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Lazy Lagrangians for Optimistic Learning With
Budget Constraints

Daron Anderson , George Iosifidis , and Douglas J. Leith , Senior Member, IEEE

Abstract— We consider the general problem of online con-
vex optimization with time-varying budget constraints in the
presence of predictions for the next cost and constraint func-
tions, that arises in a plethora of network resource manage-
ment problems. A novel saddle-point algorithm is designed
by combining a Follow-The-Regularized-Leader iteration with
prediction-adaptive dynamic steps. The algorithm achieves
O(T (3−β)/4) regret and O(T (1+β)/2) constraint violation
bounds that are tunable via parameter β ∈ [1/2, 1) and
have constant factors that shrink with the predictions quality,
achieving eventually O(1) regret for perfect predictions. Our
work extends the seminal FTRL framework for this new OCO
setting and outperforms the respective state-of-the-art greedy-
based solutions which naturally cannot benefit from predictions,
without imposing conditions on the (unknown) quality of predic-
tions, the cost functions or the geometry of constraints, beyond
convexity.

Index Terms— Network control, network management,
resource allocation, online convex optimization (OCO), online
learning.

I. INTRODUCTION

THE online convex optimization (OCO) framework intro-
duced in [1] is employed to solve various learning

problems in networks, ranging from spam filtering, to data
caching [2], network routing [3] and flow control [4], among
others. At each round t an algorithm selects an action xt from
a convex set X ⊂ R

N and incurs cost ft(xt), where the
convex function ft : X �→ R is revealed after xt is decided.
The algorithm’s performance is measured using the metric of
regret:

RT =
�T

t=1

�
ft(xt) − ft(x�)

�
, (1)

which quantifies the difference of the total cost from
that of the best action selected with hindsight x� ∈
arg minx∈X

�T
t=1 ft(x). The goal is to select actions {xt}

that ensure sublinear regret, i.e., RT = o(T ).
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A practical extension of this setting is the constrained
OCO framework, where the actions must satisfy long-term
constraints of time-varying functions:

gt(x) =
�
g
(1)
t (x), g(2)

t (x), . . . , g(d)
t (x)

�
� 0,

which are unknown when xt is decided. In this case we are
additionally interested in achieving sublinear total constraint
violation, VT = o(T ), where:

VT =
��� ��T

t=1 gt(xt)
	
+

���. (2)

Constrained OCO algorithms have applications in the con-
trol of capacitated communication systems; various network
queuing problems [5]; and network management with multiple
constraints and performance criteria [6]. Nevertheless, these
problems are notoriously hard to tackle. In particular, [7]
showed that no algorithm can achieve sublinear regret and
constraint violation relative to the ideal benchmark:

x� ∈ Xmax
T =



x ∈ X

��� �T
t=1 gt(x) � 0

�
.

Subsequent works considered instead benchmarks that respect
the constraints for short time windows [8]; dynamic bench-
marks {x�

t } that satisfy separately each t-round constraint
gt(x�

t )�0 [6], [9]; or benchmarks [10], [11] restricted in:

XT =


x ∈ X

��� gt(x) � 0, ∀t ≤ T
�
.

Special cases of XT are considered in [12], [13], [14], and
[15] where gt(x) = g(x), ∀t; and in [16] which focuses on
linearly-perturbed constraints gt(x) = g(x) + bt.

An aspect that has received less attention, however,
is whether constrained OCO algorithms can be assisted by
predictions for the next-round functions ft and gt. Such
information can be provided by a pre-trained model that uses
incomplete data and hence cannot be fully trusted – yet, can
still assist the online algorithm. Leveraging predictions to
improve learning algorithms is attracting increasing interest
and has many practical applications, e.g., in data caching [17];
online rent-or-buy problems [18]; and in scheduling algo-
rithms [19], among other areas. In this context, a key challenge
is that the predictions might exhibit time-varying and unknown
accuracy, which, furthermore, may vary across the cost and
constraint functions. This confounds their incorporation in
online learning algorithms and raises the question: how much
can predictions improve the performance of constrained OCO
algorithms and how can we accrue these benefits in the pres-
ence of inaccurate, potentially even adversarial, predictions?

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Block diagram of dynamic and adaptive network control solutions
with prediction-assisted online learning.

Our goal is to tackle this question by developing a frame-
work that brings together online learning [20] and data-driven
(prediction-based) network management solutions, Fig. 1.

A. Background and Related Work

Early works studying the impact of predictions include [21]
and [22] which considered linear costs ct = ∇ft(xt) and
predictions c̃t with guaranteed correlation c̃�t ct ≥ α�ct�2.
These predictions improve the regret from O(

√
T ) to

O(log T ). Reference [23] considered the case when at
most B of the predictions fail the correlation condition and
provided an O�(1+

√
B)/α) log(1+T−B)

�
regret algorithm,

that was further extended to combine multiple predictors [24].
However, these prior models assume X is time-invariant.
A different line of works use adaptive regularizers and define
prediction errors εt = �ct − c̃t� to obtain O��t ε

2
t

�
regret

bounds [25], [26]. We adapt these methods to time-varying
constraints (xt ∈ XT ) where we incorporate predictions for
the cost and constraint vectors.

From a network management perspective, the availability
of predictions is common in wireless networks and (mobile)
computing systems and several works use deep learning or
other function approximators [27] to predict fτ , gτ for τ ≥ t
and select a better xt [28], [29]. And predictions have been
previously included in stochastic optimization algorithms [30],
[31], which however assume the requests and system pertur-
bations are stationary. Similarly, prior works using predictions
in online learning [32], [33], [34], do not adapt to the
predictions’ quality nor consider budget or other time-varying
constraints, i.e., operate w.r.t. a fixed set X . If a learner has
access to perfect predictions, then it might be possible to use
them directly in order to select a better action.1 Nonetheless,
the problem becomes fundamentally different when the predic-
tions have unknown and/or time-varying accuracy. This, more
general setting requires the learner to adapt to predictions.
To that end, we focus here on the richer constrained OCO
problem where {xt} are also subject to time-varying budget
constraints (x ∈ XT ) for an unknown horizon T . We place no
assumptions on the predictions accuracy, the geometry of set
XT or the functions {ft, gt}, beyond being convex.

Technically, our approach benefits from a novel “lazy”
update that aggregates all previous cost and constraint vec-
tors and uses data-driven steps that adapt to prediction
errors. In particular, we build on FTRL, cf. [35], which
we extend with time-varying accumulated constraints — a
result of independent interest. Previous greedy-based algo-
rithms for time-varying budget constraints and benchmarks in
XT include [8], [10] which achieve RT = O(

√
T ), VT =

1E.g., one could use a simple iteration xt = argming̃t(x)≤0 f̃t(x), which
however will yield arbitrarily bad performance for imperfect predictions.

TABLE I

x� BELONGS IN X AND SATISFIES gt(x�) � 0,∀t. FOR THE ALGORITHMS
WITH TUNABLE BOUNDS WE PRESENT THE BEST ACHIEVABLE W.R.T.
RT , WHILE [6] USES DYNAMIC REGRET AS [40], [41], AND [39]

O(T 3/4) assuming fixed and known horizon2 T ; [16] that
offers RT ,VT = O(

√
T ) but confines the constraints to be

linearly-perturbed; [37] which studies a similar setup with spe-
cific switching-actions constraints; [11], [38] with RT ,VT =
O(

√
T ) that restrict the constraints to be i.i.d. stochastic or

non-positive over a common subset space; and [6], [39], [40],
[41] which achieve sublinear bounds w.r.t. t-slot benchmark
{x�

t }t (dynamic regret) under additional assumptions on the
variability of the functions, and by knowing several problem
parameters. We note that dynamic regret bounds, although
more refined, they cannot attain sublinear rates in the general
case. We summarize how our work compares to prior works
in Table I.

It is important to stress that none of those approaches can
benefit from predictions, and hence their performance does
not improve even if the costs and constraint functions are
predictable. On the contrary, our approach ensures improved
learning performance whenever good predictions are available.

B. Contributions

We study the general constrained OCO problem where in
round t our algorithm, which we name LLP (Lazy Lagrangians
with Predictions), has access to all prior cost gradients
{∇fi(xi)}t−1

i=1 and constraints {gi(x)}t−1
i=1 , and receives pre-

dictions g̃t(x̃t), ∇f̃t(x̃t) and g̃t(·). After selecting xt, LLP
incurs cost ft(xt) and violation gt(xt), and the process repeats
in the next round. Our first result, Theorem 1, presents the
regret and constraint violation bounds and demonstrates how
they benefit from predictions. Theorem 2 characterizes the
(tunable) growth rates of the bounds and exhibits their depen-
dency on the accumulated prediction errors. Theorem 3 and
Lemma 3 present the respective bounds when LLP employs
fully-linearized cost and constraint functions and non-proximal
regularizers, cf. [35], in order to reduce its computation and
memory requirements. For this linearized version, it suffices
to have gradient predictions ∇g̃t(x̃t) instead of g̃t(·). Indeed,
in some practical problems it might be easier to obtain such

2We note that the doubling trick cannot be trivially applied in OCO with
budget constraints, as it deteriorates the bounds; see discussion in [36].
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predictions (single vectors) compared to predictions for the
entire constraint function; but we note that this is not always
the case3; LLP can handle both scenarios. Finally, Lemma 4
presents LLP’s performance for linearly-perturbed constraints,
a special but important case that was studied in [16].

