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ABSTRACT
Our society is increasingly digital, and its processes are increas-
ingly digitalized. As an emerging technology for the digital soci-
ety, graphs provide a universal abstraction to represent concepts
and objects, and the relationships between them. However, pro-
cessing graphs at a massive scale raises numerous sustainability
challenges; becoming energy-aware could help graph-processing
infrastructure alleviate its climate impact. Graph Greenifier aims
to address this challenge in the conceptual framework offered by
the Graph Massivizer architecture. We present an early vision of
how Graph Greenifier could provide sustainability analysis and
decision-making capabilities for extreme graph-processing work-
loads. Graph Greenifier leverages an advanced digital twin for data
center operations, based on the OpenDC open-source simulator, a
novel toolchain for workload-driven simulation of graph process-
ing at scale, and a sustainability predictor. The input to the digital
twin combines monitoring of the information and communication
technology (ICT) infrastructure used for graph processing with
data collected from the power grid. Graph Greenifier thus informs
providers and consumers on operational sustainability aspects, re-
quiring mutual information sharing, reducing energy consumption
for graph analytics, and increasing the use of electricity from re-
newable sources.
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1 INTRODUCTION
Increasingly, our society and economy are becoming digital. At the
core of this transformation are massive datasets, encoding concepts
and processes, and their evolving state. Graphs are a common, uni-
versal data abstraction, with wide applicability [31]. For example,
in the Graph Massivizer1, applications of graph processing span
green and sustainable finance, global foresight for environment
protection, green artificial intelligence for a sustainable automotive
industry, and green exascale computing through advanced digital
twinning. Graphs related to these and other applications lead to
challenges commonly associated with big data, but exacerbated

1EU H2020 project Graph-Massivizer, https://graph-massivizer.eu/
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due to the irregular nature of graph processing. Thus, process-
ing graphs at scale raises important sustainability and particularly
energy-related challenges. With Graph Greenifier, we envision how
to address such challenges through a combined approach that is
simulation-based and data-driven.

Graph processing consists of very diverse approaches, covering
a variety of algorithms and datasets. Correspondingly, a variety
of graph-processing systems already exist [12, 19], for example,
the open-source, Hadoop-based Apache Giraph [2, 26] and the
Spark-based GraphX [16]. However, none supports sustainable,
serverless graph processing across the computing continuum, as
Graph Massivizer aims to investigate. Notably, although a variety
of graph benchmarks exist [5], e.g., LDBC Graphalytics [20, 21] that
renews periodically to stay current, no benchmark that considers
basic graph operations (BGO) such as graph enrichment, query, and
analytics, or sustainable and/or serverless graph operations, currently
exists.

The operational challenges related to massive graphs, including
volume, velocity, and veracity, may seem similar to those experi-
enced in big data processing. However, the irregular nature of graph
applications, where between any pair of nodes there could be few
degrees of separation, also poses the challenge of vicissitude, where
any of these challenges may arise at any time. Although vicissitude
is not a new concept [15], for graph processing it has not been
explored. One of the important consequences of vicissitude is that
understanding and predicting energy use, and further analyzing
the sustainability of graph processing, remains an important open
challenge.

Addressing the open challenge, we make the following contribu-
tions:

C1 Together with partners in the Graph Massivizer project, we pro-
pose an operational model for serverless, massive graph process-
ing in the computing continuum (§2). The overall architecture
includes five main components, Graph-Inceptor for on-demand,
interactive graph definition; Graph-Scrutinizer for essential BGO;
Graph-Optimizer for graph workload modeling and optimization;
Graph Greenifier for sustainability analysis and energy aware-
ness capabilities (this work); and Graph-Serverless for serverless
BGO processing.

C2 We design Graph Greenifier, the sustainability analysis and
energy-awareness component of Graph Massivizer (§3). Graph
Greenifier aims to help collect, study, use, and archive perfor-
mance and sustainability data from operational data centers and
national energy suppliers on a large scale, through a combination
of five main components: a work-driven simulation toolchain, a
sustainability predictor, various monitoring capabilities, a sus-
tainability benchmark, and a power-grid data interface.

C3 We consider an approach to realize the design (§4). Toward this
end, we consider five research questions: How to provide contin-
uous, fast-grained monitoring data across various services? How
to operate in the computing continuum? How to enable digital
twinning of massive graph-processing operations? How to com-
bine ICT and energy infrastructure metrics for benchmarking
and labeling purposes? and How to combine BGO-oriented and
operations-related predictions?

Figure 1: Comparison between operations for graph process-
ing: (left) self-managed and (right) serverless.

2 OPERATIONAL MODEL: SERVERLESS,
MASSIVE GRAPH PROCESSING

For contribution C1, we analyze the main components of massive
graph processing in the computing continuum.

