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Survey on Architectural Attacks: A Unified Classification
and Attack Model
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of Technology, The Netherlands

According to the World Economic Forum, cyberattacks are considered as one of the most important sources
of risk to companies and institutions worldwide. Attacks can target the network, software, and/or hardware.
Over the years, much knowledge has been developed to understand and mitigate cyberattacks. However, new
threats have appeared in recent years regarding software attacks that exploit hardware vulnerabilities. This
article defines these attacks as architectural attacks. Today, both industry and academia have only limited
comprehension of architectural attacks, which represents a critical issue for the design of future systems.
To this end, this work proposes a new taxonomy, a new attack model, and a complete survey of existing
architectural attacks. As a result, it provides the tools to understand architectural attacks in more depth and
to start building improved designs and protection mechanisms.

CCS Concepts: • General and reference→ Surveys and overviews; • Security and privacy→ Security

in hardware; • Security in hardware→ Hardware attacks;

Additional Key Words and Phrases: Architectural attacks, IP attacks, functionality attacks, data attacks, attack
model

ACM Reference format:

Tara Ghasempouri, Jaan Raik, Cezar Reinbrecht, Said Hamdioui, and Mottaqiallah Taouil. 2023. Survey on
Architectural Attacks: A Unified Classification and Attack Model. ACM Comput. Surv. 56, 2, Article 42 (Sep-
tember 2023), 32 pages.
https://doi.org/10.1145/3604803

1 INTRODUCTION

The importance of cybersecurity grows every year. Future projections foresee a total market
growth from 155.83 billion US dollars in 2022 to 376.32 billion US dollars by 2029 [1]. The main
reason is the deployment of new technologies like the Internet of Things (IoT) and 5G communi-
cations. These technologies significantly increase the number of devices and their connectivity [2],
creating new opportunities for cyberattacks.

There are many types of cyberattacks [3]. They can be organized based on the target system
(network, software, or hardware) [4]. Attacks can also be classified based on the attack vector
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(i.e., the actor responsible for performing the attack), which may be software (logical) or hard-
ware (physical) [5]. Combining both target and vector reveals the main types of threats present in
the cyberattack field. For example, a virus is a software attack that targets another piece of soft-
ware. A distributed denial of service (DDoS) [6] is a software attack that targets the network.
Furthermore, a fault injection attack [7] is a hardware attack that targets the hardware. Most of
the presented examples have been known in academia and industry for many years, where ma-
ture protection mechanisms already exist. However, in recent years, new attacks where software
attacks target hardware have rapidly emerged. This new attack segment is defined as architec-

tural attacks (ArchA). These attacks can compromise the entire system by exploiting a hardware
vulnerability while being operated by software. As software, they can be executed remotely. In ad-
dition, the continuous increase in architectural complexity and connectivity in current and future
chips shows a clear trend that architectural attacks will increase. Therefore, there is an urgent
need to understand how they behave, what they have in common, and how they work, to build
intelligent and efficient countermeasures.

There are two main steps toward the comprehension of architectural attacks (ArchA). The
first step is to define an appropriate taxonomy. A taxonomy such as this can reveal the key
characteristics of each attack type. Currently, there are proposed classifications for only a subset
of ArchA. Cache-based attacks are the most studied group of attacks, with many proposed clas-
sifications [8–10]. More recently, transient execution attacks have gained popularity, and some
classifications have also been proposed [11]. Other schemes have also been proposed to classify
software attacks that exploit hardware based on their level of sharing in the system [12, 13].
However, no scheme has yet successfully assembled all ArchA into a single taxonomy.

Furthermore, the attacks are categorized based on three metrics, i.e., what, where, and how. The
nature of an attack is generally determined by the target components. Hence, it should be clear
what the aim of the attack is. Is the aim to steal data, to modify the functionality of the system,
or for another purpose? This is the reason for identifying of metric “what.” On the other hand,
if the target components are hardware, the description should clearly categorize which elements
of the hardware are targeted by the attack. This is why we introduced the metric “where.” An
understanding of this is essential for analyzing an attack. Last but not least, for better identification
of the attack, how it is executed should be determined. Is the attack performed by manipulating
the victim, injecting false data, or by observing the behavior of the victim? Hence, we determined
the metric “How.” In this taxonomy, all the above questions are answered, and a new and unified
classification is proposed.

The second step required to understand ArchA relies on having a representative attack model.
An attack model is a formal description that organizes any attack as a sequence of generic actions.
Consequently, such models define the patterns inside each attack, revealing its backbone. In a
way similar to the taxonomy problem, most attack models describe only cache attacks [14, 15].
Other works have tried to describe how attacks behave, but they lack the required formalism to
be considered as an attack model [16–18]. Therefore, it is clear that current taxonomies and attack
models cannot organize and describe architectural attacks because they can only refer to a subset of
attacks. This article proposes a new taxonomy and attack model to organize and describe ArchA.
As a result, a survey of existing attacks can be presented, showing how each one fits into our
classifications and modeling. Hence, the main contributions of this research are the following:

— Proposal of a new taxonomy for architectural attacks using three metrics: what, where, and
how.

— Proposal of a new attack model for architectural attacks that contains five steps: Setup,
Trigger, Operate, Retrieve, and Evaluate.
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Fig. 1. Steps of Kitchenham and Charter’s methodology.

— A survey of existing architectural attacks, framing them into the proposed classification
and model.

The remainder of the article is organized as follows. Section 2 systematically provides a literature
review. Section 3 summarizes related works that address proposed taxonomies and attack
models. Section 4 describes the proposed attack model. Section 5 introduces the proposed
taxonomy. Then, a survey of existing attacks is presented in three sections: Section 6 regarding
IP attacks, Section 7 regarding Functionality attacks, and Section 8 regarding Data attacks.
Section 9 provides a discussion of prospective developments, and Section 10 concludes the
article.

2 RESEARCH METHODOLOGY

The literature covers a wide range of attacks that can compromise an entire system by exploiting
a hardware component while being operated by software; i.e., architectural attacks (ArchA. The
methodology used is based on Kitchenham and Charter’s methodology [19], shown in Figure 1. The
actions in each step of Kitchenham and Charter’s methodology are described below. Step 1: Identify

research questions: The objective of this survey is set to answer research questions concerning
ArchA, as follows:

— RQ1: What is a general taxonomy for ArchA that can represent the main features of each
type of attack? This question is essential because no scheme has successfully put all ArchA
together in the same taxonomy.

— RQ2: What is a formal description to model ArchA? This question is important because
describing attack models in a formal sequence of actions can clearly represent the patterns
inside the attacks.

Step 2: Set Search Terms and Exclusion Criteria: The second stage of conducting this review is
to identify the search terms such as keywords used in searching and collecting relevant papers
to answer the research questions. The keywords below with the following strategy were used.
The search began with generic keywords; i.e., “attacks,” “hardware,” and “software,”, because the
focus of this survey was on attacks that target hardware by manipulating software. Afterwards,
detailed keywords such as “processors,” “cache memor,” and communication channels were added.
Exclusion criteria were as follows:

ACM Computing Surveys, Vol. 56, No. 2, Article 42. Publication date: September 2023.
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Table 1. Search Result Count of Respective Keyword Combinations

Search keywords Number of articles

“hardware,” “software,” “attack” 2,065
“hardware,” “attack,” “processor” 521
“hardware,” “attack,” “cache memory” 105
“hardware,” “attack,” “communication” 1,605

— Non-peer-reviewed sources such as online articles.
— Attack mitigation papers that do not incorporate the attack mechanism itself.
— Articles that discuss attacks only at software level.

Step 3: Specify Resources and Year Range: The following digital libraries were used to obtain a
wide range of related articles: IEEE Explorer, Google Scholar, ACM Digital Library, Elsevier, and
Springer. All articles between 2011 and 2021 were considered. Step 4: Perform Search: Initially, a
total of 2,065 papers were found, based on the initial search terms mentioned earlier. The papers
were then filtered to more focused categories by a procedure to be described next. Step 5: Identify

selection/inclusion criteria: Analyzing the articles revealed that these attacks are mainly performed
on three domains: “Processor,” “Cache memory,” and “Communication channel.” Hence, the
search space was narrowed by the corresponding keywords. Step 6: Categorize all papers: Table 1
represents the number of articles for each search, based on the keywords defined in previous steps.
Step 7: Apply selection and filtration: The selection and filtration process are explained below.

— Remove duplicate or multiple versions of the same articles.
— Apply inclusion and exclusion criteria to avoid any irrelevant papers.
— Remove review papers from the collected papers.
— Apply quality assessment rules to include qualified papers (quality was determined based

on the parameters mentioned in the next step) that best address the research questions.
— Look for additional related papers using the reference lists of the collected papers and repeat

the same process again.

