption of their corresponding gene in our dataset. As the

deletion of Bem3 and Nrp1 was originally found to restore the defect in polarity establishment

in bem1Δ cells (Laan et al., 2015), we speculate that the increased importance of the polarisome

in bem1Δbem3Δnrp1Δ cells is due to a contribution of actin-mediated transport to Cdc42 polar-

ization rather than downstream processes. Thus, while the role of actin-mediated transport has

been disputed, our results suggest that vesicle delivery of active Cdc42 to the polarity cap makes

a significant contribution to polarity establishment in the absence of Bem1, Bem3 and Nrp1.

The endocytic pathway

Endocytosis occurs through a dense network of short actin cables that generate the force re-

quired for invagination of the plasma membrane (Goode et al., 2015). The formation and dy-

namics of these actin patches is regulated by the Arp2/3 complex (D’Agostino & Goode, 2005;

Mishra et al., 2014). During polarity establishment, active Cdc42 initiates a cascade that recruits

and activates the Arp2/3 complex, resulting in the increased formation of actin patches near the

site of polarized growth (Lechler et al., 2001). The role of endocytosis in polarity establishment is

currently unclear, as it has been proposed to be involved in both positive and negative feedback

loops (Harris & Tepass, 2010; Irazoqui et al., 2005; Jose et al., 2013).

Many of the genes that belong to the cell polarity cluster are related to the regulation of actin,

but several proteins stand out as specific components of actin patches and the endocytic ma-

chinery. First of all, we find that the two subunits of the capping protein heterodimer (Cap1 and

Cap2) become increasingly important in the bem1Δbem3Δnrp1Δ mutant. Capping proteins are

required for inhibiting the growth of actin filaments to allow the formation of a dense structure

of short actin filaments that make up the actin patch (K. Kim et al., 2004; Young et al., 2004).
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SPA2

BUD6

PEA2

EPO1

BNI1

Spa2

Epo1

Pea2

Bni1

Bud6

Cdc42-GTP

Actin

Figure 6.7. Proteins of the polarisome become more important for fitness in the polarity mutant.

(left) The physical subnetwork of polarisome proteins for which the corresponding gene was found to have

an altered contribution to fitness between the wild-type strain and polarity mutant. As in figure 6.5, node

color scales with the magnitude and sign of the fitness effect, node size scales according to the significance

level (adjusted p-value). (Right) Illustration of the interactions between the polarisome proteins shown in

the figure on the left. Actin cables and myosin have been added to emphasize the role of the polarisome in

directing actin-mediated transport towards the polar site.

Second, we see an increased importance of the BAR-domain containing amphiphysin proteins

Rvs161 and Rvs167. These proteins stabilize the curvature of invaginated membranes and pro-

mote their scission during endocytosis. The deletion of Rvs161 or Rvs167 has been shown to

increase the rate of failure to create endocytic veiscles (Kaksonen et al., 2005). Lastly, we see the

same effect for the adapter protein Abp1 that connects actin patches to the endocytic machinery

(Quintero-Monzon et al., 2005). Taken together, this pattern of increased essentiality of proteins

involved in actin patch formation and endocytosis indicates that endocytosis makes an impor-

tant contribution to polarity establishment. Whether this is due to its involvement in a negative

or positive feedback loop for Cdc42 polarization remains to be determined.
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Figure 6.8. Endocytic proteins become more important for fitness in the polarity mutant. (left) The

physical subnetwork of the proteins involved in endocytosis for which the corresponding gene was found

to have an altered contribution to fitness between the wild-type strain and polarity mutant. As in figure

6.5, node color scales with the magnitude and sign of the fitness effect, node size scales according to the

significance level (adjusted p-value). (Right) Illustration of the interactions between the proteins related to

endocytosis shown in the figure on the left.

6.3. Conclusions

The ability of cells to compensate for the loss of proteins by changing their interactome plays an

important role in their ability to quickly adapt to genetic perturbations (Ding et al., 2018; Halaoui

& McCaffrey, 2015; J. Kim et al., 2012). Understanding how cellular functions can be restored

without restoring the perturbed pathway has important applications in healthcare. For example,

microbial cells can become resistant to antibiotics by rewiring their interaction network in such a

way that an alternative pathway for the perturbed function is formed (Grézal et al., 2023; Taylor

et al., 2022).

In this chapter, we studied the genome-wide changes that occur at the end of an adaptive

pathway that compensates for the loss of the polarity protein Bem1 through additional gene

deletions only. We find that a surprisingly large number of genes (882) are significantly affected

by the gene deletions, which demonstrates that compensatory evolution causes global changes

in the importance of genes to fitness. Importantly, these changes cause an approximately equal

number of genes to increase and decrease their importance after compensatory evolution. Adap-

tation by gene deletions therefore does not appear to directly affect the mutational robustness

of the strain. Instead, compensatory evolution appears to merely cause a shift in gene impor-

tance. These shifts in gene importance are global and span several, seemingly unrelated, cellular

functions. This has the unexpected result that processes that appear to be important for viabil-

ity in the wild-type cells can become dispensable in the polarity mutant. A particularly notable

example is that genes related tomicrotubule dynamics become less important in the polaritymu-

tant, raising the question of how processes such as spindle positioning is regulated in these cells

(Carminati & Stearns, 1997). We predict that these changes can profoundly alter the response of

these cells when faced with a new genetic perturbation.

