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A B S T R A C T

Lifetime analyses are crucial for ensuring the durability of new Light-emitting Diodes (LEDs) and uncertainty
quantification (UQ) is necessary to quantify a lack of usable failure and degradation data. This work presents
a new framework for predicting the lifetime of LEDs in terms of lumen maintenance, effectively quantifying
the natural variability of lifetimes (aleatory) as well as the reducible uncertainty resulting from data scarcity
(epistemic). Non-parametric survival models are employed for UQ of low-magnitude failures, while a new
parametric interval prediction model (IPM) is introduced to characterize the uncertainty in high-magnitude
lumen depreciation events and long-term extrapolated lifetimes. The width of interval-valued predictions
reflects the inherent variability in degradation paths whilst the epistemic uncertainty, arising from data
scarcity, is quantified by a statistical bound on the probability of the prediction errors for future degradation
trajectories. A modified exponential flux decay model combined with the Arrhenius equation equips the
IPM with physical information on the physics of LED luminous flux degradation. The framework is tested
and validated on a novel database of LED degradation trajectories and in comparison to well-established
probabilistic predictors. The results of this study support the validity of the proposed approach and the
usefulness of the additional UQ capabilities.
1. Introduction

Producing durable and reliable light-emitting diodes (LEDs) has
become paramount in the lighting industry leading to extensive ef-
forts in understanding failure modes, degradation mechanisms, and
reliability-related issues [1–3]. Among the most common failure mech-
anisms, degradation-related failures occur when LEDs no longer meet
the desired functionality requirements, such as exceeding a maximum
luminous flux depreciation. To gather usable data concerning lumi-
nous flux degradation and to better support lifetime assessment and
reliability analyses, accelerated degradation tests (ADTs) are often em-
ployed [4,5]. The Illuminating Energy Society (IES) of North America
has established dedicated standards, including LM-80, TM-21-11, and
LM-84-14 [6,7], to guide practitioners in ADTs and the modeling of
luminous flux degradation, and for lifetime predictions. Additionally,
various degradation indicators, such as those proposed in ANSI/IES
TM-35 [8–10], have been suggested in the literature.

Accurate and robust LED lifetime predictions require the careful
quantification of aleatory uncertainty (irreducible and due randomness
and natural variability) and also epistemic uncertainty, which arises

∗ Corresponding author.
E-mail address: roberto.rocchetta@supsi.ch (R. Rocchetta).

from a lack of data and model imprecision [11], which can be in
principle reduced [12,13]. Aleatory uncertainty has been extensively
studied in LED lifetime analyses, with a significant focus on the het-
erogeneity of the LED population [14], random measurement errors
and variability in mission profiles [15]. Numerous studies focused on
assessing the limitations of the standard TM-21 and have aimed to
enhance lifetime predictions by improving the characterization of the
randomness in lumen depreciation trajectories. In this respect, data-
driven [16], physics-based [17], and hybrid [18,19] Prognostics and
Health Management (PHM) frameworks have been proposed to better
characterize stochastic errors in the LED lifetime distributions. Prob-
abilistic and machine learning (ML) approaches to model degradation
trajectories have been recently reviewed by [20] and Wiener–Levy [21–
24], Gamma [25], and Gaussian processes [26,27] identified as the
most widely applied concepts. In [28], a Bayesian model has been
proposed to identify luminaires with early degradation onset while
filter-based algorithms have been applied to predict LED lifetimes,
e.g., [29,30]. However, only a few studies have explicitly quantified
the epistemic uncertainty arising from a limited number of degradation
vailable online 26 October 2023
951-8320/© 2023 Published by Elsevier Ltd.
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trajectories, censored lifetime data, and model uncertainty, e.g., [26,27,
31–33]. Specifically, [26,27] analyzed correlations between degrada-
tion patterns and missing data issues and [33] analyzed both natural
variability and epistemic uncertainty lifetime dynamic via a semi-
analytical approach. None of the revised works proposed a framework
for interval prediction of LED lifetime and for a formal quantification
of both aleatory and epistemic uncertainties.

To address the identified gap in the existing literature, this paper in-
troduces a new framework for LED lumen maintenance life predictions
and uncertainty quantification. A new database with LED degradation
data is also introduced for testing and validating the novel approach.
Within the framework, non-parametric Kaplan–Meier estimators and
Probability boxes (P-boxes) characterize the epistemic and aleatory
uncertainty associated with low-magnitude degradation events. These
models are driven uniquely by (censored) lifetime data and are only
applicable to low-magnitude depreciation events. On the other hand,
high-magnitude depreciation events and lifetimes predictions require
parametric model assumptions for long-term extrapolation of the degra-
dation paths. In this work, a new Interval Predictor Model (IPM)
is proposed to predict the LED lifetime and incorporates a modified
exponential decay model and thermo-electrical ageing to account for
the physics of the problem. The interval predictions from the IPM
establish lower and upper bounds for lumen degradation trajectories,
i.e., a non-probabilistic interval-valued quantification of the inherent
variability affecting lumen degradation trajectories and the lifetimes.
To evaluate the robustness of the IPM model, a formal bound on
the IPM’s probability of error is proposed, that is, a non-asymptotic
and distribution-free statistical bound which holds independently of
assumptions regarding error distribution and for any number of sam-
ples. Importantly, it quantifies the epistemic uncertainty arising from
a limited number of degradation trajectories. The framework is tested
and validated on the dataset of the new degradation data and the
lifetime predicted by the IPM compared with those predicted by a well-
established random coefficient regression model [34,35] and the TM-21
standard [6,7]. The outcomes of the analysis confirm the high dura-
bility of the selected LED packages while confirming a valid lifetime
bound prescribed by the IPM model, i.e., compatible with the results of
the random coefficient model. In addition to this result, the statistical
error bounds for the IPM ensure a minimum reliability level for the
IPM model and an upper bound on the error probability for out-of-
sample depreciation trajectories. This result highlights that significant
epistemic uncertainty remains in long-term lumen maintenance pre-
dictions. The main contributions of this work can be summarized as
follows:

• A new database for LED durability analysis comprising acceler-
ated degradation data from several LEDs.

• A new framework for LED lifetimes analysis and UQ based on
non-parametric P-boxes and parametric physics-informed IPMs.

• Statistical bounds are computed and quantify the epistemic un-
certainty associated with the IPM (arising from a lack of data and
model over-complexity).