Step 8: Extract technical metrics/parameters: The list of papers to be considered in this review
was identified by applying parameters such as quality assessment rules (QARs). The QARs
are important to ensure proper evaluation of research paper quality. Therefore, 10 QARs were
specified, each worth 1 mark out of 10. The score on each QAR could be 1 or 0, where 1 indicates
“answered,” whereas 0 indicates “not answered.” The selected article should obtain a score of 10
out of 10 to be selected; otherwise, it is excluded. The QARs are listed below:

— QAR1: Are the research objectives identified clearly?
— QAR2: Are the techniques of the implementation well defined and deliberated?
— QAR3: Is the platform (in this case, processor, cache memory, and communication protocol)

that the ArchA will target clearly defined?
— QAR4: Does the paper include practical experiments regarding the proposed technique?
— QAR5: Are the experiments well designed and justified?
— QAR6: Is the proposed algorithm applied on a hardware component?
— QAR7: Is the method effectiveness reported?
— QAR8: Is the proposed ArchA model design compared to others?
— QAR9: Are the methods used to analyze the results appropriate?
— QAR10: Does the overall study contribute significantly to the area of research?

Overall, after Steps 7 and 8, 98 useful papers were identified. Step 9: Process extracted data: In
this step, the objective is to analyze the final list of papers to extract the needed information;
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Fig. 2. Classifications of architectural attacks with metrics.

i.e., provide answers to the given research questions. First, general details are extracted from
each paper, such as the paper number, paper title, publication year, and publication type. Then,
more specific information is sought, such as the algorithm model, the category of hardware
component, and whether the paper addresses cache memory, processor, communication channel,
or a combination. Finally, any details directly related to the research questions are pursued. Table 1
shows the number of collected papers after processing all steps of Kitchenham and Charter’s
methodology in the column “final number of collected papers,” which is equal to 95.

3 RELATED WORK

This section presents related work on classifying and modeling of architectural attacks (ArchA).
To the best of the author’s knowledge, only five classifications exist for architectural attacks, all of
which are studied and analyzed in this section. It is noteworthy that each classification focuses on
a different characteristic to organize the attacks. The existing classifications are presented below,
followed by the existing attack models.

3.1 Classifications of Architectural Attacks

Five classifications have been proposed for architectural attacks. Each proposal focuses on a differ-
ent characteristic to organize the attack. Figure 2 shows each classification and its metrics, followed
by a description and an analysis of its benefits and limitations.

3.1.1 Leakage-based Classification. Based on the leakage source, the authors in [8] classified ar-
chitectural attacks on caches into three types: (i) timing, (ii) access, and (iii) trace. In timing-driven
attacks, the attacker performs an attack based on different temporal responses of components or
operations. In access-driven attacks, the attacker performs an attack based on user behavior of
components or functions. Finally, in trace-driven attacks, the attacker performs an attack based
on high-level monitoring information from internal system monitors or some specialized external
instruments (e.g., probing the power consumption).

However, novel attack techniques have emerged that do not exploit side-channel attacks. Hence,
the above classification is not complete because it considers only information leakage. For example,
Rowhammer attacks only inject faults in main memory to gain privilege or alter system function-
ality. Consequently, this case has no leakage behavior.

3.1.2 Platform-based Classification. In this classification scheme, attacks are classified based on
the hardware platform [13]. According to the authors, there are four possible platforms: (i) single-
core, (ii) multi-core, (iii) cross-VM, and (iv) embedded/mobile. The single-core platform represents

ACM Computing Surveys, Vol. 56, No. 2, Article 42. Publication date: September 2023.
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the most popular platform used in desktop/laptop computers. Attacks in this category require
malicious processes to run in parallel with victim processes because there is only a single core
in the system. Such a malicious process is also defined as a spy process. The multi-core class
includes desktop/laptop computers and more complex devices like servers. In this category, it is
possible to attack using a spy process that runs on a different core from the victim or by forcing the
attacker’s application to run in a separate core. The third type, i.e., cross-VM, refers to virtualized
systems. In a virtualized environment, the attacker and victim processes run in different virtual

machines (VMs). Hence, the attack must interact with the other VM indirectly, which defines the
term cross-VM. Even if the actual hardware is not disclosed in these systems, it is still possible to
attack them by exploiting the vulnerabilities of VM implementations. The last category refers to
embedded or mobile computer systems. These systems typically have limited performance because
they are constrained devices. In this scenario, the operating system can be lightweight, or even
absent. At the same time, the software typically has fewer restrictions on accessing the hardware
configuration and low-level information.

Although the platform-based classification is interesting, it clarifies that several existing attacks
might fit into two or more categories when the attacker can apply a specific attack. For example, the
pure timing attack of Bernstein can be mounted on single-core, multi-core, and embedded/mobile
platforms. Therefore, the classification is not helpful in understanding the basic principles of these
attacks.

3.1.3 Cause-and-Effect Classification. The Cause-and-Effect classification proposed by [10] is
dedicated to cache attacks. The effect refers to cache accesses, which can be cache misses or cache
hits. The cause specifies which process made the effect happen; this is external when performed
by the attacker process and internal when performed by the victim process. Consequently, this
classification has four categories: (i) Miss-External, (ii) Hit-External, (iii) Miss-Internal, and (iv)
Hit-Internal. In the Miss-External class, attacks exploit cache misses caused by the victim process
that are indirectly induced by the attacker. For example, in the Prime+Probe attack, the attacker
accesses the cache before and after the victim’s computation. Hence, the cache misses reveal the
locations used by the victim. Note that the cache misses only occurred because the attacker had
already accessed these locations. Conversely, Hit-External exploits cache hits when the attacker
accesses the cache. The same idea is applied for Miss-Internal and Hit-Internal, with the difference
that the victim triggers the miss or hit behavior. Pure timing attacks typically fall into the internal
classes. The attacker only collects the final time of the operations, i.e., the variation in timing is a
direct consequence of misses or hits during the victim’s access.

This classification suits cache attacks, but cannot be directly applied to general architectural
attacks such as attacks related to processing or communication. Note that this classification can
be updated by encompassing different architectural attacks by changing the options related to the
effect.

3.1.4 System State and Method Classification. The System State and Method classification is
proposed in [9] and uses two metrics to classify attacks. The first one is the system state before the
victim’s operation. The system state refers to the cache’s content, which can be empty, forged, or
loaded. Empty state means that the cache has not been initialized; the initial state does not matter
for the attack. The forged state refers to a cache initialized by the attacker, where the attacker
writes specific content to manipulate cache behavior. The loaded state refers to an initialized cache
with some (or all) contents from the victim already loaded. As a result, the attacker can quickly
identify changes in the cache. The second metric specifies the method used to collect the cache
leakage. In this case, the same metrics as the leakage-based classification are used, namely, timing,
access, and trace.
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Fig. 3. State-of-the-art attack models and their phases.

This classification also specifically addresses cache attacks. As discussed in the Introduction, Ar-
chA can target any system component, including processing elements and communication struc-
tures. Hence, this classification is also limited for the present purposes.

3.1.5 Process Sharing and Method Classification. The survey in [12] proposed a classification
based on resource sharing and degree of concurrency. Sharing of resources can occur on different
levels, such as thread, core, package, or system level. Consequently, the classes related to sharing
are thread-shared, core-shared, package-shared, non-uniform memory access (NUMA)-shared,
and system-shared. With respect to the degree of concurrency, three categories are applicable:
full concurrency (multi-core), time-sliced execution on a single core, and hardware threading
(SMT). Note that this classification focuses on the relation between different processes running
on a complex system and how vulnerabilities arise from such concurrent and sharing behavior.
In [12], only cache attacks have been classified under this scheme. However, this classification
could embed many other logical side-channel attacks. Many attacks use a spy process (a malicious
process sharing the same core) or spy node (a malicious core sharing the system).

Although this classification can organize most logical SCAs, it does not help understand the
main aspects of the attacks. It only defines the system configuration where attacks take place.

All in all, as discussed above, there are existing classifications only for subsets of ArchA. For
instance, cache-based attacks are the most studied group of attacks and have many proposed clas-
sifications. Transient execution attacks have also been studied and classified by many authors.
Other schemes have also been proposed to classify software attacks that exploit hardware based
on their level of sharing in the system. However, no scheme has yet successfully put together all
ArchA into the same taxonomy. Therefore, the authors believe that a unified taxonomy covering
all attacks instead of just a subset is essential.

4 ATTACK MODELS

This section explains state-of-the-art ArchA models. They all divide an attack into phases; i.e., a
series of steps that describe an attack. Understanding and comparing the models is essential be-
cause different authors have different views of the same attack; this results in models with different
numbers of phases. Even when authors agree on the number of phases, the phase definitions can
be different. Figure 3 shows the attack models. It is apparent that the models use different numbers
and different definitions of phases. The following subsection describes the eight attack models.

