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SUMMARY
The inherent stochasticity of metabolism raises a critical question for understanding homeostasis: are
cellular processes regulated in response to internal fluctuations? Here, we show that, in E. coli cells under
constant external conditions, catabolic enzyme expression continuously responds tometabolic fluctuations.
The underlying regulatory feedback is enabled by the cyclic AMP (cAMP) and cAMP receptor protein (CRP)
system, which controls catabolic enzyme expression based on metabolite concentrations. Using single-cell
microscopy, genetic constructs in which this feedback is disabled, and mathematical modeling, we show
how fluctuations circulate through themetabolic and genetic network at sub-cell-cycle timescales. Modeling
identifies four noise propagation modes, including one specific to CRP regulation. Together, these modes
correctly predict noise circulation at perturbed cAMP levels. The cAMP-CRP system may thus have evolved
to control internal metabolic fluctuations in addition to external growth conditions. We conjecture that sec-
ond messengers may more broadly function to achieve cellular homeostasis.
INTRODUCTION

Bacteria display a striking ability to adapt to diverse environ-

ments. When exposed to different carbon sources, bacterial

cellsmake vast changes to their proteome composition, allowing

them to optimize their allocation of metabolic resources.1–4

Many regulation mechanisms have been identified that adjust

enzyme expression to the growthmedium.5–8 In addition to these

external changes, however, bacteria are also confronted with

major internal variations, even under constant external condi-

tions.9,10 Gene expression has long been known to be stochas-

tic.9–12 More recently, the metabolic activity of cells was also

found to fluctuate randomly, severely limiting growth.13–17 These

findings raise the question of whether cells employ regulatory

mechanisms to adjust the proteome in response to stochastic in-

ternal metabolic fluctuations.

Studying this issue is non-trivial. Cellular changes caused by

external nutrients or internal stochasticity are notably different,

even as most specifics are poorly understood. For instance, the

former are transmitted by specific pathways and components,

lead to sustained growth and expression capacity changes, and

occur typically on longer timescales.18–21 In contrast, stochastic
This is an open access article und
internal changes are a manifestation of general fluctuations in

many components and pathways,22,23 which are correlated in

complexways,9,13,24,25 are boundbyconstant growthandexpres-

sion capacity over time, and occur on faster timescales.13,26,27

Whether such metabolic fluctuations are filtered or averaged out,

by mechanisms like the competition for limited expression or

growth capacity or the secretion of excess metabolites,28,29 or

whether cells continuously respond to them, for instancebymodu-

lating expression levels, remains poorly understood. Addressing

this issue is key to understanding the elementary principles of

cellular homeostasis and the functional relevance of known regu-

latory interactions.

Here, we address this question using cyclic AMP (cAMP)-

cAMP receptor protein (CRP) signaling in Escherichia coli as a

model system. cAMP-CRP signaling is a major regulation mech-

anism of metabolic activity (Figure 1A). Regulating over 180

genes, CRP is a general expression activator of a group of cata-

bolic enzymes that together are referred to as the

C-sector.4,19,30,31 CRP is activated by the second messenger

cAMP, whose synthesis is in turn inhibited by metabolites that

are produced by the C-sector enzymes. The resulting negative

feedback loop has been shown to produce a near-linear relation
Cell Reports 42, 113284, October 31, 2023 ª 2023 The Authors. 1
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Figure 1. Removing cAMP feedback alters dynamics of a regulated reporter only

(A) Cartoon of a bacterial cell and the difference between WT and mutant. Shown are the processes of metabolism, protein expression, cAMP-CRP regulation,

and growth (l). Here, 4C represents the expression level of the C-sector, the total concentration of all catabolic proteins that are regulated by cAMP-CRP and that

import nutrients and convert them into internal metabolites (including cAMP itself). In the cAMP-fixed strain, cAMP is neither synthesized nor degraded and is

instead supplied externally to experimentally tune 4C.

(B) The two reporters and their promoters that were used in this study: a C-sector reporter whose transcription was regulated by cAMP-CRP (CRPr), and a

constitutive reporter, nCRPr. Crossed red block is the scrambled LacI site.

(C–F) Scatterplot of instantaneous growth rate (l) against single-cell relative expression of the reporters (4CRPr or4nCRPr). Dashed lines are linear regressions, and

black dots indicate binned averages (± standard error of the mean). Plots are from single, representative microcolonies (n = 1,671 cells for WT, n = 1,580 cells for

cAMP-fixed*), and other colonies showed the same trends (Figure S1E).