The performance of LLP is summarized in Table I.
It achieves RT = O(T

3−β
4 ) and VT = O(T

1+β
2 ) for worst-

case (or, no) predictions, which are tunable through parameter
β ∈ [1/2, 1). For instance, with β = 1/2, we obtain RT =
O�T 5/8

�
and VT = O�T 3/4

�
, that are further reduced to

RT ,VT = O(
√
T ) when −RT = O(

√
T ), i.e., when {xt}

does not outperform x� by more than that. With perfect
predictions, LLP achieves RT = O(1), VT = O(T

1+β
2 )

which are tunable via β ∈ [0, 1); while for linearly-perturbed
constraints (as in [16]) LLP ensures RT = O(

√
T ) and

VT = O(T 5/8). These results improve previously-known
bounds for the general OCO problem with time-varying budget
constraints, i.e., without imposing assumptions such as strong
convexity of functions and domains, or knowing the horizon T .
And they include as special cases the benchmarks with static
or stationary constraints of [11], [12], [13], [14], and [36].
Importantly, unlike all prior constrained-OCO algorithms, the
constant factors of RT and VT shrink proportionally to the
predictions’ accuracy. This is, probably, the most important
advantage of LLP compared to all prior works which, even
though in some special cases attain better theoretical bounds,
they cannot benefit from predictions.

We believe these results pave the road for extending the
seminal network utility maximization (NUM) framework [42],
[43] with robust learning techniques which seamlessly encom-
pass any available predictions of unknown quality.

C. Assumptions and Notation

We write {xt} for a sequence of vectors and use subscripts
to index them; � · � denotes the Euclidean (�2) norm and
[x]X , [x]+ the �2-projection of x on sets X and R

N
+ . We use

the index function IX (x)=0 if x∈X and IX =∞, otherwise.
Vector ct denotes the gradient ∇ft(xt) of ft or an element
of its subdifferential ϑft(xt) if it is non-differentiable; and
∇gt(x) denotes the Jacobian of the vector-valued constraint.
We use the shorthand notation c1:t for

�t
i=1 ci, and ãt for the

prediction of some vector (or, function) at.
The analysis requires the following basic assumptions.

A1. The set X ⊂ R
N is convex and compact, and it holds

�x� ≤ D, ∀x ∈ X .
A2. Functions ft, g

(j)
t : X �→ R, ∀t, j ≤ d, are convex and

Lipschitz with constants Lft ≤ Lf , Lgj
t
≤ Lg. Since X is

compact it holds |ft(x)|≤F , �gt(x)�≤G, ∀t, x∈X .
A3. Predictions c̃t, g̃t(·) and g̃t(x̃t) are known at t.
A4. The prediction errors εt �ct− c̃t, δt �∇gt(xt)−∇g̃t(xt)
are bounded: �εt�≤Em, �δt�≤Δm, ∀xt ∈ X ; and it holds
�c̃t� ≤ Lf , �g̃t(x)� ≤ G, ∀t, x ∈ X .

3As an example, consider the problem where gt(x) is the energy spent due
to wireless transmission at rate x. Then, predicting g̃t(·) requires simply to
know the channel state, while predicting ∇g̃t(x̃t) requires also to know the
actual transmitted rate in the next slot x̃t.

Fig. 2. Key steps, timing and predictions of LLP.

D. Paper Organization

Section II introduces the LLP algorithm and the regret and
constraint violation bounds. Section III presents the adaptive
multi-step and characterizes the convergence rate of LLP, with
special focus to the case of perfect predictions and worst-case
(or no) predictions. Section IV modifies LLP for linearized
constraints and non-proximal updates, and Sec. V derives the
performance bounds for the special case of linearly-perturbed
constraints. We conclude in Sec. VI. The paper is accompanied
by an appendix, Sec. III, that includes the remaining proofs,
explanatory figures, and numerical examples.

II. THE LLP ALGORITHM

Our approach is inspired by saddle-point methods that
perform min-max operations on a convex-concave Lagrangian.
Starting from the t-round problem:

min
x∈X

ft(x) s.t. gt(x) � 0,

we introduce the dual variables λ∈R
d
+ by relaxing gt(x)�0,

and define the regularized Lagrangian:

Lt(x, λ) = rt(x) + c�t x+ λ�gt(x) − qt(λ), (3)

where we linearized ft(x). Function rt :X �→R is a proximal4

primal regularizer and qt : R
d
+ �→ R a non-proximal dual

regularizer. We also set L0(x, λ) = r0(x)− q0(λ).
We coin the term Lazy Lagrangians with Predictions (LLP)

for our Algorithm, which proceeds as follows, Fig. 2. In each
round t, LLP uses observations {ci}t−1

i=1 , {gi}t−1
i=1 , dual vari-

ables {λi}t
i=1, and predictions c̃t, g̃t(·) to perform an opti-

mistic FTRL update:

xt =argmin
x∈X


�t−1
i=0 Li(x, λi) + c̃�t x+ λ�t g̃t(x)

�
, (4)

which induces cost ft(xt) and constraint violation gt(xt).
After the t-round information ct and gt(·) is revealed, LLP
calculates the prescient action:

zt = arg min
x∈X


�t
i=0 Li(x, λi)

�
, (5)

and uses prediction g̃t+1(x̃t+1) to update the duals:

λt+1 =arg max
λ∈R

d
+


�t
i=0 Li(zi, λ)+ λ�g̃t+1(x̃t+1)

�
(6)

where note the use of {zt} instead of {xt}. The process then
repeats in the next round.
LLP has key differences from previous constrained OCO

algorithms. These stem from the usage of lazy as opposed to
greedy updates in the primal and dual iteration, where instead
of using xt−1 and λt to decide xt and λt+1 respectively,

4Regularizer rt(x) is called proximal with reference to an algorithm that
yields {xt} if xt∈arg minx∈X rt(x); and non-proximal otherwise [35].
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Algorithm 1 Lazy Lagrangians With Predictions (LLP)

Input: x0∈X , λ1 =0, rt(x), qt(λ) with (7), (8).
for t = 1, 2, . . . do
◦ Calculate r0:t−1 and decide xt using (4)
• Pay cost ft(xt) and violation gt(xt)
◦ Calculate r0:t and decide zt using (5)
• Receive predictions c̃t+1, g̃t+1(·), g̃t+1(x̃t+1)
◦ Calculate q0:t and decide λt+1 using (6)

end for

we aggregate in a projection-free fashion all prior cost gra-
dients and constraints. This approach can be traced back to
lazy algorithms discussed in [1]; to fictitious (as opposed to
best response) strategies in game theory [44]; and to FTRL
algorithms [35] for problems with fixed constraints. However,
to the best of our knowledge, this is the first time such lazy
updates are used with time-varying budget constraints.

Performance. The regret and constraint violation are quan-
tified using (1) and (2), respectively, with benchmark x� ∈
arg minx∈XT

�T
t=1 ft(x). The performance of LLP is shaped

by the regularizers which adapt to predictions. In particular,
we use the primal regularizers:

r0(x) = IX (x) and rt(x)= σt�x− xt�2/2, t ≥ 1 with:

σt = σ
�

h1:t−

h1:t−1

�
, ht = �εt+ λ�t δt�, σ> 0,

(7)

where r0(x) ensures that x∈ X ; xt is given by (4); and the
regularization parameter σt accounts for the cost and constraint
prediction errors, where the latter are modulated by the dual
variables. The intuition for (7) is that we add regularization
commensurate to the prediction errors; and the rationale for
selecting this particular σt will be made clear below. On the
other hand, we use the general dual regularizer:

q0(λ) = I
R

d
+
(λ) and qt(λ) = φt�λ�2/2, t ≥ 1 with:

φt = (1/at) − (1/at−1), at−1 ≥ at > 0, φ0 =1/a0

(8)

where again q0(λ) ensures λ ∈ R
d
+, and {at} is the dual

learning rate which, for the first Theorem, suffices to be non-
increasing. Our first main result is the following.

Theorem 1: Under Assumptions (A1)-(A4) and with
{rt} and {qt} satisfying (7) and (8), LLP ensures ∀x� ∈
XT :

(a) : RT ≤ BT � 2
�
σD2+

Lf

σ

�
h1:T +

T�
t=1

ξ2t
φ0:t−1

(b) : VT ≤


2φ0:T−1(BT −RT ) +
2Lg

σ


h1:T

where ξt = �gt(zt) − g̃t(x̃t)�, ht = �εt + λ�t δt�, εt =
ct − c̃t, δt = ∇gt(xt) −∇g̃t(xt).