2.1 Serverless Operations for Graph Processing
Figure 1 compares self-managed and serverless operations for graph
processing. In the scenario for self-managed operations, the graph-
processing stack is derived from a real-world Apache Giraph de-
ployment. Operations include provisioning and configuring servers,
installing and configuring the virtual machines (VMs) and contain-
ers, installing and configuring Hadoop, installing and configuring
Giraph (the graph-processing engine), before running the graph
analysis.

In the serverless scenario, based on the Graphless toolkit for
serverless graph processing [37], the stack is managed automati-
cally, so the application developer and the user are released from
operational concerns. Further concerns, beyond detailed opera-
tional decisions of auto-scaling, etc., are fine-grained reporting of
resources actually used and utilization-based billing [1].

As Figure 1 depicts, the two scenarios differ significantly in the
effort the developer (or user) have to put into operational concerns,
instead of focusing on the domain-specific logic of the applications.

2.2 Graph Massivizer Framework for Massive
Graph Processing

The GraphMassivizer architecture consists of the five major compo-
nents depicted in Figure 2; we refer to the project proposal for a full
description. By combining these five components, GraphMassivizer
ingests data in structured, semi-structured, and unstructured form,
and, step by step, produces from it extreme scale graphs, enriched
data, and actionable insight by processing the graphs and enriched
data.

The Graph operational layer facilitates generating, transform-
ing, and manipulating extreme data through basic graph operations
(BGO), comprising graph creation, enrichment, query, and analytics.
To achieve this, this layer combines two major components:
1 Graph-Inceptor, which achieves on-demand, interactive graph

definition by translating data from various static and event
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Figure 2: The Graph-Massivizer architecture.

streams, or by following heuristics to generate synthetic data,
persist it, and publish it within a graph structure. Because the in-
put data can be large-scale, Graph-Inceptor can produce extreme-
scale graphs.

2 Graph-Scrutinizer realizes three essential BGOs: graph enrich-
ment, query, and analytics. With these, users can analyse and
expand extreme datasets using probabilistic reasoning andML al-
gorithms for graph pattern discovery, while the system achieves
graph generationwith a low-memory footprint, and error-bounded
responses to queries with low latency. The output is a new graph,
a query, or an enriched structured dataset, possibly of a larger
scale than the input.
The Graph processing layer provides sustainable and energy-

aware serverless graph analytics on the underlying heterogeneous
HPC infrastructure, following three phases:
3 Graph-Optimizer focuses on graph workload modeling and op-

timization. This component further analyses and expresses a
given graph-processing workload into a workflow of BGO. It
further combines parametric BGO performance and energymod-
els with hardware models to generate accurate performance
and energy consumption predictions for the workload running
on a given multi-node, heterogeneous infrastructure of CPUs,
GPUs, and FPGAs. The predictions indicate the most promising
combinations of BGO optimizations and infrastructure, i.e., a
codesigned solution for the given workload while guaranteeing
its performance and energy consumption bounds.

4 Graph Greenifier offers capabilities for sustainability analysis
and energy awareness, focusing on sustainability metrics, simu-
lation and digital twinning, and integration with the EU energy-
grid data (see §3).

5 Graph-Serverless enables serverless BGO processing. To this end,
this component uses performance and sustainability models and
data provided by the other components. A main feature of this
component is the ability to deploy (serverless) graph analytics

Work-driven simulation
toolchain

FaaS BGO
scheduling

and
deployment

Sustainability predictor

Monitoring

Graph-Optimizer Graph-ServerlizerGraph-Greenifier

Power
Grid Data

Benchmark
calculation

Power
Grid Data
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&
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Figure 3: The Graph Greenifier architecture.

on the computing continuum, using novel scheduling heuristics,
infrastructure partitioning, and environment-aware processing
for scalable orchestration of serverless graph analytics, with an
accountable performance and energy consumption trade-off.

3 GRAPH GREENIFIER: SUSTAINABLE AND
ENERGY-AWARE MASSIVE GRAPH
PROCESSING

For contribution C2, we envision the high-level design of Graph
Greenifier. Graph Greenifier aims to facilitate collecting, studying,
and archiving performance and sustainability data from operational
data centers and national energy suppliers on a large scale. To this
end, Graph Greenifier simulates multi-objective infrastructure sus-
tainability profiles for operating graph analytics workloads, trading
off performance and energy (e.g., consumption, CO2, methane, GHG
emissions) metrics. Its typical use case is to model the impact of spe-
cific graph analytics workloads running on arbitrary infrastructure
on the environment, for evidence-based decision making.