Encouraged by studies that indicate a relation between the evolutionary rate of a protein

and its role in maintaining the structural features of the PPI (Alvarez-Ponce et al., 2017; Fraser

& Hirsh, 2004; Fraser et al., 2002; Helsen et al., 2019; Koubkova-Yu et al., 2018), we searched
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for a possible correlation between the genes that we found to be affected by compensatory

evolution and several network centralities. Our analysis did not reveal any correlation between

the likelihood that a gene is affected and any of the three major centralities in the PPI network

(degree, betweenness and connectedness) of the corresponding protein. Thus, the predictive

power of the PPI network appears to be limited. Instead, our finding that most affected genes

can be functionally associated with each other suggests the functional informationmay bemore

useful. However, we cannot exclude that this result is a consequence of low PPI network quality.

Althoughwe have chosen to use amulti-validated dataset to construct our PPI network, the struc-

ture of this network may still significantly deviate from the true interactome that exists in cells.

It has been noted by others that interaction network quality is not only determined by a high

confidence that an interaction between two components exists, but also by a high confidence

that an interaction between two components is truly absent (Van Dam & Snel, 2008). In addition,

many interaction networks that are available from integrated databases suffer from research

bias (Gillis et al., 2014; von Mering et al., 2002). Both these factors will affect the metrics that we

use to determine the position of a protein within the networkwith respect to any of the three cen-

tralities. Aside from the quality of the used protein interaction network, a final possibility is that

the transition from the wild-type strain to the polarity mutant induces such large changes in the

interactome that the previously mapped interactions are no longer valid. This implies that inter-

action networks can be highly context dependent and would have far reaching consequences for

the ability to draw conclusions based on interactionmaps generated with high-throughputmeth-

ods. These methods frequently determine the presence of a protein-protein interaction based

on an assay that takes the components out of the normal cellular context (such as two-hybrid

screenings).

Our data allows us to formulate a hypothesis about a possible mechanism for polarity es-

tablishment that does not require Bem1, Bem3 and Nrp1. A cluster analysis of the genes that

show a significant change in dispensability between the wild-type strain and the polarity mutant

revealed the existence of a relatively large cluster of proteins that are annotated to be involved

in polarity establishment. This suggests that proteins that participate in polarity establishment

in our wild-type strain are also frequently involved in the pathway for polarity establishment in

the polarity mutant, although their role may have changed. Further inspection of the cluster

enriched for genes related to cell polarity indicated that there is an increased dependence on

the axial landmark complex in the polarity mutant. Interestingly, a mechanism for Cdc42 polar-

ization that does not depend on Bem1 has previously proposed to drive polarity establishment

before START (Kang et al., 2014; Miller et al., 2020; Moran et al., 2019). It is tempting to speculate

that this mechanism has become the main driver of the positive feedback loop that generates

the polarized cap of Cdc42. However, our finding that Cdc24 remains essential and Bud3 does

not become essential in the polarity mutant is inconsistent with the proposed mechanism for

Bem1-independent polarization of Cdc42 before START (Kang et al., 2014). This suggests that

in polarity mutants it is not simply the pre-START polarization mechanism that takes over when

the Bem1-mediated feedback loop is lost, but rather a pathway that may be a mixture of the

pre- and post-START mechanisms. An alternative possibility is that Cdc24 does act as the main

GEF for Cdc42 during pre-START polarization, but does not require Bem1 to initiate the positive

feedback loop. A study that has shown that recruitment of Cdc24 to a predetermined site on

the membrane using optogenetics can initiate pre-START polarization supports this possibility

(Witte et al., 2017). However, it remains to be determined how this can be reconciled with the se-
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questration of Cdc24 in the nucleus before the onset of START. In addition to the axial landmark

complex, we see a dependency on actin-mediated transport, both in the form of exocytosis and

endocytosis, of the polarity mutant, suggesting that they are part of the alternative pathway for

cell polarization. The role of these processes for the establishment of polarity in wild-type cells

has been under debate (Irazoqui et al., 2005; Layton et al., 2011; Savage et al., 2012; Slaughter

et al., 2009; Woods et al., 2016). While we currently cannot identify whether these actin-based

processes contribute to the establishment or robustness and singularity of the polarity cap, we

propose that their role will likely be important for efficient polarization of wild-type cells.

In conclusion, we have shown that compensatory evolution can lead to changes in the fitness

contribution of a large number of genes. Importantly, these changes go beyond the initially

perturbed and subsequently compensated pathway and instead spans across several, seemingly

distinct, cellular processes. However, our data does suggest that the alternative pathway that

allows a near wild-type efficiency for polarity establishment after the deletion of Bem1, Bem3

and Nrp1 relies on the axial landmark, the polarisome and endocytosis.