See also Figure S1 and Table S1.
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between the C-sector proteome mass fraction (4C) and the

growth rate (l) under variation of the carbon source available in

the medium3,19 and to optimally balance the costs and benefits

of C-sector expression such that the overall growth rate is maxi-

mized in a range of nutrient conditions.5 However, the interplay

between internal stochastic variations in metabolic activity and

the cAMP-CRP system has not been addressed experimentally

nor for other metabolic regulatory feedback mechanisms. Note

that we lack general information about themetabolic fluctuations
2 Cell Reports 42, 113284, October 31, 2023
that are relevant here: which components and pathways are

affected, how these fluctuations correlate and interact, and

whether protein expression or growth changes are involved. In

contrast to external nutrient changes as studied in steady-state

bulk experiments, it is also unclear whether the internal stochas-

tic changes are associated with a specific limitation, such as the

availability of carbon or nitrogen. These exigencies, aswell as the

inherently single-cell nature of the problem, require a different

experimental approach.
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To study stochasticity in the cAMP-CRP system, we quantified

the correlations between C-sector expression and growth rate in

individual cells over time using time-lapse microscopy, which al-

lows identification of time delays in the propagation of fluctuating

signals. Todissect the roleof thecAMP-CRP feedback,weaimed

to specifically disrupt its transmission of noise. The challenge

here was to maintain the C-sector stimulation by cAMP, which

is essential to growth, while eliminating the feedback of cAMP

noise. To achieve this, we used an E. coli cyaA cpdA null mutant

that is unable to synthesize or hydrolyze cAMP.5 The noise feed-

back was thus broken, while externally supplied cAMP main-

tained C-sector expression at appropriate levels (Figure 1A).

In wild-type (WT) cells, C-sector expression showed fluctua-

tions that were negatively correlated and time delayed with

respect to growth fluctuations, in line with cAMP-CRP regulating

the C-sector in response to metabolic stochasticity. Consis-

tently, disrupting the cAMP-CRP feedback abolished these

negative correlations. A mathematical model we developed

could explain all the observed correlations in a single fitting pro-

cedure, reproducing the observed effect of the disrupted feed-

back by merely changing the feedback transfer parameter to

zero. This mechanistic understanding of the system was further

evidenced by the ability of the model to predict the changes in

stochastic dynamics for cAMP levels belowandaboveWT levels.

Together, the findings show that C-sector expression in E. coli is

continuously regulated in response to internal stochastic meta-

bolic fluctuations in fixed environments. They also suggest that

feedbacks in metabolic networks, which are ubiquitous in cells,

actmore generally to control and exploit internalmetabolic noise.

RESULTS

Interrupting the feedback of noise in the cAMP-CRP
system
Elucidating noise propagation in the cAMP-CRP system requires

insight into the stochasticity of the C-sector expression that is

regulated by CRP. The population-mean C-sector expression

was previously studied by quantifying the expression of a repre-

sentative enzyme, LacZ.19 Here, we follow this general approach

andmeasure the expression of mVenus driven by the lac promo-

tor (Figures 1B and S1A). As we aim to study fluctuations prop-

agated by CRP rather than by the lac repressor LacI, the LacI

binding site in the lac promotor is scrambled such that LacI no

longer binds, while the promotor remains sensitive to cAMP-

CRP.5,32–34 This genome-inserted construct is called the CRP-

regulated reporter (CRPr). To study noise unrelated to CRP or

LacI, a second reporter was created by further modifying the

CRPr promoter. Specifically, the region where CRP and s70

bind was replaced with a s70 consensus site, such that transcrip-

tional initiation occurs constitutively without requiring CRP to re-

cruit s70. This reporter construct, which was fused tomCerulean,

is referred to as the non-CRPr (nCRPr) (Figures 1B and S1A).

Both CRPr and nCRPr were chromosomally inserted into E.

coli, a construct we refer to as WT, and into a cyaA cpdA null

mutant, which we refer to as cAMP-fixed.

Bulk measurements in lactose minimal media showed that the

growth rate of cAMP-fixed peaked at about 800 mM externally

supplied cAMP while decreasing to almost negligible growth at
lower and higher cAMP concentrations5,35 (Figure S1B). This

strong dependence on cAMP is consistent with the many genes

controlled by CRP and their essential nature. At low cAMP, un-

der-stimulation of C-sector expression leads to decreased

metabolic flux and concomitant growth. Conversely, at high

cAMP, over-stimulation of C-sector expression leads to excess

expression of many genes, which is metabolically costly and

hence also reduces the growth rate. We find that the growth

rate of WT cells in the same lactose minimal medium (without

externally supplied cAMP) is similar to the optimal growth rate

of cAMP-fixed cells obtained at 800 mM cAMP (Figure S1C).

