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ABSTRACT
The Internet architecture has facilitated a multi-party, distributed,
and heterogeneous physical infrastructure where routers from dif-
ferent vendors connect and inter-operate via IP. Such vendor het-
erogeneity can have important security and policy implications.
For example, a security vulnerability may be specific to a particular
vendor and implementation, and thus will have a disproportionate
impact on particular networks and paths if exploited. From a policy
perspective, governments are now explicitly banning particular
vendors—or have threatened to do so.

Despite these critical issues, the composition of router vendors
across the Internet remains largely opaque. Remotely identifying
router vendors is challenging due to their strict security posture,
indistinguishability due to code sharing across vendors, and noise
due to vendor mergers. We make progress in overcoming these
challenges by developing LFP, a tool that improves the coverage,
accuracy, and efficiency of router fingerprinting as compared to
the current state-of-the-art. We leverage LFP to characterize the
degree of router vendor homogeneity within networks and the
regional distribution of vendors. We then take a path-centric view
and apply LFP to better understand the potential for correlated
failures and fate-sharing. Finally, we perform a case study on inter-
and intra-United States data paths to explore the feasibility to make
vendor-based routing policy decisions, i.e., whether it is possible to
avoid a particular vendor given the current infrastructure.

CCS CONCEPTS
• Networks→ Network protocols; Network management; • Se-
curity and privacy → Network security.
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1 INTRODUCTION
The Internet is exemplified by distributed control, varied policies,
and autonomy. This inherent heterogeneity extends to the physical
infrastructure. We explore one specific physical property in detail:
the composition of Internet router vendors. The set of vendors
through which data packets traverse end-to-end has both direct
and nuanced implications, for instance reliability and fate-sharing,
but also security and policy when a vendor is untrusted. Indeed
governments have explicitly forbidden particular vendors, while
others have threatened to do so [19].

Unfortunately, the distribution and composition of router ven-
dors across the Internet remains largely opaque. Operators consider
their network configurations sensitive and proprietary, and do not
publicly publish information on vendors. While remote vendor and
operating systems fingerprinting is common for end hosts, e.g.,
Nmap [34], these techniques rely on active services and responsive
network stacks. However, routers are typically configured with
strict security to block arbitrary requests [15, 27]. Indeed, multiple
security incidents have demonstrated the value in router finger-
printing and reconnaissance in mounting attacks [4, 18, 33].

While general purpose remote fingerprinting tools have been
used to great effect, e.g., for Internet-wide surveys and scanning [23,
40, 49], these tools are ill-suited to router fingerprinting. Existing
techniques are frequently unable to make a reliable vendor infer-
ence and typically send a large number of packets making them (i)
impractical to operate at a large scale and (ii) intrusive.

We leverage a technique based on SNMPv3 which by itself is
highly accurate, but provides poor coverage. Our primary insight is
to collect lightweight network and transport layer fingerprints and
use this prior technique as a source of ground-truth vendor labels—
this allows us to find new feature sets that uniquely identify vendors
even when they do not respond to SNMPv3. In this fashion we more
than double the coverage compared to the SNMPv3 technique. By
tuning our technique to routers, we achieve this coverage while
simultaneously improving efficiency by sending approximately two
orders of magnitude fewer active probe packets as compared to
existing state-of-the-art that sends up to thousands of packets per
inference. Our contributions include:

• Lightweight FingerPrinting (LFP), a novel lightweight, accurate,
and more complete remote vendor fingerprinting methodology
and tool (§3).

• Using SNMPv3 to find sets of TCP/IP stack features for LFP that
uniquely identify 82% of ground-truth routers and provide 95%
accuracy alone in fingerprinting major router vendors (§4).

• Applying LFP to the widely used RIPE Atlas and CAIDA Internet
Topology Data Kit (ITDK) router datasets to classify 64% of the
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active router IPs—more than double the coverage as compared
to current state-of-the-art (§7).

• An accuracy evaluation of LFP compared to current tools and
techniques showing that it is at least as good as Nmap while send-
ing orders of magnitude fewer packets and improving coverage
(§7.3).

• Inference of router vendors in more than 6,700 networks, includ-
ing around 1,800 networks for which no vendor information was
available in previous studies (§7.5).

• End-to-end data path-based router vendor analysis and case stud-
ies that provide valuable insights for current security and policy-
based routing decisions (§6).

• LFP is publicly available, along with the the derived signatures
and classification results from this study to enable reproducibility
and future work [3].

2 RELATEDWORK
Prior work developed passive and active techniques that leverage
open ports, identifiers, and implementation-specific differences to
fingerprint devices at various granularities. Most of these tech-
niques were developed for generic hosts, while a few attempt to
fingerprint routers.
Nmap: Nmap [34] is an open-source network scanning and recon-
naissance tool. It performs remote OS fingerprinting by running
up to sixteen tests that send ICMP, UDP, and TCP packets with dif-
ferent field values, flags, and options. By examining the responses,
Nmap finds the best matching operating system from a database
of fingerprints. The latest Nmap version (7.93) contains more than
six thousand fingerprints; of these, approximately 160 and 20 cor-
respond to Cisco and Juniper routers, respectively. Two drawbacks
of Nmap are its reliance on open ports and the large amount of
probe packets needed to perform fingerprinting. We compare our
approach against Nmap in (§7.3.1).
Hershel: Hershel [46] is a low-overhead framework that models
the problem of single-packet OS fingerprinting and develops novel
approaches for tackling delay jitter, packet loss, and user modifi-
cation to SYN-ACK features. Based on this theory, a classification
method is developed that increases the accuracy of single-packet
fingerprinting. Censys [17] includes Hershel signatures in recent
raw scanning data. We compare LFP to Hershel in (§7.3.2).
Banner Grabbing: A popular technique for remote operating sys-
tem fingerprinting and vendor information is “banner grabbing,”
whereby publicly available services leak information. For instance,
the Cisco SSH server implementation returns identifying informa-
tion in its response string. Internet-wide scanning and banner grab-
bing are performed regularly [17, 18, 26, 27]. In a recent paper [25],
the authors utilize banners augmented with active measurements to
perform large-scale network equipment vendor classification. Simi-
lar techniques can be applied in passive measurements as well for
automatic traffic classification [24]. Unfortunately, banner analysis
requires an open remote service that returns this discriminating in-
formation. Routers are frequently tightly secured and unresponsive
to banner queries. Moreover, banner datasets are typically propri-
etary or commercial, with some offering free academic licenses [17].
TCP Stack Fingerprinting: Many TCP stack variables, e.g., Win-
dow Size andMaximumSegment Size are implementation-specific [8,