6.4. Methods

6.4.1. Strains

All strains used in this study are from the W303 genetic background. The cas9 cassette was ob-

tained from plasmid p414-TEF1p-cas9-CYC1t (DiCarlo et al., 2013) and fused to the up- and down-

stream genomic sequences of the HO-locus and the ScURA3marker using overlap-extension PCR.

The resulting genetic construct was transformed into a wild-type strain and bem1Δbem3Δnrp1Δ
mutant using according to a lithium-acetate transformation protocol (Gietz & Schiestl, 2007). Cor-

rect integration was verified with colony PCR. Endogenous expression of Cas9 from the HO-locus
had no significant effects on growth. Strains were made compatible with SATAY by removing the

ScURA3marker and the endogenous ADE2 locus using the CRISPR/Cas9 system according to the

double guide-RNA (gRNA) method of Mans et al. (2015). gRNA sequences targeting the ScURA3
marker and ADE2 locus were designed using the online toolbox CHOPCHOP (Labun et al., 2019).
The repair fragment for removal of the ScURA3marker was constructed by PCR amplification of

the genomic sequence upstream and downstream of the ScURA3marker and fusing the two frag-

ments using overlap-extension PCR. Similarly, the repair fragment for removal of the ADE2 locus
was constructed by fusing the up- and downstream genomic sequences with overlap-extension

PCR. Removal of ScURA3marker and the ADE2 was verified by colony PCR using primers 5 and 6

and primers 7 and 8, respectively. Correct clones were cured from their gRNA plasmids by inocu-

lating them in non-selectivemedium (YPD) and growing themuntil saturation (∼1.5 days) at 30 °C.
After saturation was reached, the cultures were plated to single colonies on YPD agar plates and

screened for the loss of growth on media selecting for the marker of the gRNA plasmid. Strains

were stored at -80 °C as frozen stocks in 40% (v/v) glycerol. The double gRNA plasmids that were

used as a template were a kind gift from Pascale Daran-Lapujade.

6.4.2. Media

Standard culturing and growth assays were performed in YPD (10g/L Yeast extract, 20 g/L Pep-

tone, 20 g/L dextrose), SC (6.9 g/L Yeast nitrogen base, 0.75 g/L Complete supplement mixture,

20 g/L dextrose). For ade− strains, standard growth media was supplemented with 20 mg/L ade-

nine just before incubation. Liquid and solid media for SATAY were prepared as described in

section 4.4.2 and table 4.2.
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6.4.3. SATAY Library generation

SATAY libraries were generated based on the protocol developed by Michel et al. (2019). The

procedures for transposition, DNA extraction and circularization were performed as described

in section 4.4.3. Transposon-genome junctions were amplified using the barcoded primers 1

and 2 (table 4.3) for DpnII digested DNA or primers 3 and 4 (table 4.3) for NlaIII digested DNA

on a thermal cycler (Bio-Rad C1000 Touch) with the block settings shown in table 4.4. PCR am-

plified samples were purified using the NucleoSpin Gel and PCR cleanup kit (Macherey-Nagel)

and quantified on the NanoDrop 2000 spectrophotometer (Thermo Scientific). For each sam-

ple, equal ratios (w/w) of DpnIII and NlaII digested DNA were pooled. Library preparation and

sample sequencing were performed by Novogene (UK) Company Limited. Sequencing libraries

were prepared with the NEBNext Ultra II DNA Library Prep Kit, omitting the size selection and

PCR enrichment steps. Libraries were sequenced on the NovaSeq 6000 platform (Illumina) set

to Paired-End (PE) sequencing with a read length of 150 bp.

6.4.4. Volcano plots

Read count distributions were corrected for spikes using the Beta-Geometric correction method

and subsequently normalized for differences in transposon density and sequencing depth with

the median of ratios normalization (see section 6.6.1). p-values were generated using the un-

equal variance independent t-test available from the SciPy library in Python (Virtanen et al., 2020)

and corrected for multiple hypothesis testing with the Benjamini-Hochberg procedure imple-

mented in the TRANSIT software tool (DeJesus et al. (2015), version 3.2.6).

6.4.5. Physical interaction network analysis

The Multi-Validated (MV) dataset of physical interactions (release BIOGRID-4.4.214) was down-

loaded from the BioGRID in Tab 3.0 format, which contains all physical interactions that have

been validated by at least two different experimental systems or publication sources. The orig-

inal set of physical interactions was sliced to obtain only those that correspond to interactions

between proteins of S. cerevisiae. Interactions inferred from Affinity Capture-RNA or Protein-RNA

were excluded from the dataset as these interactions do not represent direct physical interac-

tions between proteins. Network visualizationsweremadewith Cytoscape (Shannon et al. (2003),

version 3.9.1). Network centralities (degree, betweenness and closeness) were calculated using

the NetworkX package in Python (Hagberg et al., 2008).