Discussion. We observe from Theorem 1 the effect of
predictions on the bounds of RT and VT , which diminish

proportionally to their accuracy. The bound of RT is further
reduced if we set σ =


Lf/D (when these parameters are

known), and settles to zero for perfect predictions, i.e. when
xt = zt, ∀t, and:

εt = 0, δt = 0, ξt = 0, ∀t ≤ T,

while the same is not true for VT . Moreover, this theorem
reveals the tension between RT and VT . Indeed, observe that
−RT appears in the bound of VT which means that when {xt}
outperforms x�, we might incur higher constraint violation.

Observing the steps of the algorithm, we can see that LLP
requires predictions for the next gradient c̃t = ∇f̃t(x̃t), next
cost function g̃t(·) and next constraint point g̃t(x̃t). It is
important to note the timing of these predictions. Updating xt

requires c̃t and g̃t(·) and access to regularizers r0:t−1 which
are calculated using the prediction errors up to slot t − 1.
Knowledge of c̃t is the standard prediction that all prior works
employ, e.g., see [22], [24] and references therein. On the other
hand, since we have not linearized the constraint function, the
respective predictions involve function g̃t(·) and its next-round
value g̃t(x̃t). In Section IV we present a version of LLP
where we linearize the constraints and hence use only gradient
predictions for the constraints – similarly to cost functions.

The complexity of LLP is comparable to its greedy-based
counterparts — sans the additional prescient update (5) —
i.e., it requires the solution of strongly convex problems and
a closed-form iteration for the dual update. Finally, it is worth
emphasizing that the impossibility result of [7] holds even if
{ft, gt} are revealed before {xt} is selected, as stated in the
next Lemma that is proved in the Appendix.

Lemma 1: No online algorithm can achieve concurrently
sublinear regret and constraint violation, RT = o(T ), VT =
o(T ), w.r.t. x� ∈ Xmax

T , even if the algorithm selects {xt} with
knowledge of {ft, gt}.
This result exhibits the challenges in tackling constrained OCO
problems with time-varying budget constraints, when using
the ideal set of benchmarks Xmax

T ; and reveals that using
predictions, even if they are known to be perfect, does not
suffice to escape this limitation.

A. Regret Bound

Our strategy is to derive a regret bound w.r.t. prescient
actions {zt}, and then use the distance of {zt} from {xt} to
prove Theorem 1(a). We will use the following Lemma that
is proved in the Appendix.

Lemma 2: For the actions {xt} and {zt} obtained by (4)
and (5), respectively, it holds:

�xt − zt� ≤ �εt + λ�t δt�
σ1:t

,

where t =ct− c̃t, δt =∇gt(xt)−∇g̃t(xt), σt from (7).
Now, to prove Theorem 1(a) we apply [26, Theorem 2]

to the dual update formula5 (6) with functions ζ(λ) =

5Update (6) runs over the unbounded set R
d
+, unlike the compact set in [26].

However, that result still holds here and suffices as we set λ = 0 to get
q0:T−1(0) = 0; see discussion and Lemma 5 in Appendix.
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−λ�gt(zt), ∀t and gradient predictions −g̃t+1(x̃t+1), to get:

−
T�

t=1

λ�t gt(zt) +
T�

t=1

λ�gt(zt)

≤ q0:T−1(λ) +
T�

t=1

�gt(zt) − g̃t(x̃t)�2
(t−1),�

(a)

= q0:T−1(λ) +
T�

t=1

�gt(zt) − g̃t(x̃t)�2

φ0:t−1
, ∀λ ∈ R

d
+, (9)

where (a) holds since the dual regularizer is 1-strongly-
convex w.r.t. �λ�(t−1) =


φ0:t−1�λ� which has dual norm

�λ�(t−1),� =�λ�/φ0:t−1.
Adding

�T
t=1

�
rt(zt)+c�t zt

�
to both sides of (9):

T�
t=1

�
rt(zt) + c�t zt − λ�t gt(zt) + λ�gt(zt)

	
≤ q0:T−1(λ) +

T�
t=1

�
rt(zt) + c�t zt +

ξ2t
φ0:t−1

�
, (10)

and dropping the first non-negative sum in the LHS, set-
ting λ = 0 to get q0:T−1(0) = 0, and adding/subtracting
φt�λt�2/2 in the RHS so as to build Lt(zt, λt), ∀t ≤ T ,
we arrive at:

T�
t=1

c�t zt ≤
T�

t=1

�
Lt(zt, λt) +

φt�λt�2

2
+

ξ2t
φ0:t−1

�
(a)

≤
T�

t=1

�
Lt(x�, λt) +

φt�λt�2

2
+

ξ2t
φ0:t−1

�
(b)

≤ 2D2σ1:T +
T�

t=1

�
c�t x

� +
ξ2t

φ0:t−1

�
,

where (a) stems from the Be-the-Leader (BTL) Lemma [45,
Lemma 3.1] applied with x� ∈XT ⊆X to (5); and (b) from
expanding Lt(x�, λt), using gt(x�) � 0 and �x� − xt�2 ≤
4D2, ∀t. Adding

�T
t=1 c

�
t xt to both sides and rearranging:

T�
t=1

c�t (xt−x�)≤ 2D2σ1:T +
T�

t=1

ξ2t
φ0:t−1

+ c�t
�
xt − zt

�
(11)

The last term can be upper-bounded using the Cauchy-Schwarz
inequality and Lemma 2, i.e.:

T�
t=1

c�t
�
xt−zt

� ≤ T�
t=1

�ct�|εt+ λ�t δt�
σ1:t

(Assump. A2)
≤

Lf

σ

T�
t=1

�εt+ λ�t δt���t
i=1 �εi+ λ�i δi�

(a)

≤ 2Lf

σ

���� T�
t=1

�εt + λ�t δt�

where in (a) we used [46, Lemma 3.5], and this was made
possible due to the specific formula of the regularization
parameter σt. Replacing in (11) and using RT ≤ c�t (xt−x�),
we eventually get:

RT ≤ 2D2σ1:T +
2Lf

σ

���� T�
t=1

�εt + λ�t δt� +
T�

t=1

ξ2t
φ0:t−1

⇒

RT = 2
�
σD2+

Lf

σ

�
h1:T +

T�
t=1

ξ2t
φ0:t−1

,

which concludes the proof for Theorem 1(a).

B. Constraint Violation Bound

To prove Theorem 1(b), we start from (10) where we
drop again the non-negative

�T
t=1 rt(zt) in the LHS, add and

subtract the term
�T

t=1 φt�λt�2/2, ∀t, and rearrange to get:

λ�
T�

t=1

gt(zt) − q0:T−1(λ)

≤
T�

t=1

�
Lt(zt, λt) − c�t zt +

φt�λt�2

2
+

ξ2t
φ0:t−1

�

≤
T�

t=1

�
Lt(x�, λt) − c�t zt +

φt�λt�2

2
+

ξ2t
φ0:t−1

�
where again we applied BTL to Lt(zt, λt). Next, expanding
Lt(x�, λt), using q0:T−1(λ) = φ0:T−1�λ�2/2, gt(x�) � 0, ∀t
and r0:T (x�)≤ 4D2σ1:T , we get:

λ�
T�

t=1

gt(zt) − φ0:T−1

2
�λ�2

≤ 2D2σ1:T +
T�

t=1

�
c�t (x� − zt) +

ξ2t
φ0:t−1

�

≤ 2D2σ1:T +
T�

t=1

�
c�t (x�− xt) + c�t (xt− zt) +

ξ2t
φ0:t−1

�

≤ 2D2σ1:T +
Lf

σ

���� T�
t=1

�εt+ λ�t δt�+
T�

t=1

ξ2t
φ0:t−1

−RT

⇒ λ�
T�

t=1

gt(zt)−φ0:T−1

2
�λ�2≤BT −RT , ∀λ ∈ R

d
+. (12)

For the LHS of (12), we can use the result:������T
t=1 gt(zt)

	
+

����2
2φ0:T−1

= sup
λ∈R+

�
λ�

T�
t=1

gt(zt)−φ0:T−1

2
�λ�2

�
and if we denote with V z

T the LHS norm and replace this in
(12), we obtain:

V z
T ≤
�

2φ0:T−1

�
BT −RT

�
=

�
2(BT −RT )

aT−1
. (13)

Lastly, we define wt = ∇gt(xt)�(zt − xt) and write:

VT =

�����
�

T�
t=1

gt(xt)+wt − wt

�
+

�����
(a)

≤
�����
�

T�
t=1

gt(xt) + wt

�
+

�����+
��[−w1:T ]+

��
(b)

≤
�����
�

T�
t=1

gt(zt)

�
+

�����+�−w1:T �
(c)

≤ V z
T +

2Lg

σ


h1:T

(14)

Authorized licensed use limited to: TU Delft Library. Downloaded on November 01,2023 at 12:52:30 UTC from IEEE Xplore.  Restrictions apply. 