32, 38]. These variables can differ between operating systems and
versions. Consequently, TCP features can form a unique signature
that can be used for fingerprinting. For instance, the initial TCP
SYN-ACK packet provides some valuable information about a tar-
get’s TCP stack characteristics such as the initial Time to Live (TTL)
value, sequence number, and window size.When combined with the
behavior of the re-transmission timeout of the SYN-ACK packets
it was shown to serve as a fingerprinting technique to 25 different
operating systems [50], and in another work this was extended to
cover more than 90 OSes [30].
Sundials: Sundials [44] uses ICMP timestamps for fingerprinting
purposes. Even though NTP has replaced ICMP timestamps, ap-
proximately 15% of 14.5M IP addresses in this study responded to
ICMP timestamp requests. Sundials uses the variety of response be-
haviors as a new fingerprinting technique. However, given filtering
and the relative lack of ICMP timestamp support among routers,
this method has limited coverage for our fingerprinting purposes.
IPID-based Fingerprinting: The IP identifier (IPID) is a manda-
tory IPv4 header field used for fragmentation and reassembly. Thus,
it is frequently possible to elicit an IPID value from a router via a
simple ICMP echo. RFC 4413 [32] classifies IPID behavior into three
classes: (1) Sequential jump: an incremental IPID counter that is used
for all packet streams, or (2) Random: a pseudo-random number
generator is used for the IPID value, or (3) Sequential: an incremen-
tal IPID counter on a per-stream basis. The IPID may also have a
static value, e.g., zero. While the limited size (16 bits) of the IPID
counter can be problematic, Internet researchers have utilized the
IPID field for a broad range of applications. Bellovin [7] uses IPID
to count NATed hosts, alias resolution tools such as MIDAR [29]
and Ally [47] use monotonic IPID counters to infer aliases, and
Chen et al. [14] use IPIDs to characterize end-systems. In this work,
we utilize the differences in IPID value generation between router
vendors across protocols for fingerprinting purposes.
TTL-based Fingerprinting: Vanaubel et al. propose a router fin-
gerprinting technique based solely on TTL responses [49]. They
send TCP, UDP, and ICMP probes toward the target, and show that
the tuple of inferred initial TTL (iTTL) values from the responses
can coarsely differentiate between some well-known vendors, in-
cluding Cisco and Juniper. Unfortunately, the possible iTTL value
range is small, and can lead to a large number of incorrect infer-
ences, e.g., we find that Huawei has the same iTTL signature as
Cisco. Nevertheless, we use the iTTL values as part of a larger
feature set.
SNMPv3-based Fingerprinting:Most recently, research has shown
that the adoption of the SNMPv3 protocol offers an opportunity
for remote fingerprinting of network infrastructure [2] including
routers. In addition to gathering detailed information about net-
work devices, such as vendor, uptime, and the number of restarts,
the reply also contains a strong, persistent identifier that allows for
lightweight alias resolution and dual-stack association. We lever-
age this SNMPv3 technique to build a ground truth, and use it as a
baseline for our proposed LFP method.

3 METHODOLOGY
This section presents our methodology to scalably classify routers
in the wild at vendor granularity. We first give an overview, then
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Figure 1: Data Collection Pipeline.

describe our dataset, measurement probes, and the features we use
for classification. Subsequently, we generate signatures based on
these features and we describe how we handle classification edge
cases due to ambiguity or lack of data. Finally, we elaborate on the
limitations of our methodology. We refer the reader to Section 5
for the ethical principles guiding our measurements. For a pipeline
of our methodology, we refer the reader to Figure 1.

3.1 Overview
Our methodology builds a model based in part on high-confidence
router vendor labels and then uses that model to extend coverage
and improve accuracy. Such ground-truth data can be collected
using private information about the deployment of routers in a
network or via information leakage using protocol scanning [17].
In our method, we utilize SNMPv3 as described in [2] which is able
to accurately label around 20% of routers in the wild by sending a
single unsolicited and unauthenticated request. The reply to this
request contains detailed information including a router “Engine
ID.” This ID easily and reliably identifies the router vendor. We
leverage the SNMPv3 technique and scan a set of router addresses
to create labeled data and build a classification model for router
fingerprinting measurement.

We expect that, typically, routers will not expose services to the
public Internet. We decide to use three types of probe packets over
ICMP, TCP, and UDP. ICMP has been used before to fingerprint
routers, as many routers respond to ICMP packets. For TCP and
UDP, we expect that routers do not expose such services to the
public Internet. However, the response to packets targeting a closed
port for these protocols can provide useful information towards fin-
gerprinting the router vendor. In addition to the SNMPv3 requests,
we send three single-packet probes over each of the three primary
transport protocols, namely, ICMP, TCP, and UDP for a total of
nine probes per IP address (Figure 1 1○). We explain the rationale
to use these three protocols in Section 3.4. The feature values of the
responses to our transport protocol measurements, listed in Table 1,
are used to build a signature database for Lightweight Fingerprinting
(LFP). For IPs that are responsive to SNMPv3 requests, we extract
the vendor information and used it as a label (Figure 1 2○). Note
that our methodology is not dependent on the SNMPv3 to label
routers. In principle, any reliable router label source can be used as
input to our classification method.

3.2 Datasets
To select target router IPs, we leverage two complementary public
router datasets: the RIPE Atlas traceroutes dataset [43] and the
ITDK dataset [11]. We list the router datasets with dates, address
counts, and AS coverage in Table 2.
RIPE Atlas Traceroutes.We extract intermediate IP hops from
RIPEAtlas traceroutemeasurements to obtain router IPv4 addresses.
We explicitly ignore the last responsive hop, if it is the same as the
targeted host IP, to ensure that we only include router IPs.We utilize
five snapshots of traceroute data over a ten-month period from
January – November 2022. We extract between 446k to 496k router
IPs from each snapshot. Further, each snapshot covers between
18.3k to 20.2k ASes. In order to increase the coverage, we utilize all
five snapshots to gather signatures and evaluate their stability over
time. Moreover, we find that RIPE Atlas traceroutes are relatively
stable across the ten-month period, with a pairwise router IP overlap
of about 88% between consecutive collections. Therefore, we utilize
the most recent RIPE Atlas snapshot, i.e., RIPE-5, for our IP level
analysis.
ITDK Router-Level Topologies Dataset. In addition to IP level
traceroute data, we also use the router topology from CAIDA’s
February 2022 ITDK [11]. This complementary dataset contains
router alias sets (excluding singletons) inferred via MIDAR [29] and
iffinder measurements. This dataset covers fewer IP addresses and
about half of the number of ASes compared to RIPE Atlas. This is
expected as addresses in this dataset must respond over at least one
protocol (ICMP, UDP, or TCP) which is required for alias resolution.
This is also evident in our active measurement where we note a
higher responsiveness for the ITDK data compared to RIPE Atlas
as shown in Figure 4. The complementary nature of this dataset is
underscored by a relatively low overlap of at most 26% router IPs
present in any of the RIPE Atlas traceroute datasets. We use the
ITDK data for gathering signatures and router level analysis.

The union of all RIPE Atlas traceroute and ITDKMIDAR datasets
covers more than 970k router IP addresses in about 25k ASes. We
note that our methodology is not limited to these selected datasets,
but in fact other datasets containing candidate router IP addresses
could be used as well. Next, we run active measurements toward tar-
gets in each of these datasets to gather features and build signatures
for router fingerprinting.

3.3 Active Scanning Packets
To collect router fingerprints, we send 10 packets in total per target
IP: 3 for each transport protocol and a single SNMPv3 request. We
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Table 1: List of features used with possible values.

Feature Possible Values

ICMP IPID echo true, false
ICMP IPID counter incremental, random, static, zero, duplicate
TCP IPID counter incremental, random, static, zero, duplicate
UDP IPID counter incremental, random, static, zero, duplicate
TCP UDP ICMP shared counter true, false
TCP ICMP shared counter true, false
UDP ICMP shared counter true, false
TCP UDP shared counter true, false
UDP iTTL 32, 64, 128, 255
ICMP iTTL 32, 64, 128, 255
TCP iTTL 32, 64, 128, 255
ICMP echo response size variable
TCP response size variable
UDP response size variable
TCP SYN sequence number zero, non-zero

Table 2: Overview of router address datasets: Number of
unique IP addresses and Autonomous Systems. We utilize
all data sources for signatures gathering. However, we use
RIPE-5 for path and IP-level analysis and ITDK for router
analysis.