6.4.6. Functional interaction network analysis

Functional associations between gene products were retrieved from the STRING database (Szk-

larczyk et al., 2021) through the stringApp plugin (Doncheva et al. (2019), version 1.7.1) of Cy-

toscape (Shannon et al. (2003), version 3.9.1). The confidence threshold of the imported inter-

actions from STRING was set to medium (confidence level ≤0.40). Markov Clustering (MCL) was

performed with the clusterMaker2 (version 2.2) plugin of Cytoscape using the confidence level

as edge weight and setting the granularity parameter to 2.5.
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6.6. Supplement

6.6.1. Read count correction and normalization procedure

The benefit of including read counts in our metric to identify changes in the fitness effect of gene

disruptions across genetic backgrounds is that it allows for a more sensitive analysis than those

based on insertion counts. For example, a gene may have a negligible difference in insertion

counts between two genetic backgrounds if the change in gene disruption tolerance is not so

drastic that it causes a large number of mutants to fall below the detection level in one of the

two backgrounds. However, if a significant difference in gene disruption tolerance truly exists,

we would expect that the read counts (which should reflect mutant abundance) associated with

each insertion site will be lower in one of the two strains. Thus, extending the analysis from a

binary assessment of the occupancy of insertion sites to a gradual scale based on read counts

can uncover differences that would otherwise remain undetected. However, a drawback is that

read counts tend to bemore variable between replicate experiments than insertion counts, often

owing to read count spikes caused by technical and biological artifacts (DeJesus & Ioerger, 2016).

This increasednoise level can hinder the desired increase of sensitivity of the analysis. In addition,

spikes in the read counts can significantly skew the read count distribution. This means that the

small subset of insertion sites with an artificially high read count will strongly affect methods that

aim to correct differences in sequencing depth between libraries by a linear transformation of

the total read count.

To address these issues, we implemented the Beta-Geometric correction (BGC) method de-

veloped by DeJesus and Ioerger (2013). This method is based on the observation that read count

distributions obtained from transposon insertion sequencing (TIS) experiments resemble a geo-

metric distribution wheremost insertion sites have a low read count, while only few sites contain

many reads1. The quantiles of the empirical read count distribution are adjusted to match the

quantiles of a fitted ’ideal’ geometric distribution. To allow for greater flexibility of the fit, this

ideal distribution is implemented as a mixture of geometric distributions with a Beta prior on

the probability parameter. In practice, this procedure corrects for the ’skew’ in the empirical read

count distribution by suppressing spikes while inflating the insertion sites that have a low read

count. The results in figure S6.1 show that the application of this procedure greatly improves the

correlation between replicate datasets (Figure S6.1b) compared to uncorrected datasets (Figure

S6.1a). Lastly, after applying the BGC correction, we normalized for differences in sequencing

depth and library complexity across datasets using the median of ratios normalization (Anders

& Huber, 2010; Robinson & Oshlack, 2010). In summary, the geometric mean across all samples

was calculated for each gene:

�̄�𝑔 = exp 1
𝑛
⋅

𝑛
∑

𝑎
ln (𝑅𝑔,𝑎)). (6.1)

Where �̄�𝑔 is the geometric mean of the read counts mapping to gene 𝑔, 𝑛 is the total number

of datasets and 𝑅𝑔,𝑎 is the number of reads that map to gene 𝑔 in dataset 𝑎. Next, the ratio of

the total read count to the geometric mean �̄�𝑔 was determined for each sample and the sample-

specific normalization factor was taken to be the median of these ratios across all genes:

1For amathematical reasoning of why read counts obtained from a TIS experiment would be expected to follow a geometric

distribution, see DeJesus and Ioerger (2016) and McGill et al. (2007).
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𝑆𝑎 = median(
𝑅𝑔,𝑎

�̄�𝑔
) , for all 𝑎 ∈ 𝐺 (6.2)

With 𝑆𝑎 the normalization factor for dataset 𝑎 and 𝐺 is the complete set of annotated genes

used in this chapter. Finally, the read counts were linearly scaled by the normalization factor 𝑆𝑎:

𝑅𝑔,𝑎,norm =
𝑅𝑔,𝑎

𝑆𝑎
. (6.3)

6.6.2. Supplementary figures
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Figure S6.1. Normalization using the beta-geometric correction (BGC) increases the correlation in

summed read counts between replicate experiments. The correlation between the summed read counts

of each gene in two replicate strains (R1 and R2) is shown for (a) raw data (b) after BGC and (c) after both

BGC and median of ratios normalization (MRN). The dashed line represents the identity line. 𝜌: Pearson’s
correlation coefficient.
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Figure S6.2. Significant genes have a larger effect size. Histogram of the log2-fold changes shown in figure
6.2. The plot shows that genes that are flagged to have a statistically significant difference between the two

genetic backgrounds (red bars) typically occurs for larger fold-changes.
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Figure S6.3. Volcano plots of samples of the same genetic background to check for false discoveries. The

replicate datasets of each genetic background (6 in total) were split and compared 3 vs. 3. The plot shows

that for both our wild-type samples and bem1Δbem3Δnrp1Δ samples, we do not find any false positives at a

significance threshold of padj < 0.05.
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Figure S6.4. Gene essentiality correlates with degree in the protein-protein interaction network. (a)