1940 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

where (a) uses the identity �[χ+υ]+�≤ �[χ]+�+�[υ]+�; (b)
the convexity of gt; and (c) the Cauchy-Schwarz inequality,
�∇gt(xt)�≤ G, and Lemma 2. This concludes the proof.

The next section characterizes the convergence rates of the
bounds, focusing on two special cases: when the predictions
are perfect and when we have worst-case (or no) predictions.

III. CONVERGENCE RATES

We start by specifying the dual learning rate {at}. The
rationale for selecting the primal regularizer was made clear
in the proof of Theorem 1; here, we refine (8) in a way that
ensures the desirable sublinear regret and constraint violation
growth rates. In detail, we will be using:

at =
a

max
��

4G2 +
�t

i=1 ξ
2
i , t

β

� , β ∈ [0, 1). (15)

This multi-step combines the typical time-adaptive step
appearing in online gradient-descent algorithms [1] with a
data-adaptive step that accounts for the prediction errors. This
ensures that at will induce enough regularization when the
predictions’ quality are not satisfactory, but will keep dimin-
ishing even in the case of perfect predictions – a condition
that is necessary in order to tame the growth rate of the dual
vector. Finally, note that the term 4G2 ≥ ξ2t , ∀t corrects the
off-by-one regularizer of the non-proximal dual update.

Before we analyze the convergence for the cases of perfect
and worst predictions, it is important to emphasize that in
each round t, LLP has at its disposal all the necessary
information to calculate at. In particular, at is used to update
the dual vector λt+1 after the cost and constraint functions,
ft and gt, have been revealed, and the prescient vector zt

is calculated. Hence, we know ξt before performing update
(6). Furthermore, we stress that the analysis below does not
make any assumptions on the apparatus which creates the
predictions; in fact, our framework is orthogonal to how the
predictions are being created and oblivious to their quality: if
the predictions are accurate, LLP learns to trust them, and if
they are inaccurate, LLP gradually discards them.

A. Perfect Predictions

The next Corollary to Theorem 1 describes the regret and
constraint violation bounds for perfect predictions.

Corollary 1: [Perfect Predictions] When t = δt = ξt =
0, ∀t, β ∈ [0, 1), Algorithm LLP ensures:

RT = O(1), VT = O(T
1+β
2 )

Indeed, for perfect predictions holds h1:T = 0 independently
of the value of {λt}, while the second term in the bound of
RT can be written (detailed derivation in Sec. III-C:

T�
t=1

ξ2t
φ0:t−1

=
T�

t=1

at−1ξ
2
t = min

⎧⎨⎩2a

���� T�
t=1

ξ2t ,
4aG2

1 − β
T 1−β

⎫⎬⎭
which diminishes to zero when ξt = 0, ∀t. This manifests
the advantage of this doubly-adaptive dual step which creates

a bound similar to those in OCO problems without budget
constraints, see [26]. Furthermore, the step is simplified to
at = a/tβ which remains bounded. Hence RT =BT =O(1),
and if we substitute BT in VT , we get:

VT ≤
�

−2RT

aT−1
≤
$

−2RTT β

a
= O

�
T

1+β
2

�
(16)

Here, we can set β= 0 to get VT = O(
√
T ), and reduce the

constant factor of VT further by increasing6 a.
Furthermore, note that when the regret is non-negative,

i.e., when the sequence {xt}t does not outperform x�, then
we get VT ≤ 0 for any value of β. And, more generally,
if there is a non-trivial bound for the negative regret, i.e.,
−RT = O(T b) with b < 1, then the bound of the constraint
violation is improved in a commensurate amount, namely
VT = O�T b+β

2
�
. Finally, it is worth stressing that, even

when the predictions are perfect, the algorithm still needs
to learn to trust them gradually, as their quality is a priori
unknown.

B. Worst-Case Predictions

On the other hand, when we do not have any predictions
at our disposal, or when these are as far as possible from
the actual data, then the dual multi-step induces more reg-
ularization using the observed prediction errors. The perfor-
mance of LLP in this scenario is captured by the following
theorem.

Theorem 2: Under Assumptions (A1)-(A4), with reg-
ularizers {rt}, {qt} satisfying (7), (8), (15), and for
worst-case predictions t = Em, δt = Δm, ξt = 2G, ∀t,
LLP ensures:

RT = O�T 5
8
�
, VT = O�T 3

4
�

when β<1/2

RT = O�T 3−β
4
�
, VT = O�T 1+β

2
�

when β≥1/2

We see that the growth rates are tunable by parameter
β ∈ [0, 1). For example, by setting β = 2/3 we obtain
RT =O(T 7/12) and VT =O(T 5/6); while with β= 3/5 it is
RT =O(T 3/5) and VT =O(T 4/5). These bounds improve the
best-known results for the general constrained-OCO problem,
while being comparable with results that consider special
cases, such as knowing the (a priori fixed) time horizon T [10]
or having only linearly-perturbed constraints [16].

What prevents the LLP bounds from improving further is
the term −RT that appears in VT . While we have used in
the analysis the worst-case −RT = O(T ), it is important to
note that when −RT = O(

√
T ), i.e., when LLP does not

outperform the benchmark by more than
√
T , then for perfect

predictions we achieve RT = O(1), VT = O(T 1/4) (setting
β = 0), and for worst-case predictions it is RT ,VT = O(

√
T ).

6Had we known the horizon T , as assumed in [10], we can set a = T to
obtain VT = O(1). However, this selection endangers increasing RT when
predictions are imperfect.
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On the other hand, if LLP does outperform the benchmark
consistently (∀T ) by at least Ω(

√
T ), we achieve negative

regret and VT = O(T 2/3). The general case, for which
the above two Corollaries hold, is when the sample path is
such that LLP bounces above and below the performance of
{x�}. A schematic description of these cases is included in
the Appendix and the different achieved rates by LLP are
summarized in Table I.

Concluding, it is worth discussing the inherent difficulties
of the problem at hand. Namely, one might argue that we
could directly apply the optimistic FTRL result of [26] (or our
equivalent Lemma 5) both to the primal and to the dual update,
and combine the results to bound RT and VT . The interested
reader, however, can verify that this straightforward strategy
leads to much worse bounds. Our approach instead is to apply
the optimistic FTRL only to the dual update and carefully
reconstruct tighter bounds for the Lagrangian, while using
a fixed-point iteration to find the exact (minimum) growth
rate of �λT �. Moreover, unlike prior works such as [16]
or [13], we update {xt} using {λt} (instead of λt−1); and
then update {λt+1} using the newly calculated {xt}. This
strategy facilitates the inclusion of predictions as we only need
to predict xt and not λt. Besides, it is exactly this circular
relation between the primal and dual variables which renders
the inclusion of predictions in OCO with budget constraints
fundamentally different from the respective OCO problem
without time-varying constraints.

C. Proof of Theorem 2

Our strategy is to bound the growth rate of the dual vector
norm and use it to bound RT and VT . First, we define its
minimum growth rate k = min{ϕ : �λt� = O(tϕ}, and
introduce Λt = max {�λi� : i ≤ t}, where Λt≤ΛT =O(T k),
∀t ≤ T . Using the closed-form solution7 of (6), we can write:

�λt+1� =
�����at

� t�
i=1

gi(zi) + g̃t+1(x̃t+1)
��

+

����
≤ at

�
V z

t +G
�

(17)

where we used that �g̃t(z)�, �gt(z)�≤G, ∀t, and the triangle
inequality. Also, we can write:

h1:T =
T�

t=1

��t + λ�t δt
��

≤ T (Em + ΔmΛT ) = O�T k+1
�

(18)

We will use this bound and the definition of λt, which ties it
to V z

t , to find a smaller growth rate than the one we would get
by directly bounding V z

t in (17). Indeed, starting from (17)
and using (13), we have:

�λT+1�≤ aT

�
2
�
BT −RT

�
/aT−1 + aTG

aT−1≥aT=⇒
�λT+1�≤

�
2aT

�
BT −RT

�
+ aTG. (19)

7Eq. (6) simplifies to λt+1 = arg minλ∈Rd
+

� ‖λ‖2

2at
− λ�v

�
with v =

g̃t+1(x̃t+1) +
�t

i=1 gi(zi).

Next, note that based on the definition of at and the fact that
we consider worst-case predictions (which increase linearly
with T ), the following inequalities hold:

aT ≤ a�
4G2 +

�T
t=1 ξ

2
t

= O�T−1/2
�

aT ≤ a

T β
= O�T−β

�
.