ACM Computing Surveys, Vol. 56, No. 2, Article 42. Publication date: September 2023.
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4.1 Deng

The approach in [14] is related to side-channel attacks on caches. In this work, several well-known
attacks such as Flush+Reload, Evict+Time, Prime+Probe, Flush+Flush, Evict+Reload, Bernstein,
and Cache Collisions are analyzed. The approach divides these attacks into three steps: (i) during
the first phase, a memory access sets a single cache block to some known initial state; (ii) during
the second phase, some action like fetch can be done by the victim or attacker; (iii) during the third
phase, a final action is taken to derive information by observing timing. This takes a short time if
there is a hit and a longer time if there is a miss.

4.2 Yarom

The work in [15] analyzed the Flush+Reload attack on caches, which was found to be composed
of three phases: (i) during the first phase, the monitored memory line is flushed from the cache
hierarchy; (ii) the attacker then waits to allow the victim time to access the memory line be-
fore the third phase; (iii) in the third phase, the attacker reloads the memory line, measuring
the time to load it. If, during the wait phase, the victim accesses the memory line, the line will
be available in the cache, and the reload operation will take a short time. If, on the other hand, the
victim has not accessed the memory line, the line will need to be brought in from memory, and
the reload will take significantly longer.

4.3 Osvik

The approach in [18] divides Prime+Probe attacks into three steps: (i) in Prime, the attacker fills
(parts of) the cache with data; (ii) the attacker triggers a sensitive operation (e.g., encryption); and
(iii) in Probe, the attacker reads the data written in the Prime step and evaluates which addresses
were used by the victim based on observation of cache misses.

4.4 Gruss

[20] analyzed the Flush+Flush attack in caches with hierarchy. This approach decomposed the
attack into three phases: (i) in the first step, the attacker accesses the memory location that is
cached; (ii) in the second phase, the victim only flushes the shared line. Because the line is present
in the last-level cache by inclusiveness, it is flushed from this level; (iii) a bit also indicates that
the line is present in the L1 cache, and therefore must also be flushed from this level. To transmit
a 0, the attacker stays idle. The victim flushes the line (step 1). Because the line is not present in
the last-level cache, it is also not present in the lower levels, which results in faster execution of
the clflush instruction. Hence, only the attacker process performs memory accesses, whereas the
receiver only flushes cache lines. To send acknowledgment bytes, the victim performs memory
accesses, and the attacker runs a Flush+Flush attack.

4.5 Kocher

Spectre, an attack that can be performed on the CPU as well as on caches, is divided into three
steps in [17] as follows: (i) mounting, where the attacker introduces a sequence of instructions into
the process address space; (ii) trick, where the attacker induces the CPU to perform a transient
execution; and (iii) retrieve, where the attacker gathers information through the covert channel.

4.6 Bernstein

Although the Bernstein attack is divided into three phases by the approach in [14], it is composed
of two parts in [21]: (i) a learning phase, where statistical reference models of cache behavior are
developed; and (ii) an attack phase, where multiple encryptions are collected and correlated with
the reference models.
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4.7 Bonneau

In [22], the Spectre attack in AES is divided into two phases: (i) manipulation, in which the attacker
manipulates the input message of the encryption algorithm to force collisions of cache addresses
(cache hits) when the key hypothesis is correct; and (ii) observation, in which the attacker observes
whether there is a reduction in the required number of traces to retrieve the key.

4.8 Canella

[16], on the other hand, divides Spectre and Meltdown into five phases: (i) preparation of a mi-
cro architecture; (ii) execution for a trigger instruction; (iii) encoding unauthorized data by tran-
sient instructions through a micro-architectural covert channel; (iv) the CPU retires the trigger
instruction and flushes the transient instructions; and (v) reconstructing the secret from the micro-
architectural state. As discussed, there is no general formal structure for modeling attack phases.
In some articles, authors split particular attacks into two phases, whereas in others, they split
them into three phases. A unified attack model that covers all ArchA is currently missing. This
implies that the underlying patterns that reveal the attack mechanisms are not well-defined and
understood.

To move beyond the state of the art, this article first proposes a new taxonomy for ArchA using
three metrics: what, where, and how. These metrics can cover all architectural attacks. Second,
this work propounds an innovative attack model that contains five steps: Setup, Trigger, Operate,
Retrieve, and Evaluate. In the following sections, these aspects are further presented in more detail.

5 PROPOSED TAXONOMY

Architectural attacks are software attacks that exploit any hardware vulnerability. Modern inte-
grated circuits like systems-on-chip or multi-processor systems-on-chip are complex components,
from hardware accelerators to memories and interfaces. Hence, architectural attacks encompass
a wide range of possibilities because an adversary might theoretically exploit any hardware
component. The literature contains several descriptions of software attacks targeting hardware
components. However, due to the widely varying nature of hardware components like memories,
processors, and accelerators, the attacks were organized into separate classifications. It was
observed in the previous section that memory attacks are classified in the cache attack category
and processor attacks in the transient execution category, whereas others might fall under more
generic concepts like side-channel attacks. To bring all architectural attacks together in the same
scheme, this paper proposes a novel taxonomy. As a result, the metrics and classification proposed
here provide a systematic way to analyze and evaluate such attacks. Our proposed taxonomy uses
three metrics as criteria:

— Target: What the attacker is looking for.
— Location: Where is the victim’s vulnerability.
— Method: How the attacker exploits the vulnerability.

Figure 4 presents the taxonomy as a hierarchical arrangement of the proposed metric criteria. In
addition, the figure shows where all attacks evaluated in this survey are located in the taxonomy.
In the following subsections, each criterion is described in more detail.

5.1 Target (What)

The attack goal is the main objective behind the attack. Three options cover all possibilities:

— IP: The attack looks for intellectual property information, such as implementation details of
a design or some specific software/application. Engineering information is valuable in the
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Fig. 4. Proposed architectural attack taxonomy.

global market because it makes it possible to avoid months of research and development and
reduces risks when building something new.

— Functionality: In this case, an attacker aims to modify temporarily or permanently
the functionality of a system. Some examples of functionality exploitation are bypass-
ing a security check, providing privilege escalation, and decreasing overall system
reliability.

— Data: When the goal is data, the attacker aims to steal or corrupt data inside a system. In
most cases, important information is encrypted. Hence, the first target of most data attacks
is to retrieve the secret key of the system.

5.2 Location (Where)

The location refers to where the vulnerability is. Because architectural attacks are software ex-
ploiting hardware, location criteria relate only to hardware components. Because different types
of components exist in hardware, these criteria are classified into three parts:

— Processing: Processing elements are processors, hardware accelerators, and co-processors.
Any element responsible for an operation or task in the system can be classified as
Processing.

— Memory: Memory relies on storage components. Some examples are cache memories, flash
memories, read-only memories (ROMs), and static and dynamic RAMs (SRAMs and
DRAMs).

— Communication: Communication components are responsible for interfacing with other
components. Internally, communication is provided by a bus system (e.g., AMBA AHB or
AMBA AXI) or even a network-on-chip (NoC). These components interface with internal
elements—Processing and Memory—and among each other. Moreover, there are communica-
tion components dedicated to external interfaces. Examples are Ethernet, UART serial, and
Bluetooth.
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5.3 Method (How)

These criteria focus on how the attacker triggers a specific vulnerability present in the hardware.
Three options are given:

— Injection: In this method, an attacker can force a trigger to exploit a certain vulnerability.
Fault attacks like Buffer Overflow use the injection method, where the adversary overwrites
part of memory to change the victim’s behavior.

— Manipulation: In this method, an attacker manipulates a component from the system to
trigger a vulnerability. This method is used when the attacker cannot create or force a trigger
to exploit a certain vulnerability. There are several reasons for this, but the main reason relies
on permission accesses.

— Observation: The observation method occurs when the vulnerability does not need a trigger.
In this case, the vulnerability is always present; i.e., the victim is always leaking information.
In this method, the attacker only needs to find a means to monitor the victim’s behavior and
process the leakage into meaningful data.

6 IP ATTACKS

IP attacks target extracting sensitive information related to an engineering process. Such attacks
aim to gain a technical advantage, whether to replicate, fake, or reuse a design. Examples of sensi-
tive technical information are the algorithm used, the division between software and hardware for
a certain task, or even non-disclosed functions inside the system. Therefore, this section focuses
on software attacks that can extract sensitive technical data, also known as intellectual property.
Figure 4 presents references for existing IP ArchA under the “Intellectual Property (IP) attack”
branch.