Visualization of the protein-protein interaction network constructed from the interactions annotated by the

BioGRID database. Nodes are colored according to their degree 𝑘 (blue: 𝑘 ≤ 3, green: 4 ≤ 𝑘 ≤ 10, red:
𝑘 > 10). Essential genes are shown as square nodes, non-essential genes are shown as circles. (b) Stacked

histogram of the number of proteins 𝑁𝑝(𝑘) with degree 𝑘. proteins annotated as essential are shown in red,
non-essential proteins are shown in blue. The histogram shows that the distribution for 𝑘 is roughly uniform
for essential genes, while it is skewed towards lower values of 𝑘 for non-essential genes. (c) The probability
that a node is essential as a function of 𝑘. The graph displays an increasing trend for the probability as

𝑘 increases. Combined with the histogram shown in (b), this trend demonstrates that genes with a high

degree are more likely to be essential than genes with a low degree.
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Conclusion

The four stages of acceptance:

1. This is worthless nonsense.

2. This is an interesting, but perverse, point of view.

3. This is true, but quite unimportant.

4. I always said so.

— J.B.S. Haldane
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Conclusion

Living systems possess the remarkable ability to adapt to their environment through the process

of evolution. The question of whether wewill ever be able to understand this process to a degree

that allows prediction has been asked repeatably in the past decades (Gould, 1989; Johnson et al.,

2023; Lobkovsky & Koonin, 2012; Orgogozo, 2015). Initially, the overwhelming complexity of liv-

ing systems combined with the unpredictable forces that drive evolution made prediction seem

like a daunting, if not impossible, task (Gould, 1989). However, experiments demonstrating that

adaptive evolution can follow reproducible paths have provided insights into the conditions that

can lead to predictable evolutionary trajectories (Laan et al., 2015; Lind et al., 2019). Crucially,

these experiments identified epistatic interactions between mutations as a source of evolution-

ary constraint (de Visser et al., 2018; Szendro et al., 2013). If these constraints are severe enough

to render the majority of possible evolutionary trajectories inaccessible, they open up an op-

portunity for predicting evolution. Nevertheless, epistatic constraints have mostly been used

retrospectively to explain observed adaptive pathways (Gorter et al., 2018; Laan et al., 2015).

To employ epistasis as a tool for prediction, either one of the following two approaches must

be undertaken: (1) an extensivemapping of all possible combinations ofmutations to empirically

determine the structure of the fitness landscape (Poelwijk et al., 2007) or (2) deriving epistasis

from the physiochemical properties of the cell. These approaches are inherently linked, as under-

standing the molecular basis of epistatic interactions requires an in-depth analysis of observed

epistatic patterns (Poelwijk et al., 2019). This link has been underscored by studies that success-

fully inferred functional relationships between genes based on the similarity of their epistatic

interaction profile (Costanzo et al., 2016; van Leeuwen et al., 2016).

In this thesis, we studied how molecular interactions can facilitate or constrain evolution us-

ing the polarity network of Saccharomyces cerevisiae as a model system. We focus on a specific

evolutionary pathway where cells adapt to the loss of Bem1, a key polarity protein, through the

sequential deletion of Bem3 and Nrp1 (Laan et al., 2015). Under standard laboratory growth

conditions, the phenotype of the resulting polarity mutant is surprisingly similar to that of a wild-

type strain, indicating that these gene deletions effectively suppress the detrimental effects of

losing Bem1. The ability to mask the detrimental effects of a mutation through genetic changes

elsewhere in the genome has been an active area of research, in part due to its importance for

understanding the inheritance pattern of Mendelian diseases (Chen et al., 2016). However, these

studies traditionally focus on the potential functional relation between the allele responsible for

a specific phenotype and the gene capable of mitigating these effects through secondary muta-

tions. In this work, we go one step further and explore the impact of suppressor mutations on

the overall genetic wiring of the cell (Tong et al., 2004; Usaj et al., 2017). By doing so, we take a

holistic approach to unravel the complex mechanisms that govern adaptive pathways. Our re-

sults demonstrate that such an approach may be instrumental for the development of models

that can make evolutionary predictions.

Mapping the fitness effect of gene disruptions on a genome-wide scale using SATAY.