We refer to cAMP-fixed cells growing at 800 mM cAMP as

cAMP-fixed* cells. Both WT and cAMP-fixed* cells were also

observed as growing microcolonies with phase-contrast and

fluorescence time-lapse microscopy. The mean fluorescence in-

tensity per unit area for CRPr and nCRPr was similar for WT and

cAMP-fixed* cells (Figure S1D). Overall, these experiments show

that WT and cAMP-fixed* cells display comparable population-

mean C-sector stimulation and growth rate, allowing us to study

whether the propagation of noise in single cells differs between

the WT and cAMP-fixed* cells.

The cAMP-CRP system responds to internal stochastic
fluctuations
The propagation of and response to cellular noise can be studied

by quantifying correlations between fluctuating phenotypic pa-

rameters.13,24,25 Here, we quantify fluctuations in the instanta-

neous cellular growth rate, l, by performing phase-contrast mi-

croscopy at a time resolution of 1–1.5 min, noting that multiple

time points are used to determine one l value. Fluctuations in

CRPr expression levels,4CRPr, are quantified by themVenus fluo-

rescence intensity using concurrent fluorescence microscopy at

intervals ranging from 13.5 to 26 min. In WT cells, 4CRPr fluctua-

tions were negatively correlated with l fluctuations, as is

apparent from the negative regression slope in Figure 1C. In

cAMP-fixed* cells, a positive correlation was found instead (Fig-

ure 1D). The difference is statistically significant (p = 0:0031,

Student’s t test, Figure S1E) and suggests that the negative cor-

relation in WT cells is a consequence of cAMP-CRP signaling,

which is eliminated in the cAMP-fixed* cells. The negative corre-

lation is reminiscent of the negative relation between C-sector

expression and growth rate known as the C-line.2,4,19 Note, how-

ever, that theC-line characterizes the response of a culture under

balanced growth for different available carbon substrate(s),

rather than the fluctuations within single cells under fixed condi-

tions, and that bulk assays can also yield a positive relation be-

tween the C-sector expression and growth rate, for instance un-

der nitrogen limitation.19

To assess whether the 4CRPr-l correlation changes were due

to disruption of CRP regulation, we studied the relationship be-

tween l and the expression levels of the reporter not regulated

by CRP, 4nCRPr, as quantified by mCerulean fluorescence inten-

sity. The correlations between 4nCRPr and l were negative for

both the WT and the cAMP-fixed* cells and, indeed, were indis-

tinguishable (Figures 1E, 1F, and S1E; p = 0:93, Welch’s t test).

This similarity is consistent with the above hypothesis, as nCRPr

is not regulated by cAMP-CRP in either strain. Thus, the growth

correlations of the nCRPr were similar with or without the
Cell Reports 42, 113284, October 31, 2023 3
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cAMP-CRP feedback. Conversely, the growth correlations of the

CRPr showed a notable shift when this feedback was disrupted,

suggesting that the cAMP-CRP system actively responds to in-

ternal fluctuations.

Time-dependent cross-correlations are captured by a
mathematical model
To obtain a mechanistic understanding of the observed correla-

tions, we extended themodel presented by Kiviet et al.13 Our aim

is not to capture the many known molecular mechanisms of the

CRP system but rather to assess whether the phenomenological

relations between variables are sufficient to describe our data.

The model is based on linear stochastic differential equations

(SDEs) that describe the temporal dynamics of protein produc-

tion rates (pÞ and concentrations (4), the growth rate (l), and a

parameter that reflects the metabolic activity to which the CRP

system responds (M) (Figure 2A). We explicitly modeled the

expression of the C-sector (pC and 4C), the C-sector reporter

(pCRPr and 4CRPr), and the constitutive reporter (pnCRPr and

4nCRPr). Note that the growth rate l affects the concentration 4,

because volume growth dilutes cellular components, but not

the production rate p. With this model, we hypothesize that

intrinsic stochasticity in l, p, andM, as modeled by independent

Ornstein-Uhlenbeck noise sources, propagate through the

network as defined by the interactions drawn in Figure 2A and

as quantified by transfer coefficient T. In particular, it surmises

that the cAMP-CRP system propagates internal stochastic fluc-

tuations in M backwards to the expression of the C-sector

genes, in proportion with the parameter TR (Figure 2A, purple

interaction and purple box). This transmission involves fluctua-

tions in metabolite abundance, cAMP synthesis and degrada-

tion, and CRP-mediated transcriptional activation (Figures 2A

and S2A; STAR Methods; Data S1).