Thus, it follows that:

aT = O�T θ
�
, θ = min

�
−β,−1

2

�
≤ 0. (20)

Similarly, the following inequalities hold:

T�
t=1

at−1ξ
2
t ≤

T�
t=1

aξ2t��t
i=1 ξ

2
i

≤ 2a

���� T�
t=1

ξ2t = O�√T �
T�

t=1

at−1ξ
2
t ≤

T�
t=1

a
ξ2t
tβ

≤ 4aG2

1 − β
T 1−β = O(T 1−β),

where we used [46, Lemma 3.5], the identity
�T

t=1 t
−β ≤

T 1−β/(1−β) (Lemma 6 in Appendix) and ξt ≤ 2G, ∀t. Hence
we obtain:

T�
t=1

at−1ξ
2
t = O(T n), n = min


1
2
, 1 − β

�
≤ 1. (21)

Finally, replacing BT in (19) with its definition from
Theorem 1, we arrive at:

�λT � = O
�
max



T

k+1+2θ
4 , T

n+θ
2 , T

1+θ
2 , T θ

��
, (22)

where we used the worst case bound −RT = O(T ) and
aTG = O(T θ). To find the dominant term, note that, since
β ∈ [0, 1), it is n ≤ 1, and hence (1 + θ)/2 ≥ (n + θ)/2,
thus we omit the second term. Also, θ ≤ 0 and hence we
can omit the last term; and finally, from (17) we observe that
k ≤ 1+ θ ≤ 1, thus, the third term is larger than the first, and
we conclude with �λT � = O(T k) = O�T (1+θ)/2

�
.

Having found the growth rate of �λT � to be k = (1+θ)/2,
we use (18) and (21) to refine the bounds:

h1:T = O
�
T

3+θ
2

�
, BT = O

�
max



T

3+θ
4 , T n

��
(23)

and these conclude the proof of Theorem 2(a). For the
constraint violation VT , observe first that (1/aT ) =

max
��

G2 +
�T

t=1 ξ
2
t , T

β

�
a

= O(T ν), ν = max
�
β,

1
2

�
and hence holds ν = −θ. Using this bound along with (23)
and −RT =O(T ), we get from Theorem 1(b):

VT = O
�
max



T

3(1−θ)
8 , T

n−θ
2 , T

1−θ
2 , T

3+θ
4

��
.

We conclude by noticing that:

1 − θ

2
>

3(1 − θ)
8

and
1 − θ

2
≥ n− θ

2
,

and observing that conditioning on the value of β, we get the
bounds in Theorem 2.
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IV. LESS COMPUTATIONS AND PREDICTIONS

We discuss next how to reduce the computation and memory
requirements of LLP by using non-proximal primal regulariz-
ers; and the impact of linearizing the constraint functions on
the required predictions.

A. LLP With Non-Proximal Regularizers

This new algorithm, LLP2, uses the same dual regularizer
(8) and update (6), but the general primal regularizer:

r0(x) = IX (x) and rt(x) = σt�x�2/2, ∀t ≥ 1, with:

σt = σ
�

h1:t + μt+1 −

h1:t−1 + μt

�
(24)

where μt �Em+at−1GtΔm. The new updates are:

xt = arg min
x∈RN


�t−1
i=0 Li(x, λi)+ c̃�t x+ λ�t g̃t(x)

�
, (25)

zt = arg min
x∈RN


�t−1
i=0 Li(x, λi)+ c�t x+ λ�t gt(x)

�
, (26)

where Lt(x, λ) is defined using rt(x) from (24),
and note the off-by-one regularizer of (26) compared
to (5).

These non-proximal regularizers facilitate solving for {xt}
and {zt} since r1:t(x) = σ1:t�x�2/2 involves only one
quadratic term and can be represented in constant memory
space, unlike r1:t(x) =

�t
i=1 σi�x− xi�2/2 that expands

with time. On the other hand, non-proximal updates yield
looser bounds, cf. [35], and require a new saddle-point analy-
sis. Interestingly, they do not worsen the growth of LLP2,
but do prevent it from achieving RT = O(1) for perfect
predictions.

Theorem 3: Under (A1)-(A4) and with {rt} and {qt}
satisfying (24) and (8), LLP2 ensures for every x�∈XT :

RT ≤ %BT �2
�
σD2 +

Lf

σ

�
h1:T + μT+1 +

T�
t=1

ξ2t
φ0:t−1

VT ≤
$

2φ0:T−1

� %BT −RT

�
+

2Lg

σ


h1:T + μT+1

where μT = Em + aT−1GTΔm.

The proof of Theorem 3 can be found in the Appendix.
Corollary 2: LLP2 achieves the same bounds as in The-

orem 2 in the general case, and under perfect predictions it
ensures:

RT = O
�
T

1−β
2

�
, VT = O

�
T

1+β
2

�
, β ∈ [0, 1).

For example, LLP2 with perfect predictions and β = 0
achieves RT = O(

√
T ) and VT = O(

√
T ); and with β =

1/3 yields RT = O(T 1/3) and VT = O(T 2/3). Hence,
it outperforms the state-of-the-art constrained-OCO algorithms
with no predictions, but does not perform as well as LLP for
perfect predictions.

B. LLP With Linearized Constraints

Another way to reduce the computation load of LLP is to
linearize the constraint function. This, however, is not trivial
since we cannot recover VT by simply using the convexity of
{gt}, as we do with RT and the linearization of {ft}. Hence,
we use linear proxies for the constraints and their predictions:

g	
t (x) = gt(xt) + ∇gt(xt)�(x− xt), (27)

g̃	
t (x) = g̃t(x̃t) + ∇g̃t(x̃t)�(x− x̃t). (28)

LLP with linearized constraints, which we call LLP3, runs
similarly to Algorithm 1, but uses predictions c̃t, ∇g̃t(x̃t) and
g̃t+1(x̃t+1), i.e., does not need to predict the entire constraint
function — nor x̃t, despite appearing in (28). And this does
not affect its performance.

Lemma 3: LLP3 achieves the RT , VT bounds and conver-
gence rates in Theorems 1 and 2, respectively.
The proof of the Lemma and the details of the linearized
LLP can be found in the Appendix. Now, whether it is
more difficult to predict the next constraint gradient or the
entire next constraint function, is a question pertaining to the
problem at hand, and practitioners can select the respective
version of LLP that suit their needs. For instance, as explained
in Section I, for single-parameter functions it is easier to
predict the entire next-slot function by guessing the parameter,
as opposed to predicting the next gradient and next value,
which requires a guess for the system’s operation point as well.
In other cases predicting the structure of an entire function
(e.g., if gt+1 is totally different thatn gt) might be more
challenging.

V. LINEARLY-PERTURBED CONSTRAINTS

In this section we consider the special type of constraints
that are linearly-perturbed, which was studied first in [16].
In detail, the constraints and their predictions are:

gt(x) = g(x) + bt and g̃t(x) = g(x) + b̃t. (29)

where bt, b̃t ∈ R
d are the unknown per-slot perturbations that

are added to the fixed (and known) function component g(x).
For example, consider a network routing problem where the
network graph and capacities are fixed, gt = g, ∀t, but the
incoming flow varies in an arbitrary fashion according to vec-
tors {bt}t, [42]. This simplification has important ramifications
for the analysis and, eventually, improves the bounds of LLP
as follows:

Lemma 4: Under the conditions of Theorem 1, with con-
straints and predictions given by (29), LLP ensures:

RT ≤ 0, VT = O�T (1+β)/2
�
, perfect predictions, β∈ [0, 1)

RT = O(
√
T ), VT = O(T 5/8), worst predictions, β= 1/2.

This result improves the bounds for the case of general con-
straints of the previous section, and yields only 1/8 worse con-
straint violation than the bounds in [16] (and the same regret
bounds). However, [16] cannot leverage predictions. That is,
even if we have perfect predictions at our disposal, [16] will
still offer the same regret and constraint violation bounds.
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On the contrary, we see that LLP, due to its prediction-
adaptive steps, yields no regret for perfect predictions and the
constant factors of the bounds shrink commensurately with
the predictions’ accuracy. This becomes clear if we express
the bounds as follows:

RT ≤ BT � A1


h1:T + min

⎧⎨⎩2a

���� T�
t=1

ξ2t , A2T
1−β

⎫⎬⎭
(30)

VT ≤ �A3 max
&
KT , T

β
' �
BT −RT

�� 1
2 + A4


h1:T (31)

where we have defined the parameters:

A1 = 2σD2 + (2Lf/σ), A2 = 4aG2/(1 − β), A3 = 2/a

A4 = 2Lg/σ, h1:T =
T�

t=1

�t�,KT =
�
G2 +

T�
t=1

ξ2t

	1/2

.

Note that in this case the quantity h1:T does not depend on
the dual vectors. This is due to the fact that the perturbations
do not affect the primal step (see details Sec. VI-H of the
Appendix), which disentangles – to some extent – the primal
and dual iterations. The proof of the lemma and the details
for deriving (30) and (31) can be found in the Appendix.

