Delft University of Technology

A Level Shifter With Almost Full Immunity to Positive dv/dt for Buck Converters

Yang, Yunzhe; Huang, Mo; Du, Sijun; Martins, Rui P.; Lu, Yan

DOI

10.1109/TCSI.2023.3307869

Publication date
2023

Document Version

Final published version

Published in

IEEE Transactions on Circuits and Systems I: Regular Papers

Citation (APA)

Yang, Y., Huang, M., Du, S., Martins, R. P., \& Lu, Y. (2023). A Level Shifter With Almost Full Immunity to Positive dv/dt for Buck Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 70(11), 4595-4604. https://doi.org/10.1109/TCSI.2023.3307869

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository
 'You share, we take care!' - Taverne project

https://www.openaccess.nI/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

A Level Shifter With Almost Full Immunity to Positive dv/dt for Buck Converters

Yunzhe Yang, Mo Huang ${ }^{\oplus}$, Senior Member, IEEE, Sijun Du ${ }^{\bullet}$, Senior Member, IEEE, Rui P. Martins ${ }^{\oplus}$, Life Fellow, IEEE, and Yan Lu ${ }^{\ominus}$, Senior Member, IEEE

Abstract

High-frequency buck converters need a fast transition of switching nodes (high $d v / d t$). Such high $d v / d t$, especially the positive one, can cause malfunction of a conventional pulsetriggered active-coupled (PTAC) level shifter that is used to control the high-side NMOS switch. In this work, we first discuss the $d v / d t$ immunity of conventional PTAC level shifters. Subsequently, we propose a new scheme to block the noise current during the $d v / d t$ sequence, allowing an almost full immunity to the positive $d v / d t$. With this scheme, the maximum $d v / d t$ is determined by how well the circuitry is protected from the overvoltage during the $d v / d t$ sequence. We design a $20-\mathrm{V}$ buck converter with this level shifter, fabricated in $\mathbf{1 8 0} \mathbf{- n m}$ BCD process. Experimental results show it works correctly under a $67-\mathrm{V} / \mathrm{ns} d v / d t$.

Index Terms-DC-DC converter, level shifter, buck converter, dv/dt immunity.

I. Introduction

BUCK converter (Fig. 1) has a wide utilization in highefficiency applications. Due to the high mobility, NMOS power transistors have a lower turn-on resistance than PMOS under the same chip area. Therefore, it is favorable to use an NMOS as the high-side switch $\left(M_{\mathrm{H}}\right)$. The gate driver of M_{H} is working in a floating-voltage (FV) domain (from $V_{\text {SSH }}=V_{\mathrm{X}}$ to $V_{\mathrm{DDH}}=V_{\mathrm{X}}+V_{\mathrm{DR}}$, where V_{DR} is the gate-drive voltage,

[^0]

Fig. 1. Block diagram of a buck converter and voltage domains of its level shifter.
while V_{X} is the switching node from ground to supply voltage $V_{\text {IN }}$). Bootstrap circuit, consisting of a diode and a capacitor C_{BST} [1], is widely used to generate V_{DDH} that is V_{DR} higher than V_{X}. To turn M_{H} on and off, we need a level shifter (LS) to convert the control signal S_{H} from a low-voltage domain (LV , from ground to the control supply voltage V_{DD}) to the S_{FV} in FV domain. The level shifter design can be challenging in high-speed applications, where the short transient time of V_{X} leads to a high slew rate $(d v / d t)$. The $d v / d t$ can be even higher in high-voltage applications. A high $d v / d t$ may lead to malfunction of the level shifter, as well as the converter.

There are three main categories of level shifters: 1) capacitive-coupled [1], [2], [3], [4], 2) voltage-triggered active-coupled [5], [6], [7], [8], [9], [10], and 3) pulsetriggered active-coupled (PTAC) level shifters [11], [12], [13], [14], [15], [16], [17]. A capacitive-coupled level shifter exhibits small power consumption but needs high-voltage capacitors. A voltage-triggered active-coupled level shifter has a simple circuitry, while consumes a large power. By contrast, a PTAC level shifter has the advantages of both small power consumption and no high-voltage capacitor, which is more popular in high-voltage applications [15].

The PTAC level shifter always uses a differential topology, utilizing an output latch to obtain rail-to-rail output signals, achieving a small power consumption and propagation delay. However, the conventional PTAC level shifter has a high risk of output logic failure under a large common-mode noise current $I_{\text {NOISE }}$ from a high positive $d v / d t$ (V_{X} transitions from ground to V_{IN} in a short time), as explained in Section II. By contrast, a negative $d v / d t$ (V_{X} transitions from V_{IN} to ground) has little harm on PTAC level shifter, as discussed in Section III-D. Therefore, most of the previous literatures investigated the topology of the PTAC level shifter that can resist a high positive $d v / d t$, a.k.a. to obtain a good

TABLE I
The $d v / d t$ Issue of Conventional PTAC Level Shifter

	Safety condition	Required transistor sizes
Signal phase	$I_{\text {SIG }}>I_{\text {SIG }}, \mathrm{TH}$	Large $M_{1 \mathrm{~A}}, M_{1 \mathrm{~B}}$, and small $M_{4 \mathrm{~A}}, M_{4 \mathrm{~B}}$
Noise phase	$I_{\text {NOISE }}<I_{\text {NOISE,TH }}$	Small $M_{1 \mathrm{~A}}, M_{1 \mathrm{~B}}$, and large $M_{4 \mathrm{~A}}, M_{4 \mathrm{~B}}$

immunity to positive- $d v / d t$. For instance, [12] added shunt branches, and [14] added bypass transistors to reduce the $I_{\text {NOISE }}$ within the $d v / d t$ sequence. But their $d v / d t$ immunity was improved with a higher circuit complexity, or an increased number of high-voltage MOSFETs. Reference [15] proposed a dual-interlock level shifter that desensitized the output stage, but increased the propagation delay. Furthermore, these designs may still malfunction under a very high $d v / d t$.

To address these issues and further improve the immunity to positive $d v / d t$, we propose a scheme that blocks the $I_{\text {NOISE }}$ within the $d v / d t$ sequence. This facilitates an almost full immunity, which means that in theory, the proposed level shifter functions correctly under an $I_{\text {NOISE }}$ from infinitely large positive $d v / d t$. Its maximum allowable $d v / d t$ is only determined by how well the protection diodes can protect the transistors from overstressing, as discussed in Section III-B. We organize this paper as follows: Section II reviews the previous PTAC level shifters and discusses their maximum $d \nu / d t$ immunity. Section III presents the working principles and implementations of the proposed level shifter, and discusses its limitations. Section IV shows the simulation and measurement results, and a comparison with previous works. Section V draws the conclusions.