The resulting theoretical expressions can be fitted to the

experimental data, which also allows one to estimate the transfer

coefficients, timescales, and noise amplitudes. Here, we focus

on the cross-correlation function R, which quantifies the correla-

tion between two time series after one is shifted by a delay t and

provide insight into how noise is transmitted within cellular net-

works.13,24,25,36 For example, if noise in signal A affects a down-

stream signalBwith a fixed time delay, the A-B cross-correlation

peaks at a positive t.

For WT cells, we found that the 4CRPr � l correlation function

(R4CRPr � l) is negative at t = 0 (Figure 2B), consistentwith the nega-

tive slope between 4CRPr and l (Figure 1C). For cAMP-fixed* cells,

R4CRPr � l was positive at t = 0 (Figure 2B), consistent with the pos-

itive slope observed in Figure 1D. Several other features also

became clear. For example, in WT cells R4CRPr � l and R4nCRPr � l

were not only negative in magnitude but also peaked at negative

delays (t < 0) (Figure 2B, right). In addition, both R4CRPr � l and

RpCRPr � l were higher in cAMP-fixed* than in WT cells (Figure 2B,

top right). The cross-correlation functions of the constitutive

nCRPr forWT and cAMP-fixed* cells were overall very similar (Fig-

ure 2B, bottom).

We simultaneously fitted all 8 cross-correlation functions of

Figure 2B, coveringWT and cAMP-fixed* cells, the two reporters

CRPr and nCRPr, and the production rate p and concentration 4

(Figure 2B). In WT cells, the transfer parameter TR was con-
4 Cell Reports 42, 113284, October 31, 2023
strained to negative values, whereas in cAMP-fixed* cells, it

was set to zero to implement the elimination of the cAMP-CRP

feedback (Figure 2A, red cross). All other parameters, including

noise transfer parameters, noise amplitudes, and timescales,

were constrained to having the same value for each of the 8

cross-correlation curves (see STAR Methods and Data S1).

Despite these strict fitting constraints, the model described the

data quantitatively. In particular, it reproduced the shift for

CRPr, from a negative 4-l correlation with a negative time delay

for WT cells to a nearly flat but slightly positive 4-l correlation for

cAMP-fixed* cells, and the lack of such a change for nCRPr (Fig-

ure 2B). Hence, these findings indicate that the cAMP-CRP sys-

tem actively modulates C-sector expression in response to inter-

nal metabolic fluctuations.

cAMP-CRP noise circulation can be decomposed into
distinct noise propagation modes
Next, we further analyzed the model to understand the underly-

ing noise propagation mechanisms. As described above, we

postulated coupled (stochastic) differential equations that reflect

the stochastic and regulatory dynamics of the CRP system and

from it derived mathematical expressions for the cross-correla-

tion functions. Inspection of these expressions reveals that

they are a sum of four noise modes, which we termed the catab-

olism, dilution, common, and regulationmodes (Figure 2C; STAR

Methods; Data S1). Each mode yields cross-correlation func-

tions of a particular shape and exhibits an amplitude that de-

pends on the amplitudes of the noise sources and transmission

parameters; together, the modes determine the overall cross-

correlation function. The modes describe how emitted noise

propagates along particular pathways to two quantities and,

hence, correlates them (Figures S2A–S2C). In the catabolism

mode, a stochastic increase in the production rate of ametabolic

enzyme leads to higher enzyme concentrations sometime later

and, subsequently, to a higher growth rate. This mode thus con-

tributes a positive peak at a positive delay time to the p-l cross-

correlation. In the dilution mode, stochastic increases in growth

rate lead to increased dilution of all proteins, contributing to the

4-l correlation a negative contribution with a negative delay.

The commonmode is the result of fluctuations in general compo-

nents that directly affect the protein production rate as well

as the growth rate. Hence, this mode yields a symmetric p-l

cross-correlation but a negative delay for 4-l because it takes

time for a change in production rate to cause a change in

concentration. Lastly, the regulation mode represents noise

transferred via the cAMP-CRP system. It shows how stochastic

increases in metabolism and growth can transiently limit cAMP-

CRP-mediated activation of C-sector expression, yielding a

symmetric but negative p-l cross-correlation, as well as a de-

layed negative 4-l cross-correlation.

