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Linear Clustering Process on Networks
Ivan Jokić and Piet Van Mieghem

Abstract—We propose a linear clustering process on a network
consisting of two opposite forces: attraction and repulsion between
adjacent nodes. Each node is mapped to a position on a one-
dimensional line. The attraction and repulsion forces move the
nodal position on the line, depending on how similar or different the
neighbourhoods of two adjacent nodes are. Based on each node po-
sition, the number of clusters in a network and each node’s cluster
membership is estimated. The performance of the proposed linear
clustering process is benchmarked on synthetic networks against
widely accepted clustering algorithms such as modularity, Leiden
method, Louvain method and the non-back tracking matrix. The
proposed linear clustering process outperforms the most popu-
lar modularity-based methods, such as the Louvain method, on
synthetic and real-world networks, while possessing a comparable
computational complexity.

Index Terms—Communities, graph clustering, modularity,
linear process.

I. INTRODUCTION

N ETWORKS [1], [2] abound and increasingly shape our
world, ranging from infrastructural networks (transporta-

tion, telecommunication, power-grids, water, etc.) over social
networks to brain and biological networks. In general, a network
consists of a graph or underlying topology and a dynamic process
that takes place on the network. Some examples of processes on
a network are percolation [3] and epidemic spreading [4], [5],
that possess a phase transition [6], [7]. While most real-world
processes on networks are non-linear, linearisation allows for
hierarchical structuring of processes on the network [8].

The identification of communities and the corresponding
hierarchical structure in real-world networks has been an ac-
tive research topic for decades [9], although a single, precise
definition of a community does not seem to exist [10], [11]. In
network science, a community is defined as a set of nodes that
share links dominantly between themselves, while a minority
of links is shared with other nodes in the network. Newman
proposed in [12] a spectral clustering algorithm that reveals
hierarchical structure of a network, by optimising modularity,
a commonly used quality function of a graph partition. Xu et al.
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proposed an efficient clustering algorithm in [13], capable of
detecting clusters while differentiating between hub and out-
lier nodes. A heuristic, modularity-based two-step clustering
algorithm, proposed by Blondel et al. in [14], has proved to
be computationally efficient and performed among the best in
the comparative study conducted in [15]. Recently, Peixoto
proposed in [16] a nested generative model, able to identify
nested partitions at different resolutions, which thus overcomes
an existing drawback of a majority of clustering algorithms,
identifying small, but well-distinguished communities in a large
network. Dannon et al. concluded in their comparative study [17]
that those clustering algorithms performing the best tend to be
less computationally efficient. A class of clustering algorithms
exists, that perform clustering based on a dynamic process on the
network, such as a random walk [18], consensus process [19] or
synchronisation [20]. We refer to [9], [21] for a detailed review
on existing clustering algorithms.

Our new idea is the proposal of a linear clustering process
(LCP) on a graph, where nodes move in a one-dimensional space
and tend to concentrate in groups that lead to network commu-
nities and therefore solve the classical1 community detection
problem. Linear means “proportional to the graph”, which is
needed, because the aim is to cluster the graph and the process
should only help and not distract from our main aim of clustering.
A non-linear process depends intricately on the underlying graph
that we want to cluster and may result in worse clustering!
Our LCP leads to a new and non-trivial graph matrix W in
(10) in Theorem 1, whose spectral decomposition is at least
as good as the best clustering result, based on the non-back
tracking matrix [22]. Moreover, the new graph matrix W has a
more “natural” relation to clustering than the non-back tracking
matrix, that was not designed for clustering initially. Finally, our
resulting LCP clustering algorithm seems surprisingly effective
and can compete computationally with any other clustering
algorithm, while achieving generally a better result!

In Section II, we introduce notations for graph partitioning
and briefly review basic theory on clustering such as modularity,
normalised mutual information (NMI) measure and different
synthetic benchmarks. We introduce the linear clustering pro-
cess (LCP) on a network in Section III, while the resulting
community detection algorithm is described in Section IV and
Section V. We compare the performance of our LCP algorithm
with that of the non-back tracking matrix, Newman’s, Leiden
and the Louvain algorithm and provide results in Section VI,
after which we conclude.

1A solution of the classical (or standard) community problem consists of
assigning a cluster membership to each node in a network.
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II. NETWORK OR GRAPH CLUSTERING

A graph G(N ,L) consists of a set N of N = |N | nodes and
a set L of L = |L| links and is defined by the N ×N adjacency
matrix A, where aij = 1 if node i and node j are connected by a
link, otherwise aij = 0. The N × 1 degree vector d obeys d =
A · u, where the N × 1 all-one vector u is composed of ones.
The corresponding N ×N degree diagonal matrix is denoted
by Δ = diag(d).

