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Abstract—With a growing share of electric vehicles (EVs) in
our distribution grids, the need for smart charging becomes
indispensable to minimise grid reinforcement. To circumvent the
associated capacity limitations, this paper evaluates the effec-
tiveness of different levels of network constraints and different
dynamic tariffs, including a dynamic network tariff. A detailed
optimisation model is first developed for public charging electric
vehicles in a representative Dutch low voltage (LV) distribution
network, susceptible to congestion and voltage problems by 2050
without smart charging of EVs. Later, a detailed reflection
is made to assess the influence of the modelled features on
the distribution system operator (DSO), charge point operator
(CPO) costs, and the EVs’ final state-of-charge (SOC) for both
mono- (V1G) and bi-directional (V2G) charging. Results show
that the dynamic network tariff outperforms other flat tariffs
by increasing valley-filling. Consequently, compared to regular
day-ahead pricing, a significant reduction in the frequency of
congestion in the lines is achieved. In addition, V2G ensures the
joint optimum for different stakeholders causing adequate EV
user satisfaction, decreased CPO costs compared to conventional
charging and fewer violations of grid constraints for the DSOs.

Index Terms—dynamic tariffs, EV, flexibility, OPF, smart
charging, V2G.

NOMENCLATURE

Sets (indices)
ΩB(b) Set of nodes; b ∈ N0.
ΩC(c) Set of charging points; c ∈ N.

ΩL(l) Set of lines; l ∈ N0×N0 : l = (i, j) ∈ ΩB×ΩB∧ i �=
j ∧ i, j = binding nodes.

ΩP(p) Set of low-, medium- and high-level network tariff

components; p = {ll, ml, hl}.
ΩT(t) Set of horizon time steps; t ∈ N.

Variables
αc Fraction of the maximum SOC at departure; αc ∈

[0, 1].
It,l,φ Phase current at line l for phase φ.

Vt,b,φ Phase Voltage at node b for phase φ.

Vt,c SOC (%) of EV at charging point c connected at time

t.
PDis
t Net discharge power at transformer; PDis

t ∈ R
−.

Ptf∗
t Aggregated transformer power using linear power flow

equations.

Ptf
t Aggregated transformer power without power losses.

Pp
t Low, medium and high tariff charging power at trans-

former; ∀p ∈ ΩP.

Pt,c Active (dis)charging power for EV at charging point

c at time t.

Parameters
Δt Duration of one time period (0.25 h).

V init
c Initial SOC percentage of EV at charging point c.

μV2G
c Binary parameter indicating bi- (1) or mono-

directional (0) charging capability.

cp Low, medium and high network tariff cost of charging;

∀p ∈ Ωp.

cDA
t Day-ahead price at time t.
M Large positive (big M) constant for variable αc.

Vc Maximum SOC percentage of EV at charging point c.
Ec Maximum battery capacity of EV at charging point c.

P
tf

Rated transformer power (400 kVA).

Pc Maximum rated power of EV at charging point c.
P
p

t Available low, medium and high cost charging power

at time t; P
p

t ∈ R
+, ∀ p ∈ Ωp.

Vc Minimum SOC percentage of EV at charging point c.
tdep
c Departure time of EV at charging point c.

I. INTRODUCTION

DRIVEN by the goal to reach carbon neutrality by 2050,

EVs are being scaled up to become an integral part of

the streetscape in Europe. However, the massive deployment of

EVs will stress the already congested power networks, making

them more vulnerable to failures. This effect is more visible

on low voltage (LV) distribution networks, which traditionally

are not built to withstand such exponential growth in loading

levels [1]. As EVs are parked for 95% of the time, they enable

flexibility to provide ancillary services to power networks [2],

potentially solving the issues caused by them in the first place.

Especially off-peak charging is a requirement for the safe

operation of our existing LV networks. The EV’s flexibility

can be enabled with smart charging, often using cost-based

objectives [3]–[5].

Capacity subscription tariffs could help to spread consumer

loading more, as analysed in [3], but do not reflect chang-

ing grid conditions and would suppress the power of EV

flexibility provided to the grid. The same holds for time-of-

use (TOU) tariffs that apply two or three different but static

price levels [6], [7]. Real-time pricing with dynamic day-ahead

prices could better represent the grid conditions, such as a

change in the renewable energy share, and unlock more EV

flexibility. However, day-ahead price-based charging can shift

load peaks to other times of the day with low prices instead of

reducing them [4]. Therefore, tariffs that capture the varying

load at the transformer level can provide better peak shaving,
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as shown in [8]. The shortcoming of using dynamic costs at the

transformer level is that congestion and voltage problems can

still occur locally downstream of the transformer. This is an

important aspect to look at for LV networks, which are more

prone to voltage problems and congestion due to the rising use

of distributed renewable energy sources such as photovoltaic

(PV) systems. This problem can be catered to by including

network constraints and the associated power flow equations

inside the optimisation model used to dispatch EVs. In the

current literature, various equation-based power flow models

vary in computational efficiencies and accuracy [6], [9]–[11].