The mathematical analysis moreover revealed that not all

modes are present in each of the cross-correlation functions

(Figure 2C, bottom table). Interestingly, just the absence and

the presence of noisemodes can already help to qualitatively un-

derstand the shape of the experimentally measured cross-corre-

lations for each reporter and strain (Figures 2B and 2C). First, the

analysis of our model suggests that the cross-correlation for the

CRPr contains a catabolism mode, whereas the correlation for



Figure 2. Mathematical model pinpoints dynamical role of regulation

(A) Cartoon of the mathematical model, which considers fluctuations in the growth rate (l) and the production rates (p) and concentrations (4) of the C-sector (pC

and 4C), the C-sector CRPr, and the constitutive nCRPr. Black arrows indicate noise transfer; only fluctuations in 4C affect metabolism. Metabolism affects

growth and protein productions rates. Regulation reacts to metabolic fluctuations and transfers to pC and pCRPr. In the mutant, regulation is removed (red cross).

(B) Cross-correlation functions between the protein production rate p(t) and l(t) (dashed lines) and between concentrations4(t) and l(t) in theWT and themutant.

Colored lines are model fits, and black lines are cross-correlations calculated from data (6 colonies for WT, with n = 3,635 cells in total, and 4 colonies for cAMP-

fixed*, with n = 6,770 cells in total; see Table S1 and Figures S5 and S7), and error bars indicate standard error (see STARMethods and Data S1, fitting procedure),

shown for only some data points.

(C) Interpretation and shape of the underlying noise modes that are present in the model. The checks and crosses indicate whether a mode was included in the

model’s fit for each experimental condition. The effect of keeping cAMP fixed is reflected by the removal of the regulation mode. Cartoons indicate the direction

and route of noise transfer for each specific mode.

See also Figure S2 and Tables S1, and S2.
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the nCRPr does not. Note that although neither reporter directly

influences the growth rate, the C-sector CRPr can be seen as a

proxy for expression of the C-sector, which does influence the

growth rate. Therefore, a part of the catabolism mode of the

C-sector can be observed in the CRPr cross-correlations but

not in the cross-correlations for the constitutive reporter. Sec-

ond, the regulationmode is only present in the cross-correlations

for the C-sector CRPr in the WT because only this reporter is

regulated via the cAMP-CRP regulatory network.

We noted that the (cross-)correlations between 4CRPr and l

(Figures 1C and 2B) and between 4nCRPr and l (Figures 1E and

2B) looked similar in WT cells. The mathematical analysis of

the noise propagation model, however, indicates that they are

composed of different modes (Figure 2C). For the constitutive

nCRPr, in both WT and cAMP-fixed* cells, catabolism and regu-

lation modes are absent, and the main contribution comes from

the dilution mode. Cross-correlations of the C-sector reporter

CRPr, on the other hand, additionally contain the catabolism

and regulation modes, which largely cancel out, resulting in

WT correlations with a shape similar to those of nCRPr. In the

cAMP-fixed* cells, the negative regulation mode is absent in

CRPr correlations, and the catabolism mode becomes visible,

resulting in a positive (cross-)correlation.

Given that negative feedback loops can play a role in reducing

noise, we wondered whether the cAMP-CRP feedback system

could also exert such a functional role. Indeed, a 4% decrease in

growth noise and a 7% decrease in C-sector noise in WT

compared with the cAMP-fixed* condition are predicted by our

model, consistent with a noise-quenching role for the negative

feedback (Figures S2D–S2F). The experimentally observed coeffi-

cients of variation (CVs) showed a similar trend (Figures S2D and

S3E), although such small decreases in growth noise cannot be

determined in a statistically significant manner given the levels of

measurement noise. Taken together, these observations show

that temporal dynamics can be modeled as a linear combination

ofmodes, consistentwith the idea thatmultiple cellular processes,

includingmetabolismand regulation, shapecellular heterogeneity.

Mechanistic model predicts noise propagation for non-
optimal C-sector expression
To further test the model, we sought to describe the effects of

changes in the population-mean expression of the C-sector.