The set of neighbours of node i is denoted byNi = {k | aik =
1, k ∈ N} and the degree of node i equals the cardinality of that
set, di = |Ni|. The set of common neighbours of node i and node
j is Ni ∩Nj , while the set of neighbours of node i that do not
belong to node j is Ni \ Nj . The degree of a node i also equals
the sum of the number of common and different neighbours
between nodes i and j

di = |Ni \ Nj |+ |Ni ∩ Nj | (1)

The number of common neighbours between nodes i and j
equals the ij-th element of the squared adjacency matrix

|Ni ∩ Nj | =
(
A2
)
ij

(2)

because (Ak)ij represents the number of walks with k hops
between node i and node j (see [23, p. 32]). From (1), (2) and
di = (Au)i = (A2)ii, we have

|Ni \ Nj | =
(
A2
)
ii
− (A2

)
ij

and

|Ni \ Nj |+ |Nj \ Ni| =
(
A2
)
ii
+
(
A2
)
jj

− 2
(
A2
)
ij

The latter expression is analogous to the effective resistance ωij

between node i and node j,

ωij = Q†
ii +Q†

jj − 2Q†
ij

in terms of the pseudoinverse Q†
ii of the Laplacian matrix

Q =Δ−A (see e.g. [24]).
Before introducing our linear clustering process (LCP) in

Section III, we briefly present basic graph partitioning concepts,
while the overview of the more popular clustering methods is
deferred to Appendix A.

A. Network Modularity

Newman and Girvan [25] proposed the modularity as a con-
cept for a network partitioning,

m =
1

2L
·

N∑
i=1

N∑
j=1

(
aij − di · dj

2L

)
· 1{i and j ∈ same cluster}, (3)

where 1x is the indicator function that equals 1 if statement
x is true, otherwise 1x = 0. The modularity m compares the
number of links between nodes from the same community with
the expected number of intra-community links in a network with
randomly connected nodes. When the modularity m close to 0,
the estimated partition is as good as a random partition would
be. On the contrary, a modularity m close to 1 indicates that the
network can be clearly partitioned into clusters. Optimising the
modularity is proven to be NP-complete [26] and approximated

in [27]. Defining the N ×N modularity matrix C,

Cij =

{
1 if nodes i and j belong to the same cluster

0 otherwise,
(4)

allows us to rewrite the modularity (3) as a quadratic form,

m =
1

2L
· uT ·

(
A ◦ C − 1

2L
· (d · dT ) ◦ C) · u, (5)

where ◦ denotes the Hadamard product [28]. The number of
clusters in a network is denoted by c, while the c× 1 vector
n = [n1 n2 . . . nc] defines the size of each cluster, where the
number of nodes in cluster i is denoted as ni.

B. Normalised Mutual Information

Danon et al. [17] proposed the normalised mutual information
(NMI) metric, based on a confusion matrix F , whose rows
correspond to the original communities, while its columns are
related to estimated clusters. Therefore the element Fij of the
confusion matrix denotes the number of nodes in the real com-
munity i, that also belong to the estimated community j. The
normalised mutual information metric between the known P0

and the estimated partition Pe, denoted as In(P0, Pe), is defined
in [17] as follows

In(P0, Pe) =
−2
∑c0

i=1

∑ce
j=1 Fij log

(
FijN
Fi.F.j

)
∑c0

i=1 Fi. log
(
Fi.

N

)
+
∑ce

j=1 F.j log
(

F.j

N

) ,
(6)

where the known and the estimated number of clusters are
denoted as c0 and ce, respectively, the i-th row sum of F is
denoted as Fi., while its j-th column-sum is denoted as F.j . In
case two graph partitions are identical, the corresponding NMI
measure equals 1, while tending to 0 when two partitions are
independent. The NMI measure has been extensively used ever
since, while analysing the performance of different clustering
algorithms [9].

C. Benchmarks

The performance of the clustering methods in this paper are
benchmarked on random graphs, generated by the Stochastic
Block Model (SBM), proposed by Holland [29]. The SBM
model generates a random graph with community structure,
where a link between two nodes exists with different probability,
depending on whether the nodes belong to the same cluster or
not. We provide additional information on the stochastic block
model in Appendix B.1.

Girvan and Newman [30] focused on a special case of the
SBM model (GN benchmark), where the graph consists of
N = 128 nodes, distributed in c = 4 communities of equal size,
while fixing the average degree E[D] = 16. The GN bench-
mark has been extensively used in literature, despite introducing
strong assumptions, such as communities of equal size, each
node having the same degree and fixed graph size. Therefore,
Lancichinetti et al. [31] proposed the LFR benchmark, where
both the node degree vector d and community size vector n
follows a power law distribution, a property found in many
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real-world networks. Additional details on LFR benchmark are
deferred to Appendix B.2.

III. LINEAR CLUSTERING PROCESS (LCP) ON A GRAPH

A. Concept of the Clustering Process

Each node i in the graph G is assigned a position xi[k] on a
line (i.e. in one-dimensional space) at discrete time k. We define
the N × 1 position vector x[k] at discrete time k, where the i-th
vector component consists of the position xi[k] of node i at time
k. We initialize the N × 1 position vector x[0] by placing nodes
equidistantly on the line and assign integer values from 1 to N
to the nodes, thus, x[0] = [1 2 . . . N ]T . At last, we restrict the
position xi[k] to positive real values.

We propose a dynamic process that determines the position
of nodes over time. The position difference between nodes of
the same cluster is relatively small. On the contrary, nodes
from different clusters are relatively far away, i.e. their position
difference is relatively high. Based on the position vector x[k],
we will distinguish clusters, also called communities, in the
graph G.