Data Source Date # IPv4 addrs. # ASes

RIPE-1 2022-01-24 494,867 20,178
RIPE-2 2022-02-24 484,930 19,989
RIPE-3 2022-06-09 496,167 20,085
RIPE-4 2022-07-04 446,629 18,304
RIPE-5 2022-11-07 476,577 18,837
ITDK 2022-02 343,312 9,922

Union 971,343 24,909

aim to reduce the impact of our scan on the target by using simple
ping probes and avoiding any malformed packets. For ICMP, we
send three echo requests. For each of these requests we expect an
echo reply. For TCP and UDP we target port 33533, with the as-
sumption that no services are active on this port. For TCP we send
two ACK packets and one SYN packet with a non-zero acknowledg-
ment number. We expect that all three TCP packets - both the ACK
and SYN - will elicit a TCP RST response. For UDP we send three
packets, each with 12 bytes of all zero payload. For each packet, we
expect to receive an ICMP port unreachable response.

3.4 Feature Set
We limit our methodology to features that can be extracted mainly
from the IP layer. In total, we extract 15 features from our 9 probe
packets (see Table 1). We consider four groups of features:

3.4.1 IPID. We send a trio of consecutive packets and collect the
IPID values from all responses. We then construct IPID sequences
for each protocol. Previous work [29, 47] showed that IPID se-
quences exhibit distinct patterns, e.g., they can be monotonically

increasing or random. These patterns can not only be used to per-
form IP-alias resolution as shown in previous work, but also fa-
cilitate the identification of a router’s vendor. One test for device
fingerprinting is checking if ICMP request and response IPID val-
ues match [5, 34]. IPID sequences differ among different protocols,
but some implementations use the same sequence across all proto-
cols. As we show in Table 1, the ICMP IPID Echo feature indicates
whether Echo request and response IPID values are the same (true)
or different (false). The IPID counter for any of the three protocols
(ICMP, TCP, and UDP) can be characterized as incremental (which
can also include wrap-around from the largest 16 bit value back
to starting at zero), random, static (always the same value, other
than zero), zero (always responds with an IPID of zero), or with
duplicates (where exactly two responses have the same IPID value).

3.4.2 iTTL. Previous work [49] showed that different initial TTL
(iTTL) values may differ between different protocols and even mes-
sage types. We collect the iTTL values for each response that we
receive. Typically, the iTTL value depends on the operating sys-
tem or network card per vendor. Indeed, in Table 1, we show the
different values, four in total, that we have collected in all our
experiments (see Section 4 for details).

3.4.3 Response Size. To further diversify our features, we collect
the response size for all protocols. We notice that typically, the
ICMP and TCP response size often do not provide any information
gain. However, the ICMP port unreachable response to a UDP
request packet can differ between router vendors. This depends on
whether the request packet is fully or partially quoted (and if so,
how much of the original packet is quoted) in the ICMP response
packet [6, 37]. As we show in Table 1, the characteristic value is
variable and differs by router vendor and implementation, which
allows us to make use of the response size for router fingerprinting.

3.4.4 Additional Features. RFC 793 [38] states that if a port is
closed, any incoming segment except a reset triggers a reset re-
sponse. If the segment has an ACK field, the reset takes its sequence
number from the ACK field, otherwise, it uses a sequence number
of zero. We noticed that only a few vendors are compliant with the
RFC in this regard.

For the set of features and the possible feature values we refer
to Table 1. We note that most of these features are only available
for IPv4. Thus, in this paper we focus only on the classification of
IPv4 router interfaces.

3.5 Signatures
We assemble all responses for each IP address into a feature vector
based on Table 1. We use the instances of a particular feature vector
that are associated with a vendor obtained from the SNMPv3 probes
to create a mapping of a feature vector to a vendor. We then apply
a basic filter based on occurrences threshold as described in (§4.3)
At this point the feature vector is used as a signature for the vendor
(Figure 1 3○).
Unique Signatures. If a signature is mapped only to a single
vendor, then we call this a unique signature. In this case we have
high confidence in the accuracy of the signature.
Non-Unique Signatures. When a signature is associated with
multiple vendors, we characterize this as a non-unique signature.
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This may happen, e.g., due to the change of the default router
configuration by network operators, or simply a shared TCP/IP
stack implementation between multiple vendors. As we will show
in Section 4, typically there is one vendor that dominates even
for non-unique signatures, or the non-unique signatures map to a
family of routers that are based on the same OS or network stack.
However, for the purpose of this study, we take a conservative
approach and only consider unique signatures in our analysis.
Partial Signatures. There are also cases where a router IP responds
only to a subset of the all three protocols (ICMP, TCP, and UDP).
In this case, we characterize the signature as a partial signature.
Even partial signature may prove useful to identify the vendor of a
router. If the partial signature is unique for a vendor, then we call
this a partial unique signature. If this partial signature is associated
with multiple vendors, we call it a partial non-unique signature.

As we elaborate in detail in Section 4, it is common for a single
vendor to havemultiple signatures. This is to be expected as vendors
often offer multiple products and versions of the same product, or
it can be an artifact of acquisitions. Once the list of signatures for a
given vendor has been compiled, we can match the signatures using
our active measurements to infer the vendor of unlabeled routers
(Figure 1 4○). With this technique we can substantially increase the
coverage of routers that we can fingerprint in the wild (Figure 1
5○).

3.6 IPID Threshold
In order to determine whether an IPID counter is incremental or
random, we investigate the returned IPID values per IP address and
across all three protocols. Consequently, we sample the IPID values
only for fully responsive addresses. We calculate the step values
for each consecutive packet pairs and aggregate them by applying
a maximum function1. In Figure 2 we show the distribution of max-
imum IPID step per IP in the responses to all three protocols. In
order to distinguish random from sequential increases, we check
for a knee in the distributions of Figure 2. We empirically take a
conservative threshold value of 1,300 to distinguish between se-
quential and random IPID counters. Note that a sequential increase
can be larger than ‘1’, as concurrent traffic from that router also
leads to an increase in sequential IPIDs.

We evaluate the empirical threshold by estimating the probability
of misclassifying a random IPID counters as a sequential. Recall that
we sent 9 packets in total and calculated 8 IPID steps by determining
the difference between two consecutive IPID values. Given our
threshold, the probability of a random IPID counter generating a
value less than or equal to the threshold is 1301/216 which is ≈ 0.019.
For our classifier to misclassify a random counter as sequential,
all eight IPID steps need to be less than or equal to the threshold,
which has an extremely low probability of 0.0198 when considering
all protocols, or 0.0192 when considering each protocol separately.

We further explore the empirical threshold in Figure 3, where
we plot the distribution of the IPID difference for consecutive re-
sponses for fully responsive IPs in the RIPE-5 dataset. It is clear
that around 20% of IPID differences are close to zero. Close to 90%

1We obtain similar results when applying an average function instead of a maxi-
mum function. Since the maximum function is more conservative, we use it in our
methodology.
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Figure 2: Maximum IPID step distribution per IP address. The
vertical line shows the chosen threshold between sequential
and random IPID increases.
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Figure 3: Distribution of IPID difference values for consecu-
tive responses.

of the IPID difference values are included by setting a threshold of
1,300, as shown with the dashed vertical line We use this threshold
to differentiate between incremental values and random that are
dispersed across the full range of possible IPID difference values.