For the operational dispatch of EVs, smart charging EV fleets

to minimise costs for the charge point operators (CPOs) can

conflict with the grid’s reliable operation. Authors in [5] show

how a multi-objective optimisation framework can quantify

cost saving along with minimising the grid’s in-feed power for

a multi-energy system from a planning perspective. However,

such an approach is unsuitable for the operational dispatch

of EVs as solving multi-objective optimisation problems for a

whole year using a lexicographic approach takes longer than

EVs’ operational dispatch time.

The aim of this paper is to test the EVs’ charging flexibility

in relation to different levels of grid constraints and a novel

dynamic tariff, recently introduced in a pilot project‡. For

that reason, an operational dispatch model including receding

horizon optimisation (RHO) to allow optimal charging of

EVs is developed. The model is validated with power flow

studies of a real Dutch LV grid including future-proof data

and charging technology such as vehicle-to-grid (V2G). The

contribution of this paper is twofold. First, compared to the

discussed literature, the tariff as well as the modelled grid

constraints should allow charging EVs in accordance with

expected changes in distributed power generation and con-

sumption. Second, this study distinguishes itself from others

by catering for the need of all the stakeholders involved,

namely: CPO, DSO, and end users. The analyses provide

useful insights into the available flexibility of EV charging in

relation to grid reinforcement needed in LV grids with 100%

EV penetration.

II. OPTIMISATION FRAMEWORK

An RHO model with a planning horizon of 24 hours and

15 minutes intervals is formulated. The chosen time frame

allows us to better plan EV dispatch and unlocks enough EV

flexibility, especially during long connection times. For the

entire planning horizon, information about the expected non-

EV loads at each of the LV nodes and day-ahead prices is taken

as input. The model needs to be initialised with the initial state-

of-charge (SOC), maximum charging power, V2G information

and EVs’ battery capacity. After the initialisation of SOC in

the first step, the rest of the stages use the information about

SOC calculated in the previous stage. However, information

about the arrival of new vehicles and the estimated departure

‡Received as a personal communication from Nico Brinkel, Utrecht
University, The Netherlands. The dynamic network tariff implemented in the
paper is currently being used in FLEET project as a smart charging pilot.

time of the vehicles is received as an external input in a rolling

fashion as the EVs arrive at the charging stations.

min
Pt,c

∑
t∈ΩT

⎛
⎜⎜⎜⎜⎝

I︷ ︸︸ ︷
cDA
t

∑
c∈ΩC

Pt,c+
∑
p∈ΩP

cpPp
t︸ ︷︷ ︸

II

+

III︷︸︸︷
Ptf∗
t −

∑
c∈ΩC

Mαc

︸ ︷︷ ︸
IV

⎞
⎟⎟⎟⎟⎠Δt (1)

subject to:

Vc ≤ Vt,c ≤ αcVc ; ∀ t ∈ {tdep
c }, c ∈ ΩC (2)

Vt,c =

{
V init
c ; ∀ t ∈ {1}, c ∈ ΩC

Vt−1,c +Δt
Pt−1,c

Ec
; ∀ t ∈ ΩT-{1}, c ∈ ΩC

(3)

−μV2G
c Pc ≤ Pt,c ≤ Pc ; ∀ t ∈ ΩT (4)

Pp
t ≤ P

p

t ; ∀ t ∈ ΩT, p ∈ Ωp (5)∑
c∈ΩC

Pt,c =
∑
p∈ΩP

Pp
t + PDis

t ; ∀ t ∈ ΩT (6)

Ptf
t ≤ P

tf
; ∀ t ∈ ΩT (7)

‖It,l‖2 ≤ Il ; ∀ t ∈ ΩT, l ∈ ΩL (8)

V ≤ ‖Vt,b‖2 ≤ V ; ∀ t ∈ ΩT, b ∈ ΩB (9)

Pt,b = Re
{
V�

t,bI
∗
t,b

}
, Qt,b = Im

{
V�

t,bI
∗
t,b

}
(10)

For all time steps of the planning horizon, the individ-

ual charging power at each charging point is optimised for

the objective function given in (1). The proposed objective

function is minimised so that the interests of all involved

stakeholders are catered for. It implies minimising the CPO

costs (components I & II), maximising the SOC of the EVs

(IV) and minimising power losses, congestion and voltage

issues to comply with DSO interests using dynamic, stacked

tariffs (II) and power flow modelling (III).