The proposed clustering process consists of two opposite and
simultaneous forces that change the position of nodes at discrete
time k:

Attraction. Adjacent nodes sharing many neighbours are
mutually attracted with a force proportional to the number of
common neighbours. In particular, the attractive force between
node i and its neighboring node j is proportional to α · (|Nj ∩
Ni|+ 1), whereα is the attraction strength and (|Nj ∩ Ni|+ 1)
equals the number of common neighbors plus the direct link, i.e.
aij = 1.

Repulsion. Adjacent nodes sharing a few neighbours are
repulsed with a force proportional to the number of different
neighbours. The repulsive force between node i and its neigh-
boring node j is proportional to δ · (|Nj \ Ni| − 1), where δ
is the repulsive strength and (|Nj \ Ni| − 1) equals the set
of neighbours of node j that do not belong to node i minus
the direct link (that is included in |Nj \ Ni|). Since the force
should be symmetric and the same if i and j are interchanged,
we end up with a resultant repulsive force proportional to
1
2 · δ · (|Nj \ Ni|+ |Ni \ Nj | − 2).

B. LCP in Discrete Time

Since computers operate with integers and truncated real num-
bers, we concentrate on discrete-time modeling. The continuous-
time description is derived in Appendix C. We denote the
continuous-time variables by y(t) and the continuous time by
t, while the discrete-time counterpart is denoted by y[k], where
the integer k denotes the discrete time or k-th timeslot. The tran-
sition from the continuous-time derivative to the discrete-time
difference is

dxi(t)

dt
= lim

Δt→0

xi(t+Δt)− xi(t)

Δt
→ xi(t+Δt)− xi(t)

Δt

∣∣∣∣
Δt=1

def
= xi [k + 1]− xi [k]

Fig. 1. Dependence of the attractive and repulsive force on the number of
common neighbours of adjacent nodes i and j (left-figure). Directions of the
attraction and repulsion forces between the adjacent nodes (middle-figure).
Dependence of the attractive and repulsive force on the absolute position distance
between adjacent nodes i and j (right-figure).

Corresponding to the continuous-time law in Appendix C and
choosing the time step Δt = 1, the governing equation of posi-
tion xi[k] of node i at discrete time k is

xi[k + 1] = xi[k] +
∑
j∈Ni

(
α · (|Nj ∩Ni|+ 1)

djdi

−
1
2 · δ ·(|Nj \ Ni|+|Ni \ Nj |−2)

djdi

)
·(xj [k]−xi[k]) (7)

where α and δ are, in the discrete-time setting, the strength (in
dimensionless units) for attraction and repulsion, respectively.
The maximum position difference at the initial state is xN [0]−
x1[0] = N − 1.

Node j attracts an adjacent node i with force proportional
to their position difference (xj [k]− xi[k]). The intensity of the
attractive force decreases as nodes i and j are closer on a line. The
attraction is also proportional to the number common neighbours
|Nj ∩Ni| of node i and node j plus the direct link, as nodes tend
to share most links with other nodes from the same cluster. On
the contrary, node j repulses node i with a rate proportional to
their position difference (xj [k]− xi[k]) and the average of the
number of node j neighbours |Nj \ Ni| that are not connected
to the node i and, similarly, the number of node i neighbors,
|Nj \ Ni| that are not connected to the node j. The repulsive and
attractive force are, as mentioned above, symmetric in strength,
but opposite, if i is interchanged by j.

The directions of both attractive and repulsive forces between
two adjacent nodes i and j as well the dependence of both
forces on the number of common neighbours |Nj ∩ Ni| and
the absolute position distance |xj [k]− xi[k]| are illustrated in
Fig. 1.

In the continuous-time setting, as provided in Appendix 39,
we eliminate one parameter by scaling the time t∗ = δt. Because
the time step Δt = 1 is fixed and cannot be scaled, the discrete-
time model consists of two parameters α ≥ 0 and δ ≥ 0.

So far, we have presented an additive law, derived in the com-
mon Newtonian approach. The corresponding multiplicative law
in discrete time is

xi[k + 1] = xi[k] ·
(
1 +

∑
j∈Ni

(
α · (|Nj ∩Ni|+ 1)

di · dj

−
1
2 · δ · (|Nj \ Ni|+ |Ni \ Nj | − 2)

di · dj

)
· (xj [k]− xi[k])

)

(8)
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Although the physical intuition is similar, the multiplicative
process in (8) behaves different in discrete time than the additive
law in (7). Since also the analysis is more complicated, we omit
a further study of the multiplicative law.

We present the analogon of (7) in matrix form:
Theorem 1: The discrete time process (7) satisfies the linear

matrix difference equation

x[k + 1] = (I +W − diag (W · u)) · x[k], (9)

where the N × 1 vector u is composed of ones, the N ×N
identity matrix is denoted by I , while theN ×N topology-based
matrix W is defined as

W = (α+ δ)Δ−1 · (A ◦A2 +A
) ·Δ−1

− 1

2
· δ (Δ−1 ·A+A ·Δ−1

)
(10)

where ◦ denotes the Hadamard product. In particular,

wij = aij
α (|Nj ∩Ni|+ 1)− δ

( |Nj\Ni|+|Ni\Nj |
2 − 1

)
didj

(11)

The explicit solution of the difference equation (9) is

x[k] = (I +W − diag (W · u))k x[0] (12)

where the k-th component of the initial position vector is
(x[0])k = k.