Note that an effectively random IPID might by chance fall within
this 1,300 threshold. Since with LFP we take the conservative ap-
proach of using the maximum IPID difference between consecutive
probes, this random effect is very unlikely to occur twice in a row
and thus strongly minimizes the number of false positives.

Finally, we also characterize the sharing of IPID sequences across
pairs or all protocols as true of false, if this takes place or not,
respectively.

3.7 Limitations
LFP improves the state-of-the-art in remote router vendor finger-
printing. However, we acknowledge that several limitations remain:
• Our classification builds on highly accurate vendor data obtained
via SNMPv3 probing, however SNMPv3 coverage is not universal
and imparts bias. While the SNMPv3 technique obtains correct
labels for approximately 20% of the routers and 30% of the router
IPs we probed, we do not generate a signature for vendors that
do not implement or do not respond to SNMPv3 requests. This re-
sults in a bias toward SNMPv3 enabled routers and can negatively
affect the uniqueness of generated signatures.

• As we elaborate in Section 4, a non-negligible fraction of routers
do not respond to any remote probe. This differs across sets
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of router datasets, but for these routers our technique cannot
provide any insights.

• New signatures may be created as as new router models or ven-
dors are introduced in the market. Although in Section 4 we show
that over a period of ten months, and for different router datasets,
the signatures we discover remain stable, over longer period of
time, e.g., years, new measurements may be required to keep LFP
signatures up-to-date.

• We restrict our analysis to core routers. A primary challenge to
fingerprinting edge routers is the greater diversity of Customer
Premise Equipment (CPE) and residential equipment, along with
substantial amounts of IP churn. Although we believe that our
technique can be used to fingerprint edge network equipment,
we defer such an investigation to future work.

• We may misclassify random IPID response sequences as sequen-
tial. To significantly minimize the potential for erroneous infer-
ence, we we take the maximum IPID step difference among all
pairwise IPID values (see Section 3.6).

• We focus our study on the IPv4 Internet. Many of the features
that LFP relies on (see Table 1) are not available in IPv6 or do not
provide the same discriminatory opportunities for fingerprinting.
For instance, the IPv6 header does not include an IPID field unless
fragmentation is induced [31], rendering all IPID-related features
inapplicable for fingerprinting. Furthermore, all IPv6 implemen-
tations use the recommended initial TTL value of 64 [10]. The
remaining features do not provide significant information gain
to produce an accurate vendor signature.

• We limit the scope of our work and focus only on the technical
aspects of remote router vendor fingerprinting that can be used
to inform routing decisions. We recognize that better insight into
vendors within ASes and along end-to-end paths is especially
interesting given the current climate where, e.g., some countries
are imposing restrictions on the use of equipment from particular
vendors. In this paper, we discuss this issue in a purely factual,
impartial, and non-political manner. Since we are not legal or
political science scholars, we do not discuss, opine, or speculate
on non-technical matters, e.g., the legal, financial, and social
impact of our work.

4 ACTIVE EXPERIMENTS
We now apply our LFP methodology in active experiments to fin-
gerprint routers in the wild. We run six measurements, one for each
data source (five RIPE Atlas traceroutes, and one ITDK’s MIDAR
dataset, cf. Table 3). We find the five RIPE Atlas based measure-
ments to be relatively consistent. Between 82k and 100k IPs are
responsive to SNMPv3. Of those around 50k respond to all LFP
probes, i.e., our labeled dataset which we use to extract vendor
information. Another 58k–77k respond only to LFP probing, i.e.,
our dataset that we can fingerprint with the LFP technique without
the IPs responding to SNMPv3. The ITDK dataset provides more
SNMPv3-responsive IPs, with a similar number of LFP responses
compared to RIPE Atlas traceroutes.

4.1 Responsiveness
Next, we analyze how responsive the target datasets are to LFP
probes. This determines the upper limit of our coverage with LFP.

Figure 4 shows the distribution of the number of responsive pro-
tocols (TCP, UDP, ICMP) per IP, comparing the ITDK and RIPE-5
datasets. Since we rely on responsiveness to create signatures, the
higher the number of responsive protocols, the higher the entropy
in the signature. Generally, we find that ITDK provides more re-
sponsive protocols compared to RIPE. About 50% of ITDK IPs are
responsive on all three protocols, which is only 35% for RIPE. It is
very encouraging, however, that we get responses from at least one
protocol for 90.7% and 72.3% for ITDK and RIPE, respectively.

One other factor influencing the uniqueness of our signatures
is the number of responses per protocol. Figures 5 and 6 show the
responsiveness per protocol for RIPE-5 and ITDK, respectively. In
both datasets we see that ICMP is more likely to elicit responses
compared to TCP or UDP. Moreover, we see that an IP responds
either to all three probe packets per protocol or to none, i.e., the
line from zero to three in the plot is almost horizontal. Finally, we
find that IP addresses from the ITDK dataset are generally more
likely to be responsive compared to the RIPE dataset: 84.4% vs.
65.7% are responsive on all three ICMP probes for ITDK and RIPE,
respectively; for TCP and UDP the difference is 63.6% in ITDK
compared to 39.5% in RIPE.

4.2 Signatures
After collecting all responses from our measurements, we extract
features (cf. Section 3.4) and create signatures based on our la-
beled SNMPv3 data (cf. Section 3.5). As can be seen in Table 3,
each dataset individually contributes 34–62 unique signatures and
7–13 non-unique signatures. Unique signatures give us a high con-
fidence when applying our LFP technique, as all labeled instances
can be mapped to the same router vendor. Note, that if the same
unique signature would be found with different vendors in different
datasets, we count it as a non-unique signature. We find this case
to be relatively rare, however, with only 2 occurrences for our five
datasets. In our fingerprinting analysis, we exclude any non-unique
signature and use the union of all five datasets to create a total
of 89 unique signatures. We set a threshold of a minimum of 20
router samples per signature. Setting the threshold lower will only
increase the covered routers by 1%, but disproportionally increases
the number of signatures.

4.3 Occurrences Threshold
We perform a sensitivity analysis to understand the impact of the
threshold of the minimum number of occurrences for signatures
to be considered. In Figure 7, we vary the threshold (see x-axis),
i.e., the minimum number of IPs with the same signature. A low
threshold leads to a very high number of both unique and non-
unique signatures. This is to be expected as uncommon vendors or
a small number of configuration changes may lead to many differ-
ent signatures. However, when we set the threshold of minimum
occurrences to consider a signature to 10 or more, the number of
signatures, both unique and non-unique, converges. As Figure 7
shows, choosing 10 or 20 as the threshold does not change the
number of signatures substantially. A closer investigation shows
that the set of signatures is also not affected. Therefore, we choose
a threshold of 20 router IPs per signature in our study as it provides
a good trade-off between considering a low number of popular
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Table 3: Measurement overview: Responsive IPs (IPs), responsive IPs to SNMPv3 (SNMPv3), to SNMPv3 and LFP (SNMPv3 ∩
LFP), only to LFP (LFP \ SNMPv3), number of unique signatures (Unique sigs), and non-unique signatures (Non-unique sigs).