6.1 Node

This subsection presents attacks that aim to reveal design secrets from nodes like processors and
graphical processing units (GPUs). According to the taxonomy being discussed here, node at-
tacks are categorized into three main groups: injection (suffix -INJ), manipulation (suffix -MAN),
and observation (suffix -OBS). Next, each group is described in more detail.

Group IP-NODE-INJ: This group contains attacks that generally inject random inputs to force
the processor into abnormal conditions, revealing unexpected features or instructions. Later on,
the attacker monitors processor behavior to discover anomalies.

Attack Formula: The steps of the proposed attack formula can be described as follows:

S: In the setup phase, the attacker defines the main parameters to be explored in a node architec-
ture. Examples are instruction opcodes, microcode values, and special hardware parameters.

T: The attacker crafts new data based on the defined parameter to the attack and applies them
to the node architecture. This crafted information is from the specification and configures
an injection technique.

O: The node executes or tries to execute the input provided.
R: The output behavior of the node is observed, which can be an expected output value or just

different timing behavior.
E: In this phase, when the system does not crash and present a different behavior, the attacker

knows that a valid input was revealed. Next, he/she analyzes what function has been uncov-
ered by exploring the same parameter under different circumstances.

Attacks: In [23], the author presents a tool called Sandsifter. It audits ×86 processors for hidden
instructions and hardware bugs by systematically generating machine code to search through a
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processor’s instruction set and monitoring execution for anomalies. This attack injects random
inputs to force the processor into abnormal conditions. In [24], the attacker creates microcode up-
dates to two AMD processors (K8 and K10) and observes the output. The output is represented
by the register values and memory locations. The underlying idea is to generate distinct behav-
iors between the original and the patched macroinstruction execution. More precisely, the patch
contains a microcode instruction that constantly crashes on execution.

Group IP-NODE-MAN: This group refers to attacks that force specific behaviors to infer design-
related information about the node. Unlike the IP-NODE-INJ group, this group creates only ex-
pected and valid inputs. Hence, it falls into the manipulation category. The objective here is to
define a feature to observe and provide the input that maximizes its actuation.

Attack Formula: The steps of the proposed attack formula can be described as follows:

S: In the setup phase, the attacker defines which feature to highlight during the attack. Exam-
ples are schedule algorithms, privilege definitions, or task arbitration.

T: The attacker creates valid inputs that can highlight the target feature and apply it to the
node.

O: The node executes the provided input.
R: The execution of the task will reveal the strategy or algorithm behind the design. Multiple

attempts can be made to identify these differences.
E: In this phase, the attacker analyzes the outputs to infer what known algorithm matches the

observed result. Finally, the attacker understands important design-related information.

Attack: The last attack proposed in [25] runs specific benchmarks in the GPU to infer design-
related information. Each benchmark aims to emphasize a specific GPU characteristic, hence re-
vealing how it works. Because this attack runs expected programs, but carefully chooses those that
might reveal design secrets, this attack is classified into the manipulation category.

Group IP-NODE-OBS: This group contains attacks that mainly observe the system output when
regular input is provided. Unlike the IP-NODE-MAN group, this group does not create particular
inputs to manipulate the system to reveal more information. The attacks in this group focus on
running typical applications or simply accessing system components and observing their behavior,
output values, or timing.

Attack Formula: The steps of the proposed attack formula can be described as follows:

S: In the setup phase, the attacker defines which component to explore.
T: The attacker then creates many different inputs and applies them to the system. In this step,

the attacker can use random input generation, simple trial and error, or brute force (trying
all possibilities).

O: The node executes the provided input.
R: The execution of the task will reveal the strategy or algorithm behind the design. Multiple

attempts can be made to identify these differences.
E: In this phase, the attacker analyzes the outputs to infer what known algorithm matches with

the observed result. Finally, the attacker understands important design-related information.

Attack: In [26], the attacker aims to discover which special registers can trigger hidden ×86 in-
structions. The registers that can perform such operations are the global configuration registers,
known as MSR registers in the ×86 architecture. The first step in this attack performs a timing
analysis by accessing all available MSR registers to understand which one contains a unique be-
havior. Because most MSR registers trigger similar functions in the system, their access times are
also similar. Only different MSRs will have different access times.
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6.2 Memory

Existing attacks on memory design information fall only into the manipulation category, defined
here as group IP-MEM-MAN.

Group IP-MEM-MAN: The attacks in this group create specific programs to run in the system
and to collect running information to infer memory characteristics. Attacks in this group can
target cache memories and DRAMs. Most attacks target features like physical-to-logical address
mapping, cache line size, and replacement policies, as well as physical characteristics like access
latency.

Attack Formula: The steps of the proposed attack formula can be described as follows:

S: A set of algorithms is prepared to highlight the target characteristics.
T: The algorithm is run in the system.
O: The natural execution of the algorithm creates covert channels with different latencies or

different behavior (that can be observable).
R: Retrieve: Attackers access system monitors like high-performance counters or use their own

measurement means (e.g., a timer) to collect side-channel information.
E: The attackers process the obtained information to infer the feature value. The attack is re-

peated to guarantee that the findings are highly provable. Fine-tuning the set of algorithms
to optimize new runs is also possible.

Attacks: There are several research efforts that infer cache properties using measurement-based
analysis [27–29]. These solutions use the performance counters available in current platforms to
infer properties of the cache hierarchy. Recent works that infer DRAM properties [30–32] focus
on address mapping, like the virtual-to-physical memory allocation scheme, by first inferring the
mapping between virtual address bits and physical bank bits for the Intel Xeon processor using
latency-based analysis. Another example uses a latency-based analysis to identify channel, rank,
and bank bit mapping between virtual and physical addresses.

6.3 Communication

Only manipulation attacks have so far been proposed to perform reverse engineering on the com-
munication structure. This group, IP-COMM-MAN, is described below.

Group IP-COMM-MAN: This group refers to attacks that inject multiple packets to infer the
configuration used inside the communication system.

Attack Formula: The steps of the proposed attack formula can be described as follows:

S: The attacker requests the packets.
T: The system responds to the request and sends the packets to the network.
O: In this step, flooding is performed. This can be done by requesting too many packets, trig-

gering packets with wrong paths, triggering packets that intend to create a deadlock, or
triggering packets that cannot reach the target.

R: Flooding causes the victim to lack resources.
E: The availability of the victim’s resources is checked in this step. If there is a lack, this means

that the denial of service (DoS) attack has been performed successfully.

Attack: The attack presented in [33] uses an algorithm to uncover the details of the communica-
tion structure by simply manipulating packets. Figure 5 illustrates the steps of IP attacks. Clearly,
some attacks have steps in common. For instance, “IP-NODE-MAN” and “IP-NODE-OBS” have
similar Operate, Retrieve, and Evaluate steps. Obviously, this kind of analysis and revelation of
detailed information on attack structure can lead to building a better mitigation strategy. In the
next sections, the same analysis is reported for Functionality and Data attacks.
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Fig. 5. Attack phases of IP attacks and the associated groups.

7 FUNCTIONALITY ATTACKS

Depending on the target component, the attack behavior will differ, and therefore these behaviors
were identified as follows. Figure 4 represents existing attacks belonging to this attack type under
the “Functionality attack” category.

7.1 Node

Functionality attacks on processing elements aim to subvert the program’s control flow from its
normal course and to force programs to act in the manner that attackers wish. In the attacks
observed in the state of the art that focus on processing elements, three attack patterns were iden-
tified: buffer overflows, reuse of existing code, and speculative overflows. Each pattern is described
in the following paragraphs.

Group FUNC-NODE-INJ: The first group refers to the attack known as buffer overflow. Buffers
are memory storage regions that temporarily hold data while it is being transferred from one
location to another. A buffer overflow (or buffer overrun) occurs when the volume of data exceeds
the storage capacity of the memory buffer. As a result, the program that is attempting to write data
to the buffer overwrites adjacent memory locations. Attacks that exploit memory errors such as
buffer overflows constitute the largest class of attacks reported by organizations such as the CERT
Coordination Center [94] and pose a serious threat to computing infrastructure. In the literature,
various kinds of buffer overflow attacks ([35] and [34]) are described as follows:

(i) Buffer overflow that overwrites the return address.
(ii) Buffer overflow that overwrites the frame pointer.

(iii) Buffer overflow that overwrites the function pointer.
(iv) Buffer overflow that overwrites the dynamic linker tables.

However, the authors believe that these attacks can be identified in one main group because their
attack algorithms are almost the same and they differ only in the Trigger phase.

Attack Formula: The attack phases are as follows:

S: The attacker abusea inputs functions w.r.t. type or size; for instance, if the buffer size is set
to 500 characters, the attacker inserts 510 characters to overrun the buffer (stack).