II. Review of Previous PTAC Level Shifters

A. Working Principles of the Conventional Level Shifter When $D v / D t=0$

Fig. 2(a) shows the schematic of a conventional PTAC level shifter. The LV Pulse Generator outputs pulse $V_{1 \mathrm{~A}}$ and $V_{1 \mathrm{~B}}$ from the rising and falling edge of the input signal S_{H}, respectively. $M_{1 \mathrm{~A}}$ and $M_{1 \mathrm{~B}}$ are differential input high-voltage MOSFETs in LV domain, each with an output parasitic capacitance $C_{\mathrm{P} 1}$ (to ground). Two inverters, $M_{4 \mathrm{~A}}, M_{5 \mathrm{~A}}$ and $M_{4 \mathrm{~B}}$, $M_{5 B}$ make up a latch. The outputs of the latch are V_{OA} and V_{OB}, with parasitic capacitance C_{A} and C_{B} (to $V_{\mathrm{SSH}}=V_{\mathrm{X}}$), respectively. Differential output buffers are used to ensure the same load capacitance of the two inverters. The output buffers generate a non-inverting output signal $O U T_{\mathrm{A}}$ and inverting signal $O U T_{\mathrm{B}}$. Transistors $M_{2 \mathrm{~A}}, M_{3 \mathrm{~A}}, M_{2 \mathrm{~B}}$, and $M_{3 \mathrm{~B}}$ (equal size) are current mirrors to copy the input currents from LV domain to FV domain.

We first review the working principles of this PTAC level shifter under a positive-edge input S_{H}, when $d v / d t=0$. We define this period as signal phase. Fig. 2(a) includes the signal currents within the signal phase, and the transient waveforms are given in Fig. 2(c). It starts with $V_{\mathrm{OA}}=" 0$ " and $V_{\mathrm{OB}}=$ " 1 ". I_{CA} is the current charging C_{A} :

$$
\begin{equation*}
I_{\mathrm{CA}}=I_{\mathrm{OA}}-I_{4 \mathrm{~B}}+I_{5 \mathrm{~B}} \tag{1}
\end{equation*}
$$

where $I_{\mathrm{OA}}, I_{4 \mathrm{~B}}$ and $I_{5 \mathrm{~B}}$ are current from $M_{3 \mathrm{~A}}, M_{4 \mathrm{~B}}$ and $M_{5 \mathrm{~B}}$, respectively. Note that we should ensure $I_{\mathrm{CA}}>0$ before the latch outputs flip completely in the signal phase, otherwise the latch will be locked in the state $V_{\mathrm{OA}}=" 0 "$ and $V_{\mathrm{OB}}=" 1 "$.

At S_{H} 's rising edge $t_{1}, V_{1 \mathrm{~A}}$ turns on $M_{1 \mathrm{~A}}$, outputting a current $I_{\text {SIG }}$ which is mirrored to $I_{\text {OA }}$ through the current mirror $M_{2 \mathrm{~A}}-M_{3 \mathrm{~A}}$. Most I_{OA} is injected to C_{A} at t_{1}, and V_{OA} increases. From t_{1} to t_{2}, V_{DS} of $M_{4 \mathrm{~B}}$ increases due to the I_{CA} injection, and $I_{4 \mathrm{~B}}$ increases. V_{OB} almost has no change, and $I_{5 \mathrm{~B}}=0$. From t_{2} to t_{3}, V_{OA} becomes sufficiently high to turn on $M_{4 \mathrm{~A}}$, discharging C_{B} and decreasing $V_{\mathrm{OB}} . I_{\mathrm{OA}}$ decreases because of an increasing V_{OA}, considering the channel length modulation effect of $M_{3 \mathrm{~A}}$. Then I_{CA} is decreasing. $I_{5 \mathrm{~B}}$ is around 0 . From t_{3} to t_{4}, because of the V_{OB} decreasing, $I_{5 \mathrm{~B}}$ rises and $I_{4 \mathrm{~B}}$ falls, making I_{CA} raises again. This pulls V_{OA} up and V_{OB} down, and finally flips the outputs of the latch.

Clearly, I_{CA} achieves the minimum value at t_{3}, where $M_{3 A}$ works in saturation region due to the relatively low V_{OA}. Therefore, $I_{\mathrm{OA}}\left(t_{3}\right)$ should well copy $I_{\mathrm{SIG}}\left(t_{3}\right), I_{\mathrm{OA}}\left(t_{3}\right)=$ $I_{\mathrm{SIG}}\left(t_{3}\right)$. To make $I_{\mathrm{CA}}\left(t_{3}\right)>0$, we need to guarantee $I_{\mathrm{OA}}\left(t_{3}\right)>$ $I_{4 \mathrm{~B}}\left(t_{3}\right)$ from equation (1), because $I_{5 \mathrm{~B}}\left(t_{3}\right) \approx 0$. That is:

$$
\begin{equation*}
I_{\mathrm{SIG}}\left(t_{3}\right)=I_{\mathrm{OA}}\left(t_{3}\right)>I_{4 \mathrm{~B}}\left(t_{3}\right)=I_{\mathrm{SIG}, \mathrm{TH}} \tag{2}
\end{equation*}
$$

where $I_{\text {SIG,TH }}$ is the threshold $I_{\text {SIG }}$ to flip the latch, at t_{3}.
Clearly, to meet (2), we should choose large $I_{\text {SIG }}\left(W_{1}\right)$ and small $I_{4 \mathrm{~B}}\left(W_{4}\right)$, where W_{1} and W_{4} are channel width of $M_{1 \mathrm{~A}}$ (and $M_{1 \mathrm{~B}}$) and $M_{4 \mathrm{~A}}\left(\right.$ and $\left.M_{4 \mathrm{~B}}\right)$, respectively.

B. Dv/Dt Issue of the Conventional Level Shifter

Since the C_{BST} in Fig. 1 holds an almost constant voltage difference between V_{DDH} and $V_{\mathrm{X}}, d V_{\mathrm{DDH}} / d t=d v / d t$. As shown in Fig. 2(b), the parasitic capacitance $C_{\text {P1 }}$ on $M_{1 \mathrm{~A}}$ and $M_{1 \mathrm{~B}}$ generates common-mode $I_{\text {NOISE }}$ within a $d v / d t$ sequence:

$$
\begin{equation*}
I_{\mathrm{NOISE}}=C_{\mathrm{P} 1} \cdot d v / d t \tag{3}
\end{equation*}
$$

Part of $I_{\text {NOISE }}$ is mirrored to I_{OB} and I_{OA}, leading to possible false output of the latch. Hence we define the period of the $d v / d t$ sequence as the noise phase.

Fig. 2(d) shows how different $d v / d t$ magnitudes affect the output of the level shifter. Initial state is $V_{\mathrm{OA}}=$ " 1 " and $V_{\mathrm{OB}}=$ " 0 " at t_{5}, after the operation of the previous signal phase. When $d v / d t$ is small, a small I_{OB} mirrored from $I_{\text {NOISE }}$ pulls V_{OB} up to some extent, and the V_{OB} rise could pull V_{OA} down to a smaller value. But such a small change does not flip the output of the level shifter.