Graph Greenifier has five design components:
Work-driven simulation toolchain (Figure 3, 1 ): GraphGreeni-

fier utilizes and extends the OpenDC [27] simulator, encompassing
public information from national energy suppliers to model the
impact of graph processing on the climate and, therefore, society.
OpenDC is free open-source software. The simulator uses the se-
lected sustainability indicators, such as carbon footprint, CO2, and
methane emissions as calculated by the sustainability predictor, to
estimate the impact of different scenarios.

Sustainability predictor ( 2 ): Graph Greenifier extends and
upscales Graph-Optimizer’s predictions to rank graph processing
scenarios based on performance, energy efficiency and sustainabil-
ity at scale. Data center operators use this ranking to choose the
most sustainable operational procedures at runtime, with the help
of Graph-Serverlizer (the FaaS BGO scheduling and deployment
component, B ), which steers the workload to more appropriate
infrastructure resources. The process is transparent and evidence-
based.
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Monitoring ( 3 ): Graph Massivizer identifies relevant sustain-
ability metrics based on extensive state-of-the-art analysis and
stakeholder interviews and establishes effective means to monitor
and calculate them depending on installed measurement capabili-
ties. For example, it uses software energy counters where hardware
counters and power meters are unavailable, and deploys the infras-
tructure to collect and archive these metric calculations.

Sustainability benchmark ( 4 ): Graph Greenifier proposes a
sustainability benchmark providing runtime energy labels, includ-
ing information about energy sources derived from data centers
and energy operation models. Graph Greenifier creates a closed
monitoring loop, encompassing simulation and estimations of the
emitted GHG pollutants for performing the BGO processing. The
GHG estimates engage the data center operators and other stake-
holders in meaningful dialogues for reaching informed graph pro-
cessing decisions with reduced impact on the environment. The
Graph-Optimizer component provides detailed metrics for this (the
metrics component, A ).

Power grid data interface ( 5 ): Graph Greenifier automates
data gathering based on the offer and price of electrical energy
on the open market and its energy source and greenness. It uses
monitoring data from the local data center operators such as the
SURF operational dataset [38], availability insights from cloud op-
erators, and third-party aggregators of user reports such as Outage
Report [36], and energy- and sustainability-related data published
by national infrastructures such as the EU-wide ENTSO-E2 trans-
parency platform or the Dutch national data source3 coupled with
credible energy-consumption analyses such as those provided by
national statistics bureaus.

4 TOWARDS REALIZING GRAPH GREENIFIER
For contribution C3, we envision a set of challenges, formulated as
research questions, and steps to addressing them aiming for design,
implementation, and, finally, realization in practice.

4.1 How to provide continuous, fast-grained
monitoring data across various services?

Serverless computing promises unprecedented fine-granularity in
reporting (and charging) use of resources and services [1]. Pro-
viding serverless operations combines the capabilities of multiple
operational layers, such as resource, (single) function, and workflow
management [14], and various state-related operations [1]. Even if
the resource management layer is uniform, e.g., around the de facto
standard offered by Kubernetes interfaces, collecting and reporting
data across multiple (distributed) services with synchronous and
particularly asynchronous access, remains non-trivial [33].

Through its monitoring component, Graph Greenifier aims to
provide a trade-off between the accuracy and precision of moni-
toring information, and the performance and scalability overheads
incurred by it, both short- and long-term. Often, the lack of accu-
racy inherent to all but the most prohibitive profiling processes,
which affects for example all tracing efforts, prevents extracting
accurate performance breakdowns (e.g., latency cannot be ascribed
other than end-to-end) [33].
2https://www.entsoe.eu/
3https://energieopwek.nl/

A significant implementation and realization challenge also ap-
pears, where monitoring must be concerned with the diversity of
services and devices involved in the continuum (see §4.2).

4.2 How to operate in the computing
continuum?

A foundational capability for Graph Massivizer is to use resources
across the computing continuum [23]. Cloud [25], edge [32, 34],
IoT and fog [3, 34], and other computing models offer various ser-
vices and resources with different characteristics, e.g., performance,
availability, energy reserves, and sometimes also latency to the
user, as Figure 4 depicts. These models come each with specific
software, and sometimes even software-stacks. Currently, there is
no approach to seamlessly run stateful applications across all these
stacks.

Graph Greenifier aims to enable Graph-Serverlizer to take opera-
tional decisions that not only allow selecting services and resources,
but doing so with energy-awareness, toward more sustainable op-
erations. To this end, Graph Greenifier provides predictions of how
arbitrary decisions would impact operations and, alongside, energy-
and sustainability-related metrics.

To enact such decisions, Graph Massivizer has dedicated engi-
neering effort that is enabling the use of services and resources
across these stacks. The Continuum framework [24] can automati-
cally deploy and run across (emulated) infrastructures and networks,
locally and in the cloud, using Kubernetes interfaces. This allows,
for example, combining cloud resources operated with Kubernetes
and Knative, with edge resources operated with KubeEdge; and
higher-level services offered under an OpenFaaS interface. Other
tools, like Fogify [35] and MockFog [18], offer different emulation
capabilities.