. Reliability and degradation models for LEDs

LED failures are of two main types, (1) degradation-related and (2)
atastrophic. The former relates to progressive losses in functionality
xceeding unacceptable threshold levels. Catastrophic failures follow a
udden and total loss of functionality, e.g., a sudden loss of light due
o electrical over-stress [3]. This work will only focus on degradation-
nduced failures. A summary of reliability performance requirements
or LEDs, accelerated degradation data, and well-established degrada-
2

ion models is presented next. 𝛼
2.1. Reliability requirements

LED lifetimes associated with degradation events are determined
based on the first passage of predefined thresholds that indicate inad-
missible degradation of reliability performance indicators, e.g., lumi-
nous flux, 𝜙(𝑡), or chromatic shift, 𝛥𝑢′𝑣′. The lifetime 𝐿𝑝 defines the
point at which a percentage 1 − 𝑝 of the initial performance is lost
and, for luminous flux, 𝑝 ∈ [0, 1] determines a threshold lumen mainte-
nance, a minimum acceptable light output rating. A higher value of 𝑝
indicates a stricter lifetime requirement and its selection is application-
dependent, e.g., up to 30% for indoor applications and only 10%
depreciation for street lighting. The corresponding lifetime, 𝐿0.70 and
𝐿0.9, define operating times for which the luminous flux drops below
70% and 90% of the initial flux value, respectively. Other degradation
indicators can be investigated, see e.g., [1,2,9,10], however, this work
will focus on lifetime defined by lumen maintenance.

2.2. Accelerated flux degradation data

Flux degradation data collected from a constant-stress accelerated
experiments, e.g., LM-80, define the following dataset:

 =
{

{𝝓𝑎,𝑘}
𝑛𝑠
𝑘=1, 𝑇𝑎, 𝐼𝑎

}𝑛𝑎
𝑎=1 , (1)

where 𝝓𝑎,𝑘 = {𝜙𝑎,𝑘,𝜏}
𝑛𝑡
𝜏=1 are luminous flux degradation trajectories

collected from 𝑘 = 1,… , 𝑛𝑠 identical LEDs under the accelerated
temperature 𝑇𝑎 and forward current 𝐼𝑎 and 𝑛𝑎, 𝑛𝑡 are the number of
stressors combinations and flux measurements for each LED, respec-
tively. Catastrophic failures that involve a fast and significant decrease
in lumen maintenance, e.g., from values larger than 90% to lower than
60% in a month, are not considered in this work and thus removed
from . In practice, the values of 𝑛𝑠 and 𝑛𝑡 vary depending on the
specific conditions, such as the sampling frequency and the number
of LEDs tested. These values may be higher for certain acceleration
levels, however, to simplify the presentation, this dependency has been
omitted in the notation.

2.3. Lifetime and lumen maintenance

The lifetime 𝐿𝑝 corresponding to a minimum acceptable lumen
maintenance 𝑝 is defined as follows:

𝐿𝑝 = min
𝑡

{𝑡 ∶ 𝜙(𝑡) ≤ 𝑝𝜙(0)} . (2)

where 𝜙(𝑡) is the flux at time 𝑡, 𝜙(𝑡)
𝜙(0) is the normalized flux (also known

s lumen maintenance), and 𝜙(0) is the nominal flux at time zero. In
rinciple, samples of 𝐿𝑝 can be obtained from Eq. (2) by observing
ufficiently long degradation trajectories for 𝜙. However, large depre-
iation events are seldom observed in practice and parametric models
re necessary to extrapolate and characterize the uncertainty in the LED
ifetime.

.4. Thermoelectric degradation

Similarly to the TM-21 standard, [6], a modified exponential decay
odel is adopted in this work as follows:

(𝑡) = 𝑎𝑒−(𝛼×𝑡)
𝛽 (3)

here 𝑎 is the pre-exponential factor, 𝛼 is the decay rate, and 𝛽 is
shape parameter which modifies the TM-21 [6] model to better fit

on-exponential trajectories.
In this work, the Arrhenius inverse power law is selected model

hermoelectric ageing effects [36,37] due to its wide adoption in the
esearch community. The model is defined as follows [37]:

𝑐 − 𝐸𝑎
𝐾𝑏

1
𝑇 , (4)
(𝑇 , 𝐼) = 𝑏𝐼 𝑒
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where 𝑏 is the intercept parameter, 𝑐 is a power exponent for the
current, 𝐸𝑎 is the activation energy, and 𝐾𝑏 is the Boltzmann constant.

ote that other accelerated ageing models can be used to capture
nteraction effects between the flux degradation and other stressors,
.g., the Eyring model, the Black model, and the Hellberg–Peck hygro-
hermal-electrical model and others [38–42]. Note that an appropriate
odel must be selected to optimize fitting performance, however,
odel selection is not the main focus of this work and thus not further
iscussed here.

Once the fitting parameters are estimated, the LED lifetime can be
btained as:

𝑝(𝑇 , 𝐼) =

(

ln( 𝑎𝑝 )
)

1
𝛽

𝛼(𝑇 , 𝐼)
, (5)

where 𝐿𝑝 is the long-term (extrapolated) luminous flux maintenance
life for a maximum depreciation level 𝑝.

2.5. Linearized inverse power law model

By taking the logarithm of Eq. (4), an expression for log-decay rate
is obtained as follows:

ln(𝛼) = ln(𝑏) + 𝑐 ln(𝐼) −
𝐸𝑎
𝐾𝑏

1
𝑇
, (6)

where ln(𝛼) decreases linearly with 1
𝑇 and increases linearly with ln(𝐼).

imilarly, taking twice the logarithm of Eq. (3) and applying Eq. (6),
he following linearized inverse power model is obtained [36]:

n (ln (𝜙)) = 𝜃1 + 𝜃2 ln(𝐼) +
𝜃3
𝑇

+ 𝜃4 ln(𝑡), (7)

where 𝜃 is the re-parameterized set of fitting coefficients. Note that
this model cannot capture interaction effects between 𝑇 and 𝐼 on the
egradation, i.e., the linearized model is additive for 𝑇 and 𝐼 .

.6. Baseline lifetime predictors

Several approaches have been proposed to characterize the flux
ata in  and predict 𝐿𝑝. In this work, the proposed IPM is tested
gainst two well-established approaches, (i) a TM-21-11 model and (ii)
random coefficient model (RCM).

.6.1. The TM-21 model
The TM-21-11 and the LM-84-14 standards [6,7] provide recom-

endations to model the degradation data in , where an ordinary
east squares (OLS) of an exponential decay model combined with the
hermal-electrical acceleration model is proposed. Then, UQ is achieved
y a statistical analysis of the residuals and by applying an empirical
orrection (to account for small sample sizes).