However, the $I_{\text {NOISE }}$ from a large $d v / d t$ can pull $V_{\text {OB }}$ up greatly, and flip $O U T_{\mathrm{B}}$ at t_{6}. Subsequently, the $O U T_{\mathrm{B}}$ flipping can either maintain or flip back (as a glitch). Both glitch and flipping are harmful for buck converters.

To prevent the V_{OB} from crossing the threshold voltage at t_{6}, we should guarantee the C_{B} current $I_{\mathrm{CB}}\left(t_{6}\right)<0$. With $M_{5 \mathrm{~A}}$ turned off and $M_{4 \mathrm{~A}}$ turned on at t_{6}, we write:

$$
\begin{equation*}
I_{\mathrm{CB}}\left(t_{6}\right)=I_{\mathrm{OB}}\left(t_{6}\right)-I_{4 \mathrm{~A}}\left(t_{6}\right) \approx I_{\mathrm{NOISE}}-I_{4 \mathrm{~A}}\left(t_{6}\right) \tag{4}
\end{equation*}
$$

Fig. 2. (a) Schematic of a conventional PTAC level shifter and signal currents within the signal phase (from t_{1} to t_{4}), (b) noise currents within noise phase (from t_{5} to t_{7}), (c) transient waveforms with a positive-edge input signal, within the signal phase, and (d) transient waveforms within the noise phase.
where $I_{4 \mathrm{~A}}$ is the current of $M_{4 \mathrm{~A}}$. Substitute $I_{\text {NOISE }}$ with (3) and make (4) <0, we have:

$$
\begin{equation*}
d v / d t<\frac{1}{C_{\mathrm{P} 1}} I_{4 \mathrm{~A}}\left(t_{6}\right)=\frac{1}{C_{\mathrm{P} 1}} I_{\mathrm{NOISE}, \mathrm{TH}} \tag{5}
\end{equation*}
$$

where $I_{\text {NOISE,TH }}$ is the threshold value of $I_{\text {NOISE }}$ to cause a false output of the level shifter.

Obviously, we could improve the $d v / d t$ immunity by reducing $C_{\mathrm{P} 1}$ or increasing $I_{4 \mathrm{~A}}\left(W_{4}\right)$, which means reducing the size of $M_{1 \mathrm{~A}}$ (and $M_{1 \mathrm{~B}}$) and increasing the size of $M_{4 \mathrm{~A}}$ (and $M_{4 \mathrm{~B}}$). However, both ways may contradict equation (2) for the signal phase. Thus, the $d v / d t$ immunity of the conventional level shifter is limited.

Table I summarizes the $d v / d t$ issue of the conventional PTAC level shifter. The safety condition in the signal phase requires large $M_{1 \mathrm{~A}}, M_{1 \mathrm{~B}}$, and small $M_{4 \mathrm{~A}}, M_{4 \mathrm{~B}}$ sizes, while that in the noise phase needs small $M_{1 \mathrm{~A}}, M_{1 \mathrm{~B}}$, and large $M_{4 \mathrm{~A}}$,
$M_{4 \mathrm{~B}}$. Clearly, the required transistor sizes of the two phases contradict each other.

Work from [12] improved the immunity to $d v / d t$ with shunt branches, significantly reducing the currents I_{OA} and I_{OB} injected into the latch under a $d v / d t$. However, the improvement is limited, since the noise current is not completely removed. A possible malfunction could take place under a high $d v / d t$. Consequently, it is more attractive if a new topology can block $I_{\text {NOISE }}$ completely and achieve a full immunity to $d v / d t$.

III. Working Principles and Implementations of the Proposed Design

A. Working Principles

Fig. 3 displays the high-side switch turning on waveforms of a buck converter in Fig. 1. Time interval $t_{1}-t_{2}$ is the rising delay of the level shifter. Interval $t_{2}-t_{3}$ is the delay between the rising edge of S_{FV} and V_{GSH} rising to its Miller Plateau

Fig. 3. Switching waveforms of a buck converter, and a possible way to obtain the full immunity to positive $d v / d t$.
(MP). After that, the $d v / d t$ sequence occurs within $t_{3}-t_{4}$, where the triggered $I_{\text {NOISE }}$ makes the level shifter vulnerable.

If we can completely block $I_{\text {NOISE }}$ from t_{3} to at least t_{4} (with $B L K$ signal), the level shifter output sees no commonmode noise current, and thus should resist an infinitely large $d v / d t$, (full immunity to positive $d v / d t$). Therefore, the rising edge of $B L K$ should be generated after the rising edge of $S_{\mathrm{FV}}\left(t_{2}\right)$, and before the $d v / d t$ sequence $\left(t_{3}\right)$. This should be implementable, since interval $t_{2}-t_{3}$ usually lasts several nanoseconds, consisting of the delay between S_{FV} and V_{GSH}, and the time interval from V_{GSH} rising to its MP. Subsequently, $B L K$ should be ended shortly after the $d v / d t$ sequence (t_{5}), enabling $I_{\text {SIG }}$ again.

Fig. 4 (a) presents the schematic of the proposed level shifter, based on the work from [12]. The shunt branches $\left(M_{\mathrm{P} 2 \mathrm{~A}}, M_{\mathrm{N} 2 \mathrm{~A}}, M_{\mathrm{N} 3 \mathrm{~A}}, M_{\mathrm{P} 2 \mathrm{~B}}, M_{\mathrm{N} 2 \mathrm{~B}}\right.$, and $\left.M_{\mathrm{N} 3 \mathrm{~B}}\right)$ are used to equalize the delay of the rising and falling edges. Resistors $R_{1 \mathrm{~A}}, R_{1 \mathrm{~B}}, R_{2 \mathrm{~A}}$, and $R_{2 \mathrm{~B}}$ prevent the current mirror misconducting during non-working periods. Furthermore, we add the BLK generator (consisting of a delay chain DLY_{1}, an inverter and an AND gate), blocking transistors ($M_{\mathrm{P} 3 \mathrm{~A}}, M_{\mathrm{P} 5 \mathrm{~A}}, M_{\mathrm{P} 3 \mathrm{~B}}$, and $\left.M_{\mathrm{P5B}}\right)$, and diode $D_{1 \mathrm{~A}}$ and $D_{1 \mathrm{~B}}$ for overvoltage protection [15]. We implement DLY_{1} with an inverter chain.