T: The attacker then overwrites the sensitive area of code and points it to an exploit payload
to gain control over the program. This can cause the program to behave unpredictably and
generate incorrect results, memory access errors, or crashes. Note that this phase is the only
phase where the mentioned attacks slightly differ.
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O: This step redirects execution to another attacker’s code, giving privileges. For example, an
attacker can overwrite a pointer (an object that points to another area in memory) and point
it to an exploit payload to gain control over the program.

R: Attacker’s code execution
E: Checking privileges

Attacks: [35] and [34] exhaustively studied the various kinds of buffer overflow attacks. [36]
demonstrated security attacks that exploit unsafe functions to overflow stack buffers and methods
to detect and handle such attacks. The approach described in [38] argues that defenses such as
control-flow integrity (CFI) do not stop control-flow hijacking attacks, which occur by buffer
overflows (return address overwritten). It demonstrates a mitigation strategy for such a case. [42]
exploited different protection techniques for stack-based buffer overflows and consequently
presented four strategies to bypass these protections. [37] presented an address obfuscation
strategy to prevent these kinds of attacks. [43] studied different buffer overflow attacks and a
compile-time mitigation method for address randomization to stop attacks. [45] demonstrated a
code injection attack that resulted from a buffer overflow and a mitigation strategy by instruction

set randomization (ISR). [41] introduced a mitigation technique called SmashGuard, which
is a hardware solution to prevent manipulation by buffer overflow attack of function return
addresses. [40] provided a solution to detect code reuse attacks on ARM mobile devices. [44]
described buffer overflow attacks (Stack Smashing) in the UNIX operating system. PACMAN is
introduced in [100] that manipulates the ARM pointer authentication mechanism to hijack the
control flow and corrupt the memory. Finally, [39] introduced another mitigation technique called
StackGuard to prevent buffer-overflow attacks.

Group FUNC-NODE-MAN: This group consists of attacks that reuse existing code, also known
as return-oriented programming attacks or return-into-LIBC attacks. This type of attack is
used when a system mitigates the possibility of injecting code into memory to be executed.
The most widely used code injection protection method in operating systems is “W⊕X” [95],
which prevents writable data in memory from being executable at the same time. As a response,
attackers reuse existing code to perform valid actions on the system. The standard C library,
LIBC, is the most common target because it is placed near the kernel code and provides useful
functions like system calls. However, in principle, any available code, either from the program’s
text segment or from a library to which it links, could be used. Consequently, the attacker can
identify useful sequences in the code that, when put together, create the malicious functionality.
Each sequence can perform a specific function like addition of two registers, load constant, load
memory data, store, and so forth. Note that it is important that each code sequence ends with a
return call. The attacker then needs only to manipulate the stack to call each sequence (i.e., jump
to the address of the first instruction of the sequence) in a specific order to achieve the desired
functionality. Stack manipulation can use the buffer overflow attacks previously mentioned as
Group A.

Attack formula: In this group, the steps of the formula can be described as follows:

S: In the setup phase, the attacker dumps the memory content and identifies useful code se-
quences. Thereafter, the attacker builds a “program” ordering the sequence of addresses that
he must call.

T: Attackers manipulate a function call, which is typically performed through buffer overflow
attacks.

O: In this step, the processor executes the instructions of each sequence (i.e., valid code already
in the system).
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R: There are many exploitation methods for this attack because the attacker defines the algo-
rithm to be executed. In this case, the example of a privilege escalation of the attacker’s user
will be examined.

E: Verify the level of privilege in the system.

Attacks: [46] describes this kind of attack and a mitigation procedure to prevent control-flow
hijacking attacks and code-injection attacks. The work introduces KAISER as an algorithm that
enforces strict kernel and user space isolation such that the hardware does not hold any informa-
tion about kernel addresses while running in user mode.

7.2 Memory Elements

The main series of functional attacks on memory is typically derived from a single family of attacks
called Rowhammer. Rowhammer is a security exploit that takes advantage of an unintended and
undesirable side effect in dynamic random-access memory (DRAM), in which memory cells
interact electrically between themselves by leaking their charges, possibly changing the contents
of nearby memory rows that were not addressed in the original memory access. These attacks
repeatedly perform accesses to certain memory rows with high frequency to degrade their internal
charging capacitance. This operation is defined as “hammering,” and that is why such a threat is
called Rowhammer. There are three possible attack patterns: flush-based [48], eviction-based [49],
and remote-based [52]. They are described in detail in the following paragraphs.

Group FUNC-MEM-MAN-I: Attacks in the first group perform “hammering” through a flush op-
eration. Flush operations can erase a cache line or region. By continuously forcing flush operations,
the same memory rows must be accessed to retrieve the missing information.

Attack Formula: The steps of the proposed attack formula can be described as follows:

S: In the setup phase, the attacker accesses a memory row and erases cache lines through a
Flush instruction.

T: The attacker then accesses the next memory row and flushes this line as well.
O: This phase represents a Flush. It is applied to determine whether the data from the previous

step have changed. This phase helps the Evaluate phase to gather information related to
identifying the cache timing.

R: This phase is performed by a Reload instruction.
E: In this phase, the timing behavior is analyzed. If, during the Trigger phase, the victim ac-

cesses the memory line and flushes it, the line will need to be brought from memory, and the
reload operation will take a longer time. If, on the other hand, the victim has not flushed the
memory line, the line will be available in the cache, and the reload will take a significantly
shorter time.

Attacks: The known attacks belonging to this group are as follows. [48] introduced a flush-
based hammering technique called SGX Bomb, which can lock down a processor. DRAMMER,
the hammering attack described in [53], relies on the predictable memory reuse patterns of
standard physical memory allocators as implemented on Android/ARM. [51] presents DRAMA
attacks, a class of attacks that exploit the DRAM row buffer, which is shared in multi-processor
systems.

Group FUNC-MEM-MAN-II: Attacks in the second group perform “hammering” by causing
evictions from cache memory. This can be done by accessing data that align with the same line
in the cache. As a result, the victim address in the DRAM must be continually accessed due to
evictions in the cache. Compared to the flush-based attack, this approach is much less efficient
because multiple DRAM accesses are required to successfully evict a cache line.
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Attack Formula: The steps of the proposed attack formula can be described as follows:

S: In the setup phase, the attacker accesses a memory row and erases a cache line through an
Eviction instruction.

T: The attacker then accesses the next memory row and evicts this line as well.
O: This step represents Eviction instructions. They are applied to determine whether data from

the previous step have changed. This phase helps the Evaluate phase to gather the informa-
tion related to identifying the bit flip.

R: This phase is performed by Flush.
E: This phase checks whether there has been a bit flip after all four steps above.

Attacks: [49] describes an eviction-based hammering attack that causes a bit flip by hammering
only one location in memory. [47] demonstrated that an attack called Rowhammer.js can be
forced into fast cache eviction to trigger the Rowhammer bug with only regular memory
accesses.

Group FUNC-MEM-MAN-III: Attacks in the third group are executed remotely. Note that in
some studies, this concept is extended to remote direct-memory access (RDMA). In other terms,
it is applied on a server; i.e., it continuously receives packets from the sender and writes to RDMA.
In this group, the Operate phase is done by Flush, the Trigger phase by a Reload instruction, and
the Evaluate phase by analyzing cache timing behavior.

Attack Formula: The steps of the proposed attack formula can be described as follows:

S: In the setup phase, the attacker accesses a memory row, which can be done by a read or a
write instruction.

T: The attacker then accesses the next memory row.
O: In this step, a Flush instruction is executed. This phase is done by the victim and leads the

attacker to gain access to information.
R: A Reload is applied to determine whether the data from the previous step have changed or

not. This phase helps the Evaluate phase to gather information related to measuring the time
to load the data.

E: In this phase, timing behavior is analyzed.

Attacks: Throwhammer [52] and Nethammer [50] are two examples of this group of attacks.
These attacks can remotely perform hammering on servers by continuously receiving packets
from senders and writing them to RDMA.

7.3 Communication

This subsection focuses on functionality attacks on the communication structure. By observing
existing attacks, only one group could be defined, which falls into the injection category.

Group FUNC-COMM-INJ: DoS attacks are exhaustively used in the state of the art when the
vulnerability of a communication protocol is assessed. This group of attacks generally disrupts the
system by overloading resources. For example, a malicious application that generates packets at a
high injection rate can produce this attack. In some cases, the attack can overload the communi-
cation infrastructure.

Attack Formula: The steps of the proposed attack formula can be described as follows: This
attack generally attempts to flood the system by sending a massive number of packets. Note
that different flooding algorithms have been demonstrated by researchers; for instance, in some
studies the flooding is performed by assigning a wrong path to the packet. This means that the
packet introduces erroneous paths to the network, with the aim to trap it into a dead end. These
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packets use paths that intentionally disrespect the deadlock-free rules of the routing technique
and are intended to create deadlocks in the network. In some studies, these packets cannot reach
their targets and circulate indefinitely in the network, causing a waste of bandwidth, latency,
and power [57]. Although these algorithms use different approaches to flood the network, the
authors believe that they can be divided into similar phases. The following paragraphs describe
the proposed five phases for this group.