In this work, similarly to the TM-21, a baseline approach is consid-
red in this by work applying Eq. (7) and fits its parameter as follows:

𝑎,𝑘,𝜏 = 𝜃𝑎𝜓
𝑇 (𝐱𝑎,𝑘,𝜏 ) + 𝜖𝑎,𝑘,𝜏 , ∀𝑎 ∈ [𝑛𝑎], (8)

here 𝜖𝑎,𝑘,𝜏 are the residuals for the accelerated stress conditions 𝑎 =
,… , 𝑛𝑎, the devices 𝑘 = 1,… , 𝑛𝑠, and for the time indices 𝜏 =
,… , 𝑛𝑡, 𝜓(𝐱) is a non-linear transformation of explanatory variables,
= ln (ln (𝜙)) is the dependent variable, that is, twice the logarithmic

f the flux data, and 𝜃𝑎 = (𝜃1, 𝜃2, 𝜃3, 𝜃4)𝑎 is the vector of regression
oefficients for the accelerated condition 𝑎. The basis function 𝜓(𝐱) =
1, ln(𝐼), 1

𝑇 , ln(𝑡)
)

𝐱 = (𝑡, 𝑇 , 𝐼) transform the time, current, and tem-
perature data and OLS identifies 𝑛𝑎 optimized parameter vectors 𝜃⋆𝑎
by minimizing the sum of squared residuals ∑

𝑘
∑

𝜏 𝜖
2
𝑎,𝑘,𝜏 for all 𝑎 =

1,… , 𝑛𝑎. Unfortunately, this model can lead to inaccurate UQ if resid-
uals are correlated, with non-zero mean, and non-constant variance.
Furthermore, it does not provide a device-specific characterization of
3

degradation trajectories.
2.6.2. The random coefficient model
A random coefficient model is a particular type of regression model

with device-specific effects, see e.g. [43,44]. In this work, a RCM define
by solving a linear panel regression problem for all 𝑎 = 1,… , 𝑛𝑎 and
𝑘 = 1,… , 𝑛𝑠 a as follows [43]:

𝑦𝑎,𝑘,𝜏 = 𝜃𝑎,𝑘𝜓
𝑇 (𝐱𝑎,𝑘,𝜏 ) + 𝜖𝑎,𝑘,𝜏 , ∀𝑎 ∈ [𝑛𝑎], 𝑘 ∈ [𝑛𝑠], (9)

where 𝜃𝑎,𝑘 are regression parameters for the 𝑘 = 1,… , 𝑛𝑠 LED com-
ponents and for the 𝑎 = 1,… , 𝑛𝑎 stressors combinations. The RCM
parameters are obtained minimizing ∑

𝜏 𝜖
2
𝑎,𝑘,𝜏 for all 𝑎 = 1,… , 𝑛𝑎 and

𝑘 = 1,… , 𝑛𝑠. Then, realizations of 𝐿𝑝 are extrapolated by applying
Eq. (5). Then a Weibull distribution 𝐹𝐿𝑝,𝑎 (𝑡), 𝑎 = 1,… , 𝑛𝑎 are fit via
maximum likelihood estimation and characterize the natural variability
of lifetimes.

3. The proposed approach

Fig. 1 summarizes the proposed framework for quantifying aleatory
and epistemic uncertainties and making interval-valued LED lifetime
predictions. The process begins by collecting accelerated degradation
data (flux) and selecting a degradation threshold 𝑝. The longitudinal
samples in  are then transformed into interval-censored and right-
censored 𝐿𝑝 samples, as detailed in Section 4. If 𝐿𝑝 data is available,
typically when the lumen maintenance threshold 𝑝 is sufficiently large,
non-parametric models are used to characterize a set of distributions
for 𝐿𝑝. These models are described in the subsequent section. On the
other hand, if 𝐿𝑝 data is unavailable, which is often the case for lumen
maintenance thresholds 𝑝 < 0.9 in real-life applications, the new IPM
model is computed to generate interval-valued lifetime predictions.
These predictions are then compared to the baseline models introduced
in Section 2.6, and epistemic uncertainty is quantified using statistically
guaranteed bounds on the IPM’s error probability.

Note that IPMs equipped with a certificate of generalization error
have been applied to several real-life problems like, robust uncer-
tainty propagation [45], history matching [46], outliers removal [47],
interval-prediction of frequency response functions [48], and to study
crack growth with sparsely available fatigue data [49]. However, to the
authors’ best knowledge, IPMs for LED lifetime prediction and interval
prediction of lumen maintenance have not been investigated yet.

3.1. Non-parametric lifetime model

Non-parametric Kaplan–Meier (KM) and Probability-box (P-box)
survival models characterize the aleatory and epistemic uncertainty
in the lifetimes when 𝑝 is large and lifetime data available. For the
mathematical definitions and additional details, the reader is reminded
of the Appendix and [13,50–52]. Note that non-parametric models are
useful if a sufficient number of failure events are collected, e.g., for
high 𝑝 the likelihood of observing 𝐿𝑝 is higher hence allowing for a
more robust UQ that does not require parametric model assumptions.
On the other hand, lower thresholds 𝑝 parametric models are required
because of the almost complete unavailability of 𝐿𝑝 samples.

3.2. Physics-informed IPM for LED lifetime predictions

Simple regression models may fail to characterize accurately the
uncertainty affecting the long-term lumen maintenance and lifetime
of LEDs. To overcome this limitation, an IPM is proposed to identify
plausible ranges for the flux depreciation trajectories and lifetimes. The
model assigns to a vector of explanatory variables 𝐱 a range for the
dependent variables as follows [48]:
(𝐱; 𝜃) = [𝑓 (𝐱; 𝜃𝑙), 𝑓 (𝐱; 𝜃𝑢)] = [𝑓𝑙(𝐱), 𝑓𝑢(𝐱)]. (10)
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Fig. 1. A flowchart summarizing the structure of the proposed framework. The main novelty of this framework, i.e., the IPM model and epistemic UQ are highlighted in red color.
where the functions 𝑓𝑙(𝐱) = 𝑓 (𝐱; 𝜃𝑙) and 𝑓𝑢(𝐱) = 𝑓 (𝐱; 𝜃𝑢) characterization
of the uncertainty in the output and are defined by a linear combination
of fitting coefficients and basis as follows:

𝑓 (𝐱; 𝜃) = 𝜃𝜓𝑇 (𝐱) =
𝑛𝜃
∑

𝑘=1
𝜃𝑘𝜓𝑘(𝐱) (11)

where a basis function, i.e. the non-linear transformation 𝜓(𝑥), embed
within the model physical information of the degradation process. The
known exponential decay and accelerated Arrhenius models. The IPM
is uniquely identified by a vector of fitting coefficients 𝜃 = (𝜃𝑙 , 𝜃𝑢) ∈ R𝑛𝜃
and the variability in the flux depreciation trajectories is characteriza-
tion via a set of possible depreciation paths. The parameter vector 𝜃𝑙 ∈
R𝑛𝜃,𝑙 defined lower bounding function, 𝜃𝑢 ∈ R𝑛𝜃,𝑢 are fitting coefficients
for the function bounding the degradation process from above and the
total number of IPM parameters is given by 𝑛𝜃 = 𝑛𝜃,𝑙 + 𝑛𝜃,𝑢.