Fig. 4 (b) explains the working principles of the proposed design. The BLK generator detects the positive edge of $O U T_{\mathrm{A}}$, and generates a pulse signal $B L K$. The $B L K$ turns off the $M_{\mathrm{P} 3 \mathrm{~A}}$, $M_{\mathrm{P} 5 \mathrm{~A}}, M_{\mathrm{P} 3 \mathrm{~B}}$, and $M_{\mathrm{P} 5 \mathrm{~B}}$ synchronously, nulling the current I_{OA} and I_{OB}, or blocking the noise current from the parasitic capacitors of HV MOSFETs $M_{\mathrm{N} 1 \mathrm{~A}}$ and $M_{\mathrm{N} 1 \mathrm{~B}}$. Therefore, the $d v / d t$ sequence does not cause a malfunction. The waveforms without the block period are also given in Fig. 4 (b) for comparison.

We control the pulse width of $B L K$ by carefully designing the delay of delay chain DLY_{1}. Its pulse width should be determined by the working frequency and load range of the buck converter. If the buck converter works in a higher frequency, we can design a narrower pulse width for $B L K$.

Note that a very large $d v / d t$ still causes some V_{OA} and V_{OB} variations. This is because the capacitance between $V_{\mathrm{OA}}, V_{\mathrm{OB}}$ and ground ($C_{\mathrm{PA}}, C_{\mathrm{PB}}$ in Fig. 4 (a)) should be charged by C_{A} and C_{B}, within the positive $d v / d t$ sequence. But due to the small value of $C_{\mathrm{PA}}, C_{\mathrm{PB}}$, the variations would be too small to flip the latch.

B. Maximum Dv/Dt Immunity of the Proposed Level Shifter

Although blocking $I_{\text {NOISE }}$ can theoretically protect the latch from an infinitely large $d v / d t$ sequence, such $d v / d t$ may still be unsafe for the proposed level shifter. As shown in Fig. 5 (a), we use the $R_{\mathrm{P} 1 \mathrm{~A}}$ and $R_{\mathrm{N} 1 \mathrm{~A}}$ to represent the R_{DS} of $M_{\mathrm{P} 1 \mathrm{~A}}$ and $M_{\mathrm{N} 1 \mathrm{~A}}$, respectively. The DC voltage of $V_{2 \mathrm{~A}}$ is V_{DDH} over the resistive divider of $R_{\mathrm{P} 1 \mathrm{~A}}$ and $R_{\mathrm{N} 1 \mathrm{~A}}$. In the steady state, $M_{\mathrm{N} 1 \mathrm{~A}}$ is turned off, and hence $R_{\mathrm{N} 1 \mathrm{~A}}$ is large and $V_{2 \mathrm{~A}}$ is close to V_{DDH}. When a large $d v / d t$ occurs, the large $I_{\text {NOISE }}$ flows through the low-impedance capacitive divider path ($C_{\mathrm{P} 2}$ and $C_{\mathrm{P} 1}$). Charging $C_{\mathrm{P} 2}$ with the $I_{\text {NOISE }}$ leads to an instantaneous increase in V_{SD} of $M_{\mathrm{P} 1 \mathrm{~A}}\left(=V_{\mathrm{DDH}}-V_{2 \mathrm{~A}}\right)$, as shown in Fig. 5 (a) and (c). The peak $V_{\text {SD }}$ value at a large $d v / d t$ is approximately equal to the V_{DDH} step $\left(=V_{\mathrm{IN}}\right)$ over the capacitive divider:

$$
\begin{equation*}
V_{\mathrm{SD}, \mathrm{PEAK}} \propto \frac{C_{\mathrm{P} 1}}{C_{\mathrm{P} 1}+C_{\mathrm{P} 2}} V_{\mathrm{IN}} \tag{6}
\end{equation*}
$$

Once V_{IN} is not high and $C_{\mathrm{P} 2}$ is large, the instantaneous $V_{2 \mathrm{~A}}\left(\right.$ or $\left.V_{2 \mathrm{~B}}\right)$ does not overstress $M_{\mathrm{P} 1 \mathrm{~A}}, M_{\mathrm{P} 2 \mathrm{~A}}$ and $M_{\mathrm{P} 4 \mathrm{~A}}$ (nor $M_{\mathrm{P} 1 \mathrm{~B}}, M_{\mathrm{P} 2 \mathrm{~B}}$, and $\left.M_{\mathrm{P} 4 \mathrm{~B}}\right)$. In this sense, the level shifter has "truly" full immunity to positive $d v / d t$. Nevertheless, if $V_{\text {IN }}$ is high or $C_{\mathrm{P} 2}$ is relatively small, a very large $I_{\text {NOISE }}$ can instantly charge $C_{\mathrm{P} 2}$ and then overstress the transistors (the " $V_{2 \mathrm{~A}}$ no $D_{1 \mathrm{~A}}$ " case as shown in Fig. 5 (c)).

To address this, diodes $D_{1 \mathrm{~A}}$ and $D_{1 \mathrm{~B}}$ are added to clamp $V_{2 \mathrm{~A}}$ and $V_{2 \mathrm{~B}}$ to V_{X}, and thus circumvent the overstress issue, as shown in Fig. 5 (b). In this scenario, the diode conducts part of $I_{\text {NOISE }}$, reducing the peak $V_{\text {SD, PEAK }}$ from equation (6). However, it is possible that the diode current I_{D} is instantaneously smaller than $I_{\text {NOISE }}$, making the diodes clamp $V_{2 \mathrm{~A}}$ to an instantaneously lower value that is still risky of overvoltage (the " $V_{2 \mathrm{~A}}$ small $D_{1 \mathrm{~A}}$ " case). Therefore, we should choose a large diode that can conduct sufficient $I_{\text {NOISE }}$ during a $d v / d t$ sequence (the " $V_{2 \mathrm{~A}}$ large $D_{1 \mathrm{~A}}$ " case).

In sum, the maximum $d v / d t$ immunity of the proposed design is determined by protection diodes. With sufficiently large protection diodes, the proposed scheme can theoretically resist an infinitely large $d v / d t$, which is significantly improved from the previous works. We regard it as "almost" full immunity to positive $d v / d t$.

C. Possible Drawback and Solution

The possible drawback of this scheme is that the $I_{\text {SIG }}$ may be blocked by the $B L K$ signal as well. This prohibits the S_{H} signal transmission to the high-side switch through the level shifter during the block period ($B L K$ enable in Fig. 3).

Fortunately, for most buck converters, the S_{H} transmission during the block period is not needed. To our best knowledge, the possible exception is the design that precisely controls

Fig. 4. (a) Schematic and (b) transient waveforms of the proposed level shifter.

Fig. 5. $I_{\text {NOISE }}$ conduction path (a) without and (b) with the protection diodes. Only show left-hand branch of the level shifter for simplicity. (c) $V_{2 \mathrm{~A}}$ waveforms within a $d v / d t$ sequence.
the $d v / d t$ value, such as in [18], where multiple S_{H} signals are transmitted during a $d v / d t$ sequence. However, the precise $d v / d t$ control schemes usually have stringent requirements on the delay of the transmission path. This makes the close-loop $d v / d t$ control between the FV and LV domains not acceptable. Therefore, a possible and reasonable alternate is to implement the closed-loop control in FV, without using the level shifter,

Fig. 6. A possible solution to control M_{H} during a $d v / d t$ sequence, compatible to the proposed scheme.
as shown in Fig. 6 [19], [20]. This removes the delay of the level shifter. Clearly, this scheme is fully compatible with the proposed level shifter.