Proof: Appendix D.1.
Theorem 1 determines the position of the nodal vector x[k]

at time k and shows convergence towards a state, where the
sum of attractive and repulsive forces (i.e. the resulting force)
acting on a node are in balance. Nodes with similar neigh-
bourhoods are grouped on the line, i.e. in the one-dimensional
space, while nodes with a relatively small number of common
neighbours are relatively far away. A possible variant of the
proposed linear clustering process may map the nodal position
into a higher dimensional space, like a circular disk or square
in two dimensions, and even with a non-Euclidean distance
metric.

C. Time-Dependence of the Linear Clustering Process

The N ×N matrix I +W − diag(W · u) in the governing
(9) has interesting properties. As shown in this section, the
related matrix W − diag(W · u) belongs to the class of M -
matrices, whose eigenvalues have a non-negative real part. The
(weighted) Laplacian is another element of the M -matrix class.

Property 1: The matrix I +W − diag(W · u) is a non-
negative matrix.

Proof: The governing (9)

x[k + 1] = (I +W − diag (W · u)) · x[k]
holds for any non-negative vector x[k]. Let x[0] = em, the basic
vector with components (em)i = δmi and δmi is the Kronecker
delta, then we find that the m-th column

x[1] = (I +W − diag (W · u))col(m)

must be a non-negative vector. Since we can choose m arbitrary,
we have established that I +W − diag(W · u) is a non-negative
matrix. �

Property 2: The principal eigenvector of the matrix I +W −
diag(W · u) is the all-one vector u belonging to eigenvalue 1.
All other eigenvalues of matrix I +W − diag(W · u) are real
and, in absolute value, smaller than 1.

Proof: Appendix D.2.
The linear discrete-time system in (9) converges to a steady-

state, provided that limk→∞ ||x[k + 1]|| = limk→∞ ||x[k]|| =
||xs||, which is only possible if the matrix (I +W − diag(W ·
u)) has all eigenvalues in absolute value smaller than 1 and the
largest eigenvalue is precisely equal to 1. Property 2 confirms
convergence and indicates that the steady-state vector xs = u in
which the position of each node is the same. However, the steady
state solution xs = u is a trivial solution, as observed from the
governing equation in (7), because the sum vanishes and the
definition of the steady state tells that x[k + 1] = x[k], which is
obeyed by any discrete-time independent vector. In other words,
the matrix (9) can be written as

x[k + 1]− x[k] = (W − diag (W · u)) · (x[k]− u)

which illustrates that, if x[k] obeys the solution, then r[k] =
x[k] + s · u for any complex number s is a solution, implying
that a shift in the coordinate system of the positions does not
alter the physics.

Let us denote the eigenvector yk belonging to the k-th eigen-
value βk of the matrix W − diag(W · u), where β1 ≥ β2 ≥
· · · ≥ βN , then the eigenvalue decomposition of the real, sym-
metric matrix is

W − diag (W · u) = Y diag(β)Y T

where the eigenvalue vector β = (β1, β2, . . . , βN ) and Y is the
N ×N orthogonal matrix with the eigenvectors y1, y2, . . . , yN
in the columns obeying Y TY = Y Y T = I . Since β1 = 0 and
y1 = u√

N
, it holds for k > 1 that uT yk = 0, which implies that

the sum of the components of eigenvectoryk for k > 1 is zero
(just as for any weighted Laplacian [24]). The position vector in
(12) is rewritten as

x[k] = Y diag(1 + β)kY Tx[0] =

N∑
j=1

(1 + βj)
kyj
(
yTj x[0]

)

Hence, we arrive at

x[k]− uTx[0]√
N

u =
N∑
j=2

(1 + βj)
k(yTj x[0]) yj (13)

As explained above, the left-hand side is a translated position
vector and physically not decisive for the clustering process.
Since −1 < βj < 0 for j > 1, relation (13) indicates that, for
k → ∞, the right-hand side tends to zero and the steady-state
solution is clearly uninteresting for the clustering process. We
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JOKIĆ AND VAN MIEGHEM: LINEAR CLUSTERING PROCESS ON NETWORKS 3701

rewrite (13) as

x[k]− uTx[0]√
N

u = (1 + β2)
k

(
(yT2 x[0]) y2

+

N∑
j=3

(
1 + βj

1 + β2

)k

(yTj x[0]) yj

)
.

Since |1 + β2| > |1 + β3|, we observe that

x[k]− uT x[0]√
N

u

(1 + β2)k (yT2 x[0])
= y2 +O

(
1 + β3

1 + β2

)k

, (14)

which tells us that the left-hand side, which is a normalized or
scaled, shifted position vector, tends to the second eigenvector
y2 with an error that exponentially decreases in k. Hence,
for large enough k, but not too large k, the scaled shifted position
vector provides us the information on which we will cluster the
graph.