The new stacked dynamic tariff, managed by the DSO and

charged to the CPO, consists of two dynamic components: the

day-ahead electricity costs (I) and the dynamic network cost

(II). The latter is explained by Fig. 1 and constraints in (6), (5).

Three loading levels are defined, each with a certain maximum

time-varying capacity (P
p

t ) and a fixed cost (cp). The following

relation holds: cll < cml < chl, with cll the lowest cost level

and chl the highest. The corresponding capacity levels are

predetermined at 60%, 80% and 100% of the transformer-

rated power‡, but the actual volume assigned to them varies

depending on the predicted transformer loading excluding

EVs, as seen in Fig. 1. For instance, during 4 - 9 pm (c.f.

Fig. 1), only medium and high network costs can be assigned

to EV charging due to high expected transformer loading.

Consequently, off-peak charging is stimulated if flexibility

is available, leaving the CPO with lower network costs and

respecting grid limits more. Constraint (6) ensures that the

sum of the optimised load levels, as bounded by (5), equals

the sum of the individual charging power levels at each time

step t.

978-1-6654-6441-3/23/$31.00 ©2023 IEEE
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Fig. 1. Schematic illustrating the dynamic network component of the stacked
tariff.

Component III in (1) tries to reduce the aggregated power

losses such that optimal power flow modelling is ensured and

grid constraints can be applied in the LV network. These grid

constraints are covered by (8) and (9), limiting the current in

the lines and voltage magnitude in the nodes. The values of

It,l and Vt,b are obtained by solving the linearised optimal

power flow (OPF) presented in [9] as implemented by [1].

The generic power flow relationship is shown by (10). To

restrict loading at the transformer level, as expressed by

(7), a more simplified formulation of Ptf∗
t , denoted as Ptf

t ,

could be obtained as well by adding all loads and subtracting

generation, omitting power losses in the lines. That excluded

the need for computational-demanding power flow modelling

in scenarios that only investigated the effect of a transformer

limit.

The last term in (1) maximises the SOC level of each

vehicle. The parameter M penalises lower αc, maximising the

final SOC at departure time. This maximises the final SOC at

departure time. This is encompassed by (2), together with the

SOC boundaries. Equation (3) ensures that the SOC is updated

at each time step till departure time. When no EV is connected

to the charging point c, power and SOC values are set to zero.

The charging power is limited by (4).

III. CASE STUDY

A typical radial urban Dutch LV network (c.f. Fig. 2)

consisting of 11 feeders and a total of 504 nodes, connected to

the MV grid through a 400 kVA (10 kV/ 0.4 kV) transformer

is taken as the case study for the analysis presented in this

paper. First, uncontrolled charging for a 2050 scenario was

investigated. After that, the model presented in Section II

was applied to the LV grid using the Pyomo optimisation

library in Python. Due to the lack of private parking spaces,

active involvement of a single CPO and the main objective to

TABLE I
SCENARIO OVERVIEW

Scenario Tariff V2G [%] Objective
Function Constraints

S0 − 0 − −
S1 Day-ahead 80 I, IV (2 - 4), (7)
S2 Stacked 80 I, II , IV (2 - 7)
S3 Stacked 0 I, II, IV (2 - 7)
S4 Stacked 80 I, II, III, IV (2 - 9)

Fig. 2. Representative LV grid in the Netherlands used for the analyses. The
red transparent boxes indicate the grid parts covered by detailed power flow
modelling in scenario S4 with constraints (8) and (9) as 95% of grid issues
apply to that feeder.

maintain the grid quality, this centralised model was preferred

over a decentralised model [4], [12]. The smart charging

analyses using the optimisation model are applied to the

worst-case scenario, one week in the winter of 2050, with

100% EV penetration (0.4 passenger cars per household). For

smart charging, DigSILENT PowerFactory is used to provide

network data as an input to the optimisation model and is used

to validate the optimisation results on voltage and congestion

problems. As one charging pole for every 6 EVs is assumed

as the standard requirement, a total of 32 charging stations,

each with two charging points, were randomly placed in the

distribution grid as shown in Fig. 2.

Different scenarios analysed in this paper are presented in Tab.