3.2.1. Basis functions
The selection of appropriate basis functions 𝜓 is a problem-depend-

ent task. In principle, the function must be sufficiently complex to
capture relevant dynamics in the degradation path and possibly embed
within the IPM physical knowledge of the ageing process and natural
variability in the data. In this work, basis functions are selected based
on the linearized flux depreciation model and defined as follows:

𝜓(𝐱𝑖) =
(

𝜓1,𝑖, 𝜓2,𝑖, 𝜓3,𝑖, 𝜓4,𝑖
)

=
(

1, ln(𝐼𝑖),
1
𝑇𝑖
, ln(𝑡𝑖)

)

, (12)

where 𝐱𝑖 = (𝑡𝑖, 𝑇𝑖, 𝐼𝑖) defines the 𝑖th sample for time, temperature, and
current. Hence, this selection for the basis functions leads to a total
number of IPM parameters 𝑛𝜃 = 8, where 𝑛𝜃,𝑙 = 𝑛𝜃,𝑢 = 4.

3.2.2. Identification approach
The IPM is identified by constraining the samples in  to lay

between the upper and lower bounds while optimizing a tightness
4

condition on (𝐱; 𝜃), [53]. In this work, the vector 𝜃 is identified by
solving the following optimization program:

𝜃⋆ = argmin
𝜃𝑢 ,𝜃𝑙 ∫

(𝜃𝑢 − 𝜃𝑙)𝜓𝑇 (𝐱) 𝑑𝑥

subject to

𝜃𝑙𝜓
𝑇 (𝐱) ≤ 𝜃𝑢𝜓

𝑇 (𝐱) ∀ 𝐱 ∈ 

𝑦𝑖 ≥ 𝜃𝑙𝜓
𝑇 (𝐱𝑖),

𝑦𝑖 ≤ 𝜃𝑢𝜓
𝑇 (𝐱𝑖), 𝑖 = 1,… , 𝑁

(13)

where 𝜃⋆ is the optimized parameters vector, 𝑁 is the number of sam-
ples (𝐱𝑖, 𝑦𝑖) ∈ , and the objective function defines the area between the
lower and the upper bound, proportional to the average width of the
bounding interval (𝐱; 𝜃) to be minimized. Note that each sample in the
data set defines two deterministic constraints in the optimization prob-
lem, one on the upper and one on the lower bounding function. The
last constraint ensures the dominance of the upper bound in prediction
region  , which is necessary for long-term extrapolation of 𝐿𝑝 for times
beyond the test duration. Optimization program (13) is linear in the
regression coefficients 𝜃 and a solution can be obtained very efficiently
using standard linear programming solvers. For further details on the
numerical implementation the interested reader is reminded to [48].

3.2.3. Statistical bounds on the error probability
The accuracy of the IPM is the probability of new samples falling

within the computed bounds as given by:

𝑃𝑎(𝜃) = P[(�̃�, �̃�) ∶ �̃� ∈ (�̃�; 𝜃)], (14)

where (�̃�, �̃�) is a new sample, i.e., a test condition �̃� and twice the
logarithm of the corresponding flux measurement �̃�. The violation
probability 𝑉 (𝜃) = 1 − 𝑃 (𝜃) defines the error probability of the IPM
𝑎
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Table 1
A summary of the .csv data sheets with table sizes, test duration, number of samples, number of distinct LED technologies, and number of
accelerated stressors. The data sets are available online at https://github.com/Roberock/Degradation-data-LED-packages-and-lamps.git.

Data ID Type 𝑛𝑡𝑒𝑐ℎ 𝑛𝑎 𝐻 ×103 𝑛𝑡 𝑛𝑠 Size Ref

1 IES-LM-80 25 ∈ [2, 12] ∈ [6, 18] ∈ [7, 19] ∈ [12, 30] [43105 × 9] [1,2]
2 IES-LM-80 1 5 10 ∈ [12, 20] ∈ [12, 30] [2454 × 12] [1,2]
3 Other 1 1 1.6 72 16 [1152 × 5] [55,56]
4 Other 1 1 2.16 10 5 [50 × 411] [57]
5 IES-LM-80 1 6 ∈ [6, 14] ∈ [13, 29] ∈ [19, 25] [3006 × 6] [58]
6 IES-LM-80 1 3 ∈ [6, 10] ∈ [7, 11] 25 [725 × 8] [58]
and a sample-based estimator is given by

𝑉 (𝜃) =
∑𝑛
𝑖=1 𝟏{�̃�𝑖 ∉ (�̃�𝑖; 𝜃)}

𝑛
,

where 𝟏{𝑐𝑖} is the indicator function for the event {𝑐𝑖} and 𝑛 is the
number of samples used for the estimation. In practice, the true 𝑉 (𝜃)
is always unavailable and a lack of validation samples further compli-
cates the analysis. In this work, a non-asymptotic and distribution-free
generalization error bound is defined as follows [54]:

P[𝑉 (𝜃⋆) ≤ 𝜖(𝑘,𝑁)] ≥ 𝜂,

where 𝜃⋆ is optimized in Eq. (13), 𝜂 is a confidence level, and 𝑁
denotes the number of samples used in the optimization. The bound
𝜖(𝑘,𝑁) is an upper bound on the reliability 𝑉 (𝜃⋆), i.e., a quantifier
of the epistemic uncertainty associated with the error probability. The
quantity 𝑘 represents the minimum number of data points required to
reproduce the optimum and relates to the complexity of 𝜃⋆ and for con-
vex programs such as (13), 𝑘 ≤ 𝑛𝜃 where 𝑛𝜃 is the number of regression
parameters. Therefore, 𝜖(𝑛𝜃 , 𝑁) provides a conservative bound on the
error probability of (𝐱; 𝜃⋆) and gets tighter, i.e., reduces the epistemic
uncertainty associated with the lifetime predictions, for larger 𝑁 and
simpler models, i.e., for lower 𝑛𝜃 and 𝑘. These bounds assume stationary
P and a consistency optimizer, e.g., see [54]. Nevertheless, specific
assumptions on the distribution family of the data are not required. It is
important to note that the bound is specifically defined for 𝜃⋆ optimized
from a random realization of a data set , making it a data-dependent
bound.

4. A novel database for LED reliability analyses

A new database has been compiled for the analysis of LED life-
time, consisting of six sets of constant-stress accelerated degradation
trajectories for high- and medium-power LED packages and lamps. The
database contains over 50 thousand measurements, covering 29 distinct
LED technologies obtained from accelerated reliability qualification
experiments, including LM-80 and other tests. The dataset includes both
high-power packages, operating at a normal current of 250–300 mA,
and mid-power LEDs with normal current ranging from 50 to 250 micro
Amperes. Its primary purpose is to serve as a testing and validation
platform for new LED reliability and durability assessment methods.