The steady state in Property 2 can be regarded as a refer-
ence position of the nodes and does not affect the LCP pro-
cess nor the N × 1 eigenvector y2, belonging to the second
largest eigenvalue (1 + β2) of the N ×N “operator” matrix
I +W − diag(W · u), which is analogous to Fiedler clustering
based on theN ×N LaplacianQ. While the Laplacian matrixQ
essentially describes diffusion and not clustering, our operator
I +W − diag(W · u) changes the nodal positions, based on
attraction and repulsion, from which clustering naturally arises.

Property 3: The two parameters in the matrix W in (10)
satisfy the bounds

0 ≤ α ≤ dmax − 1

dmax − 1
2

(
1 + dmin

dmax

) ≤ 1 (15)

0 ≤ δ ≤ 1

dmax − 1
2

(
1 + dmin

dmax

) (16)

Proof: Appendix D.3.
The influence of the attraction strength α and the repulsion

strength δ on the eigenvalues βk and the N × 1 eigenvector y2
of the N ×N matrix W is analysed in Appendix E.

IV. FROM THE EIGENVECTOR y2 TO CLUSTERS

IN THE NETWORK

The interplay of the attractive and repulsive force between
nodes drives the nodal position in discrete time k eventually
towards a steady state limk→∞ x[k] = u. However, the scaled
and shifted position vectorx[k] in (14) converges in time towards
the second eigenvector y2 with an exponentially decreasing
error. In this section, we estimate the clusters in network, based
on the eigenvector y2.

By sorting the eigenvector y2 to ŷ2, the components of y2
are reordered and the corresponding relabeling of the nodes of
the network reveals a block diagonal structure of the adjacency
matrix A. We define the N ×N permutation matrix R in a way
the following equalities hold:

ŷ2 = R · y2,
ˆ(y2)i = (y2)ri ≤ ˆ(y2)j = (y2)rj , i < j, (17)

Fig. 2. Adjacency matrix A of an SSBM network of N = 1000 nodes,
c = 4 clusters and parameters bin = 26, bout = 0.67 (top-left). Eigenvector
y2 components (top-right). Sorted eigenvector ŷ2 components (bottom-right).
Relabeled adjacency matrix Â based on the sorted eigenvector ŷ2 (bottom-left).

where the N × 1 ranking vector r = R · w and w =
[1, 2, . . . , N ], with ri denoting the node i ranking in the eigen-
vector y2. The permutation matrix R allow us to define the
N ×N relabeled adjacency matrix Â, the N × 1 relabeled
degree vector d̂ of G, and the N × 1 sorted eigenvector ŷ2 as
follows: ⎧⎪⎨

⎪⎩
Â = RT ·A ·R
d̂ = R · d
ŷ2 = R · y2.

(18)

Groups of nodes that have relatively small difference in the
eigenvector y2 components, while relatively large difference
compared to other nodes in the network, compose a cluster.
Therefore, the community detection problem transforms into
recognizing intervals of similar values in the sorted eigenvector
ŷ2.

Fig. 2 exemplifies the idea, where the adjacency matrix A
of a randomly labeled SSBM network of N = 1000 nodes
and c = 4 clusters is presented in the upper-left part, as a
heat map. The eigenvector y2 is drawn in the upper-right part,
while the sorted eigenvector ŷ2 is drawn on the bottom-right
side. Finally, the relabeled adjacency matrix Â, based on nodal
ranking of y2 is depicted on the lower-left side. The sorted
eigenvector ŷ2 reveals a stair with four segments, equivalent to
four block matrices on the main diagonal in relabeled adjacency
matrix Â.

The eigenvector y2 represents a continuous measure of how
similar neighbours of two nodes are. There are two different
approaches to identify network communities for a given eigen-
vector y2:
� Cluster identification based on the sorted eigenvector ŷ2.

This approach is explained in Section IV-A.
� Cluster identification based on the ranking vector r.

This approach does not rely on the eigenvector y2 com-
ponents, but solely on nodal ranking, as explained in
Section IV-B.
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A. Community Detection Based on Nodal Components of the
Eigenvector y2

To identify clusters, we observe the difference in eigenvec-
tor y2 components between nodes with adjacent ranking. If
(ŷ2)i+1 − (ŷ2)i < θ, where θ denotes a predefined threshold,
then the nodes ri and ri+1 belong to the same cluster, else the
nodes ri and ri+1 are boundaries of two adjacent clusters. The
resulting cluster membership function is

Cri+1,ri =

{
1 (ŷ2)i+1 − (ŷ2)i < θ

0 otherwise,
(19)

where the threshold value θ is determined heuristically. The
cluster estimation in (19) can be improved by using other more
advanced approaches, such as the K-means algorithm.

B. Modularity-Based Community Detection

By implementing (4) and (18) into (3) we obtain:

m =
1

2L
· uT ·

(
Â ◦ Ĉ − 1

2L
·
(
d̂ · d̂T

)
◦ Ĉ
)
· u, (20)

where Ĉ = RT · C ·R. As shown in Fig. 2, the network re-
labeling based on the ranking vector r reveals block diagonal
structure in Â. Thus, the relabeled modularity matrix Ĉ has the
following block diagonal structure:

Ĉ =

⎡
⎢⎢⎢⎢⎣
Jn1×n1

On1×n2
. . . On1×nc

On2×n1
Jn2×n2

. . . On1×nc

...
... . . .

...