VI. CONCLUSION

LLP differs from related algorithms since the primal and
dual updates are lazy. This allows an FTRL-based design,
which is widely used in fixed-constraints OCO algorithms (x ∈
X ) but is new in the context of time-varying constrains (x ∈
XT ). The LLP order bounds, even with worst-case or no pre-
dictions, are competitive with existing algorithms while drop-
ping several impractical assumptions these are using. Indeed,
prior algorithms with time-varying constraints require strongly
convex cost and constraint functions or linearly-perturbed fixed
constraints, and rely on the Slater condition. Other proposals
assume time-invariant constraints, still rely on a fixed and
known time horizon T (which cannot be remedied by the
doubling trick); and need access to all Lipschitz constants and
constraint bounds. Hence, LLP can be applied in a wider range
of network management problems.

The most important advantage of LLP is that it encompasses
predictions of unknown quality. This is the first work that
proposes and tackles this problem in the context of OCO
with time-varying budget constraints. Clearly, despite the good
performance of prior works, none of them can benefit from
the availability of (potentially inaccurate) predictions. LLP,
instead, gains directly from them as the constant factors of
the regret and constraint violation shrink in proportion to
predictions’ quality; this is oftentimes even more beneficial
than having a slightly tighter learning rate w.r.t. T , especially
in problems with large dimension (D is comparable to T ). And
when the predictions are perfect, LLP achieves RT = O(1)
and VT = O(

√
T ). Last but not least, this framework is unified

as it and can run without predictions (setting them zero) since
we impose no assumptions on their quality, and can be applied
to problems with time-invariant constraints. Hence, it opens
the road for employing network datasets and measurements

to make predictions (e.g., using Deep Learning for predicting
capacity or demand), without the concern of their accuracy,
that indeed might vary widely in different cases.

Concluding, there are several interesting directions for
future work, such as extending this framework to dynamic
regret benchmarks by imposing additional restrictions on
the variability of cost and constraint functions, or exploring
whether the achieved bounds can be further reduced.

APPENDIX

The Appendix includes the missing proofs from the main
document; the supporting lemmas and their proofs; and addi-
tional discussion for the main results.

A. Performance Cases of LLP

We start by discussing the different cases regarding the per-
formance of LLP in order to facilitate the reader understanding
the consequences of Theorems 1 and 2. Figure 3 summarizes
the three possible scenarios. Case (i) is realized when −RT =
O(

√
T ), i.e., when LLP does not outperform x� by more than

this growth rate, and here LLP achieves competitive rates,
RT ,VT = O(

√
T ) and zero regret for perfect predictions.

Case (ii) arises when the condition −RT = O(
√
T ) is consis-

tently violated and in fact yields even better performance in
terms of regret, while maintaining the general VT = O(T 2/3).
And finally, Case (iii) arises when the above condition might
be violated during some time intervals and sample paths, but
not consistently; and for this scenario the general bounds
RT ,VT = O(T 2/3) hold. In all cases, the constant factors
of the regret diminish as the predictions’ quality improves.

B. Proof of Lemma 1

Lemma 1: No online algorithm can achieve concur-
rently sublinear regret and constraint violation, RT =
o(T ), VT = o(T ), w.r.t. x� ∈ Xmax

T , even if the algorithm
selects xt with knowledge of ft, gt.

Proof: We provide an opponent strategy that ensures there
is an increasing sequence t(1), t(2), . . . of rounds with either
Rt(i) ≥ t(i)/8 or Vt(i) ≥ t(i)/8. Our opponent will select
ft+1, gt+1 based only on x1, . . . , xt. Hence the impossibility
result holds even if the player knows ft+1, gt+1 on round t+1.

Consider the domain X = [0, 1]. The cost functions are
linear and the pair (ft, gt) is always one of p=(−x,−1) or q=
(−2x, 2x− 1). Before giving the opponent strategy we make
some general observations. To derive the set

�T
t=1 gi(x) ≤

0 suppose the opponent plays p exactly n times and q exactly
T− n times. Then we have:

T�
t=1

gt(x) = −n+ (T − n)(2x− 1) = 2(T − n)x− T

Hence the constraint set GT =
&
x ∈ X :

�T
t=1 gi(x) ≤ 0

'
is

the part of [0, 1] with

x ≤ T

2(T − n)
=

1
2

+
n

2(T − n)
.
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Fig. 3. Performance region and cases for the Regret of LLP, under worst-case (or, no available) predictions.

In particular for n ≥ T/2 the second term is at least 1/2 and
GT = [0, 1]. Since ft are negative linear, the regret is with
respect to x� = 1. For ft(x) = −x we have ft(xt)−ft(x�) =
1−xt and for ft(x) = −2x we have ft(xt)− ft(x�) = 2(1−
xt). In each case ft(xt)− ft(x�) ≥ 1− xt, since 2(1− xt) ≥
1 − xt when xt ∈ [0, 1], and so RT ≥�T

t=1(1 − xt).
Now suppose the rounds are broken into blocks {1, 2, . . .} =

I1 ∪ J1 ∪ I2 ∪ J2 ∪ . . . with each |In| = |Jn|. Define each
I =

(
n In and J =

(
n Jn and xt−1 = 1

t−1

�t−1
i=1 xi. Assume

the opponent has the strategy: leftmargin=5mm
1) Each (ft, gt) = q ⇐⇒ t ∈ I .
2) Each (ft, gt) = p ⇐⇒ t ∈ J .
3) For each n ∈ I we have xt−1 ≥ 3/4.
4) For each m and each t=min Jm we have xt−1<3/4.

There are two cases to consider. First assume (a) there are
infinitely many Im, Jm. Since each |Im| = |Jm| we see on
the final turn t(m) of each Jm the opponent has played p
exactly n = T/2 times. Hence the above says Gt(m) = [0, 1]
and x� = 1 and the regret is Rt(m)≥

�t(m)
i=1 (1 − xi). On turn

s(m)= max Im the regret is at most:
s(m)�
i=1

(1 − xi) = s(m) −
s(m)�
i=1

xi = s(m) − s(m)xs(m)

= s(m)(1 − xs(m)) ≥ s(m)
4

≥ t(m)
8

.

where the first inequality uses (4) and the second uses
t(m) = s(m) + 1 ≥ t(m)/2. Since there are infinitely many
t(1), t(2), . . . there are infinitely many turns t with Rt ≥ t/8.
Hence the regret is Ω(T ).

Now assume (b) there are only finitely many Im, Jm. Since
each |Im| = |Jm| the blocks are I1, J1, . . . , Jm−1, Im with
|Im| = ∞. To see the violation is Ω(T ) observe (3) gives
xs ≥ 3/4 for s = max Jm−1. By (1) the opponent plays
q = (2x,−2x+ 1) on turns s+ 1, s+ 2, . . . Thus for T ≥ 4s
the constraint violation is:

T�
t=1

gt(xt) =
s�

t=1

gt(xt) +
T�

t>s

gt(xt) ≥ −s+
T�

t>s

(2xt − 1)

= −T + 2
T�

t>s

xt = −T −
s�

t=1

xt + 2
T�

t=1

xt

≥ −(T + s) + 2xT ≥ −(T + s) +
3
2
T

where the last inequality uses (3). Since T ≥ 4s the RHS is
at most T/2 − s ≥ T/2 − T/4 = T/8. Hence we can take
t(i) = 4s+ i.

To complete the proof we give an opponent strategy that
satisfies these four conditions. Reference [7] suggest the
following approach:

(i) Play q on turns min In,min In + 1, . . . ,m where m is
the first turn with xm < 3/4.

(ii) End In and begin Jn.
(iii) Play p over the next |In| turns.
(iv) End Jn and begin In+1.

The decision on turn m + 1 to end In depends only on the
average xm of x1, . . . , xm. Hence the opponent does not need
to see the player’s current move to implement the strategy.
Equivalently the player is allowed to see the opponent’s next
move. This concludes the proof. �

C. Proof of Lemma 2

Using the property of the proximal regularizers, xt =
argminx rt(x), ∀t, we can expand (4) and write:

xt = arg min
x∈RN

�
r0:t−1(x)+ c�1:t−1x+

t−1�
i=1

λ�i gi(x)

+ c̃�t x+ λ�t g̃t(x)
�

add rt(x)
=⇒

xt = arg min
x∈RN

�
r0:t(x) + c�1:t−1x+

t−1�
i=1

λ�i gi(x)

+ c̃�t x+ λ�t g̃t(x)
�
,

where adding the t-round regularizer rt(x) does not change
the minimizer of the RHS argument – and it is easy to see
this using a contradiction argument.

Now, recall that the prescient action is:

zt = arg minx∈RN



r0:t(x) + c�1:tx+

�t
i=1 λ

�
i gi(x)

�
.