D. Immunity to Negative $D v / D t$

A negative $d v / d t$ triggers a negative $I_{\text {NOISE }}$ that is conducted to V_{DDH} through the body diode of $M_{\mathrm{P} 1 \mathrm{~A}}$ and $M_{\mathrm{P} 1 \mathrm{~B}}$. Therefore, the $I_{\text {NOISE }}$ is not mirrored to the latch. That is why converters usually have a much higher tolerance to a negative $d v / d t$.

Fig. 7. Block diagram of the DUT.

Fig. 8. Post-layout simulation results when $d v / d t \approx 100 \mathrm{~V} / \mathrm{ns}$.

In fact, too large negative $d v / d t$ could cause reliability issue as well. With a very large negative $I_{\text {NOISE }}, V_{2 \mathrm{~A}}$ and $V_{2 \mathrm{~B}}$ are pulled higher to conduct more $I_{\text {NOISE }}$. This may overstress $D_{1 \mathrm{~A}}$ and $D_{1 \mathrm{~B}}$. Additional protection circuits should be added.

E. Implementations

Fig. 7 is the block diagram of the design under test (DUT). An asynchronous buck converter generates the $d v / d t$. The switching frequency is $500 \mathrm{KHz} . M_{\mathrm{H}}$ is the power switch, D_{1} is the asynchronous diode. The M_{H}, D_{1}, and bootstrap (BST) block are integrated. As widely used in buck converter, we integrate an on-chip input capacitor $C_{\text {IN }}$ to provide a low-impedance AC path from $V_{\text {IN }}$ to ground, filtering out the high-frequency glitches on V_{IN}. The value of C_{IN} implemented is 42 pF , occupying a silicon area of $0.112 \mathrm{~mm}^{2}$. We integrate the proposed level shifter $\left(L S_{\mathrm{A}}\right)$, and also a level shifter $\left(L S_{\mathrm{B}}\right)$ using the topology in [12], as a baseline design for comparison. V_{A} and V_{B} are their outputs, respectively. We observe the V_{A} and V_{B} after on-chip buffers. Only the $L S_{\mathrm{A}}$ is used to control M_{H}, in case the malfunction of $L S_{\mathrm{B}}$ under a high $d v / d t$.

Fig. 9. Testbench of the proposed level shifter under $d v / d t=5000 \mathrm{~V} / \mathrm{ns}$.

To measure the robustness of the level shifters under different $d v / d t$, we predesign two $d v / d t$ s.

To verify the $d v / d t$ immunity of the proposed scheme, it is desirable to design the DUT buck converter with a high $d v / d t$. However, the high $d v / d t$ design is challenging. From [21], the $d v / d t$ of a buck converter is:

$$
\begin{equation*}
d v / d t=\frac{g_{\mathrm{FS}}\left(V_{\mathrm{GS}}-V_{\mathrm{MP}}\right)}{C_{\mathrm{OSS} _\mathrm{HS}}+C_{\mathrm{OSS} _\mathrm{LS}}}, \tag{7}
\end{equation*}
$$

where g_{FS} is the transconductance of the $M_{\mathrm{H}}, V_{\mathrm{MP}}$ is the beginning voltage of the $\mathrm{MP}, C_{\text {OSS_HS }}$ and $C_{\text {OSS_LS }}$ are the output capacitances of M_{H} and D_{1}, and V_{GS} is the gate-source voltage of the M_{H} in the Miller Plateau calculated as:

$$
\begin{equation*}
\frac{d V_{\mathrm{GS}}}{d t}=\frac{V_{\mathrm{DR}}-V_{\mathrm{GS}}}{R_{\mathrm{G}} C_{\mathrm{ISS} _\mathrm{HS}}}-\frac{g_{\mathrm{FS}} C_{\mathrm{RSS}}}{C_{\mathrm{ISS}} \mathrm{HS}\left(V_{\mathrm{GS}}-V_{\mathrm{MP}}\right)} \tag{8}
\end{equation*}
$$

where R_{G} is the output resistance of the gate drive buffer $B U F_{\mathrm{H}}$, and $C_{\text {RSS_HS }}$ and $C_{\text {ISS_HS }}$ are the reverse transfer and input capacitance of M_{H}.

Equation (7) and (8) indicate that $d v / d t=0$ at the beginning of the MP, and increases to the maximum value after some time. Increasing the input voltage $V_{\text {IN }}$ may allow a larger $d v / d t$, such as in [15], by extending the time duration of the MP.

However, the DUT is designed with devices only sustaining $20-\mathrm{V} V_{\text {IN }}$ in this work. Therefore, we should increase $d v / d t$ by reducing $C_{\text {OSS_HS }}$ and $C_{\text {OSS_LS }}$ as indicated in (7). Hence, we use a Schottky diode D_{1} as the low-side switch, which has a smaller $C_{\text {OSS_LS }}$ than that of a high-voltage MOSFET that conducts the same current. Meanwhile, we choose a small M_{H} size to minimize the $C_{\text {OSS_HS }}$.

Finally, we control the slew rate of V_{GS} for the maximum $d v / d t$, by using a strong $B U F_{\mathrm{H}}$. However, even though we intentionally increase the $d v / d t$, the maximum value in post-layout simulation is only around $100 \mathrm{~V} / \mathrm{ns}$, with parasitics included.

IV. Simulation and Measurement Results

Fig. 8 shows the post-layout simulation results under the implemented $100 \mathrm{~V} / \mathrm{ns} d v / d t$, from DUT in Fig. 7. Under the protection of $D_{1 \mathrm{~A}}$ and $D_{1 \mathrm{~B}}$, the peak $V_{\mathrm{SG}, \mathrm{P} 1 \mathrm{~A}}$ is 4.18 V . Voltage $V_{\mathrm{OA}}-V_{\mathrm{X}}$ and $V_{\mathrm{OB}}-V_{\mathrm{X}}$ have small fluctuations. But the fluctuations do not cause a false output.

However, the $d v / d t$ from an implemented buck converter is not high enough to verify the claimed "almost full immunity" to positive $d v / d t$. Therefore, we use another testbench as

Fig. 10. Post-layout simulation results when $d v / d t=5000 \mathrm{~V} / \mathrm{ns}$.