Measurement IPs SNMPv3 SNMPv3 ∩ LFP LFP \ SNMPv3 Unique sigs Non-unique sigs

RIPE-1 359,263 99,560 55,116 58,266 62 9
RIPE-2 355,709 95,600 54,933 59,400 46 8
RIPE-3 363,464 94,699 53,196 58,843 47 10
RIPE-4 323,141 82,047 48,360 72,969 49 11
RIPE-5 327,534 90,540 47,700 77,298 51 13
ITDK 311,607 113,089 58,492 53,952 34 7

Union 736,260 218,129 132,524 169,143 89 23
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Figure 4: Responsive protocols per IP for
the RIPE-5 and ITDK datasets.
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Figure 5: Responsiveness per protocol for
the RIPE-5 dataset.
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Figure 6: Responsiveness per protocol for
the ITDK dataset.
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Figure 7: Sensitivity analysis: impact of setting a threshold
on the number of occurrences for signatures on the number
of unique and non-unique signatures.

signatures and excluding a large number of rare signatures with
only a few occurrences in the hundreds of thousands of IPs in our
dataset. In total, for this study, we identified 89 unique signatures
and 23 non-unique signatures. We provide the full list of signatures
in [3].

In addition to signatures where we get responses from all proto-
cols, we also leverage partial signatures. Table 4 shows the partial
fingerprints for different combinations of partial protocol respon-
siveness. We find that if we see responses from two protocols (i.e.,
TCP & UDP, ICMP & UDP, or ICMP & TCP), the majority of partial
signatures are still unique and can therefore be leveraged by the
LFP technique. Regarding single protocol signatures, the results are
mixed. Most signatures are unique for TCP-UDP, ICMP-UDP and
ICMP-TCP, while about half are unique for just TCP, UDP or ICMP.

Table 4: Partial signatures for different responsive protocol
combinations.

Protocols Total Unique Non-unique

TCP & UDP 61 43 18
ICMP & UDP 60 42 18
ICMP & TCP 51 36 15
UDP 20 12 8
ICMP 19 9 10
TCP 17 10 7

In general, utilizing unique partial signatures expands coverage by
≈ 15% while maintaining accuracy.

4.4 Mapping Signatures to Vendors
In Table 5 we show the vendor distribution based on the labeled
dataset (i.e., SNMPv3-responsive addresses). To our positive sur-
prise, more than 82% of the IPs map to a vendor with a unique
signature. In total, our dataset covers 16 different vendors. We find
Cisco to be the dominant router vendor for our labeled dataset
with 51% of labeled router IPs with unique signatures, followed by
Juniper and Huawei with 10% each.

For the major router vendors, the majority of IPs can be mapped
to unique signatures, which increases our confidence in applying
our technique to non-labeled data. Indeed, this is the case for 100%
of Juniper, Alcatel/Nokia, and Ericsson router IPs, 98% of Cisco
router IPs, and 86% of Huawei router IPs. Two notable exceptions
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Table 5: Number of signatures in ground-truth dataset per
router vendor. (#IPs are noted in parentheses).

Vendor Labeled Unique sigs Non-unique sigs

Cisco 83,918 25 (82,020) 1 (1,898)
MikroTik 28,989 26 (9,489) 4 (19,500)
Huawei 19,869 8 (17,034) 4 (2,835)
Juniper 17,665 15 (17,665) 0 (0)
H3C 2,469 5 (358) 5 (2,111)
Alcatel/Nokia 1,111 2 (1,111) 0 (0)
Ericsson 200 1 (200) 0 (0)
Other 9,676 4 (497) 18 (9,179)

are MikroTik and H3C. For these two vendors, we might attribute a
lower bound of routers. Note that both these vendors utilize UNIX-
based solutions. We use the union of signatures in the following
sections for router fingerprinting: network homogeneity, and end-
to-end path analyses.

5 ETHICAL CONSIDERATIONS
During the design and the application of our methodology we took
care to minimize any potential harm to the operation of routers and
networks. First, the load of our measurements is very low. More
specifically, we send ten packets, i.e., one SNMPv3 request and
nine probes, three for each one of ICMP, TCP, and UDP. We do
not send any malformed packet to avoid any unexpected behavior.
Moreover, we coordinated with our local network administrators
to ensure that our scanning efforts do not harm the local or up-
stream network. We follow current best practices [16, 18, 36] for
active measurements and ensure that our prober IP address has a
meaningful DNS PTR record. Additionally, we show information
about our measurements and opt-out possibilities on a website of
our scanning servers. During our active experiments, we did not
receive any complaints or opt-out requests. Our work uncovers
potentially sensitive security, robustness, and business information
about network providers, e.g., router vendor. For this we plan to
respond to any request by operators regarding their networks.

6 ROUTER VENDORS ON A PATH
In this section, we apply LFP to study the diversity of vendors along
data-plane forwarding paths. Such insights are helpful as they could
inform routing policy decisions by taking the equipment on a path
into account. For example, if policy or law restricts a specific vendor,
e.g., [19], a different path without this vendor might be selected. For
this analysis, we use the most recent RIPE dataset, namely RIPE-5
(see Table 3), consisting of 7.3M traceroutes.

Figure 8 shows the ECDF of the number of hops per path in the
RIPE-5 dataset. In this traceroute dataset, more than ≈ 7.1M of the
paths (95%) have at least three IP hops. For our analysis, we consider
only routable IPv4 addresses and we exclude any addresses that are
private, or reserved. Moreover, more than 95% of the paths have a
length of at most 15 hops.

Figure 9 shows the fraction of router IPs that we can map to a
router vendor. We notice that for traceroutes with at least three
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Figure 8: Path length distribution in the RIPE-5 traceroute
dataset.
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Figure 9: Identifiable routers on a path (RIPE-5).
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Figure 10: LFP vs. SNMPv3: Identifiable routers distribution
on a path.

hops, LFP can identify at least two of the hops in 62% of the cases.
This fraction increases to 82% to identify the vendor of at least one
hop. This is a substantial improvement compared to the baseline
with the SNMPv3 remote router vendor fingerprinting technique
alone, as shown in Figure 10, where at least one vendor can be
identified for only 35% of the traceroutes.

6.1 Identifying Router Vendors on a Path
First, we investigate the diversity of router vendors per path as
fingerprinted with LFP. Figure 11 shows the number of unique
vendors identified on paths where we can identify at least one hop;
we identify around 650 unique sets of vendors. However, for around
50% of paths, LFP identifies only a single vendor. For around 40%
paths, LFP identifies two vendors, and only 7% of the paths have
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Figure 11: Router vendor diversity on a path.
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Figure 12: Top router vendor combinations for paths in the
RIPE-5 dataset.

three distinct vendors. Four or more different router vendors are
identified in fewer than 2% of the paths.

Next, we analyze the most popular combinations of router ven-
dors on paths (without respect to their order along the path). Fig-
ure 12 shows that the top nine sets of vendors cover more than
95% of the RIPE-5 paths. The top three vendor combinations only
involve Cisco and Juniper, making up almost 60% paths. Traceroute
paths with all other combinations account for fewer than 3% each.

6.2 Case Study: US-related Paths
As a case study, we consider router vendor diversity specifically for
the United States. There are ongoing discussions whether traffic
that originates from the US, or has as a destination in the US, should
be carried by “untrusted vendors” [42]. Moreover, if a vulnerability
for a specific router vendor is discovered [22, 45, 48], paths with
these vendors might, in theory, be avoided until a patch is developed
and applied. With knowledge about vendors on a forwarding path,
possible alternative paths from a source to a destinationmay receive
preferential treatment in routing decisions by network operators.
This could be facilitated with source routing techniques [39] or
enforced by the upstream provider [20].