Hence, we examined cAMP-fixed cells with cAMP concentra-

tions below and above the optimal value, here referred to as

cAMP-fixedlow and cAMP-fixedhigh cells. Consistently, the

measured population-mean expression of the C-sector CRPr

was below or above that of cAMP-fixed* cells, respectively (Fig-

ure 3A, black dots). Notably, the constitutive nCRPr showed the

opposite: the mean expression was higher in cAMP-fixedlow and

lower in cAMP-fixedhigh cells (Figure 3B, red and orange clouds).

These observations are consistent with limitations to the size of

the overall proteome within cells: when the C-sector becomes

larger, the other proteins must decrease in abundance if the total

is constrained2 (Figures S3A and 3C). The slow growth of cAMP-

fixedlow cells is consistent with the C-sector becoming growth

limiting when under-expressed, while the slow growth of

cAMP-fixedhigh cells is in line with the metabolic costs of super-

fluously over-expressing the C-sector.5,13,37
6 Cell Reports 42, 113284, October 31, 2023
Given these population-mean changes, the model (Figure 2A)

yielded several predictions for the stochastic dynamics. In the

cAMP-fixedlow cells, the growth limitation of the under-expressed

C-sector should increase noise transfer from theC-sector enzyme

concentration 4C tometabolismM and on to the growth rate l and

the protein production rate p (Figure 3D, bottom left). The associ-

ated increases in the transfer coefficients predict overall increases

in the 4-l and p-l correlation functions, owing to increased ampli-

tude of the catabolism mode, while the dilution and common

modes remain largely unchanged (Figures 2C and S3B). We

indeed observed that the CRPr correlations, which were positive

for cAMP-fixed* cells, had further increased in magnitude, while

the nCRPr correlations became less negative (Figures 3D, S3B,

andS3D–S3M). These findings indicate that transient upwardfluc-

tuations in C-sector expression can alleviate metabolic bottle-

necks caused by mis-regulated C-sector expression, which is on

average below the optimum, and hence produce larger increases

in growth rate than at optimal C-sector expression.

In the cAMP-fixedhigh cells, the burden of superfluous C-sector

expression implies that it now negatively affects metabolism and

growth. The corresponding change from positive to negative

values for the transfer parameter from 4C to M (Figure 2A) pre-

dicts 4-l correlations that are strongly negative (Figure S3C;

STAR Methods; Data S1, low and high cAMP), as now only the

weaker common mode yields positive correlations, while both

the catabolism and dilution modes are negative (Figure 2C).

The p-l correlations are predicted to remain positive, however,

as M couples to l and p, which positively correlates them (Fig-

ure 2A). The experiments indeed showed a strongly negative

4-l correlation (Figure 3E, solid lines), while p-l correlations

are positive or negligible (Figure 3E, dashed lines), in line with

these predictions (Figure S3C). More quantitative fits

(Figures 3D and 3E) were obtained by increasing the noise ampli-

tudes of the reporters, which decorrelates the signals (see also

STAR Methods and Data S1, low and high cAMP). Possibly,

such changes in noise amplitudes are caused by changes in

average expression levels andmean growth rate, as noise ampli-

tudes tend to increase with the mean.10,38,39 These experiments

indicate that stochastic variations in superfluous expression can

cause growth penalties and that our model captures key aspects

of the stochastic dynamics.

The data also showed notable distinctions between popula-

tion-mean and single-cell behaviors: the regression lines through

single-cells clouds (Figures 3A and 3B, dashed lines) were typi-

cally not tangent to the curves through the population-mean

values (Figures 3A and 3B, solid lines, Figure S3A). In some

cases even the sign of the single-cell correlations were not

consistent with the population-mean trend (Figure 3B, orange

cloud). This can be understood as follows. The regression lines

describe the integrated response of both variables to internal

fluctuations in many cellular components under fixed external

conditions. In contrast, the curves describe the response of

the mean values of these variables to a specific external pertur-

bation (a change in the externally supplied cAMP concentration).

These considerations underscore the difference between inter-

nal stochastic variations and external nutrient variations, for

instance in terms of growth limitation. It is also of interest to

note that the trade-off between C-sector and other proteins,



Figure 3. Excessive or insufficient cAMP dampens growth and changes noise-mode amplitudes

(A) Scatterplot of the C-sector reporter against the growth rate under three conditions: low external cAMP (red cloud), optimal cAMP (green cloud, same condition

as in Figures 1D and 2B), and high external cAMP (orange cloud). Black dots indicate averages, dashed lines are linear regressions (extending 2 SD to each side),

and black curve is a second-order polynomial fit to the means.