Fitness landscapes are at the heart ofmany predictivemodels for adaptive evolution. Specifically,

knowledge of the topological features of the fitness landscape, such as its ruggedness, provides

information on the accessibility and likelihood of evolutionary trajectories, which can in turn be
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used to make predictions. Empirical fitness landscapes, constructed by systematically assessing

all possible allele combinations, have indeed been shown capable to explain observed patterns

of evolution (Gorter et al., 2018; Weinreich et al., 2005). However, what complicates their ap-

plication in predictive models is that their structure can be dynamic across environments and

genetic backgrounds. For example, Bajić et al. (2018) found that an empirical fitness landscape

of the metabolic network of Escherichia coli may only be valid for short mutational distances

due to the effect evolving cells have on their environment. Similarly, van Leeuwen et al. (2020)

demonstrated that the lethality of gene loss in S. cerevisiae can vary substantially between genetic
backgrounds. These findings highlight the need for techniques that facilitate the construction of

fitness maps in different environmental and genetic contexts —a feature lacking in most cur-

rently used methods (Butland et al., 2008; Kogenaru et al., 2009; Tong & Boone, 2006; Winzeler

et al., 1999).

Transposon insertion sequencing (TIS) methods enable the rapid construction of complete

libraries containing single gene deletion mutants within specific genetic backgrounds or envi-

ronments. Initially, these methods were primarily used to distinguish genes based on their es-

sentiality (Gawronski et al., 2009; Goodman et al., 2009; Langridge et al., 2009), but the relation

between mutant abundance and observed read counts has prompted their application towards

the construction of genome-wide fitness maps of gene disruption mutants (van Opijnen et al.,

2009). In chapter 4, we describe a method to estimate the fitness of gene deletion mutants from

data generated using the newly developed TIS screen for S. cerevisiae called SATAY (Michel et al.,

2017; Michel & Kornmann, 2022). Our approach is based on the average read count per transpo-

son insertion site and we demonstrate that this proxy provides fitness estimates that are robust

across replicate SATAY experiments. However, despite this robustness, the distribution of fitness

effects (DFE) differs significantly from those published by other studies. These inconsistencies

between fitness distributions generated with different high-throughput techniques are not un-

common. Notably, it appears that the major conserved feature of the DFE is that the most gene

deletions have a near-neutral effect on fitness (Baryshnikova et al., 2010).

The absence of a definitive ’gold standard’ dataset for gene fitness values prevents us from

conclusively determining accuracy of fitness values obtained from SATAY in comparison to those

found using othermethods. While it is uncertain whether this gold standard exists –and if it does,

whether it can practically be constructed–, we speculate about its desired characteristics. In order

for a gold standard to serve as a calibration for other datasets, it must accurately represent the

conserved features of the fitness landscape. This requirement presents a challenge, given the

notorious context-dependency of fitness (Bajić et al., 2018; Kinsler et al., 2020; van Leeuwen et al.,

2020). However, genetic interaction maps, which are derived from fitness landscapes (Costanzo

et al., 2016), do appear to have conserved properties. For instance, research in various yeast

species and humans has shown that the impact of a gene deletion on fitness correlates with the

number of genetic interactors of the gene (Koch et al., 2012; van Leeuwen et al., 2017). Moreover,

studies have indicated that specific genetic interactions between certain pairs of genes remain

conserved during evolution (Tosti et al., 2014). Therefore, using the conserved structures of the

genetic interaction map, rather than directly comparing fitness values, may be a more reliable

approach to assess different fitness estimation techniques.

Functional restoration is aided by redundant pathways.

The deleterious effects of losing an important gene can be compensated during evolution with-

out re-establishing the pathway that was perturbed (Helsen et al., 2020; Szamecz et al., 2014).
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This remarkable property demonstrates that organisms can exploit genetic redundancies to

quickly restore functions affected by the gene deletion. However, these redundancies within

biological networks often remain concealed in unperturbed systems and it is unclear how the

compensatory mutations promote their role in restoring the perturbed function. In chapter 6,
we performed a genome-wide mutagenesis screen to identify genes that recover the defects

in polarity establishment induced by the deletion of BEM1 through the subsequent deletion of

BEM3 and NRP1. The ability to restore the defects solely through gene deletions implies the ex-

istence of a latent pathway for polarity establishment within the cell. Identifying the structure

of this pathway may provide a mechanistic explanation for the constrained order in which the

compensatory mutations occur during experimental evolution.

Interestingly, we were able to identify a subset of genes associated with cell polarity that

predominantly exhibit a reduced tolerance to disruptions in the polarity mutant when compared

to the samegenes in awild-type strain. Considering the knownmolecular function of these genes,

we propose the axial landmark complex, endocytosis and exocytosis as the main structures and

pathways that contribute to polarity establishment after the loss of Bem1, Bem3 and Nrp1. This

finding supports the previous observation that redundancies at the level of pathways, rather

than individual genes, play an important role in compensatory evolution (Szamecz et al., 2014).

The fact that none of these processes are required for polarity establishment in the wild-

type genetic background demonstrates that their redundant function remains hidden when a

stronger feedback loop for Cdc42 polarization is active. Furthermore, each of these three path-

ways alone may be too weak to drive cell polarization independently, which would explain why

genes related to all three pathways display heightened sensitivity to disruptions in bem1Δbem3Δ-
nrp1Δ cells. Despite their apparent involvement in an underlying pathway for polarity estab-

lishment, the existing knowledge about the interactions among the molecular components of

these processes does not fully explain how they would contribute to a positive feedback loop for

Cdc42 polarization. For example, even in the presence of the axial landmark, the primary posi-

tive feedback loop driving Cdc42 polarization during bud formation is still generally believed to

depend on Bem1 (Jost & Weiner, 2015; Miller et al., 2020; Woods et al., 2015). Consequently, the

involvement of the axial landmark in establishing a Bem1-independent mechanism for Cdc42

polarization may depend on molecular interactions that have not ye been identified.