I, where each scenario differs by the type of tariff used and

the degree of network constraints enforced. S0 represents the

base case where all the EVs are assumed to charge to their

required level as soon as they are connected to a charger,

thereby ruling out any possibilities of flexibility or smart

charging. Scenarios S1, S2 and S3, represent cases where

EV charging is automatically optimised considering only the

capacity limitation of the MV/LV transformer (7). For these

scenarios, the calculated net power at the transformer neglects

any power loss due to the lack of detailed load flow. For S4,

equation-based power flow is used to model one of the longest

feeders (c.f. Fig. 2) of the LV network based on [9], which

restricts the bus node voltages to ±5% of the nominal voltage.

Congestion at the transformer was limited to 100% of its rated

power, excluding power losses, leading to 120% loading of the

transformer and 100% loading of the transformer line. These

values were regarded as acceptable to the DSO. In addition,

a sensitivity analysis revealed a linearisation error of 6.5%

978-1-6654-6441-3/23/$31.00 ©2023 IEEE
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Fig. 3. Frequency of occurrence for voltage and congestion problems in the
modelled LV network for different scenarios .

compared to the validation in PowerFactory (Newton-Raphson

method), such that a correction factor of 0.938 was multiplied

with the rated current in (8). S1 uses only Day-ahead (DA)*

prices for the energy imported from the grid in the objective

function. It assumes a fixed network tariff (not included in the

optimisation), whereas scenarios S2-S4 use a stacked tariff

scheme. The stacked tariff scheme comprises energy costs

based on DA and a dynamic network tariff** stacked on top

of the energy cost component. The dynamic tariff varies based

on the current transformer loading as explained in Section II

and depicted in Fig. 1.

IV. RESULTS

Fig. 3 gives an overview of the frequency of congestion in

the lines for the whole simulation period, at the transformer

line, transformer, line undervoltage and overvoltage for each

scenario. From the uncontrolled scenario S0, it becomes

apparent that the amount of congestion is unacceptable with

the adopted EV percentage. A minimum capacity of 630 kVA

transformer will be needed without smart charging. In S0, out

of all total line congestions, 95% of them occurred in one

particular feeder (c.f. Fig. 2). Hence, in S4, the detailed power-

flow modelling was used for this particular feeder prone to

more congestion, which eventually saved the computational

burden needed for solving power-flow for all the feeders.

In general, scenarios S1-S4 show a clear reduction in the

number of grid issues occurrences, signifying the optimisation

model’s effectiveness. The transformer capacity limit applied

to all these scenarios eliminates congestion at the transformer

alone but does not cater to localised grid issues down the trans-

former. Nevertheless, with day-ahead tariffs alone, 6.6% more

congestion is perceived in the lines relative to uncontrolled

charging. In contrast, with the stacked tariffs used in S2, a

relative reduction of 34.1% and 38.2% is perceived compared

to S0 and S1, respectively. These results can be partially

explained with Fig. 4, which plots the aggregated transformer

power for S0, S1 and S2 together with the day-ahead prices

and the transformer rated power. It can be deduced that

the day-ahead tariff scenario (S1) hits the transformer line

more than three times as often compared to its stacked tariff

counterpart (S2). This might lead to more frequent congestion

*Prices used from ENTSOE.
**Prices used from FLEET project’s ongoing pilot.

Fig. 4. Aggregated loading comparing uncontrolled (S0) charging with
controlled charging using day-ahead (S1) and stacked (S2) tariffs. Results
are obtained from the optimisation model, so power losses are excluded.

in the downstream lines as perceived in the results of Fig. 3.

As a result, it stresses the need for the modelled transformer

limit when dynamic electricity tariffs are applied.

The dynamic network component in the stacked tariff re-

duces that dependency to some extent by stimulating valley-

filling more. The tariff effectiveness also applies to mono-

directional (V1G) charging as congestion further reduces to

2.8%. In this study, little attention was devoted to optimising

the different price levels, such that the positive effect of the

stacked tariff could potentially be further increased. Never-

theless, even with stacked tariffs, high shares of V2G can

increase the need for enforcing grid constraints to areas prone

to congestion, which was used in S4. The remaining 5.5% of

congestion occurred in the feeders where detailed power flow

was not modelled; hence no constraints enforced the networks’

bus voltage and line’s current ratings.

The question remains how these grid constraints, V2G, and

the stacked tariffs influence the interests of the DSO along with

CPO profits and EV user satisfaction. Tab. II gives a clear

overview of these benefits, including the power losses, root

means square (RMS) transformer loading, and CPO energy

tariff costs, all relative to the uncontrolled charging scenario.