S: This step is performed by the attacker and requests packets.
T: This step involves replying to the request and sending the packets to the network.
O: In this step, flooding is performed. This can be done by requesting too many packets, trigger-

ing packets with wrong paths, triggering packets that intend to create deadlock, or triggering
packets that cannot reach the target.

R: Due to the flooding, the victim experiences a lack of resources.
E: In this step, resource availability for the victim is checked. If there is a lack, this means that

the DoS attack has been performed successfully.

Attacks: The method in [60] showed that a thread running on an implementation of an SMT pro-
cessor can suffer from DoS through a malicious thread. This work proposes a number of algorithms
to counter such an attack. Some affect the core scheduling algorithm, and others simply attempt to
identify an activity that would affect threads sharing the same processor core. The proposed attack
in [55] performs packet inspection and injects faults to create a DoS attack. The faults injected are
used to trigger a response from error correction code schemes and cause repeated retransmission
to starve the victim of network resources and create deadlocks that can lead to failure of a single
application or an entire chip. [62] describes a mitigation approach for a DoS diagnosis scheme
that detects DoS attacks based on performance degradation of sensitive flows. The proposed
method using latency metrics can be leveraged to detect a DoS attack and also to locate the attack
source. [56] identifies a DoS attack and proposes a way to protect communication and computation
against such attacks by creating continuous secure zones at runtime. These zones are isolated areas
in the system that prevent traffic flows from crossing their boundaries and thus provide a space
where an application can be executed securely. [57] presents a monitoring system for NoC-based
architectures. Its goal is to detect DoS attacks carried out against information in the system. The
method in [63] is another DoS mitigation technique that creates security zones according to appli-
cation security requirements. The approach proposed in [61] can detect DoS attacks on NoC based
on evaluating runtime latency. This evaluation makes it possible to monitor the trustworthiness of
the NoC throughout the chip lifetime. [33] introduces DoS attacks on the NoCs used in SoC design.
These attacks have different implementations, such as full ASIC or full FPGA implementations,
with corresponding mitigation strategies. The method proposed in [58] presents a mitigation
strategy based on isolation of secure zones that responds to current DoS strategies. [54] proposes
a hardware mechanism to secure data transactions between NoC routers. The security mechanism
can detect and prevent DoS attacks that aim to degrade system performance. A firewall is demon-
strated in [59] for a hardware-based NoC, which performs rule-checking of memory requests at
segment level. This firewall aims to protect the NoC against DoS attacks on ARM and Spidergon
STNoC.

Figure 6 shows the steps of Functionality attacks and illustrates which types have similar
structure. For instance, “FUNC-NODE-INJ” and “IP-NODE-MAN-I” have similar Retrieve steps,
and “Func-MEM-MAN-II” and “FUNC-MEM-MAN-III” have similar Trigger and Evaluate steps.
As said earlier, this kind of analysis that reveals detailed information on attack structure can lead
to building a better mitigation strategy. In the next section, the same analysis is reported for Data
attacks.
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Fig. 6. Attack phases of functionality attacks and groups.

Fig. 7. Attack phases of data attacks and groups.

8 DATA ATTACKS

This section describes various attacks that are mainly performed on data. Figure 4 presents the
references for existing Data ArchA under the “Data” branch. An overall view of this section is
presented in Figure 7.

8.1 Processing Elements

In the attacks observed in the state of the art that focus on processing elements, seven attack
patterns have been identified. Each pattern is described according to the proposed attack phase
model and is depicted in Figure 7. In the following discussion, each group is described in more
detail.
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Group DATA-NODE-MAN-I: The first group consists of attacks on the branch prediction unit

(BPU) of modern processors. In summary, they exploit the speculative behavior of such compo-
nents to force illegal instructions to execute. Although the processor can detect such mistakes
caused by speculation and undo the illegal operation, the processor or the system might have
changed. If the attack has been carefully designed, the attacker can hide the stolen information in
such different states of the system. The most typical example is to use the cache memory, where
access to an address will permanently change the cache state.

Attack Formula: The following list presents the phases of this attack:

S: In the setup phase, the attacker performs many executions, forcing the branches to take the
same result always (e.g., taken). As a result, the BPU will be manipulated to speculate to
such a condition.

T: The attacker then executes an illegal instruction, now that the BPU has been conditioned to
execute it speculatively.

O: In this step, the processor executes the operations of the illegal instruction, and before it
finishes, undoes all operations related to exception handling. Such an executed instruction
that was later undone is also referred to as a transient execution.

R: The illegal instruction performs an operation reflected in a change to a specific cache address.
This address was defined by one bit of sensitive data. The target bit can be used in a shift
operation that may point to zero when the bit is zero, or to address 64 when the bit is 1
(assuming a shift by 6).

E: The attacker identifies whether address zero or address 64 has a different state. The used
address will present a hit behavior.

Attacks: The approach described in [69] represents a Spectre attack, which is one of the best-
known BPU attacks. This attack involves inducing a victim to speculatively perform operations
that would not occur during correct program execution and that leak the victim’s confidential
information through a side channel to the adversary. Netspectre is described in [70] and follows
the same idea as Spectre, but over a network. The attack presented in [65] is another type of these
attacks, called BranchScope, where the attacker infers the direction of an arbitrary conditional
branch instruction in a victim program by manipulating the shared directional branch predictor.
Finally, Spectre attack is performed on ARM CPUs in [98], contrary to the literature in which the
main focus of Spectre family attack is on ×86 CPUs.

Group DATA-NODE-MAN-II: The second group of attacks consists of out-of-order executions.
Any modern processor rearranges the order of instructions to be executed to add a gap between
instructions with data dependency. Such filling instructions must be independent of the current
flow. Consequently, those filling instructions are executed out of order, and in the last part of the
pipeline, a module reorganizes the outputs (i.e., puts them again in order). However, a common
vulnerability inside most processors is that illegal operations are only checked in the last part when
the reordering happens. This can cause a transient execution. With this understatement, this kind
of attack organizes a program where the independent instruction performs an illegal operation
with sensitive data. Such an operation typically accesses the cache, modifying its state. Hence,
even with the undo performed by the processor, the cache state has already been changed. Finally,
the attacker needs to reread the cache and verify at what address the state has changed.

Attack Formula: The phases of this attack are presented below:

S: In the setup phase, the attacker runs several instructions with data dependency.
T: The attacker then executes an illegal instruction independent of the previous instructions.

The out-of-order unit will prioritize this independent instruction.
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O: In this step, the processor executes the operations of the illegal instruction, and before it
finishes, undoes all operations related to exception handling. Such an executed instruction
that was undone is also referred to as a transient execution.

R: The illegal instruction performs an operation reflected in a change at a specific cache address.
This address was defined by one bit of sensitive data. The target bit can be used in a shift
operation which may point to zero when the bit is zero, or to address 64 when the bit is 1
(assuming a shift by 6).

E: The attacker identifies whether address zero or address 64 has a different state. The address
used will present a hit behavior.

Attacks: One of the well-known attacks belonging to this group is Meltdown [66]. This is a
hardware-based attack that works on different Intel microarchitectures and exploits the side effects
of out-of-order execution on processors to read arbitrary kernel-memory locations, including per-
sonal data and passwords. In [16], two new versions of Meltdown were proposed: Meltdown-PK
(Protection Key Bypass) on Intel, and Meltdown-BND (Bounds Check Bypass) on Intel. In con-
trast, the approach in [64] presents Foreshadow, a software-only micro-architectural attack that
dismantles the security objectives of current SGX implementations.

Group DATA-NODE-MAN-III: This type of attack targets the internal storage elements of the
processor. Both registers and buffers can be exploited by these attacks, which are mainly used to
load and store memory data. Some examples are the line-fill buffers, load ports, and store buffers

(SBs). SBs are internal buffers used to track pending stores and in-flight data in optimizations such
as store-to-load forwarding. Some modern processors enforce strong memory ordering, where
load and store instructions that refer to the same physical address cannot be executed out of order.
However, because address translation is a slow process, the physical address might not be avail-
able yet. The processor performs memory disambiguation to predict whether particular load and
store instructions refer to the same physical address. This process enables the processor to execute
load and store instructions out of order in a speculative manner. As a micro-optimization, if the
load and store instructions are ambiguous, the processor can speculatively store-to-load forward
the data from the store buffer to the load buffer. On the other hand, line fill buffers (LFBs) are
internal buffers that the CPU uses to keep track of outstanding memory requests and perform a
number of optimizations such as merging multiple in-flight stores. Sometimes, data may already
be available in the LFBs, and as a micro-optimization, the CPU can speculatively load these data
(similar optimizations are also performed on, e.g., store buffers). In both cases, modern CPUs that
implement aggressive speculative execution may speculate without any awareness of the virtual
or physical addresses involved [72].