6.2.1 Intra-US Paths. First, we investigate the case that both the
source and the destination of a traceroute are within the US. To
geolocate the endpoints, we rely on IP address registry information.
While other (more fine-grained and more accurate) geolocation
techniques exist, we are primarily interested in policies and regu-
lations that are frequently governed by the home country of the
service provider, which is best reflected in the address registry. We
exclude from our analysis anycast IPs [9] as they may be announced
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Figure 13: Top router vendor combinations for intra-US paths
in the RIPE-5 dataset.
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Figure 14: Top router vendor combinations on inter-US paths
(source or destination US).

from different locations. The RIPE-5 dataset contains 395,775 tracer-
outes with at least three hops where both the source and the des-
tination IP geolocate to the US. For around 60%, of them, we can
identify two or more router IPs and assign them to vendors using
LFP. Furthermore, we find that for more than half of intra-US traces
we can identify at least a third of the router vendors on the path.

Moreover, in Figure 11, we show that in around 70% of the intra-
US paths, all the IPs belong to a single vendor. The majority of
the remaining 30% of intra-US paths have routers that belong to
two distinct vendors, and the cases where there are three or more
vendors is negligible. Indeed, our results suggest a high degree of
consolidation of router vendors. Regarding the most popular set of
router vendors for intra-US paths (cf. Figure 13), we see a similar
picture compared to the overall dataset. Combinations of Cisco and
Juniper dominate, even more so than in the overall dataset, making
up more than two thirds of all intra-US paths combined. This shows
that intra-US paths have low vendor diversity, consisting mostly of
Cisco, Juniper, or a combination of both. Such homogeneity may be
indicative of potential critical infrastructure weaknesses e.g., where
all devices are affected by a vulnerability.

6.2.2 Inter-US Paths. We also investigate the case that only one of
the source and the destination are in the US. In the RIPE-5 dataset,
there are 3M traceroutes of least three hops where only the source
or only the destination IP geolocate to the US. For around 58% of
these, we can identify the vendors for two or more router IPs using
LFP. For more than half of inter-US traces, we can identify the
vendor of at least a third of the router IPs on the path, showing a
similar distribution as intra-US as well as other paths.
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Table 6: Two sample unique signatures: top for Juniper and bottom for Cisco. By changing the default value of Juniper for
ICMP iTTL from 64 to 255 (values in box), the classifier misidentifies Juniper routers as Cisco.

Juniper False r r r False False False False 255 64 64 84 40 56 0
Cisco False r r r False False False False 255 255 64 84 40 56 0

Moreover, in Figure 11, we show that in around 60% of inter-US
paths, all IPs belong to a single vendor. Almost all of the remaining
paths contain two mappable router vendors. These observations
are similar to the intra-US study, and show a high degree of vendor
consolidation. Cisco and Juniper are again the most prominent
vendor combinations (see Figure 14), showing a similar distribution
to intra-US and overall paths. However, the results suggest that
inter-US paths exhibit more heterogeneity than the intra-US paths.

6.3 Case Study: Informed Routing
Knowing the vendors across the path can inform routing policy.
For example, a sender may want to avoid sending traffic through
ASes dominated by hardware from vendors they do not trust. Thus,
the routing policy could choose an alternative path if available.
Our methodology can inform the possible alternatives and may
serve as a step toward enforcing such policies. As a case study,
we find vendor homogeneous ASes in the RIPE-5 dataset: ASes
with at least 1k router IPs where LFP finds at least 85% of the IPs
belong to a single vendor. Next, we use the CAIDA AS relationship
dataset [12] to find AS paths where these vendor homogeneous
ASes serve as transit ASes. Then, we consider the destinations ASes
where the homogeneous transit AS appears on the path. For these
destinations, we investigate if there exists an alternative path from
the same destination but with a transit AS using a different vendor.
Note that while our analysis utilizes the CAIDA AS relationships
in order to identify policy-compliant transit ASes, such inferences
may be limited by the available data and the visibility of all AS paths
toward a given AS. We acknowledge that there may exist paths
that cannot be observed from publicly available data, or that an
alternative path may not be compliant in the traditional economic
or valley-free routing sense.

As a demonstration of the insights possible from this analysis,
we examine two networks: AS9808 and AS3786. AS9808 is a large
transit provider where LFP infers Huawei to be the the dominant
router vendor. We identify 25,134 AS paths where AS9808 serves
as a transit provider. For 68 destination ASes, no alternative path
that does not transit AS9808 is visible2. On the other hand, for
167 destination ASes, an alternative path via ASes that operate
non-Huawei routers is available.

As a second example for a different router vendor, LFP shows
that Juniper is the dominant router vendor for AS3786. We identify
1.3M AS paths, and 436 unique destinations where AS3786 appears
as a transit provider. For 53 destinations there is no alternative path
visible to us. Naturally, our inferences depend on our visibility into
the AS, however, this result suggests that our methodology can
similarly be applied to any destination when the set of paths is
available.

2Note that not all AS paths are visible in the BGP [1, 13, 21, 35, 51], thus our analysis
is limited to the visible paths only.

7 ROUTER FINGERPRINTING
With the signatures collected in our active experiments, we now
apply our fingerprinting technique to the router datasets. We lever-
age 89 unique signatures and 78 partial unique signatures from the
union dataset (cf. Tables 3 and 4). Recall that both full and partial
unique signatures provide exact matches between a signature and
a vendor.

7.1 IP to Vendor Mapping
We use our combined full and partial unique signatures on the
latest RIPE dataset, i.e., RIPE-5, and ITDK datasets to map IP ad-
dresses to vendors. For RIPE-5, our analysis shows that our method
fingerprints 56.7% of router IPs when we use unique signatures.
For reference, the SNMPv3 technique fingerprints only 26% of the
router IPs. LFP alone fingerprints 49%.

Figures 15 and 16 show the fingerprinting results based on re-
sponsive IPs from the RIPE-5 and ITDK datasets, respectively. We
report the router IPs identified only by LFP, only by SNMPv3, and
by both methods. We find that our LFP technique roughly dou-
bles the number of fingerprintable IP addresses for both datasets.
Moreover, we see that the number of fingerprintable IPs increases
quite drastically for certain vendors: Juniper sees an increase of
650% and 259.3%, and Huawei 249.8% and 136.4% for RIPE-5 and
ITDK, respectively. Generally, we see a more balanced router ven-
dor distribution, with the most dominant vendor Cisco decreasing
its share from ≈65% with SNMPv3 only to ≈50% for SNMPv3 + LFP.
We provide an analysis for the non-unique signature precision and
recall in Appendix B.

7.2 Router to Vendor Mapping
Next, we make use of the ITDK dataset not only containing IP
address information, but also alias sets. We apply our signatures to
all non-singleton router alias sets. First, we check if all IPs within
fingerprinted alias sets report the same vendor. We find this to be
the case for ≈ 99% of all alias sets, with 498 router IPs producing
conflicting vendor inferences (0.65%). Second, we plot the router
vendor distribution counted by alias set in Figure 17. The router
distribution is similar to the IP-based distribution (cf. Figure 16),
with Cisco being the dominant vendor, followed by Huawei and
Juniper. Again, we can map about 96.4% more routers with the
combined SNMPv3 + LFP technique, compared to SNMPv3-only.

7.3 Comparison with other Tools
To evaluate the accuracy of vendor fingerprinting by LFP and
the associated bandwidth requirements, we conduct a compari-
son with Nmap [34] and Hershel [46]. For this, we acquire a set
of addresses from Censys, which are known to reveal vendor in-
formation through service banners. Censys also provides Hershel
fingerprints and OS identification where available. For each of the
top six vendors found via LFP, we randomly select 500 IP addresses
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Figure 15: IPs to vendors: SNMPv3 vs. LFP
for the RIPE-5 dataset.