Fig. 11. Post-layout simulation results of $V_{\mathrm{OA}}-V_{\mathrm{X}}$ and $V_{\mathrm{OB}}-V_{\mathrm{X}}$ under different PVT conditions when (a) $d v / d t \approx 100 \mathrm{~V} / \mathrm{ns}$ (TB is Fig. 7), and (b) $d v / d t=5000 \mathrm{~V} / \mathrm{ns}$ (TB is Fig. 9).
shown in Fig. 9. The level shifter input S_{H} is connected to a DC voltage, while the bootstrap capacitor is replaced by a DC voltage source V_{BST}. We use an ideal voltage pulse signal V_{X} with $5000-\mathrm{V} / \mathrm{ns}$ slew rate (rise to 20 V within 4 ps). Fig. 10 shows the post-layout simulation results. Like in the $100 \mathrm{~V} / \mathrm{ns}-d v / d t$ scenario, the output logics are correct under the $5000-\mathrm{V} / \mathrm{ns} d v / d t$, while the protection circuits clamp the peak $V_{\mathrm{SG}, \mathrm{P} 1 \mathrm{~A}}$ within the 5.5 V maximum V_{SG} voltage.

Fig. 11 verifies the proposed design under different PVT conditions, where the TT, SS, FF corners, $-40^{\circ} \mathrm{C}, 27^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$ temperatures, $10 \mathrm{~V}, 15 \mathrm{~V}$ and $20 \mathrm{~V} V_{\mathrm{IN}}$ are included. Fig. 11 (a) uses the testbench (TB) in Fig. 7, while Fig. 11 (b) uses the TB in Fig. 9. As observed in Fig. 11 (a), under a $100-\mathrm{V} / \mathrm{ns} d v / d t, V_{\mathrm{OA}}-V_{\mathrm{X}}$ decreases because of the V_{DDH} drop from the C_{BST} discharging. And $V_{\mathrm{OA}}-V_{\mathrm{X}}$ and $V_{\mathrm{OB}}-V_{\mathrm{X}}$ show ringings due to the parasitics included in DUT. Cleary, the $d v / d t$ does not malfunction the level shifter. From Fig. 11 (b), the level shifter outputs have around $500-\mathrm{mV}$ undershoot under

Fig. 12. Simulated delay of the proposed level shifter of rising edge input and falling edge input.

Fig. 13. Simulated energy consumption of the proposed level shifter.
the $5000-\mathrm{V} / \mathrm{ns} d v / d t$, as discussed in Fig. 4. But the level shifter output is functionally correct.

Fig. 12 shows the post-layout simulation results of the delay of the level shifter. Delay of both rising and falling edges are around 1 ns . The variation of the delay from 0 to 20 V V_{X} is small. Although we insert couples of switches to the signal propagation paths to block the $I_{\text {NOISE }}$ during the $d v / d t$ sequence, the delay only increases slightly, and is comparable to the conventional level shifters.

Fig. 13 shows the post-layout simulation results of energy consumption in one transition $\left(E_{\mathrm{T}}\right)$. Compared to conventional level shifters, the additional power loss of the proposed design mainly comes from DLY $_{1}$. This power loss is around 16% as shown in the power loss breakdown in Fig. 14, when $V_{\mathrm{IN}}=20 \mathrm{~V}$. Such power loss can be further reduced by using low-power delay chain design.

Fig. 15 (a) shows the post-layout simulation results of the delay between the start time of $d v / d t$ (t_{3} in Fig. 3), and the rising edges of $B L K$ ($t_{\mathrm{BLK}, \mathrm{RISE}}$), under different corners. As seen, in all corners simulated, the $B L K$ rising edge takes place at least 1 ns before t_{3}. Fig. 15 (b) shows the simulated $B L K$ pulse width, which covers the whole $d v / d t$ sequence without blocking $I_{\text {SIG }}$ too long. These verify the robustness of the BLK generator.

TABLE II
Comparison With Previous Works

	Year	Process $(\mu \mathrm{m})$	Area(mm^{2})	$V_{\text {IN }}(\mathrm{V})$	Delay(ns)	$E_{\mathrm{T}}(\mathrm{pJ})$	Sim. $d v / d t(\mathrm{~V} / \mathrm{ns})$	Meas. $d v / d t(\mathrm{~V} / \mathrm{ns})$
[1]	2015	0.5	N/A	40	2	160	40	N/A
[12]	2016	0.18	0.005	20	0.37	27.6	30	N/A
[2]	2018	0.18	0.00735	50	1.45	4.1	100	6
[22]	2018	0.5	N/A	80	1.618	N/A	50	N/A
[13]	2019	0.18	0.018	50	0.53	30.3	200	N/A
[3]	2021	0.18	0.0096	200	0.67	8.1	200	N/A
[4]	2023	0.5	0.051	50	1.26	27.3	200	56
This work (baseline)	2023	0.18	0.0045	20	1.02	105	8	<15
This work (proposed)			0.0094	20	1.17	133	>5000	67

$\begin{array}{ll}\text { - LV Pulse Generator } & \text { - HV MOSFETs (M M } 1 \text { \& } M_{\text {NIB }} \text {) } \\ \text { - FV BLK Generator }\end{array}$
Fig. 14. Power loss breakdown of the proposed level shifter.

Fig. 15. Post-layout simulation of $B L K$ signal timings under different corners: (a) delay between the $d v / d t$ sequence and the rising edge of $B L K$ ($\left.t_{\mathrm{BLK}, \mathrm{RISE}}\right)$, and (b) BLK pulse width.

We used a $0.18-\mu \mathrm{m}$ Bipolar-CMOS-DMOS(BCD) process to fabricate the chip, and the maximum input voltage of the DUT buck converter is 20 V . Fig. 16 shows the photo of the PCB, and the micrograph of the chip. We used chip-on-board (COB) packaging to connect the chip and PCB. The silicon area of $L S_{\mathrm{A}}$ and $L S_{\mathrm{B}}$ are around $9400 \mu \mathrm{~m}^{2}$ and $4500 \mu \mathrm{~m}^{2}$,

Fig. 16. (a) PCB photos, and (b) chip micrograph.
respectively. The additional area of $L S_{\mathrm{A}}$ comes from the BLK generator.

To capture the high frequency signals, we use an oscilloscope Keysight DSO-X 6004A (6GHz), an active differential probe Keysight 1134A (7 GHz) and an attenuator Keysight 2880A (20dB). They can detect signal change in several hundreds of picoseconds.

Fig. 17 shows the measured waveforms of the buck converters with the proposed and baseline level shifter. We calculate the $d v / d t$ value from the V_{X} waveform, using the calculator of the oscilloscope. The achieved maximum $d v / d t$ is $67 \mathrm{~V} / \mathrm{ns}$, lower than the simulated result. As observed, the proposed level shifter generates the correct output when the $d v / d t$ is both $67 \mathrm{~V} / \mathrm{ns}$ and $15 \mathrm{~V} / \mathrm{ns}$. By contrast, the baseline circuit outputs incorrectly even when $d v / d t=15 \mathrm{~V} / \mathrm{ns}$. We observe ringing on V_{A} and V_{B} within the $d v / d t$ sequence. This stems from the resonance of V_{A} (or V_{B}) output parasitic inductance and the C_{BST}. But we tell that the $L S_{\mathrm{A}}$ output is correct, otherwise the incorrect V_{X} flipping should be observed.