Table 1 provides a summary of the available data, including differ-
ent ageing and degradation indicators, test duration, sample sizes, LED
types, and thermoelectrical stress levels. The table lists the identifier for
each dataset, the number of LED technologies available (𝑛𝑡𝑒𝑐ℎ) and the
range of LED technologies covered (𝑛𝑎), the duration of the experiments
expressed in thousands of hours (𝐻), the number of samples for each
degradation trajectory (𝑛𝑡), and the number of tested devices for each
stress condition (𝑛𝑠𝑎𝑚). A size in tabular form for each dataset and
references are also supplied.

Similarly, in Table 2, available reliability performance indicators are
presented, including correlated color temperature (𝐶𝐶𝑇 ) and spectral
power density (𝑆𝑃𝐷). The table also indicates whether raw (non-
normalized) flux data is available as well as the availability of other
features, e.g., 𝐶𝐶𝑇 (0) at time 0 and whether one, both or none of the
stressors 𝑇 and 𝐼 are available.
5

Fig. 2. A graphical example illustrating the conversion of three flux degradation
trajectories into 𝐿𝑝 data and non-parametric P-boxes. The resulting p-boxes and
empirical distributions for the threshold levels 𝑝1 and 𝑝2 are represented by blue and
red lines, respectively.

A numerical procedure is designed to extract 𝐿𝑝 data from lon-
gitudinal lumen maintenance samples, i.e., from the normalized flux
measurements 𝜙(𝑡)

𝜙(0) . The procedure yields two data sets: (i) a collection
of point-valued 𝐿𝑝 samples and right-censoring indicators and, (ii) a
set of interval-censored and right-censored data for 𝐿𝑝. Data set (ii) is
computed by first selecting a depreciation threshold 𝑝 and identifying
time windows corresponding to the first passage time. If the window
exists, 𝐿𝑝 is interval-censored within this time interval, otherwise, the
sample of 𝐿𝑝 equals the test duration and a right-censoring indicator is
assigned.

Data set (i) is computed similarly to (ii) but assumes linear flux
between consecutive flux measurements and thus replaces the interval
data with a point-valued 𝐿𝑝. Note that (ii) is obtained directly from
the data without any assumption on the degradation paths between
consecutive measurements. The procedure is conceptually depicted in
Fig. 2 where the data from three degradation paths are converted into
a data set (i) and (ii) and then the empirical distributions and P-boxes
for 𝐿𝑝 are computed. Specifically, two flux depreciation thresholds 𝑝1
and 𝑝2 are selected and the corresponding distributions are displayed
in blue and red, respectively. Refer to the Appendix for two examples
of 𝐿𝑝 data (i) and (ii) extracted as previously described.

5. Analyses, results, and discussions

The uncertainty of both low-magnitude and high-magnitude flux de-
preciation events is quantified using parametric and non-parametric re-
liability models on the test data set (Section 4). The following analyses
are conducted on a local machine equipped with an Intel(R) Core(TM)
1.80 GHz processor and 32 GB RAM, using MATLAB (R2022b) and a
modified version of the software package [48], which incorporated the
linprog function for IPM identification.

https://github.com/Roberock/Degradation-data-LED-packages-and-lamps.git
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Table 2
A summary of the measured response variables, accelerating factors and other device-specific parameters. Availability of raw data (✓), or if
only normalized flux is available is also reported.
Data ID LED type Degradation indicator Stressors Other features Raw data

1 MP/HP package 𝜙(𝑡) 𝑇 , 𝐼𝐹 Material, Die, 𝐶𝐶𝑇 (0) –
2 MP package 𝜙(𝑡) , 𝛥𝑢′𝑣(𝑡) 𝑇 , 𝐼𝐹 𝐶𝐶𝑇𝑥,𝑦(0), 𝜙(0), 𝑉𝑓 (0) ✓

3 HP package 𝜙(𝑡) , 𝛥𝑢′𝑣(𝑡) – – –
4 Lamp 𝜙(𝑡) , 𝛥𝑢′𝑣(𝑡), 𝑆𝑃𝐷(𝑡), 𝐶𝐶𝑇 (𝑡) 𝑇 – ✓

5 HP package 𝜙(𝑡) 𝑇 , 𝐼𝐹 – –
6 HP package 𝜙(𝑡) 𝑇 𝜙(0), 𝑉𝑓 (0) ✓
Fig. 3. The KM estimate and confidence bounds on the reliability function for 𝐿0.97 and for 𝑇 = 105 Celsius and 𝐼 = 350 [𝑚𝐴]. The linear interpolation data in Table 5 is presented
y blue curves whilst the probability box derived from interval-censored data (and confidence bounds) are displayed by black and red lines, respectively.
.1. Non-parametric KM and P-box models

The uncertainties in low-magnitude degradation events are quanti-
ied using a lumen maintenance threshold of 𝑝 = 0.97, i.e., a maximum
% lumens depreciation. Data for 𝐿0.97 is obtained from data set
D 1 under stress conditions of 105 Celsius and 350 mA. The KM
nd P-box estimators, computed without relying on parametric model
ssumptions, are obtained from the censored data in Table 5 and
able 6, respectively. Fig. 3 shows the resulting KM (solid and dashed
lue line) and P-box (solid black lines) reliability estimators with their
5% confidence regions, respectively, in blue and red. Note that the
lack P-box accounts for measurement imprecision caused by interval
ensoring, while the confidence region in red considers also epistemic
ncertainty from lack of samples. Analyzing the confidence regions, we
ind that at hour 500, the KM estimator bounds the probability of lumen
etained flux higher than 97% between 0.45 and 0.828. In contrast,
he P-box indicates a probability range of 0.28 to 0.956. The KM
stimate’s confidence interval lies within the P-box and is tighter, indi-
ating lower uncertainty. This discrepancy arises from the assumptions
ade on flux degradation paths, such as linear interpolation between
easurements, necessary for computing point-valued 𝐿𝑝 realizations

nd the KM estimate. This result highlights how unwarranted assump-
ions can lead to underestimated uncertainty and potentially incorrect
onclusions regarding 𝐿𝑝. Similar analyses are conducted for other 𝑝
evels (0.98, 0.97, and 0.96) and data sets. However, the epistemic
ncertainty (width of confidence region) bounds remain unaffected.
onger test durations can decrease right-censoring rates and enhance
he non-parametric characterization of 𝐿𝑝, however, to reduce the epis-
emic uncertainty, larger sample sizes and more frequent measurements
ithin shorter measurement windows(lower interval-censoring) may be

equired. Practical and industrial constraints, such as budget and time
imitations, often make this challenging to achieve.