Cisco Huawei Juniper Alcatel H3C Ruijie
Vendor

0

20000

40000

60000

80000

100000

IP
s C

ou
nt

SNMPv3 only
both SNMPv3 and LFP
LFP only

Figure 16: IPs to vendors: SNMPv3 vs. LFP
for the ITDK dataset.
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Figure 17: Routers to vendors: SNMPv3
vs. LFP for the ITDK dataset.

Table 7: Comparing coverage and accuracy of LFP and Nmap
for Censys-labeled data.

Coverage Accuracy

Vendor LFP Nmap LFP Nmap

Cisco 40% 10% 95% 84%
Juniper 81% 31% 99% 98%
Huawei 49% 20% 55% 50%
Ericsson 93% 6% 80% 0%
Mikrotik 83% 15% 10% 5%
Alcatel 38% 11% 48% 16%
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Figure 18: Sent and received packets from Nmap.

and perform tests using both LFP and Nmap. Additionally, we com-
pare our findings with Hershel fingerprints, wherever possible.

7.3.1 Comparison with Nmap. Table 7 shows the coverage and ac-
curacy results for LFP and Nmap for six different vendors. Coverage
refers to the percentage of responsive IPs for each vendor, while
accuracy refers to the percentage of correct fingerprints for the
responsive IPs. Although both tools have similar accuracy, LFP has
the ability to achieve substantially higher coverage.

After evaluating the coverage and accuracy of LFP and Nmap,
we proceeded to analyze their respective bandwidth requirements.
Specifically, LFP sends a consistent 9 packets (3 ICMP, 3 TCP, and
3 UDP) to each targeted IP address. In contrast, Nmap sends sub-
stantially more packets when attempting to fingerprint a device.
Figure 18 shows the distribution of packets sent and received by
Nmap using the default OS fingerprinting options. We find that
Nmap sendsmore than 1000 packets to more than 80% of all targeted

IPs. Moreover, our analysis shows that Nmap sends an average of
1,538 packets per IP and receives 1,065 packets. However, it should
be noted that in certain cases Nmap may send an extremely high
number of packets to a single IP address, exceeding 10 thousand
packets. This behavior is largely influenced by the services oper-
ating on the target system. In contrast, we observe that the LFP
technique has considerably lower bandwidth requirements com-
pared to Nmap, making it a more lightweight option overall.

7.3.2 Comparison with Hershel. we also compare LFP with Hershel
fingerprints. By design Hershel requires a single packet to obtain
a fingerprint, which is even less bandwidth-intensive than the 9
packets sent by LFP, and much less intrusive than the multitude of
packets sent by Nmap. Our analysis of the test sample shows that
Hershel has an overall coverage of approximately 50%. Furthermore,
we find that Hershel is only able to identify the target vendor with
less than 1% accuracy for our top 3 vendors. This suggests that
Hershel—while it may perform well for servers—is not a suitable
tool for router fingerprinting. Additionally, we observe that Hershel
often identifies Linux-based systems (such as Mikrotik) simply as
Linux machines. This is due to the limited number of signatures for
router vendors in the Hershel fingerprinting database.

In summary, LFP achieves a balance between coverage and accu-
racy while also having a low network footprint.

7.4 Family-level Fingerprinting
After discovering that many vendors have not a single but multiple
signatures, we investigate whether these signatures can be linked
to different router models or families. To test this hypothesis, we
collect a sample of 400 Cisco IPs running SNMPv2c and query
for the Sys.desc O.I.D. [41]. This provides a small ground-truth
sample with fingerprinting information beyond the vendor. Next,
we run LFP against these targets, and collect their signatures. The
results show that the collected signatures belong to the top 13
most common Cisco signatures, which cover over 96% of labeled
Cisco data. Additionally, we identify a unique signature for three
different IOS families (3 XR, 3 NX, and 7 IOS signatures), which
are not shared with the other versions. However, due to the limited
ground-truth dataset, it is not possible to evaluate the accuracy of
these results in detail, andwe leave this task for futurework. Overall,
the sample data supports the assumption that different signatures
can be linked to specific router models or families, which can lead
to a more fine-grained router fingerprinting.
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7.5 New Insights on Router Deployment
Using the collected router fingerprints, we next conduct a compre-
hensive analysis of global router vendor distribution by comparing
our findings with a similar study [2]. Specifically, we utilize LFP to
identify the vendor of routers and examine the global distribution
of these vendors. Our analysis provides a detailed overview of the
global router vendor landscape.

For our analysis, we focus on the ITDK dataset (see Table 3).
Recall that this dataset has information about all the interfaces (IPs)
associated with the same router via alias resolution. LFP can identify
unique signature routers in 6,743 ASes, compared to 4,929 ASes
with the SNMPv3 method. Thus, not only can LFP identify more
than double the number of router IPs (see the previous section), but
it also identifies routers in 1,814 additional ASes (+36.8%). This is a
substantial contribution of LFP as it sheds light on previous blind
spots in the Internet and contributes to a better estimation of the
global router vendor distribution.

In Appendix A we demonstrate the efficacy of utilizing LFP to
enhance router coverage in a network. Our findings reveal that LFP
can identify more than twice the number of routers in large net-
works, thereby substantially improving coverage. Additionally, LFP
provides a comprehensive analysis of router homogeneity across
different points, offering a more detailed report on homogeneity.

8 DISCUSSION
Obfuscating remote router vendor fingerprinting:Our analysis
shows that it is possible to hide from remote router fingerprinting.
The obvious way is to drop UDP and TCP traffic, especially from
non-whitelisted sources. But even if UDP and TPC traffic is not
dropped, it is still possible to create rare signatures that are more
difficult to be mapped to a specific vendor. It is also possible by
configuring a router to confuse the classification algorithm (similar
to an adversarial attack on classifiers). Some of the features are
difficult to change, e.g., ICMP, TCP, or UDP IPID counters, if they
can be configured at all since they might be directly implemented
in the router OS. However, it is easier to change default iTTL values.
In Table 6, we present two unique sample signatures for Juniper
(top) and for Cisco (bottom). By changing the default value of the
ICMP iTTL (see Table 1 for details) of the Juniper routers from 64
to 255, LFP would misclassify the Juniper router as a Cisco router.
Using additional sources of information for fingerprinting:
Our methodology relies solely on network characteristics and ac-
tive probing. Other techniques utilize other sources of information,
e.g., banners, that offer good coverage [25]. Banner data analysis
requires the development of heuristics. One of the benefits of using
a simple rule-based approach such as LFP compared to machine
learning (ML) techniques, is that it is clear why certain decisions
are being taken, whereas ML techniques usually suffer from a lack
of explainability. Furthermore, complex ML models in networking
can suffer from deficits such as shortcut learning, spurious correla-
tions, and vulnerability to out-of-distribution samples [28]. Future
work should explore the possibility of using explainable ML mod-
els for router fingerprinting. Moreover, banners’ raw data is less
accessible, typically proprietary, that comes with commercial or
limited academic licenses. Nevertheless, banner data analysis can
complement our technique and improve fingerprinting coverage