(B) Same as in (A) but for the constitutive reporter. Gray parabola is calculated from a sum constraint of both reporters (STARMethods and Data S1, toy model of

the means of the two reporters).

(C) Cartoon showing how increasing the external cAMP concentration increases the size of the C-sector in the mutant strain but represses other proteins.

(D and E) Measured cross-correlations (gray lines with error bars indicate standard error) for both reporters for low cAMP (80 mM) and high cAMP (2,000 mM),

together withmodel predictions (colored lines) resulting fromminimal parametric changes comparedwith theWT fit. Model cartoons (bottom) indicate changes in

transfer parameters (green: increase, red: decrease) with respect to cAMP-fixed* cells (see STAR Methods and Data S1, low and high cAMP). Data from two

microcolonies are shown for low and high cAMP, with, respectively, n = 1,788 and 2,274 cells in total.

See also Figure S3 and Table S1.
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whichwe here also observe for the population mean (Figure S3A,

top left), is not obeyed at the single-cell level at high cAMP, as the

correlation between the concentrations of the two reporters in

the cAMP-fixedhigh condition is positive (95%confidence interval

[CI] [0.67,0.699]).

DISCUSSION

It has become increasingly clear over the past decade that meta-

bolic networks exhibit stochastic fluctuations.13,15,17,40 Metabolic

networks are also well known to contain numerous regulatory

mechanismsthatallowcells to react toexternal changes,which rai-

ses the question of whether they also act in response to internal

noise. Addressing thisquestion is critical tounderstandingwhether
metabolic homeostasis requires continuous regulatory adjust-

ments and to elucidating the functional relevance of known regula-

tory mechanisms. Here, we studied this issue for the cAMP-CRP

metabolic regulation system by experimentally disrupting noise

transmission while maintaining the proper population-mean activ-

ity. Using single-cell measurements and mathematical modeling,

we found that the cAMP-CRP system modulates the expression

of the large group of metabolic enzymes called the C-sector in

response to stochastic variations within the metabolic network.

Our quantitative approach allowed us to reveal the complex noise

circulation pathways within the cAMP-CRP system, which can

nonetheless bedissected into distinct and additive noise propaga-

tion modes. These noise propagation modes describe how cata-

bolic activity, dilution by volumegrowth, genericmetabolic activity,
Cell Reports 42, 113284, October 31, 2023 7
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and cAMP-CRP regulation couple expression and growth in dy-

namic terms.

Relations between C-sector protein expression and growth

have been studied extensively for the case of external nutrient

changes.2,3,19,41 This relation can be negative, for changes in car-

bon availability, or positive, for changes in nitrogen, ammonium, or

sulfate availability, for instance. For the case considered here, it is

not a prioriclearwhat is limiting, as internal stochastic changes are

a manifestation of fluctuations in essentially all cellular compo-

nents rather than changes in a single external or internal param-

eter. Fluctuation inmultiple internal parameters can also be corre-

lated with each other in a complex and delayed fashion, further

obscuring insight. While many details of noise circulation along

the many cellular pathways remains an open question, here we

show that internal stochastic fluctuations yield a negative correla-

tion betweenC-sector expression and growth and that the cAMP-

CRP feedback is responsible. The ‘‘regulation’’ noise mode in our

data, which produces negative C-sector-growth correlations (Fig-

ure 2C), is mechanistically closest to what causes the C-line for

different carbon sources. However, other noise modes produce

positive correlations,which could thus also have resulted inoverall

positive correlations. Our results also indicate that noise filtering

mechanisms, which could potentially have blocked propagation

through the pathways studied here, were not dominant. For

instance, metabolic and expression fluctuations could have been

filtered by limitations in resources including metabolites and ribo-

somes, excess metabolite secretion, and slowly changing pro-

cesses such as gene expression and dilution, as well as known

and unknown (allosteric) regulation. cAMP-CRP fluctuations and

their propagation thus are large and efficient enough to overcome

these possible filtering mechanisms.

By showing the interaction between metabolic noise, cAMP-

CRP signaling, and noise in the growth rate, this work builds on a

growing literature on noise in gene expression in the context of

metabolism and growth,13,25,42–47 as well as earlier, theoretical,

work that mainly focused on metabolic noise propagation within

particular regulatory networks48–50 and their influence on expres-

sion noise. A common finding is that negative feedback can serve

to reduce and control noise amplitudes.51–53 Consistently, both

our model and data show a small decrease (4%–7%) in noise am-

plitudeswhen the negative cAMP-CRP feedback is present. Such

modest noise differences are difficult to establish experimentally,

and indeed, they are not statistically significant here. At the same

time, small differences in growth noise could nonetheless be func-

tionally relevant on evolutionary timescales.