On1×n1
Onc×n2

. . . Jnc×nc

⎤
⎥⎥⎥⎥⎦ , (21)

where c denotes number of clusters in network, where the i-th
cluster is composed of ni nodes. We highlight that relation (21)
holds only in the case of a classical community problem, i.e.
when each node belongs to exactly one community. We define
the N × 1 vectors êi for i = {1, 2, . . . , c} as

êi =
[
O(1×∑i−1

j=1 nj) u(1×ni) O(1×∑N
j=i+1 nj)

]T
, (22)

that allows us to redefine Ĉ =
∑c

i=1 êi · êiT and further sim-
plify (20):

m =
1

2L
·

c∑
i=1

êi
T ·
(
Â− 1

2L
·
(
d̂ · d̂T

))
· êi. (23)

Since the vector êi consists of zeros and ones, the (23) rep-
resents the sum of elements of the matrix (Â− 1

2L · (d̂ · d̂T ))
corresponding to each individual cluster.

We estimate clusters for a given ranking vector r by opti-
mising the modularity m recursively. In the first iteration, we
examine all possible partitions of the network in two clusters
and compute their modularity. The partition that generates the
highest modularity is chosen. In the second iteration, we repeat
for each subgraph the same procedure and find the best partitions
into two clusters. Once we determine the best partitions for both
subgraphs, we adopt them if the obtained modularity of the
generated partition exceeds the modularity of a parent cluster

from the previous iteration. The recursive procedure stops when
the modularity m cannot be further improved, as described by
pseudocode (2), provided in Appendix F. This version of the
proposed process is denoted as LCP in Section VI.

C. Modularity-Based Community Detection for a Known
Number of Communities

The Algorithm 2 also applies for graph partition with a known
number of communities c. In that case, instead of stopping
the recursive procedure described in Algorithm 2 when the
modularity m cannot be further improved, we stop at iteration
(log2 c+ 1). In each iteration, the partition with the maximum
modularity is accepted, even if negative.

As a result, we obtain 2c estimated clusters with the 2c× 2c
aggregated modularity matrix Mc:

(Mc)gh =
∑

i∈g,j∈h

(
Â− 1

2L
· d̂ · d̂T

)
ij

, (24)

where g, h ∈ {1, 2, . . . , 2c} denote estimated communities. The
aggregated modularity matrix Mc allows us to merge adjacent
clusters, until we reach c communities in an iterative way. We
observe the (2c− 1× 1) vector μ, where μg = (Mc)g,g+1. The
maximum element of μ indicates which two adjacent clusters
can be merged, so that modularity indexm is negatively affected
the least. By repeating this procedure c times, we end up with
the graph partition in c clusters. This version of the proposed
process is denoted as LCPc in Section VI.

D. Non-Back Tracking Method Versus LCP

Angel et al. [32, p. 12] noted that the 2N non-trivial eigen-
values of the 2L× 2L non-back tracking matrix B from (36)
are contained in eigenvalues of the 2N × 2N matrix B∗:

B∗ =

[
A I −Δ

I O

]
, (25)

where the N ×N matrix with all zeros is denoted as O. The
2N × 2N matrix B∗, written as

B∗ =

[
I + (A−Δ) + (Δ− I) − (Δ− I)

I O

]

can be considered as a state-space matrix of a process on a
network, similar to our LCP process in (7), with the lastN states
storing delayed values of the firstN states. The2N × 2N matrix
B∗ defines the set ofN second-order difference equations, where
the governing equation for the node i position is

xi[k + 1] = xi[k] +
∑
j∈Ni

(xj [k]− xi[k])

+ (di − 1) · (xi[k]− xi[k − 1]) (26)

We recognize the second term in (26) as an attraction force
between neighbouring nodes with uniform intensity, while in
our LCP (7) the attraction force intensity is proportional to the
number of neighbours two adjacent nodes share. Further, while
we propose a repulsive force between adjacent nodes in (7), node
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Fig. 3. Adjacency matrix A of an SSBM network of N = 1000 nodes, c = 5
clusters of equal size, with parameters bin = 26 and bout = 2.25 (top-left).
Following 4 subfigures present the relabeled adjacency matrix based on the
ranking vector r in iterations 1,5,7 and 12, respectively. In each iteration, the
weights of 2% links are scaled (red colour). The weight of each link is allowed to
be scaled once. The relabelled adjacency matrix Â after 15 iterations of scaling
weights of links between clusters (bottom-right).

i in (26) is repulsed from its previous position xi[k] in direction
of the last position change (xi[k]− xi[k − 1]).

We implement the weighted intensity of the attractive force as
in (7), ignoring the repulsive force by letting δ = 0, and define
the 2N × 2N matrix W ∗, corresponding to B∗, (27) shown at
the bottom of this page. We estimate the number of clusters c in a
network from W ∗ similarly as in the non-back tracking method
in Section A.4 by counting the number of eigenvalues in W ∗

with real component larger than
√

λ1(W ∗). This approach is
denoted as LCPn in Section VI.

V. REDUCING INTENSITY OF FORCES BETWEEN CLUSTERS

The idea behind a group of methods in community detection,
called divisive algorithms, consists of determining the links be-
tween nodes from different clusters. Once these links have been
identified, they are removed and thus only the intra-community
links remain [30]. We invoke a similar idea to our linear cluster-
ing process.