4.3 How to enable digital twinning of massive
graph-processing operations?

Every field operating complex infrastructure or processes even-
tually resorts to a dense structure of simulation, emulation, and
prototype-based experimentation. For parts of the computing con-
tinuum, many simulation tools already exist [4, 7], e.g, from the
very recent, OpenDC 2.0 [27], WRENCH [9], and iFogSim [17],
to the early approaches, such as GridSim and CloudSim [8], Sim-
Grid [10], DGSim [22], and GroudSim [28]. However, no integrated
capabilities exist, only OpenDC offers support for both short- and
long-term decisions, and the energy and sustainability modeling
capabilities of these simulators remain limited.

Graph Greenifier aims to address these gaps, and in particular:
combine the capabilities of OpenDC with support for extensive en-
ergy and sustainability modeling, capabilities related to serverless
operation across the computing continuum (see §4.2), and calibra-
tion with detailed monitoring information (see §4.1).

A non-trivial addition to the simulation process is the concept of
provenance, which generally is “machine-readable summary of the
collection and computational history of a datase” [13]. Recording
provenance can be done at many levels in the system, and end-to-
end provenance can include: (i) where provenance, tracking where
(each item of) output comes from and how it links to specific (items
of) the input, (ii) how provenance, tracking how the output was
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Figure 4: The SPEC-RG reference architecture for the com-
pute continuum [23].

produced from the input, (iii) lineage-based provenance, linking
to output multiple sets of input items, etc. Such metadata could
be used to trace how graph operations of different granularities,
short-term and particularly long-term, contribute to energy use
and pollution.

4.4 How to combine ICT and energy
infrastructure metrics for benchmarking
and labeling purposes?

Two vast and complex classes of infrastructure contribute to graph
processing operations, information and communication technology
(ICT) and energy infrastructures. Each can provide diverse moni-
toring capabilities, with existing and emerging metrics (for ICT, see
§4.1), but no uniform approach to collect and combine such data.

Graph Greenifier aims to combine the information provided by
powerful yet flexible monitoring systems such as Examon [6], with
energy-related data from sources such as the EU-sponsored ENTSO-
E. Combining such information, combined with the advanced sim-
ulation capabilities (see §4.3), could deliver both benchmarking
capabilities, i.e., through a small set of representative metrics that
can be reported across every graph-processing infrastructure, and
labeling features, i.e., through a high-level label that applies to each
“graph-processing appliance”.

It is important that monitoring data can be evaluated and tested
for fitness to its purpose. This could be achieved by combining
the more expressive capabilities of Graph Greenifier, e.g., detailed
simulation-based analysis of how much energy is consumed for
specific workloads and resource topologies, with the reported data
in both ICT and energy infrastructures. A back-and-forth testing

process could help identify possible inconsistencies and start an
improvement cycle.

4.5 How to combine BGO-oriented and
operations-related predictions?

The Graph-Optimizer component of Graph Massivizer focuses on
BGO-level predictions. These involve detailed decisions in mod-
eling, particularly those related to the heterogeneous hardware.
However, the operational infrastructure further includes a diverse
software ecosystem. Predicting how the operational techniques at
each layer will behave when put together into the same ecosystem,
subject to the dynamics provided by input data and more generally
by the input workload, remains an open challenge.

Graph Greenifier aims to address this challenge to make useful
predictions about sustainability, where predictions can be further
explained with operational detail. For example, caching input data
that gets reused multiple times is much used in industrial serverless
systems such as Snowflake [39], Databricks [11] and others [29, 30,
40], but explaining its use and further linking these caches to energy
use and climate impact, has not yet been tried in the context of
serverless computing, graph processing, or computing continuum.

5 CONCLUSION
In this work, we focus on the emerging societal need to process
graphs at a massive scale. We posit energy awareness, and more
generally sustainability, are essential goals on the roadmap for
graph-processing technology.

Starting from the Graph Massivizer framework, we propose a
high-level design for Graph Greenifier, the sustainability analysis
component of the project, and consider important aspects to con-
sider, to realize this design. We focus on computing continuum
operation, monitoring with fine granularity, digital twinning, com-
bining ICT- and energy-related information for benchmarking and
labeling purposes, and combining BGO-oriented and operations-
related predictions.

In future work, we aim to explore systematically the space for
detailed design enabled by the high-level design introduced in
this work. Through experimental approaches, we aim to validate
that high-level and detailed designs can be realized in practice. To
encourage community adoption, we aim to create a public archive
with operational results and conduct use-case studies with four
classes of applications.
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