Additional research is therefore necessary to validate themechanisms throughwhich the pro-

posed processes create an alternative pathway for polarity establishment. For instance, fluores-

cence microscopy using labelled Cdc42 could reveal whether bem1Δbem3Δnrp1Δ cells contain

higher levels of Cdc42 on their internal membranes compared to wild-type cells. This obser-

vation would support the hypothesis that these cells have an increased reliance on endo- and

exocytic pathways in the absence of cytoplasmic recycling of Cdc42. In addition, creating con-

ditional knock-outs of the proteins indicated by our data to have an increased importance in

bem1Δbem3Δnrp1Δ cells could elucidate how their loss affects Cdc42 polarization dynamics. For

this purpose, light-induced sequestration experimentsmay prove to be particularly useful (Jost &

Weiner, 2015). These experiments allow the reversible release and sequestration of proteins at

different phases of the cell cycle and could be used to identify the temporal sequence of events

leading to polarity establishment (Kang et al., 2018; Miller et al., 2020; Miller et al., 2019; Moran

et al., 2019).

Understanding the alternative pathway for polarity establishment that acts after the deletion

of Bem1, Bem3 and Nrp1 could theoretically allow control over the evolutionary trajectory. A key

167



7

7. Conclusion

element of the ability to exert control lies in the finding that this alternative pathway consists of

redundant functions within existing cellular processes. Mutations in these processes might have

limited effects on fitness in a wild-type genetic background but can be highly detrimental when

combined with the gene deletions that compensate for the loss of Bem1. Such mutations would

then act as an epistatic switch that controls the accessibility of adaptive pathways.

Interestingly, our search for gene deletions that could render the pathway from a bem1Δ to a

bem1Δbem3Δ genetic background inaccessible identified ABP1 as a gene with the necessary epi-
static properties (see chapter 5). Notably, Abp1 belongs to a conserved family of actin-binding

proteins and connects the cortical actin network to the endocytic machinery (Michelot et al.,

2013; Quintero-Monzon et al., 2005), suggesting a functional association with cellular processes

involved in polarity establishment. This supports the notion that understanding the molecular

mechanism underlying the evolutionary recovery of polarity establishment would allow for con-

trol over the evolutionary process.

While further experimental validation is required, we propose the following mechanistic ex-

planation for how the deletion of Abp1 would prevent the deletion of Bem3 from acting as a

suppressor in a bem1Δ background. Because Bem3 acts as a GAP for Cdc42, its deletion marks

the transition from a reaction-diffusion type mechanism to an actin-mediated mechanism for

Cdc42 recycling. This transition increases the dependence of polarity establishment on endocy-

tosis for the extraction of Cdc42 from themembrane, a process that normally acts in parallel with

the faster GDI-mediated pathway (Slaughter et al., 2009). The deletion of ABP1 disrupts the ability
to use the endocytic pathway for Cdc42 recycling, rendering the transition from a bem1Δabp1Δ
to a bem1Δbem3Δabp1Δmutant deleterious.

In addition to its functional relation to polarity establishment, the role of Abp1 is dispensable

in wild-type cells (Drubin et al., 1990). Consequently, we anticipate that a population abp1Δ cells

can persist in natural environments. This feature makes the deletion of Abp1 a viable strategy

for designing cells with a distinct adaptive response to the absence of Bem1, while maintaining

the same fitness as wild-type cells under standard conditions. Overall, our findings support the

hypothesis that inhibiting pathways redundantwith the disrupted function canbeused to control

the accessibility of evolutionary pathways.

Compensatory evolution has genome-wide consequences on genetic interactions.

Mutations that suppress the effects of gene loss are frequently found in genes that are function-

ally related to the disrupted gene (Helsen et al., 2020; Szamecz et al., 2014). However, the highly

interconnected nature of genetic interaction maps implies that the consequences of compen-

satory mutations can have effects that go beyond the initially perturbed module. In chapter 6,
our genome-wide mutagenesis screen revealed a substantial number of genes with an altered

fitness contribution following the evolutionary repair of cell polarity. Based on this finding we

propose that, while suppressor mutations might be associated with the induced functional de-

fect, compensatory evolution induces a widespread rewiring of the interaction network. This is

in agreement with the observation that compensatory mutations rarely result in the restoration

of the ancestral gene expression pattern (Szamecz et al., 2014).