Attack Formula: The following list presents the phases of this attack:

S: In this step, the victim, as part of normal execution, loads or stores some secret data. The se-
cret data can be a piece of leaked data from inactive code obtained by forcing cache evictions.

T: In Trigger, the attacker also performs a load such that the processor speculatively uses data
from the LFBs rather than valid data.

O: When the processor eventually detects the incorrect speculative load from the previous
step, it discards any and all modifications to registers or memory and restarts execution
with the right value.

R: Because traces of the speculatively executed load still exist at the microarchitectural level,
it is possible to observe the leaked data using a simple (Flush+Reload). Thus, the attacker
reloads the data (memory line), together with the information related to measuring the
time to load it.

E: In the Evaluate phase, the timing behavior is analyzed.
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Attacks: RIDL is an attack of this type introduced in [72]. RIDL attacks are implemented from
linear execution with no invalid page faults, eliminating the need for exception suppression mech-
anisms and enabling system-wide attacks from arbitrary unprivileged code (including JavaScript
in the browser). Fallout is another attack presented in [68]. Fallout is a transient execution attack
that leaks information from a previously unexplored store buffer. An unprivileged user process
can exploit Fallout to reconstruct privileged information recently written by the kernel.

Group DATA-NODE-MAN-IV: This group consists of attacks that exploit interruption handling
to monitor the time of sensitive operations indirectly. When a high-priority interruption occurs,
the processor finishes the current execution and changes its context to interruption handling. How-
ever, depending on the operation that has been executed inside the processor, the interruption
handling will have different execution times. These time differences result from a delayed process
to change the context, which correlates with the target operation. Consequently, an attacker can
sample all these timings and perform an analytical approach to infer a secret.

Attack Formula: The phases of this attack are presented below.

S: Configure an interruption component to periodically activate.
T: Enable the component responsible for interrupting the processor. Typically, a timer is used

in this step.
O: The processor receives the IRQ signal, finishes the current instruction execution, changes

the processor context, and executes the IRQ handling function. Such steps may result in
different timings due to the instruction and data being operated upon.

R: Save the time to finish the IRQ handling.
E: After several attempts, all saved time data can be analyzed to infer sensitive information. A

computation based on correlation can be applied here.

Attacks: Only one attack has been published on this domain. The authors in [71] present Neme-
sis, an attack that abuses the CPU’s interrupt mechanism to leak instruction timings from CPU
executions. Basically, the approach uses a timer to create an interruption-based attack.

Group DATA-NODE-OBS: This identified group targets co-processors or hardware accelerators.
Commonly, specialized hardware components are designed to obtain maximum performance and
therefore often present different timing behavior depending on the input data. Regarding process-
ing elements, the most common attack targets floating-point units (FPUs).

Attack Formula: The phases of this attack are presented below.

S: Profile the hardware component. In the case of FPU, random inputs are applied, and the
different time behavior is saved.

T: The processor is manipulated to compute sensitive data using the target component (e.g.,
FPU).

O: The processor performs operations in the target hardware component using sensitive data.
This results in different execution time due to hardware optimization.

R: The time to operate is saved.
E: The saved data are analyzed using the profile as a base.

Attacks: A benchmark has been developed in [73] to measure the timing variability of floating-
point operations and report on the results. The approach uses floating-point data timing variability
to demonstrate practical attacks on the security of the Firefox browser (versions 23 through 27)
and the Fuzz private database. In [74], an attack called LazyFPU that exploits the ×87 FPU is pre-
sented. This attack enables an adversary to recover the FPU and the SIMD register sets of arbitrary
processes. The attack works on processors that transiently execute FPU or SIMD instructions that
follow an instruction generating the fault, indicating the first use of FPU or SIMD instructions.
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8.2 Memory Elements

In this section, various attacks based on manipulation of cache memory are described.

Group DATA-MEM-MAN-I: The first group consists of the Flush-and-Reload family, which re-
lies on sharing pages between attacker and victim processes. With shared pages, the attacker can
ensure that a specific memory line is evicted from the whole cache hierarchy. The spy uses this
capability to monitor access to the memory line.

Attack Formula: The phases of this attack are presented below.

S: In the setup phase, the attacker gains memory access to monitor the memory, and the mem-
ory line is flushed from the cache hierarchy.

T: The attacker waits to allow the victim time to access the memory line before the next phase.
O: This step represents an action that is taken by the victim and leads the attacker to obtain the

desired information.
R: In the Retrieve phase, the attacker reloads the memory line, together with the information

related to measuring the time to load it.
E: In the Evaluate phase, the timing behavior is analyzed. If during the Trigger phase (waiting),

the victim accesses the memory line that is available in the cache, the reload operation takes
a short time. If, on the other hand, the victim has not accessed the memory line, the line must
be brought in from memory, and the reload takes significantly longer. From this observation,
the attacker can find out whether the victim has gained access to the cache.

Attacks: A Flush+Reload attack was presented for the first time in [78]. In this work, the attack
was studied on a single-core processor and exploited the ability of the adversary process to evict
data from the physical memory pages it shares with the victim process from the CPU cache (e.g., via
the instruction clflush). In [75], another kind of Flush+Reload attack is presented. The difference
is that, unlike most other attacks, this one can make use of side-channel information from almost
all observed executions. This means that it obtains private key recovery by observing a relatively
small number of executions. The approach in [85] uses the Flush+Reload attack as a primitive and
extends it by leveraging within an automaton-driven strategy for tracing a victim’s execution. This
attack was executed between tenants on commercial Platform-as-a-Service (PaaS) clouds. [79]
instead demonstrated Flush+Reload cache attacks on a virtual machine. Finally, [20, 76, 77, 82] im-
plemented Flush+Reload attacks in three steps and proposed a detection strategy for such attacks.

Group DATA-MEM-MAN-II: There exists another cache attack technique called Flush+Flush.
This attack relies only on the difference in timing of the flush instruction between cached and
non-cached memory accesses. In contrast to other cache attacks, it does not perform any memory
accesses. Instead, it builds upon the observation that the flush instruction leaks information on the
state of the cache.

Attack Formula: The phases of this attack are presented below:

S: In the setup phase, the attacker gains access to memory to monitor it, and the memory line
is flushed from the cache hierarchy.

T: The attacker then waits to allow the victim time to access the memory line before the next
phase.

O: An action is performed by the victim, which leads the attacker to obtain the desired
information.

R: In the Retrieve phase, the attacker flushes the memory line, together with the information
related to measuring the time to load it.

E: In the Evaluate phase, the timing behavior is analyzed. The attacker measures the execution
time of the flush instruction. Based on the execution time, the attacker decides whether the
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memory line has been cached. Because the attacker does not load the memory line into the
cache, this reveals whether some other process has loaded it. At the same time, clflush evicts
the memory line from the cache for the next loop round of the attack. At the end of an attack
round, the program optionally yields times to lower system utilization and waits for a second
process to perform memory accesses.

Attacks: In [80], a Flush+Flush attack was demonstrated. This attack is applicable in multi-core
and virtualized environments if read-only shared memory with the victim process can be acquired.
The authors in [82] performed a Flush+Flush attack on an open source cache memory [96] and
demonstrated a mitigation strategy for this attack based on address randomization.

Group DATA-MEM-MAN-III: Evict+Time and Prime+Probe are other attacks that extract time
measurement information by manipulating the state of the cache before each encryption and ob-
serving the execution time of the subsequent encryption.

Attack Formula: The phases of this attack are presented below:

S: In the setup phase, the spy runs a spy process that monitors the victim’s cache usage. Then
the spy fills one or more cache sets with its own code or data (this is called priming the
cache).

T: The spy waits while the victim executes and utilizes the cache.
O: This step represents an action that is taken by the victim and leads the attacker to obtain the

desired information.
R: Retrieve: The spy continues execution (probing the cache) and measures the time to load

each primed set of data or code.
E: In the Evaluate phase, the timing behavior is analyzed. If the victim has accessed some cache

sets, it will have evicted some of the spy’s lines, which the spy observes as increased memory
access latency for those lines. As the Probe phase accesses the cache, it doubles as a Prime
phase for subsequent observations.