An outstanding property of our approach is that the LCP
defines the nodal position as a metric, allowing us to perform
clustering in multiple ways. The position distance between any
two, not necessarily adjacent nodes indicates how likely the two
nodes belong to the same cluster. Then, the position metric also
allows us to classify links as either intra- or inter-community.
Thus, we iterate the linear clustering process (7) and, in each iter-
ation, we identify and scale the weights of the inter-community
links.

The attraction and repulsive forces are defined as linear func-
tions of the position difference between two neighbouring nodes,

Fig. 4. The estimated number of clusters (upper figures) in SSBM graphs with
N = 1000 nodes, average degree dav = 7, c = 2 (left-hand side) and c = 4
(right-hand side) clusters, respectively, for different values of parameters bin
and bout. The modularity of the estimated partitions is presented in the central
figures, while the NMI measure per each clustering algorithm is provided at the
bottom figures. The vertical dashed line indicates the clustering detectability
threshold.

as presented in Fig. 1. While linear functions greatly simplify
the complexity and enable a rigorous analysis, the linearity of
forces introduces some difficulties in the process. Firstly, as
two adjacent nodes are further away, both the attractive and the
repulsive force between them increase in intensity. Similarly,
as the neighbouring nodes are closer on a line, both forces
decrease in intensity and converge to zero as the nodes converge
to the same position. Secondly, the attractive force between any
two neighbouring nodes is always of higher intensity than the
repulsive force, causing the process to converge towards the
trivial steady-state.

Non-linearity in the forces can be introduced in the proposed
linear clustering process iteratively by scaling the weights of
inter-community links between iterations, that artificially de-
creases the strength of forces between the two nodes from
different clusters. In other words, we reduce the importance
of links between nodes from different clusters, based on the
partition from previous iteration.

A. Scaling the Weights of Inter-Community Links

The difference |(y2)i − (y2)j | in the eigenvector y2 compo-
nents of nodes i and j indicates how similar neighbourhoods

W ∗ =

[
I + α · (A ◦A2 +A− diag

((
A ◦A2 +A

) · u))+ (Δ− I) − (Δ− I)

I O

]
. (27)
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of these nodes are. A normalized measure for the difference
in neighbouring nodes i and j is the difference (|ri − rj |) of
their rankings in the sorted eigenvector ŷ2. Thus, links that
connect nodes with the highest ranking difference are most likely
inter-community links. We define the N ×N scaling matrix S
as follows:

sij =

{
1, if |rj − ri| < θr

υ, otherwise ,
(28)

where the ij-th element equals 1 if the absolute value of the
ranking difference between nodes i and j is below a threshold θr,
otherwise some positive value 0 ≤ υ ≤ 1. Based on the N ×N
scaling matrix S in (28), we update the governing equation as
follows:

x[k + 1] =
(
I + W̃ − diag

(
W̃ · u

))
· x[k],

where W̃ = S ◦W . Scaling the link weights in (28) only im-
pacts the clustering process in (9), as defined in the equation
above. However, modularity-based community detection, ex-
plained in Section IV-B, operates on the N ×N adjacency
matrix A in each iteration. Therefore, our implementation of
scaling the weights of inter-community connections in network
helps the process to better distinguish between clusters (i.e.
eventually provides better relabeling in (18)), without modifying
the N ×N adjacency matrix A and, hence, without negatively
affecting the modularity m optimisation in Algorithm 2. An
example of removing links (i.e. υ = 0) is depicted on Fig. 3,
where in each iteration weights of 15

4 % identified inter-cluster
links are scaled. Scaling the weights of links between clus-
ters significantly improves the quality of the identified graph
partition.

VI. BENCHMARKING LCP WITH OTHER

CLUSTERING METHODS

Computational complexity of the entire proposed clustering
process equals O(N · L), as derived in Appendix G. In this
section, we benchmark the linear clustering process (7) against
popular clustering algorithms (introduced in Appendix A), both
on synthetic and real-world networks. The non-back tracking
algorithm (Appendix A.4) and our LCPn (Section IV-D) esti-
mate only number of clusters, Newman’s method (Appendix
A.3), the Leiden method (Appendix A.2) the Louvain method
(Appendix A.1) and our LCP (Section IV-B) estimate both
number of clusters and the cluster membership of each node,
while LCPc (Section IV-C) requires the number of communities
c to perform graph partitioning. The attractive strengthα = 0.95
and the repulsive strength δ = 10−3 are used in all simulations.
Weights of 60% links in total are scaled using (28), evenly over
30 iterations, where in i-th iteration scaled weight is 0.05·i

30 .

A. Clustering Performances on Stochastic Block
Generated Graphs

We compare the clustering performance of our LCP with
that of clustering methods introduced in Appendix A, on a
same graph generated by the symmetric stochastic block model

Fig. 5. The estimated number of clusters (upper figures) in SSBM graphs with
N = 1000 nodes, average degree dav = 7, c = 8 (left-hand side) and c = 20
(right-hand side) clusters, respectively, for different values of parameters bin
and bout. The modularity of the estimated partitions is presented in the central
figures, while the NMI measure per each clustering algorithm is provided at the
bottom figures. The vertical dashed line indicates the clustering detectability
threshold.