Table II compares the proposed design with previous works and the baseline design. With a comparable silicon area, power consumption, and propagation delay, the proposed design achieves both the highest simulated and measured immunity to positive $d v / d t$. The proposed $I_{\text {NOISE }}$ blocking scheme should achieve an even higher measured $d v / d t$ if we implement the converter with a high-voltage process.

Fig. 17. Measured steady-state waveforms (a) with a $15 \mathrm{~V} / \mathrm{ns}$, and (b) a $67 \mathrm{~V} / \mathrm{ns} d v / d t$.

V. Conclusion

This article presented a PTAC-based level shifter that blocked the common-mode noise current during the positive $d v / d t$ sequence. This achieved an almost full immunity to positive $d v / d t$, with the maximum $d v / d t$ determined by how well the diodes can protect the transistors from overstressing. This scheme is compatible with a buck converter. The simulation results confirmed at least an immunity to $5000-\mathrm{V} / \mathrm{ns} d v / d t$, while the silicon results exhibited $67 \mathrm{~V} / \mathrm{ns}$.

REFERENCES

[1] Z. Liu, L. Cong, and H. Lee, "Design of on-chip gate drivers with power-efficient high-speed level shifting and dynamic timing control for high-voltage synchronous switching power converters," IEEE J. SolidState Circuits, vol. 50, no. 6, pp. 1463-1477, Jun. 2015.
[2] D. Lutz, A. Seidel, and B. Wicht, "A $50 \mathrm{~V}, 1.45 \mathrm{~ns}, 4.1 \mathrm{pJ}$ highspeed low-power level shifter for high-voltage DCDC converters," in Proc. IEEE 44th Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2018, pp. 126-129.
[3] V. H. Nguyen, N. Ly, A. H. Alameh, Y. Blaquière, and G. Cowan, "A versatile $200-\mathrm{V}$ capacitor-coupled level shifter for fully floating multi-MHz gate drivers," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 5, pp. 1625-1629, May 2021.
[4] Y. Qin et al., "A $50-\mathrm{V} 50-\mathrm{MHz}$ high-noise-immunity capacitive-coupled level shifter with digital noise blanker for GaN drivers," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 5, pp. 2215-2227, May 2023.
[5] J. Wittmann, T. Rosahl, and B. Wicht, "A 50 V high-speed level shifter with high dv/dt immunity for multi-MHz DCDC converters," in Proc. IEEE 40th Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2014, pp. 151-154.
[6] Y. Moghe, T. Lehmann, and T. Piessens, "Nanosecond delay floating high voltage level shifters in a $0.35 \mu \mathrm{~m}$ HV-CMOS technology," IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 485-497, Feb. 2011.
[7] B. Yuan, J. Ying, W. T. Ng, X.-Q. Lai, and L.-F. Zhang, "A high-voltage DC-DC buck converter with dynamic level shifter for bootstrapped highside gate driver and diode emulator," IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7295-7304, Jul. 2020.
[8] X. Ke, J. Sankman, Y. Chen, L. He, and D. B. Ma, "A tri-slope gate driving GaN DC-DC converter with spurious noise compression and ringing suppression for automotive applications," IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 247-260, Jan. 2018.
[9] X. Ke, D. Yan, J. Sankman, M. K. Song, and D. B. Ma, "A 3-to-40-V automotive-use GaN driver with active bootstrap balancing and $V_{S W}$ dual-edge dead-time modulation techniques," IEEE J. Solid-State Circuits, vol. 56, no. 2, pp. 521-530, Feb. 2021.
[10] B.-D. Choi, "Enhancement of current driving capability in data driver ICs for plasma display panels," IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 992-997, Aug. 2009.
[11] D. Larsen, P. L. Muntal, I. H. H. Jørgensen, and E. Bruun, "Highvoltage pulse-triggered SR latch level-shifter design considerations," in Proc. NORCHIP, Oct. 2014, pp. 1-6.
[12] D. Liu, S. J. Hollis, H. C. P. Dymond, N. McNeill, and B. H. Stark, "Design of $370-\mathrm{ps}$ delay floating-voltage level shifters with $30-\mathrm{V} / \mathrm{ns}$ power supply slew tolerance," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 7, pp. 688-692, Jul. 2016.
[13] D. Liu, S. J. Hollis, and B. H. Stark, "A new design technique for sub-nanosecond delay and $200 \mathrm{~V} /$ ns power supply slew-tolerant floating voltage level shifters for GaN SMPS," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 3, pp. 1280-1290, Mar. 2019.
[14] J. Zhu et al., "Noise immunity and its temperature characteristics study of the capacitive-loaded level shift circuit for high voltage gate drive IC," IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3027-3034, Apr. 2018.
[15] J. Zhu et al., "Study and implementation of 600-V high-voltage gate driver IC with the common-mode dual-interlock technique for GaN devices," IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1506-1514, Feb. 2021
[16] Y. Li, B. L. Dobbins, and J. T. Stauth, "A decentralized daisy-chaincontrolled switched-capacitor driver for microrobotic actuators with 10 power-reduction factor and over 300 V drive voltage," in IEEE Int. SolidState Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 474-476.
[17] D. Luo, Y. Gao, and P. K. T. Mok, "A GaN driver for a bi-directional buck/boost converter with three-level VGS protection and optimal-point tracking dead-time control," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 5, pp. 2212-2224, May 2022.
[18] J. Wang, D. Liu, H. C. P. Dymond, J. J. O. Dalton, and B. H. Stark, "Crosstalk suppression in a $650-\mathrm{V}$ GaN FET bridgeleg converter using $6.7-\mathrm{GHz}$ active gate driver," in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Oct. 2017, pp. 1955-1960.
[19] J. Zhu et al., "A 600 V GaN active gate driver with dynamic feedback delay compensation technique achieving 22.5% turn-on energy saving," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 462-464.
[20] S. Yu et al., "A 400-V half bridge gate driver for normally-off GaN HEMTs with effective dv/dt control and high dv/dt immunity," IEEE Trans. Ind. Electron., vol. 70, no. 1, pp. 741-751, Jan. 2023.
[21] E. A. Jones, Z. Zhang, and F. Wang, "Analysis of the dv/dt transient of enhancement-mode GaN FETs," in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2017, pp. 2692-2699.
[22] X. Ming et al., "A high-voltage half-bridge gate drive circuit for GaN devices with high-speed low-power and high-noise-immunity level shifter," in Proc. IEEE 30th Int. Symp. Power Semiconductor Devices ICs (ISPSD), May 2018, pp. 355-358.