Attacks: One of the most general techniques for Evict+Time and Prime+Probe is presented in [81],
which describes their execution in a formal format. For instance, in Evict+Time, the attack extracts
time measurement information by manipulating the state of the cache before each encryption and
observing the execution time of the subsequent encryption. The article assumes the ability to
trigger an encryption and to know when it has begun and ended. It also assumes knowledge of the
memory address of each lookup table, and hence of the cache sets to which the table is mapped.
In [83], the measurement method is the same as in the [81] Prime+Probe attack, but the analytical
theory is based on the misalignment of AES lookup tables over the L1 data cache and points out a
way to detect the lookup tables resident in memory. [84] presents another Prime+Probe cache side-
channel attack that can prime physical addresses. These addresses are translated from the virtual
addresses used by a virtual machine. The time to access these addresses is then measured and will
vary according to where the data are located. If they are in the CPU cache, the time will be less
than if they are in main memory. The attack described in this article was implemented in a server
machine that was comparable to cloud environment servers. The technique described in [77] is
again based on Prime+Probe as described in [81], but it is performed on the last-level caches on a
virtual machine.

8.3 Communication Elements

This subsection describes attacks on the communication structure with the aim of retrieving sen-
sitive data. Basically, this type of attack targets the latency or injection throughput to identify the
features of sensitive traffic. Examples of features are communication affinity (i.e., the nodes with
which a specific node communicates), communication data rates, size of messages, and so forth.
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With this information, an attacker can model communication behavior and infer the type of appli-
cation that is running, which nodes in the system are important, and the role of each node. How-
ever, there are different methods to accomplish these attacks, by creating the conditions (injection
category), by manipulating the system to obtain the desired conditions (manipulation category),
or by simply observing normal system behavior (observation category). These three main groups
of attacks are described below.

Group DATA-COMM-INJ: The first group consists of attacks where the message is crafted to
force communication collisions. As a result of these collisions, the attacker can infer and extract
sensitive information. In this group, this paper focuses on attacks that modify message priorities.
Different priorities can change communication behavior by creating back-pressure on the buffers
inside the routers. As a result, the attacker can do fine-tuning to observe sensitive traffic behavior.

Attack Formula: The phases of this attack are presented below:

S: In the setup phase, the attacker installs itself into a node and starts injecting packets with
different priorities to understand normal behavior.

T: The attacker then chooses the appropriate priority to create the expected collision.
O: In this step, the system exchanges messages under various priorities. The target traffic is

somehow affected or affects the attacker’s message.
R: Retrieve: In the Retrieve phase, the attacker measures and analyzes each injection to ob-

serve drops in performance. There is also an attack where the attacker observes a rise in
performance when successful.

E: The various timing information collected is correlated with the setup used to attack. Based on
the delay in sending packets, the priority used, and the periodicity of target traffic, important
features can be extracted.

Attacks: In [86], two attacks that manipulate the priority of packets are described. The first one is
called indirect congestion and forces collisions in the NoC when the attacker injects high-priority
packets. The second attack considers an attacker with no privilege to create high-priority packets.
In this case, the attacker forces a condition called backpressure and observes when packet injection
becomes faster due to release of buffers in the path.

Group DATA-COMM-MAN: The second group consists of attacks that use the communication
structure as a means to improve other architectural attacks that focus on nodes or memories. In this
group, the attacker exploits the communication structure to identify the right instant to perform
some malicious operation. As a result, it improves classical attacks by several orders of magnitude.

Attack Formula: The phases of this attack are presented below:

S: In the setup phase, the attacker injects random packets (i.e., random size and random des-
tination) to understand normal latency when injecting a packet into the communication
structure. In addition, in this phase, the attacker can install malware in another node to
observe other traffic that corresponds to target nodes or memories.

T: The attacker then asks for service from the target node.
O: The target node uses the communication structure to accomplish its tasks (e.g., retrieve data

from shared memory).
R: In the Retrieve phase, the attacker injects messages in such a way that they collide with the

target node paths.
E: In the Evaluate phase, the differences in timing behavior show the presence of sensitive

traffic. As a result, the attacker can infer in which part of the algorithm the target node
is. Next, the attacker can reuse known methodologies to perform node timing attacks or
memory access attacks.
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Attacks: From this group, one example is Earthquake [87], an attack that uses the NoC to optimize
the Differential Cache attack from Bogdanov. Results have shown that when Earthquake was used,
the original cache attack became even more powerful because the original required high efficiency
to work. [89] and [88] presented methodologies to use the NoC to improve cache access attacks like
Prime+Probe. MeshUp, which is introduced in [99], exploits the timing difference caused by CPU
mesh interconnection contrary to common side-channel attacks that rely on the timing difference
between miss and hit. Finally, [90] demonstrated that the same methodology used for NoCs can
be used in bus-based systems as well.

Group DATA-COMM-OBS: The last group refers to pure communication timing attacks, where
the attacker only observes system behavior and retrieves information.

Attack Formula: The phases of this attack are presented below.

S: In the setup phase, the attacker injects random packets (i.e., random size and random des-
tination) to understand the normal latency of injecting a packet into the communication
structure. In addition, in this phase, the attacker can install malware in another node to
observe other traffic.

T: The attacker directly observes the traffic in the system.
O: The system nodes and memories use the communication structure to accomplish their tasks.
R: In the Retrieve phase, the attacker injects messages that will collide with system traffic.
E: Evaluate: In the Evaluate phase, the latency to deliver a message is analyzed. If the time takes

more than the normal measured during the setup phase, the attacker considers that this is
sensitive traffic. The amount of latency added, the duration of this behavior, and the instance
in time can reveal important information like message size, data rate, and application type
or behavior. The attacker can replicate itself in the system to a different node to obtain better
efficiency in inferring system details.

Attacks: [92, 93] presented the first methodologies regarding Network-on-Chip timing attacks.
They showed how injection latency could be explored as a leakage in this system. Later, [91] de-
tailed their methodologies by applying a practical use case. In addition, the authors in [91] ex-
tended the NoC timing attack to a distributed timing attack, where other infected nodes could
help to create controlled congestion in the network, improving the attacker’s observation capabil-
ities. In these attacks, the objective is to observe communication behavior to infer sensitive traffic
information.

9 DISCUSSIONS

This section discusses the importance and benefits of having such a taxonomy and an attack model.
As described, the proposed taxonomy has been created by exhaustively studying all architectural
attacks (called ArchA in this survey). Subsequently, it was observed that all ArchA can be gen-
erally categorized based on three main metrics: What, Where, and How. “What” basically refers
to the objective of the attacks, which can be classified as obtaining intellectual property informa-

tion, modifying functionality, and stealing data. “Where” refers to the locations where attackers
perform the attacks. In this survey, these locations are identified as Processing elements, Memories,
and Communication components. “How” describes the method by which attackers execute attacks.
These methods are classified as Injection, Manipulation, and Observation.

The proposed taxonomy exceeds the state of the art in several aspects: (i) by analyzing all dif-
ferent objectives, unlike the work in [8], which is only focused on attacks that steal data; (ii) by
considering different possible locations, unlike the approaches in [9, 10, 12], which are focused
only on caches; and (iii) by introducing a new concept that classifies ArchA based on the method
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used to execute the attacks. To the best of the authors’ knowledge, this classification is introduced
for the first time in this work.

On the other hand, this survey introduced an innovative attack model called STORE, which iden-
tifies five main phases for all ArchA executions. Accordingly, STORE can be described as follows:
a Setup phase for attack preparation, a Trigger phase consisting of actions to activate vulnerabil-
ity, an Operate phase for execution and exposing vulnerabilities, a Retrieve phase for collecting
essential information for attacks, and finally an Evaluate phase for analyzing the gathered infor-
mation to attain the final attack objective. The proposed attack model is essential because the same
attacks in the state of the art are introduced with different numbers of phases. This means that
authors have different views when analyzing attacks. For instance, [17] divided the Spectre attack
into three steps, whereas the approaches in [22] and [16] categorized it into two and five phases,
respectively. Another example is that the authors of [14] and [97] divided Flush+Reload into three
phases, but their definitions of these phases were completely different. However, STORE analyzed
all existing ArchA from one point of view and in consistent phases.

In summary, having such a complete and unified taxonomy and attack model leads to greater
ease in elaborating countermeasures. Moreover, it contributes to developing more accurate secu-
rity tools and predictions of possible attacks.

10 CONCLUSIONS

This article has presented a novel taxonomy for ArchA that uses three metrics, What, Where, and
How, to analyze each attack type. These metrics together with the proposed taxonomy go beyond
the current state of the art by categorizing all existing ArchA into unified groups. This article fur-
thermore introduced an appropriate attack model consisting of five phases: Setup, Trigger, Operate
Retrieve, and Evaluate, to formally describe the sequence of actions in any ArchA. In a manner
similar to the taxonomy problem, most attack models only cover a subset of attacks, and they
are mainly focused on caches. In addition, it should be stressed that having such a clear taxon-
omy and a unified attack model leads to a better understating of attack behavior, thus facilitating
development of a system that can mitigate such attacks.
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