and granularity. As part of our future work, we plan to use infor-
mation fusion of our data and banner data and assess the benefit
of using additional information sources for router fingerprinting,
especially for vendors with non-unique signature, and hopefully
for finer-grained fingerprinting, e.g., model-level fingerprinting.
Non-Unique Signatures:While we only utilize unique signatures
in this study, non-unique signatures can offer insights into router
deployments. This is particularly relevant when a single vendor
dominates a non-unique signature with thousands of instances.
Additionally, utilizing non-unique signatures can increase LFP cov-
erage to 64% in the RIPE-5 dataset. We explore the precision and
recall of non-unique signatures in Appendix B and intend to in-
vestigate additional features to enhance the uniqueness of such
signatures in future research.
Integrating LFP into Nmap: We also plan to investigate how
the insights gained by our study can be transferred and integrated
into Nmap [34]. Our analysis shows that LFP can achieve better
accuracy with ten packets (including the SNMPv3 request) than
the default Nmap OS detection mode, which sends up to thousands
of probe packets. At least in the case of router fingerprinting, LFP
has proven to be more scalable, less intrusive, and more accurate.
We are already developing a Nmap variation that will replicate
our experiment, and we will share it with the Nmap community
to get feedback and comments. This way, we can improve our
methodology and enable more researchers and engineers to use
our technique.
Longitudinal analysis: As part of our future research agenda,
we would like to investigate how we can use our classification
methodology and our collected data to perform a large-scale longi-
tudinal analysis of vendor changes over time, vendor changes for
a network, or vendor changes per router interface IP. So far, we
have collected data that spans more than six months, but the real
potential of our technique will be unveiled by collecting data that
spans multiple years. We plan to publicly make the tools and data
available to the research community and report on our results. We
also plan to investigate how geopolitical events, economic changes,
security incidents, and vendor strategies may influence the distri-
bution of routers by different vendors across different time scales
and geographical regions.

9 CONCLUSION
In this paper, we have shown that only 10 packet probes per router
IP are enough to accurately fingerprint up to 64% of routers in
the IPv4 Internet. We developed and evaluated LFP—a lightweight
fingerprinting technique that sends three probe packets for three
transport protocols, namely, ICMP, TCP, and UDP. By augmenting
our traces with labeled router data that relies on SNMPv3 responses,
we generated around 90 unique signatures that can accurately iden-
tify all major router vendors. To our surprise, more than half of
the routers replied to our probe packets. The vast majority of the
responsive routers (more than 82%) can be assigned to only one ven-
dor using our classification. Our results showed that compared to
the state-of-the-art, we more than doubled the coverage of routers
that we can remotely fingerprint, and more accurately inferred the
router vendor compared to popular tools like Nmap. All of this
is achieved with orders of magnitude less probing packets than
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required by Nmap. Thus, our mechanism is more scalable, less in-
trusive, and does not rely on external and proprietary data like
banner grabs. Our classification provides valuable insights into the
deployment of routers within networks and regions, and the router
vendor equipment on a given path. Thus, it can be used to inform
routing decisions, to assesses router deployment strategies, to ana-
lyze hardware manufacturer market share, and to help estimate the
potential impact of router vulnerabilities in a network or a region.
Finally, to enable further research in the area, we plan to make our
LFP tool publicly available.
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APPENDIX
A ROUTER VENDOR DISTRIBUTION:

REVISITED
In Figure 19 we plot the ECDF of the percentage of identified routers
per network (AS) using LFP. When we consider all the ASes, we find
that for approximately 60% of the ASes, LFP identifies all the routers.
In these ASes we notice a bias: for about half of the ASes there is
only one router in the dataset. When we increase the minimum
threshold of routers per AS to consider them in our study, we
notice that for at least 75% of the ASes LFP identifies at least half
of the routers in an AS. The coverage decreases for large networks,
i.e., with more than 1,000 routers, which is expected as they may
have more routers with closed ports or behind firewalls and other
provisions.
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Figure 19: LFP coverage distribution per AS for different
minimum thresholds of routers per AS.
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Figure 20: Assessing homogeneity of router vendors per AS.

A.1 Revisiting Homogeneity
Next, we revisit router vendor homogeneity per AS using LFP. In
Figure 20 we plot the ECDF of the number of vendors per network

(AS). A network is homogeneous when all the routers it hosts
are from the same vendor. Our analysis shows that, indeed, when
considering networks with five routers or more, around half of
them have routers of one vendor and around 75% with up to two
vendors. When we consider larger networks with more than 20 or
100 routers, we notice that there is only a vendor for about half
and a quarter of networks, respectively. For large networks, i.e.,
more than 1,000 routers, LFP typically identifies multiple vendors.
This is to be expected as large networks offer multiple services that
may require specialized routers from various vendors. Even a few
routers from different vendors can contribute to the heterogeneity
in terms of router vendor per AS.

A.2 Regional Characteristics
We then study regional characteristics of deployment of router
vendors and their global market share. In Figure 21 we report the
number of routers we can identify with LFP per continent and ven-
dor. The router is assigned to a location based on the headquarters
location of the host network. Our analysis shows that with LFP, we
can double the routers that are identified in all continents. Overall,
the market is very consolidated. A small number of router man-
ufacturers are responsible for more than 95% of the routers in a
continent. We notice that in western regions like Oceania, North
America (NA), and Europe, the penetration of Cisco is very high,
with 81.7%, 70.3%, and 63.2%, respectively. Cisco also has around
64% of the market share in Africa. Huawei has a substantial market
share in Asia and South America, with 40.6% and 36.3%, respectively.
Juniper has a significant market share in North America, more than
17%.

In Europe and Asia, the additional contribution of LFP when
compared with the SNMPv3-based fingerprinting is 100%, i.e., half
of the routers could not be identified with the SNMPv3-based finger-
printing. In North America (NA) and South America, the additional
contribution of LFP is around 87% and 76%, respectively. In North
America, one of the reasons is that many Cisco routers can already
be identified with the SNMPv3-based technique and routers in
North America is predominantly Cisco. For South America, the
reason is that Huawei already has a strong presence there, and it
can be identified with SNMPv3. The highest additional contribution
of LFP when compared with the SNMPv3-based fingerprinting is
in the two regions with the lower number of identified routers,
namely, Oceania and Africa, with 205% and 141%, respectively.

Finally, when we turn our attention to the top-13 networks in
terms of the number of routers that we can identify with LFP, we
notice that they are spread around the globe, see Figure 22. We also
notice that the additional contribution in identifying routers with
LFP compared to SNMPv3-based fingerprinting varies across the
different networks. Indeed, for the top network in Asia, the increase
is more than 100%, but for others, e.g., the third one also in Asia,
the additional contribution of LFP is almost negligible.
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Table 8: Precision and Recall: data random split (80/20)

Vendor Recall Precision Total (test)

Cisco 0.99 0.99 6,754
Mikrotik 0.99 1.0 919
Juniper 0.97 0.99 789
Huawei 0.96 0.98 450
Brocade 0.64 0.72 153
H3C 0.20 0.23 123
Nokia 0.8 1 64
Ruijie 0.77 1 10
Ericsson 0.77 1 10
net-snmp 0.35 0.37 315
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Figure 21: Router vendor popularity per continent.
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Figure 22: Additional contribution of LFP on router vendor
identification in large networks.

B PRECISION AND RECALL
For the labeled RIPE-6 data with SNMPv3 information, we perform
a precision and recall study. We do a 80/20 random split where we
use 80% of the data for training and the other 20% for testing. The
results per vendor for precision and recall are presented in Table 8.
For the major vendors, namely, Cisco, Juniper, and Huawei, both
precision and recall are very high, close to 1. Precision is also high
for popular vendors, e.g., Nokia, Ruijiem, and Ericsson, but the recall
is lower. We attribute this to the relatively low testing sample. The
precision and especially recall is very low for UNIX-based vendors,
e.g., net-snmp, Brocade, and H3C.
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