The last column of Tab. II shows the collective EV user

satisfaction, which is affected by the percentage of vehicles

charged to the maximum value of SOC during departure. The

darker (greener) the cells of Tab. II are, the more beneficial

the results are to the corresponding stakeholder. From the

DSO perspective, the objective function intends to reduce

power losses and stimulate valley-filling by applying a stacked

tariff mechanism. A lower RMS loading would, in principle,

imply more balanced transformer loading as extreme high

loading, positive or negative (in the case of V2G), is squared

in the RMS calculation. As the square of the current values

determines power losses, the power losses in Tab. II follow a

similar trend. Compared to day-ahead tariffs (S1), the stacked

tariff mechanism reduces power losses in all three cases (S2,

S3, S4). However, for S2, the power losses are still higher

than the baseline case (S0). It becomes apparent that mono-

directional charging, as in S3 and power flow modelling,

as in S4, have a beneficial effect on the amount of power

losses. Nevertheless, the effect remains marginal compared
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TABLE II
STAKEHOLDER BENEFITS RELATED TO EACH SCENARIO RELATIVE TO

BASELINE SCENARIO S0.

Scen.
Label

Power
Loss [rel%]

RMS Trafo
Load [rel%]

CPO
Costs [rel%]

EV Full
SOC [abs%]

S1 +4.83 -1.81 -48.03 96.19
S2 +1.67 -5.50 -43.34 99.21
S3 -0.48 -6.24 -29.45 93.33
S4 -0.49 -5.78 -43.30 98.89

to uncontrolled charging, as a reduction of around 0.5% is

measured. The second column in Tab. II indicates a strong

reduction of the RMS loading in the case of stacked tariffs

(S2-S4), implying more valley-filling.

From the CPO perspective, Tab. II addresses three things.

First, smart charging decreases the costs by more than 40%

in the case of V2G. With V1G only, less capacity can be

moved to cheaper times, as no discharging takes place, leading

to higher costs. Second, with stacked tariff pricing, higher

costs are obtained concerning day-ahead tariff pricing as some

loading on most price-favourable moments is shifted to other

times of the day. Based on the electricity component, this

implies a relative increase of 9.3% cost between S1 and

S2. Nevertheless, the gains caused by reducing the network

component costs of the stacked tariff are not analysed. They

could imply higher benefits to the CPO due to its dynamic

nature compared to day-ahead tariffs with fixed network costs.

Third, adding additional grid constraints to the model does not

lower profits significantly, as the difference between S2 and

S4 is only 0.04%.

From Tab. II, it becomes clear that with V2G, more than

96% of all charging transactions could be classified as suc-

cessful. The non-successful transactions have a SOC lower

than what could potentially be reached. Compared to V2G,

V1G scores worse, as 6.67% of all charging sessions fail

to obtain their full charging potential. This happens mostly

around 6 pm, as no V2G is available to create peak-reduction

and thus charging capacity for EVs connected for a short time.

Consequently, some cars will need to delay charging, resulting

in undercharged batteries if the connection time and, thus,

flexibility provision is too little.

V. CONCLUSION

This study assessed the application of dynamic electricity

and network tariffs, primarily concerning the DSO next to

the EV owner and CPO. The exact results of this study are

case-study specific but serve as a proof-of-concept such that

some key takeaways can be drawn. It became apparent that

the dynamic stacked tariff can have multiple benefits for the

DSO while reducing CPO costs compared to uncontrolled

charging (to over 40%) and maintaining acceptable battery

SOC levels (more than 98% satisfaction). The stacked tariffs

tend to decrease power losses and reduce congestion problems

even downstream the lines, such that power flow modelling

becomes less relevant. The latter could still be applied to areas

of the grid that are more prone to voltage and congestion

without violating other stakeholder interests. These analyses

also clarified the (dis)advantages of V2G. V2G facilitates

more EVs in power networks due to peak reduction at critical

moments. Besides, CPO costs can decrease by more than

20% using V2G compared to V1G. Nevertheless, it might

increase power losses slightly and increases local line con-

gestion. Using V2G only during peak moments to allow the

charging of EVs with less flexibility would be a better trade-

off to make than using V2G to maximise CPO profits. Future

research could regard this implementation and include more

uncertainty factors (e.g. SOC, tdep). Fairness and transparency

issues related to dynamic tariffs should be addressed as well.

This study concludes by stating that with dynamic tariffs,

V2G and locally-applied power flow modelling, it is possible

to optimally use EVs’ charging flexibility and significantly

reduce grid reinforcement towards 2050.
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