.2. Results for the TM-21 and RCM

The baseline models in Section 2.6 are applied to the data ID 1
o predict the 𝐿 of LED type 1 for three different thresholds 𝑝 =
6

𝑝

Fig. 4. Probability plots for the Weibull lifetime distributions 𝐹𝐿0.9
, 𝐹𝐿0.8

, and 𝐹𝐿0.7
. The

four selected (𝑇 , 𝐼) combinations are displayed in the four panels.

0.7, 0.8, 0.9. The data consist of 𝑛𝑎 = 9 combinations of temperature and
current, along with 25 degradation paths for each condition. Following
the TM-21/28 recommendations, burn-in data is discarded, and only
measurements taken after 5000 h are considered if at least 10000 h of
test data are available. The TM-21 approach, represented by Eq. (8),
produces nine models, one for each stressor combination, whilst the
RCM in Eq. (9), yields 225 models. The TM-21 model extrapolates 𝐿𝑝
and lower confidence bounds at a 95% confidence level attained by
assuming normally distributed residuals. The RBC model yeld 25 × 9
lifetimes extrapolations a Weibull distribution 𝐹𝐿𝑝,𝑎 computed for all
𝑎 = 1,… , 9 and 𝑝 = 0.7, 0.8, 0.9. Fig. 4 presents the Weibull’s probability
plot for 4 accelerated conditions (sub-panels) and the markers indicate
the extrapolated 𝐿𝑝 values. Although Weibull distributions generally fit
the data well for high values of the stressors, they provide a poorer fit
at lower stress levels and particularly on the tails of the distribution.
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Table 3
A comparison between the lower bounds on the 𝐿𝑝 predictions of the TM-21 model, RCM and the proposed IPM for 𝑝 = 0.9, 0.8, and 0.7. Each
row corresponds to one of the nine available accelerated stress levels.

TM-21 RCM + Weibull IPM

𝐿0.9 𝐿0.8 𝐿0.7 𝐿0.9 𝐿0.8 𝐿0.7 𝐿0.9 𝐿0.8 𝐿0.7

𝑇 [◦C] 𝐼 [𝑚𝐴] [ℎ] × 105

57 100 >10 >10 >10 >10 >10 >10 >10 >10 >10
88 100 6.36 >10 >10 4.40 9.40 >10 0.25 5.88 >10
107 100 0.17 3.22 >10 0.03 3.37 8.95 0.07 0.41 3.64
57 150 >10 >10 >10 >10 >10 >10 >10 >10 >10
88 150 1.55 >10 >10 2.61 8.40 >10 0.19 2.54 >10
107 150 0.31 >10 >10 0.056 >10 >10 0.17 >10 >10
57 200 4.09 >10 >10 3.76 9.08 >10 0.28 3.95 >10
88 200 0.22 1.64 >10 0.068 1.68 9.50 0.13 0.71 5.68
107 200 0.11 0.62 4.24 0.066 0.35 5.50 0.05 0.155 0.47
Fig. 5. The IPM lumen depreciation bounds, the black marked lines, and the results
of the random coefficient model, the solid red lines, for three accelerated conditions
in the sub-panels. The blue markers display the normalized flux data (set ID 1) used
to fit both models.

It is worth noting that while the shape of the data distribution may be
similar for different 𝑝 values, the variance of the distribution noticeably
increases for higher 1 − 𝑝 and (𝐼, 𝑇 ) combinations. This indicates non-
constant flux variance across time and in the space of accelerating
factors.

5.2.1. Interval-valued 𝐿𝑝 predictions
The IPM is applied to the flux decay data, and the samples with

𝑡 > 5000 hours define the constraints in program (13). The identification
method produces two bounding functions on the flux decay trajectories,
and the optimal 𝜃⋆ defines the bounds. As intended, the IPM fully
envelops the data, with 𝑓𝑢 ≥ 𝑓𝑙 in the prediction region. Fig. 5 presents
the optimized IPM (𝑥; 𝜃⋆) (black marked lines) for three acceleration
7

levels, while the blue markers display the available flux data. The red
curves show the results of the random coefficient model used in the
previous section to extrapolate service life and characterize the 𝐿𝑝
distributions. It is noteworthy that the regression band is generally
wider for high 𝑇 and 𝐼 , indicating higher variability and non-constant
variance in the space of accelerating factors. The last nine rows of
shows the lower 𝐿𝑝 prediction obtained inverting 𝑓𝑙(𝑥; 𝜃⋆) for 𝑝 = 0.9,
0.8, and 0.7, along with the nine stress levels. Similar to the results
of traditional probabilistic approaches, low acceleration rates lead to
𝐿𝑝 > 106, suggesting higher durability of this LED. On the other
hand, high temperatures substantially accelerate the flux decay process,
resulting in a shorter lumen maintenance life. For instance, the stress
level (𝑇 , 𝐼) = (107, 0.20) has a 𝐿0.7 bound of 4.7 × 104 h.

5.2.2. Epistemic UQ and error bounds
The robustness and epistemic uncertainty in the interval model,

(𝐱; 𝜃⋆), are evaluated by assessing the error bound in Section 3.2.3.
The IPM has 𝑛𝜃 = 8 regression parameters (see Eqs. (7)) and because
program (13) is linear (convex) the a-posteriori complexity of the model
bounded by 𝑘 ≤ 8. The combination of model complexity and the
number of training samples allows for obtaining an upper bound on
the error probability. Table 4 displays the bounds 𝜖(𝑘,𝑁) computed
for a confidence level of 𝜂 = 0.999, with different sample sizes,
𝑁 , and model complexities, 𝑘. The chosen confidence level is very
high, indicating a nearly certain probabilistic robustness guarantee.
Due to the model having eight support scenarios, the error probability
𝑉 (𝜃⋆) ≤ 0.9418 if 𝑁 = 10 samples are used to identify the IPM and
it lower to 𝑉 (𝜃⋆) ≤ 0.443 for 𝑁 = 25. The former bound approaches
a non-informative interval due to the small sample size compared
to the model complexity, resulting in high epistemic uncertainty. On
the other hand, the model guarantees improve significantly for larger
sample sizes and simpler models (lower 𝑘). For example, the violation
probability bound tightens to 𝑉 (𝜃⋆) ≤ 0.0520 for 𝑁 = 225 and 𝑘 = 8.
Furthermore, if a simpler model with 𝑘 = 2 is chosen, the violation
probability bound improves even further to a value of 0.0150. In other
words, a simple interval model with 𝑘 = 2 (i.e., a linear model) trained
with 𝑁 = 225 degradation paths can guarantee that at least 98.5%
of future flux degradation paths will fall within the predictive strip.
Conversely, if the model is more complex (𝑘 = 8) and trained with
fewer samples (𝑁 = 25), the accuracy bound deteriorates to 55.70%.
As expected, lower epistemic uncertainty can be achieved with higher
sample sizes. However, the complexity of the model also plays a role,
as more complex models are generally less guaranteed due to their
increased susceptibility to overfitting the data.