Yunzhe Yang received the B.Eng. degree from Tianjin University, Tianjin, China, in 2020, and the M.Sc. degree from the University of Macau, Macau, China, in 2023. He is currently pursuing the Ph.D. degree in microelectronics with the Electronic Instrumentation Laboratory, Delft University of Technology, Delft, The Netherlands.
His research interests include thermoelectric energy harvesting, new topology of DC/DC converters, and GaN driving techniques.

Mo Huang (Senior Member, IEEE) received the B.Sc., M.Sc., and Ph.D. degrees in microelectronics and solid-state electronics from Sun Yat-sen University, Guangzhou, China, in 2005, 2008, and 2014, respectively.
From 2008 to 2014, he was an IC Design Engineer and the Project Manager with Rising Microelectronic Ltd., Guangzhou. From 2015 to 2016, he was a Post-Doctoral Fellow with the State Key Laboratory of Analog and Mixed-Signal VLSI (AMSV), University of Macau, Macau, China. From 2017 to 2019, he was with the School of Electronic and Information Engineering, South China University of Technology, Guangzhou, as an Associate Professor. He is currently an Assistant Professor with AMSV and the Institute of Microelectronics, University of Macau. His research interests include power management integrated circuits and systems.
Dr. Huang has served as a technical program committee member of multiple conferences. He was a recipient of the ISSCC 2017 Takuo Sugano Award for Outstanding Far-East Paper. He has been serving as an Associate Editor for Microelectronics Journal since 2021.

Sijun Du (Senior Member, IEEE) received the B.Eng. degree (Hons.) in electrical engineering from University Pierre and Marie Curie (UPMC), Paris, France, in 2011, the M.Sc. degree (Hons.) in electrical and electronics engineering from Imperial College, London, U.K., in 2012, and the Ph.D. degree in electrical engineering from the University of Cambridge, Cambridge, U.K., in January 2018.
He was with Laboratoire d'Informatique de Paris 6 (LIP6), UPMC, and then he was a Digital IC Engineer in Shanghai, China, from 2012 to 2014. He was a Summer Engineer Intern with Qualcomm Technology Inc., San Diego, CA, USA, in 2016. He was a Visiting Scholar with the Department of Microelectronics, Fudan University, Shanghai, in 2018. He was a Post-Doctoral Researcher with the Berkeley Wireless Research Center (BWRC), Department of Electrical Engineering and Computer Sciences (EECS), University of California at Berkeley, Berkeley, CA, USA, from 2018 to 2020. In 2020, he joined the Department of Microelectronics, Delft University of Technology (TU Delft), Delft, The Netherlands, where he is currently an Assistant Professor.

Rui P. Martins (Life Fellow, IEEE) received the Ph.D. degree in electrical engineering and computers from the Department of Electrical and Computer Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal, in 1992.
He has been with the Department of Electrical and Computer Engineering, Instituto Superior Técnico, University of Lisbon, since October 1980, where he is currently a Full Professor. Since 1992, he has been on leave with the University of Lisbon and with the Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China, where he has been a Chair-Professor since August 2013. Since July 2010, he has been an Academician with the Lisbon Academy of Sciences, Lisbon. He was the Founding Director of the State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, from 2011 to 2022, where he is also the Director of the Institute of Microelectronics. He has authored or coauthored more than 900 publications, including ten books, 12 book chapters, 50 patents, more than 300 articles in scientific journals, and more than 400 in conference proceedings. His research interests include analog and mixed-signal VLSI design.
Prof. Martins received the Author Recognition Award at the 70 years of ISSCC in 2023 as a Top Contributor with more than 50 papers and three Medals from Macau Government in 1999, 2001, and 2021.

Yan Lu (Senior Member, IEEE) received the Ph.D. degree in electronic and computer engineering from The Hong Kong University of Science and Technology (HKUST), Hong Kong, China, in 2013.
In 2014, he joined the State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China, where he is currently an Associate Professor. He has authored/coauthored more than 150 peer-reviewed technical articles and two books. His research interests include wireless power transfer circuits and systems, high-density integrated power converters, and voltage regulators.
Dr. Lu is serving as a TPC Member for ISSCC and CICC. He was served as an IEEE SSCS Distinguished Lecturer (2022-2023). He was a recipient/corecipient of the NSFC Excellent Young Scientist Fund (Hong Kong-Macau) in 2021, the Macao Science and Technology Award Second Prizes in 2018 and 2020, the IEEE CAS Society Outstanding Young Author Award in 2017, the ISSCC 2017 Takuo Sugano Award for Outstanding Far-East Paper, and the IEEE Solid-State Circuits Society Pre-Doctoral Achievement Award (2013-2014). He has served as a Guest Editor for the IEEE Journal of Solid-State Circuits (JSSC) in 2022 and 2023, IEEE Transactions on Circuits and Systems-I: Regular Papers in 2019, and the ieEE Transactions on Circuits and Systems-II: Express Briefs from 2018 to 2019. He has been serving as a Young Editor for the Journal of Semiconductors since 2021.

[^0]: Manuscript received 12 April 2023; revised 22 July 2023; accepted 15 August 2023. Date of publication 31 August 2023; date of current version 26 October 2023. This work was supported in part by the Natural Science Foundation of China under Grant 61974046; in part by the Science and Technology Development Fund, Macau, under Grant 0041/2022/A1 and Grant SKL-AMSV(UM)-2023-2025; in part by the Research Plan of Shenzhen, Hongkong, Macau, under Grant SGDX20210823103805040; and in part by the Research Committee of University of Macau under Grant MYRG2020-00117-IME and Grant MYRG2022-00004-IME. This article was recommended by Associate Editor A. Shrivastava. (Corresponding author: Mo Huang.)
 Yunzhe Yang was with the State Key Laboratory of Analog and MixedSignal VLSI, the Department of Electrical and Computer Engineering (ECE), the Faculty of Science and Technology (FST), and the Institute of Microelectronics, University of Macau, Macau, China. He is now with the Department of Microelectronics, Delft University of Technology, 2628 CD Delft, Netherlands.
 Mo Huang and Yan Lu are with the State Key Laboratory of Analog and Mixed-Signal VLSI, the Department of Electrical and Computer Engineering (ECE), the Faculty of Science and Technology (FST), and the Institute of Microelectronics, University of Macau, Macau, China (e-mail: mohuang@um.edu.mo).
 Sijun Du is with the Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands.
 Rui P. Martins is with the State Key Laboratory of Analog and MixedSignal VLSI, the Department of Electrical and Computer Engineering (ECE), the Faculty of Science and Technology (FST), and the Institute of Microelectronics, University of Macau, Macau, China, on leave from Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.
 Color versions of one or more figures in this article are available at https://doi.org/10.1109/TCSI.2023.3307869.
 Digital Object Identifier 10.1109/TCSI.2023.3307869