Applying Lemma 7 from [35], with:

φ1(x) = r0:t(x) + c�1:t−1x+
t−1�
i=1

λ�i gi(x) + c̃�t x+ λ�t g̃t(x)

φ2(x) = r0:t(x) + c�1:tx+
t�

i=1

λ�i gi(x) and

ψ(x) = (ct − c̃t)�x+ λ�t
�
gt(x) − g̃t(x)

�
and recalling that the regularizer r0:t(x) is 1-strongly-
convex w.r.t. norm �x�(t) =

√
σ1:t�x� that has dual norm
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�x�(t),� =�x�/√σ1:t, we can write:

�xt − zt�(t) ≤ �ct − c̃t+λ�t
�∇gt(xt)−∇g̃t(xt)

��(t),� ⇒
√
σ1:t�xt − zt� ≤ �ct − c̃t + λ�t

�∇gt(xt) −∇g̃t(xt)
��√

σ1:t
⇒

�xt − zt� ≤ =
�εt + λ�t δt�

σ1:t

D. Proof of Lemma 5 (Optimistic FTRL)

In the proof of Theorem 1 we relied on [26, Theorem
2]. However, that work considers a learning problem over a
compact convex set, while the dual update to which we apply
this result has an unbounded decision space λ ∈ R

d
+. This

indeed does not pose a problem for our analysis. Firstly, one
can see that for the standard FTRL analysis it suffices to have
closed sets, see for example [35]. Secondly, the boundedness
of the set is useful when we need to upper-bound the term
q0:T−1(λ) that appears in the RHS of (9). In our analysis, this
is not necessary as we cancel this term by setting λ = 0.

To complete this discussion, we provide here an alternative
proof for [26, Theorem 2] that makes clear it is valid even if
the decision set is not bounded. We note that this is presented
in terms of the primal variables and functions {ft(xt)} to
streamline the presentation, but the application to the dual
variables and dual updates is straightforward.

Lemma 5: Let {rt} be a sequence of non-negative
regularizers, and let c̃t be the learner’s estimate of
ct = ∇ft(xt). Assume also that the function κ0:t−1 :
x �→ c�1:t−1x + c̃tx + r0:t−1(x) is 1-strongly convex
w.r.t. norm � · �(t−1), and consider the update xt =
arg minx∈X κ0:t−1(x), where r0(x) = IX (x) and c̃1 = 0.
Then the following regret bound holds:

RT ≤ r0:T−1(x)+
T�

t=1

�ct− c̃t�2
(t−1),�, ∀x ∈ X

Proof: Using the auxiliary functions mt(x) =
rt−1(x) + c̃�t x and nt(x) = c�t x − c̃�t x, we can
write xt = arg minx∈X{m1:t(x) + n1:t−1(x)} and zt =
arg minx∈X{m1:t(x) + n1:t(x)} which correspond to the pri-
mal and prescient updates for the non-proximal version of the
optimistic FTRL. We first prove the following relation using
induction:

T�
t=1

mt(xt) + nt(zt)≤m1:T (x�)+ n1:T (x�), ∀x� ∈ X .

(32)

For t = 1, it is:

m1(x1) + n1(z1) = r0(x1) + c̃�1 x1 + c�1 z1 − c̃�1 z1
≤ r0(x�) + c̃�1 x

� + c�1 x
� − c̃�1 x

�

= m1(x�) + n1(x�)

which holds since r0(x1) = r0(x�) = 0, c̃�1 x1 = 0, and z1 =
argminx∈X

&
m1(x)+n1(x)

'
. Assume it holds for t = τ and

add to both sides mτ+1(x�)+nτ+1(x�) for some x�, x� ∈ X :
τ�

t=1

mt(xt)+mτ+1(x�) +
τ�

t=1

nt(zt)+ nτ+1(x�)

≤ m1:τ+1(x�) + n1:τ (x�) + nτ+1(x�)
set x� = xt+1, x

�=zt+1, to get:
τ+1�
t=1

mt(xt)+nt(zt)≤m1:τ+1(xt+1)+n1:τ (xt+1)+nτ+1(zt+1)

≤m1:τ+1(zt+1)+n1:τ+1(zt+1)(by definition of xt+1)
≤m1:τ+1(x�) + n1:τ+1(x�) (by definition of zt+1)

which concludes our induction step. Hence, we proved (32).
Replacing mt(x) and nt(x), dropping the non-negative term�T−1
t=1 rt(xt) in the LHS, adding

�T
t=1 c

�
t xt to both sides and

rearranging, we eventually get RT ≤

≤ r0:T−1(x�) +
T�

t=1

�
c�t (xt − zt)

�
+

T�
t=1

�
c̃�t (zt − xt)

�
≤ r0:T−1(x�) +

T�
t=1

�
ct − c̃t

��(xt − zt)

≤ r0:T−1(x�) +
T�

t=1

��ct − c̃t�(t−1),��xt − zt�(t−1) (33)

where in the last step we used the Cauchy-Schwarz inequality.
For the term �xt−zt�(t−1) we can apply [35, Lemma 7] with:

φ1(x) = r0:t−1(x) + c�1:t−1x+ c̃�t x

φ2(x) = r0:t−1(x) + c�1:t−1x+ c̃�t x+ (c�t x− c̃�t x)

ψ(x) = c�t x− c̃�t x

to get the bound �xt − zt�(t−1) ≤ �ct − c̃t�(t−1),�. Replacing
in (33) we conclude the proof noting that we did not use
boundedness of X in any step of the proof.

�

E. Proof of Lemma 6

Lemma 6: For d ∈ (0, 1) we have

T�
t=1

t−d ≤ T 1−d

1 − d

Proof: Let F (x) = �x + 1�−d be defined over [0,∞).
Clearly F (x) = (n + 1)−c for each x ∈ [n, n + 1) and n =
0, 1, 2, . . ., and so the sum on the left equals

) T

0 F (x)dx. Since
�x + 1� ≥ x and d > 0 we have F (x) = �x + 1�−d ≤ x−d

and
) T

0 F (x)dx ≤ ) T

0 x−ddx = T 1−d

1−d . �

F. Proof of Theorem 3

First, note we can directly obtain the bound:

�λT � ≤
�����aT−1

��T−1
i=1 gi(zi) + g̃T (z̃T )

�	
+

���� ≤ aT−1TG
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where the RHS term appears in μT . Hence, the strong con-
vexity of LLP2 can be lower-bounded as:

σ1:t = σ

h1:t + μt+1 ≥ σ


h1:t+1. (34)

Next, we replace Lemma 2 with an updated bound.
Lemma 7: For the actions xt and zt obtained by (25) and

(26), respectively, it holds:

�xt− zt� ≤ �t+ λ�t δt�
σ1:t−1

(34)≤ �t+ λ�t δt���t
i=1 �i+ λ�i δi�

(35)

It is easy to see that since the dual update has not changed,
equation (9) holds as is, and we can readily obtain (11), and
eventually write:

RT ≤ 2D2σ1:T +
2Lf

σ


h1:T +

T�
t=1

ξ2t
φ0:t−1

≤ 2
�
σD2+

Lf

σ

�
h1:T + μT+1 +

T�
t=1

at−1ξ
2
t � %BT .

Therefore similarly to (19), we can write:

�λT+1� ≤aT

�
2
� %BT −RT

�
/aT + a1G.

And finally, observe that since the dual regularizer qt(λ) and
learning rate at are given by (8), (15), the bounds (20), (21)
hold for LLP2 as well. Putting these together, we arrive at:

�λT � = O
�
max



T

k+1+2θ
4 , T

1+3θ
4 , T

n+θ
2 , T

1+θ
2

��
.

That is, the growth rate of �λT � remains O�T (1+θ)/2
�

and
is not affected by the non-proximal primal regularizers. Sim-
ilarly, the growth rate of %BT is the same as that of BT , see
(23), since h1:T = O(T (3+θ)/2) dominates μT+1 = O(T 1+θ).
Therefore, the growth rate of RT and of VT are exactly as
those of LLP.

On the other hand, the RT bound of LLP2 is not zeroed
for perfect predictions. Indeed, when t = δt = ξt =0, ∀t, and
h1:t = 0, we get:

RT ≤ √
μT+1 and VT ≤−2RT/aT−1 + √

μT+1,

where μT+1 = Em +aT (T + 1)GΔm > 0 and aT = aT−β.
Hence, RT = O�T (1−β)/2

�
and VT = O�T (1+β)/2

�
which

shows that we cannot achieve zero regret, and even more
so, that as we reduce the bound of RT by increasing β,
we deteriorate in a commensurate amount the bound of VT .

G. Proof of Lemma 3

If we define Lt(x, λ) as in (3) but replace gt(x) with g	
t(x)

and also use the linearized prediction g̃	
t (x), with:

g	
t (x) = gt(xt) + ∇gt(xt)�(x− xt),
g̃	

t (x) = g̃t(x̃t) + ∇g̃t(x̃t)�(x− x̃t), (36)

then, the updates that we use in LLP2 are:

xt = arg min
x∈RN

*
t−1�
i=0

Li(x, λi)+ c̃�t x+ λ�t g̃
	
t (x)

+
⇒

xt = arg min
x∈RN

*
r0:t−1(x) + c�0:t−1x+

t−1�
i=0

λ�i g
	
i (x)

+ c̃�t x+ λ�t
�∇g̃t(x̃t)�x

�+
,

zt = arg min
x∈RN

*
t�

i=0

Li(x, λi)

+

= arg min
x∈RN

*
r0:t(x) + c�1:tx+

t�
i=0

λ�i g
	
i (x)

+
,

λt+1 = arg max
λ∈Rd

*
t�

i=0

Li(zi, λi) + λ�g̃	
t+1(x̃t+1)

+

= arg max
λ∈Rd

*
λ�
� t�

i=1

g	
i (zi)

+ g̃t+1(x̃t+1)
�
− φ0:t�λ�2/2

+
(37)

where the primal and dual regularizers are given again by (7),
(8) using the modified error parameters, ∀t:
δt = ∇gt(xt) −∇g̃t(x̃t), ξt = �g	

t(zt) − g̃	
t (x̃t)�, and

t = ct − c̃t as before.