6. Conclusions and future research

This study introduced a novel framework for uncertainty quantifica-
tion and lifetime predictions of light-emitting diodes (LEDs). Parametric
and non-parametric models were used to characterize both aleatory
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Table 4
Probabiltiy bounds 𝜖(𝑘,𝑁) computed using the Wait-and-Judge method [54], assuming a very high confidence 𝜂 = 0.999 and for different
samples sizes, 𝑁 , and different a-posteriori (data-dependent) complexity, 𝑘.
Reliability bound 𝜖(𝑘,𝑁) for a confidence level 𝜂 = 0.999

Complexity Sample size

𝑁 = 10 𝑁 = 25 𝑁 = 50 𝑁 = 75 𝑁 = 100 𝑁 = 150 𝑁 = 200 𝑁 = 225

𝑘 = 2 0.3215 0.1328 0.0671 0.0449 0.0337 0.0225 0.0169 0.0150
𝑘 = 3 0.4532 0.1901 0.0964 0.0646 0.0485 0.0324 0.0243 0.0216
𝑘 = 4 0.5733 0.2444 0.1244 0.0834 0.0627 0.0419 0.0315 0.0280
𝑘 = 5 0.6831 0.2965 0.1515 0.1017 0.0765 0.0512 0.0385 0.0342
𝑘 = 6 0.7824 0.3469 0.1779 0.1195 0.0900 0.0602 0.0453 0.0402
𝑘 = 7 0.8698 0.3956 0.2037 0.1370 0.1032 0.0691 0.0519 0.0462
𝑘 = 8 0.9418 0.4430 0.2290 0.1542 0.1162 0.0778 0.0585 0.0520
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and epistemic uncertainty associated with various lumen depreciation
levels. The framework was validated using real-world data from LM-80
accelerated stress tests. The results confirmed that the variance of the
degradation trajectories is non-constant, both in terms of acceleration
factors and over time, and that lumen maintenance predictions can still
exhibit high levels of uncertainty, even for low-magnitude depreciation
events. A linear model was established to link accelerated tempera-
ture and scale parameters of Weibull lifetime distributions, showing
consistent results across twenty-five LED technologies. A comparison
between the proposed interval prediction model and a well-established
model indicated a comparable accuracy, with enhanced uncertainty
quantification capabilities. Also, note that the IPM can capture the
overall degradation trend in a group of LEDs but it cannot predict future
trends in the degradation of specific devices, i.e., it does not account
for variations and individual characteristics of specific devices.

Hybrid PHM frameworks that combine AI with advanced uncer-
tainty quantification capabilities hold great promises for the future of
the lighting industry. However, the effective deployment of AI models
for LED prognostics faces many challenges, e.g., limited availability of
degradation data, unlabeled failures, and a lack of dedicated pipelines
for data storage, cleaning, and processing. Future research should focus
on better exploiting historical and monitoring data, and on integrat-
ing complex physics-based models into physics-informed AI pipelines.
There is a need to explore new models that can assess interaction
effects between multiple stressors, quantify aleatory and epistemic
uncertainties while predicting future LED-specific degradation paths.
These innovative digital twin solutions, possibly embedding new degra-
dation indicators, feature extraction tools, and efficient data collection
strategies, are necessary to advance the state-of-the-art concerning LED
lifetime prediction and uncertainty quantification.
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Appendix. Parametric and non-parametric reliability models

Methods that do not assume a specific reliability distribution family
are known as non-parametric (or distribution-free) methods whilst a
parametric method assumes a family for a lifetime distribution, 𝐹 (𝑡; 𝜃).
The reliability function is defined as 𝑅(𝑡; 𝜃) = 1 − 𝐹 (𝑡; 𝜃).

ikelihood estimation from censored data

By assuming iid lifetimes of the 𝑛 items, the likelihood for type-II
ight-censored observations is defined as follows:

(𝑡1,… , 𝑡𝑛; 𝜃) =
𝑛!

(𝑛 − 𝑘)!

( 𝑘
∏

𝑖=1
𝑓 (𝑡𝑖; 𝜃)

)

𝑅(𝑡𝑘; 𝜃)𝑛−𝑘. (15)

ote that for type-I censoring, the number of failed items 𝑘 is random
hile the experiment duration is fixed and equal to 𝐻 . For interval-

ensored observations, 𝑡𝑖 ∈ [𝑎𝑖, 𝑏𝑖], a likelihood function that combines
nterval-censored and right-censored data is given by:

(𝑡1,… , 𝑡𝑛; 𝜃) ∝

( 𝑛
∏

𝑖=1
𝑓 (𝑡𝑖; 𝜃)𝛿1,𝑖

)

×

( 𝑛
∏

𝑖=1
(𝐹 (𝑏𝑖; 𝜃) − 𝐹 (𝑎𝑖; 𝜃))𝛿2,𝑖

)( 𝑛
∏

𝑖=1
𝑅(𝐻 ; 𝜃)𝛿3,𝑖

)

, (16)

here 𝛿1, 𝛿2, 𝛿3 are (censoring) indicators for point-valued 𝑥𝑖, interval-
ensored, 𝑡𝑖 ∈ [𝑎𝑖, 𝑏𝑖], or type I right-censored data 𝑡𝑖 > 𝐻 , respectively.

on-parametric Kaplan–Meier estimator

The non-parametric Kaplan–Meier estimator is used to characterize
he reliability function from lifetime data with independent random
ensoring, i.e., from 𝑛 pairs {𝑡′𝑖 , 𝛿𝑖}

𝑛
𝑖=1 where 𝛿 are right-censoring

ndicators and 𝑡′ are time-to-failure data. The KM estimator is given
y [50]:

̂(𝑡) =
∏

𝑗∶𝑡𝑗≤𝑡

𝑟𝑗 − 𝑑𝑗
𝑟𝑗

=
∏

𝑗∶𝑡𝑗≤𝑡

(

1 −
𝑑𝑗
𝑟𝑗

)

, (17)

where 𝛿𝑖 = 1 indicate a failure occurrence and 𝛿𝑖 = 0 a censored
observation, 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘 are unique ordered values of 𝑡′1,… , 𝑡′𝑛

∑𝑛 𝛿 𝟏{𝑡′ = 𝑡 } and 𝑟 =
∑𝑛 𝟏{𝑡′ ≥ 𝑡 }.
and 𝑑𝑗 = 𝑖=1 𝑖 𝑖 𝑗 𝑗 𝑖=1 𝑖 𝑗
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Table 5
This table presents the time-to-first-first passage and right-censoring indicators for a 𝑝 = 0.97 depreciation threshold, the data set with ID 5,
and by assuming linear interpolation between consecutive measurements.