(SSBM) with clusters of equal size. All graphs have N = 1000
nodes. We vary the parameters bin and bout using (37) in a way to
keep the average degree dav = 7fixed. For each SSBM network,
we execute the clustering methods 102 times and present the
mean number of estimated clusters and mean modularity of
produced partitions in Figs. 4, 5.

The clustering performance on SSBM graphs with c = 2 clus-
ters (c = 4 clusters) is presented on the left-hand side (right-hand
side) of Fig. 4, respectively. The non-back tracking algorithm
and our LCPn achieve the best performance in estimating the
number of communities c, as shown in the upper part of Fig.
4. Further, our LCP outperforms each considered modularity-
based method in identifying the number of communities c and
in modularity m. Furthermore, when clusters are visible (i.e.
above the detectability threshold), the NMI value (presented
in the bottom figures) of our LCP and our LCPc significantly
outperforms other clustering algorithms. Fig. 4 illustrates a
significant difference in performance between our LCP and the
non-back tracking matrix (NBT) method. Our LCP (in blue)
and the other three modularity-based methods perform poorly
in recognising the number c of clusters for a wide range of
bin − bout (around and below the detectability threshold). Poor
performance occurs because modularity-based methods gener-
ate partitions of higher modularity than the original network
(in black) but with different communities! Consequently, the
NMI measure deteriorates in these regimes. Our LCPn (in red),
for a given number of communities c, identifies partitions with
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TABLE I
CLUSTERING PERFORMANCE OF OUR LCP AND CONSIDERED EXISTING CLUSTERING ALGORITHMS ON REAL-WORLD NETWORKS

Fig. 6. The estimated number of clusters (upper figures) in LFR benchmark
graphs of N = 500 nodes with the average degree dav = 12, consisting of
c = 5 (left-hand side, with γ = 1 and β = 2) and c = 11 (right-hand side with
γ = 2 and β = 3) clusters, respectively, for different values of parameter μ.
The modularity of the estimated partitions is presented in the central figures,
while the NMI measure per each clustering algorithm is provided at the bottom
figures.

higher modularity m than of the original network, even within
the theoretically detectable regime.

Fig. 5 illustrates results for SSBM graphs ofN = 1000 nodes,
with c = 8 (left-hand side) and c = 20 (right-hand side) clusters.
Our LCP consistently outperforms the other three methods in es-
timated modularity m over the entire range of bin − bout values.
Except for bin − bout values around and below the detectability
treshold, the NMI measure of our LCP is superior to other three
methods (bottom figures).

B. Clustering Performances on LFR Benchmark Graphs

Fig. 6 illustrates clustering results on LFR benchmark graphs
of N = 500 nodes with c = 5 (left-hand part) and c = 11
(right-hand part) communities. Compared to Newman, Louvain
and Leiden algorithm, our LCP is among the best in estimating
the number of clusters c (upper figures) while outperforming
each considered method in estimated modularity m (middle
figures). In addition, our LCP provides the highest NMI measure

when the clusters are visible (i.e. for low μ value). For rela-
tively large values of μ, our LCP identifies partitions different
from the original one but with considerably higher modularity.
Therefore, the NMI measure deteriorates in this regime (lower
figures). When a graph is generated by the LFR benchmark, the
non-backtracking method (NBT) and our LCPn fail to estimate
the number of clusters c.

C. Clustering Performances on Real-World Networks

Table I summarises the clustering performance of our LCP
and those considered existing algorithms on seven real-world
networks of different sizes, number of links and community
structure. In five out of seven cases, our LCP provides partition
with the highest modularity m, compared to other algorithms.
LCP’s superiority in achieved modularity m aligns with the
results obtained on synthetic benchmarks. While the estimated
number of clusters c of each method cannot be judged as the
ground truth is unknown, LCP’s estimated number of commu-
nities c is, on average, the closest to that of the non-back tracking
matrix, known as one of the best predictors in the literature.

VII. CONCLUSION

In this paper, we propose a linear clustering process (LCP)
on a network consisting of an attraction and repulsion process
between neighbouring nodes, proportional to how similar or
different their neighbours are. Based on nodal positions, we are
able to estimate both the number c and the nodal membership
of communities. Our LCP outperforms modularity-based clus-
tering algorithms, such as Newman’s, Leiden and the Louvain
method on both synthetic and real-world networks, while be-
ing of the same computational complexity. The proposed LCP
allows estimating the number c of clusters as accurately as the
non-back tracking matrix, in case of SSBM graphs. A potential
improvement of the proposed linear clustering process lies in
a more effective way of scaling inter-community link weights
between successive iterations.

The linear clustering process LCP is described by a matrix
I +W − diag(W · u), which can be regarded as an operator
acting on the position of nodes, comparable to quantum mechan-
ics (QM). In QM, an operator describes a dynamical action on a
set of particles. Since quantum mechanical operators are linear,
the dynamics are exactly computed via spectral decomposition.
In a same vein, our operator I +W − diag(W · u) is linear and
describes via attraction and repulsion a most likely ordering
of the position of nodes that naturally leads to clusters, via
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spectral decomposition, in particular, via the eigenvector y2 in
Section III-C.
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