Note that in case of perfect predictions, i.e., when:

∇g̃t(x̃t) = ∇gt(xt), ct = c̃t, g̃t(x̃t) = gt(xt), ∀t,
then εt = 0, δt = 0, and

ξt =
���gt(xt) + ∇gt(xt)�(zt − xt) − g̃t(x̃t)

−∇g̃t(x̃t)�(x̃t − x̃t)
��� =

��∇gt(xt)�(zt − xt)
�� = 0,

where the last step follows as for perfect predictions, clearly,
it holds zt = xt.

Next, it is easy to see that Lemma 2 holds and yields the
same bound �xt − zt� ≤ �t + λ�t δt�/σ1:t with the redefined
{δt}. Applying [26, Theorem 2] to (37), we get:

−
T�

t=1

λ�t g
	
t (zt) +

T�
t=1

λ�g	
t(zt)

≤ q0:T−1(λ) +
T�

t=1

�g	
t(zt) − g̃t(x̃t)�2

(t−1),� =

= q0:T−1(λ) +
T�

t=1

�g	
t(zt) − g̃t(x̃t)�2

φ0:t−1
, ∀λ ∈ R

d
+. (38)

Then, we can repeat the analysis in Sec. II-A, noting:

g	
t (x

�) = gt(xt) + ∇gt(xt)�(x� − xt) � gt(x�) � 0, ∀t
due to convexity of gt(·) and the property of x�, to arrive at
the same bound BT for the regret RT , sans the redefined {δt}
and {ξt} parameters.

Similarly, repeating the analysis of Sec. II-B we get:

λ�
,

T�
t=1

g	
t(zt)

-
−φ0:T−1

2
�λ�2 ≤ BT −RT , ∀λ ∈ R

d
+.

(39)

Minimizing the LHS, similarly to Sec. II-B, we obtain:

V z,	
T ≤


2(BT −RT )/aT−1 where Vz,	

T �
�����
�

T�
t=1

g	
t (zt)

�
+

����� .
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Fig. 4. Benchmark comparisons for: ft(x)=−4x if t%2=0, ft(x)=−x otherwise; gt(x)=0.79x+ 0.26 if t%2=0, gt(x)=0.64x− 0.135 otherwise;
X =[−1,1]. The 1st LLP plot does not use any predictions, while the 2nd LLP plot uses perfect predictions for ∇ft(xt) and ∇gt(xt) but no predictions
for gt+1(xt+1). For the experiments presented here we have used β = 0.2.

Finally, note that using the definition of g	
t (x), we can write:

gt(xt) = g	
t (zt) −∇gt(xt)�(zt − xt) ⇒

T�
t=1

gt(xt) =
T�

t=1

g	
t(zt) +

T�
t=1

∇gt(xt)�(xt − zt).

Hence, we obtain the bound:�����
�

T�
t=1

gt(xt)

�
+

�����
=

�����
�

T�
t=1

g	
t (zt) + ∇gt(xt)�(xt − zt)

�
+

�����
≤
�����
�

T�
t=1

g	
t (zt)

�
+

�����+

�����
�

T�
t=1

∇gt(xt)�(xt − zt)

�
+

����� ,
where we used the identity �[χ + υ]+� ≤ �[χ]+� + �[υ]+�.
Therefore we arrived at the same result as with the non-
linearized constraints:

VT ≤ V z,	
T +

2Lg

σ


h1:T =

�
2(BT −RT )

aT−1
+

2Lg

σ


h1:T ,

by using a slightly different proof.
Finally, it follows directly from the proof of Theorem 2 that

the convergence rates are not affected by this linearization
of the constraints. We conclude by stressing that in this
version of LLP we only required predictions c̃t, ∇g̃t(x̃t) and
g̃t+1(x̃t+1); while with non-linearized constraints LLP was
using predictions c̃t, g̃t(·) and g̃t+1(x̃t+1).

H. Proof of Lemma 4

For this specific type of constraints, the primal and prescient
updates are as follows:

xt = argmin
x∈X



r0:t−1(x) + c�1:t−1x+ c̃�t x+ λ1:tg(x)

�
zt = argmin

x∈X



r0:t(x) + c�1:tx+ λ1:tg(x)

�
,

while the dual update remains the same:

λt+1 = arg max
λ∈R

d
+



− q0:t(λ)+λ�

�
g̃t+1(x̃t+1)+

t�
i=0

gt(zi)
��
.

With this modification, Lemma 2 yields the bound:

�xt − zt� ≤ �t�
σ1:t

, with t = ct − c̃t, σt = σ

���� t�
i=1

�i�

and therefore:�T
t=1 c

�
t (xt − zt) ≤

�T
t=1

�ct��
t�
σ1:t

≤ 2Lf

σ

��T
t=1 �t�.

Similarly, we can redefine BT and re-derive (12) as follows:

RT + λ�
,

T�
t=1

gt(zt) − �λ�2

2aT−1

-
≤ BT

where BT � 2
�
σD2 +

Lf

σ

����� T�
t=1

�t� +
T�

t=1

at−1ξ
2
t

and ξt = �gt(zt) − g̃t(x̃t)�. Selecting the λ that maximizes
the second term in the LHS as before, we arrive at:

RT +
aT−1

2
(V z

T )2≤BT and VT ≤ V z
T +

2Lg

σ

���� T�
t=1

�t�

(40)

From this result, we can see directly that when t = ξt = 0, ∀t,
we get RT ≤ 0 since BT = 0 and aT−1 is positive. And for
the constraints, it holds:

VT ≤
�

−2RT

aT−1
= O

�
T

1+β
2

�
.

For worst-case predictions, we can drop the positive term
aT−1(V z

T )2 and write:

RT ≤ BT = O
�

max

√

T , T 1−β
��
,

and replace −RT ≤ FT = O(T ) in (40) and rearrange to
obtain the bound for V z

T and then using the relation of VT

to VT (see (40)) to bound the former. Finally, it is interesting
to observe that the derivation of the bounds did not require
explicitly bounding the dual variables, and this stems from
the fact that xt is independent of the constraint perturbations.

I. Numerical Tests

Finally, we conclude by providing some simple, yet illumi-
nating, numerical results comparing LLP with three competitor
algorithms: the MOSP algorithm by Chen et al. [6]; our
previous work Valls et al. [16]; and Sun et al. [10]. Figure 4
presents the first set of results. The algorithms run on the
following cost and constraint functions:

ft(x) =

*
−4x if t mod 2 = 0
−x otherwise

.
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Fig. 5. Benchmark comparisons for: ft(x) = −2x; gt(x) = x with probability 0.1/(t + 1)0.05 and gt(x) = −0.01 otherwise; X = [−1, 1]. For the
experiments presented here we have used β = 0.2.

and

gt(x) =

*
0.79x+ 0.26 if t mod 2 = 0
0.64x− 0.135 otherwise

.

where x ∈ X = [−1, 1]. The code for this experiment can
be found in https://github.com/giosifid/LLP, with a detailed
description of the various involved parameters.

For the first LLP run we do not use any predictions, so as to
demonstrate the efficacy of the algorithm even when no pre-
dictions are available. The second LLP plot runs the linearized
version of the algorithm and uses perfect gradient predictions
for the cost and constraint functions, but no predictions for
the next constraint value. The three competitors have been
optimized for RT , by using the steps and tuning parameters
that are suggested in their respective references. We observe
that LLP achieves lower regret from all competitors, and it
reaches that point faster.

In the second experiment, we run the algorithms on the
time-invariant cost function ft(x) = −2x, ∀t, and constraint:

gt(x) =

*
x with probability 0.1

(t+1)0.05

−0.01 otherwise
.

where, again, x ∈ X = [−1, 1]. Note that in this example we
plot the total, not the average, constraint violation so as to shed
light on the actual operation of each algorithm.We observe that
LLP satisfies continuously the constraints in each t, while the
competitors oscillate or fail to converge, despite that the cost
function is constant.

The above results demonstrate that LLP performs quite
well in practice, where even in these simple examples (one
dimension space, time-invariant cost functions, etc.) it has
clear advantages over the state-of-art competitors. For exam-
ple, we see that it achieves fast lower regret points (first
experiment); and is able to handle the probabilistic constraints
in the second example – which is not surprising given that it
uses a lazy dual update scheme which turns to be robust in
such variations.
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