Moreover, our findings underscore the concept of global epistasis, where the fitness of in-

dividual gene relies on a large number of other loci (Kryazhimskiy et al., 2014; Reddy & Desai,

2021). A notable implication of global epistasis is that the epistatic constraints associated with

compensatory mutations will tend to be complex. For example, our results indicate that the abil-

ity of loss-of-function mutations in Bem3 and Nrp1 to suppress the bem1Δ phenotype depends
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on genes from pathways unrelated to cell polarity. Furthermore, given that a gene’s relevance

for fitness can vary based on environmental conditions, the epistatic constraints observed dur-

ing adaptive evolution might differ considerably across environments (Kinsler et al., 2020). For

the same reason, although the polarity mutant closely resembles a wild-type strain under stan-

dard laboratory growth conditions, differences between the two strains may become apparent

in alternative environments (Kinsler et al., 2020).

An important question is how the individual mutations along the evolutionary trajectory con-

tribute to this complexity of the epistatic interactions. For example, the deletion of Bem3, which

has a clear functional connection to polarity establishment, may only locally alter the fitness im-

pact of genes within the polarity module. Alternatively, the loss of Nrp1, a protein proposed to

be capable of binding RNA (Hogan et al., 2008), may inducemore global changes through general

effects on translation. Finally, it is possible that the gene deletions exhibit higher-order epista-

sis (Ferretti et al., 2016; Weinreich et al., 2018; Yang et al., 2019; Zhou et al., 2022), where the

loss of one gene changes the epistatic interaction pattern of the other, shifting it from local to

global, or vice versa. The ability to predict whether gene loss causes local or global changes in

the genotype-fitness map based on the gene’s function might allow us to distinguish between

different levels of evolutionary predictability (Bank et al., 2016; Zhou et al., 2022). Performing

SATAY screens in mutants from different steps of the observed evolutionary trajectory should

reveal the extent to which the different gene deletions contribute locally or globally to changes

in the epistatic interaction pattern.

The discovery that several genes crucial for survival in a wild-type strain become increasingly

dispensable in the polarity mutant implies that gene deletions provide opportunities for evolu-

tionary innovations. Indeed, several studies have proposed gene loss and the subsequent com-

pensatory evolution as a driver of evolutionary novelty (Cañestro & Postlethwait, 2007; Farkas et

al., 2022; Guijarro-Clarke et al., 2020; Helsen et al., 2020; Murray, 2020). Ourwork provides a com-

pelling example of how compensatory evolution may lead to novelty by releasing evolutionary

constraints. In particular, the finding that multiple genes related to microtubule dynamics be-

come increasingly dispensable in the polarity mutants indicates that these released constraints

affect not only individual genes, but entire biological processes. Interestingly, it has been sug-

gested that gene loss can, in some cases, also promote evolvability by allowing a population to

escape a local fitness peak. For example, a study by Helsen et al. (2020) discovered that some

gene deletionmutants adapted faster and achieved higher fitness than awild-type strain evolved

under the same conditions. Based on this finding, we anticipate that the altered genotype-fitness

relationship in the polarity mutant may allow it to adapt better to some conditions than a wild-

type strain.

Pleiotropic interactions can cause similar phenotypes to emerge during evolution in dif-

ferent selective environments.

Cells must coordinate their behaviour with the dynamics of their environment. Achieving this

coordination requires the integration of interaction networks governing cellular traits with net-

works responsible for sensing and responding to environmental changes. Such a coupling be-

tween networks often leads to environmental pleiotropy, which causes the effect of a mutation

to differ across environments. Traditionally, it is believed that the number of evolutionary con-

straints increases as interaction networks become more pleiotropic, as pleiotropy increases the

likelihood that the overall effect a mutation has on fitness is negative (Fisher, 1930; Orr, 2000;

Wagner & Zhang, 2011). However, this concept should only be true for dynamic environments
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where several of the traits affected by pleiotropy are under directional selection.

In contrast, in static environments, antagonistic pleiotropic effects between two traits would

lead to the deterioration of the trait not under directional selection, but without imposing addi-

tional evolutionary constraints. Based on this understanding of the consequences of pleiotropy,

the evolution of coupled traits can follow paths in static environments that are inaccessible in

dynamic environments. In chapter 3, we explored the impact of environmental dynamics on the

observed adaptive pathways using a bem3Δnrp1Δmutant. We demonstrated that while the dele-

tion of Bem3 and Nrp1 causes mild detrimental effects during vegetative growth, these defects

significantly aggravate upon entry into the diauxic shift. Surprisingly, we found that the recovery

of diauxic growth was not dependent on evolution in a dynamic environment, as we frequently

saw these phenotypes emerge in populations evolving in a static environment. Strikingly, we

could link the emergence of these phenotypes in both environments to mutations in the same

metabolic pathway.

These results contrast with the proposed strong connection between environmental selective

pressures and the observed phenotypes after evolution. Specifically, these findings illustrate that

pleiotropy could be an important structural feature of biological networks that maintains traits

under directional selection regardless of the specific environmental context. Therefore, while

global epistasis may make adaptive trajectories increasingly contingent on environmental condi-

tions, pleiotropy can drive adaptation toward similar solutions across diverse environments.
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