𝑝 = 0.97

𝑇 [◦C] 55 85 85 105 85 105 55 85 85 105 85 105
𝐼 [A] 0.5 0.5 0.75 0.35 0.25 0.25 0.5 0.5 0.75 0.35 0.25 0.25

ID Time-to-event 𝐿𝑝 [h] (from the interpolation) Right-censoring indicator

1 3444.0 4516.2 3356.1 1486.4 3956.4 1225.3 0 0 0 0 0 0
2 9942.5 6757.9 3415.2 1209.6 2196.0 1959.3 0 0 0 0 0 0
3 3143.4 4314.7 1768.3 11 000.0 13 500.0 14 000.0 0 0 0 1 1 1
4 2989.0 6552.0 1024.8 144.8 4506.7 1450.3 0 0 0 0 0 0
5 2948.9 4302.4 1556.0 161.5 7807.9 1197.0 0 0 0 0 0 0
6 6012.0 4852.0 1670.1 1496.6 1985.3 2308.9 0 0 0 0 0 0
7 4032.0 10 399.7 344.8 1523.7 8852.2 9558.0 0 0 0 0 0 0
8 2833.6 10 251.1 1663.2 159.5 8946.0 1449.0 0 0 0 0 0 0
9 10 080.0 9937.4 555.7 11 000.0 4413.7 2160.0 1 0 0 1 0 0
10 5555.0 3745.1 6048.0 161.5 13 500.0 14 000.0 0 0 1 0 1 1
11 3449.6 11 000.0 6048.0 2720.3 5242.8 147.4 0 1 1 0 0 0
12 9001.6 4748.0 3897.6 11 000.0 4506.4 2450.5 0 0 0 1 0 0
13 3976.6 988.5 4421.2 6821.3 13 500.0 13 407.9 0 0 0 0 1 0
14 6517.2 4923.2 1504.9 150.9 2384.6 7692.6 0 0 0 0 0 0
15 3764.4 3598.3 4439.1 1008.0 8531.3 2772.0 0 0 0 0 0 0
16 8991.5 2499.6 6048.0 737.7 1825.1 2386.5 0 0 1 0 0 0
17 5796.0 8327.0 4278.4 496.1 13 500.0 12 940.5 0 0 0 0 1 0
18 3658.1 916.9 6048.0 2796.7 13 500.0 14 000.0 0 0 1 0 1 1
19 10 080.0 7803.5 6048.0 2695.8 1808.7 1864.5 1 0 1 0 0 0
20 4880.8 4004.0 6048.0 1008.0 13 500.0 0 0 1 0 1
21 2114.0 6048.0 378.0 0 1 0
22 3612.0 164.7 532.2 0 0 0
23 2797.2 6048.0 7015.1 0 1 0
24 1309.2 6048.0 734.3 0 1 0
25 9112.6 6048.0 427.6 0 1 0
Table 6
A table of interval- and right-censored flux depreciation events for a failure threshold of 𝑝 = 0.97, data set ID 5, and without any assumption
on the flux depreciation trajectories in-between measurements.

𝑝 = 0.97

𝑇 [◦C] 55 85 85 105 85 105
𝐼 [A] 0.5 0.5 0.75 0.35 0.25 0.25

ID Time-to-event 𝐿𝑝 [h] (interval-censored and right-censored)

1 3024 3528 4032 4536 3024 3528 1008 1512 3528 4032 1008 1512
2 9576 10080 6552 7056 3024 3528 1008 1512 2016 2520 1512 2016
3 3024 3528 4032 4536 1512 2016 11000 Inf 13500 Inf 14000 Inf
4 2520 3024 6048 6552 1008 1512 0 168 4032 4536 1008 1512
5 2520 3024 4032 4536 1512 2016 0 168 7560 8064 1008 1512
6 5544 6048 4536 5040 1512 2016 1008 1512 1512 2016 2016 2520
7 3528 4032 10080 10500 168 1008 1512 2016 8568 9072 9072 9576
8 2520 3024 10080 10500 1512 2016 0 168 8568 9072 1008 1512
9 10080 Inf 9576 10080 168 1008 11000 Inf 4032 4536 2016 2520
10 5544 6048 3528 4032 6048 Inf 0 168 13500 Inf 14000 Inf
11 3024 3528 11000 Inf 6048 Inf 2520 3024 5040 5544 0 168
12 8568 9072 4536 5040 3528 4032 11000 Inf 4032 4536 2016 2520
13 3528 4032 168 1008 4032 4536 6552 7056 13500 Inf 13000 13500
14 6048 6552 4536 5040 1008 1512 0 168 2016 2520 7560 8064
15 3528 4032 3528 4032 4032 4536 168 1008 8064 8568 2520 3024
16 8568 9072 2016 2520 6048 Inf 168 1008 1512 2016 2016 2520
17 5544 6048 8064 8568 4032 4536 168 1008 13500 Inf 12500 13000
18 3528 4032 168 1008 6048 Inf 2520 3024 13500 Inf 14000 Inf
19 10080 Inf 7560 8064 6048 Inf 2520 3024 1512 2016 1512 2016
20 4536 5040 3528 4032 6048 Inf 168 1008 13500 Inf
21 2016 2520 6048 Inf 168 1008
22 3528 4032 0 168 168 1008
23 2520 3024 6048 Inf 6552 7056
24 1008 1512 6048 Inf 168 1008
25 9072 9576 6048 Inf 168 1008
9
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Non-parametric empirical P-boxes
A P-box defines a lower and upper CDF [𝐹 (𝑥), 𝐹 (𝑥)] and can be

parametric or non-parametric, depending on whether the family for
𝐹 (𝑥) is specified or not. A non-parametric P-boxes is built from interval-
censored lifetime data as follows:

𝐹 (𝑡) = 1
𝑛

𝑛
∑

𝑖=1
𝟏𝑏𝑖≤𝑡 , �̂� (𝑡) = 1

𝑛

𝑛
∑

𝑖=1
𝟏𝑎𝑖≤𝑡 , (18)

where 𝑎𝑖 and 𝑏𝑖 are lower and upper bounds of interval-censored data.
For a mixture of interval- and right-censored data, two KM estimation
on the sets of lower and upper bounds allows obtaining a P-box for the
reliability function, i.e., [�̂�(𝑡), �̂�(𝑡)]. The interested reader is reminded
o [51] for more details on methods to construct P-boxes from censored
ata.

ensored 𝐿𝑝 data

Table 5 shows an example of survival data (i) extracted as described
n Section 4 from the dataset ID 5 and by selecting a very high threshold
= 0.97. The columns show the outcomes for the six accelerated stress

evels. Table 6 shows an example of survival data (ii) for the same data
ut without any assumption on the degradation trajectories. For each
ample, only intervals on the 𝐿𝑝 are available and inf values indicate
right-censored failure event.
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