While our phenomenological model reproduced the key

experimental findings, it is interesting to speculate about rela-

tions to additional mechanisms. The C-sector is subject to global

regulation, but each gene within it can be affected by intrinsic

noise and other gene-specific variations, which contribute to

heterogeneity in metabolite concentrations and metabolic

fluxes.17,54,55 Metabolic noise within our model therefore may

be viewed as the compound result of the expression and result-

ing metabolic noise of many enzymes. Metabolic noise is de-

tected by the cAMP-CRP feedback and transmitted backwards

to the entire C-sector that drives metabolism. Hence, noise orig-

inating in many pathways can reverberate globally through the

cell: multiple cellular processes can transmit, modify, and
8 Cell Reports 42, 113284, October 31, 2023
amplify noise such that it becomes difficult to disentangle source

from intermediary.

While CRP is an important master regulator, many other sec-

ondary messengers and regulatory mechanisms in metabolic

networks are known to respond to external growth conditions.

For instance, (p)ppGpp is a crucial global modulator of protein

expression, cellular growth, ribosome biogenesis, and cell size

upon changes in growth media.56–58 The notion that metabolic

regulation mechanisms can also serve to detect and transmit

stochastic fluctuations of metabolites, as we show here, may

well apply to these and other regulators. Since stochastic fluctu-

ations could occur in any metabolite, including those that exert

allosteric control, our findings suggest that noise may propagate

through the cellular networks via diverse and complex feedback

mechanisms. We surmise that an understanding of the elemen-

tary underlying mechanisms is critical to understanding how

cells achieve metabolic homeostasis, as well as how they diver-

sify into heterogeneous populations.

Limitations of the study
The C-sector comprises many genes that are central to E. coli

metabolism. In this study, we focused on the global regulator

of this group of genes, using the Lac promoter as reporter

construct, following and consistent with previous steady-state

studies. However, other regulators that, for instance, act more

locally may lead to differences between C-sector genes. While

these mechanisms were not modified here and hence would

not change the findings, one should be careful in drawing con-

clusions for specific geneswithin the C-sector. Another limitation

is that our method does not measure fluctuations in metabolites

directly but rather is based on correlations between gene

expression and growth, mutants that abolish the cAMP-CRP

feedback, and mathematical modeling. While methods to mea-

sure stochastic fluctuations in the metabolites that are key

here are not yet accessible, these may become available in the

future.59 More generally, measurements of gene expression

and growth fluctuations are limited by experimental noise.

Both are affected by non-perfect focusing, imaging artifacts,

and cell segmentation errors, while the former is affected by

bleaching and the latter by non-perfect fitting of the size vs.

time data. Hence, the method is less suitable for studying abso-

lute measures of expression and growth. As a result, we study

here relative measures such as fluctuations and correlations.

Our modeling framework addresses the propagation of noise

in gene expression and growth around a constant average. It is

not suitable to study responses to environmental changes that

prompt cells to adjust these average values. Modeling ap-

proaches that integrate both noise propagation and changing

means in response to changing environments could be used to

further understand the differences and interplay between re-

sponses to external and internal variations. Such an extension

of the model may also allow for a more straightforward interpre-

tation of model parameters. In addition, our model is coarse

grained and does not explicitly describe metabolic compounds.

While amore detailedmodel might help to further understand the

biological implications of the noise transmission dynamics, the

associated increased number of parameters carries fitting and

interpretation challenges.
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resistance modules.)

Alon lab5 ASC838; bBT12; CGSC#8003

cyaA, cpda null mutant. Also known as
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resistance modules.)

Alon lab5 ASC839; bBT80

Referred to as ‘‘WT’’ in the manuscript. Wild

type strain, except for D(galk):nCRPr-

mCerulean-kanR and D(intc):CRPr-

mVenus-cmR. (Kanamycin and

chloramphenicol resistant.)

This paper ASC990

Referred to as cAMP-fixed in the

manuscript. Strain based on ASC839

(DcyaA Dcpda), with inserted reporters

D(galk):s70-mCerulean-kanR and

D(intc):rcrp-Venus-cmR. (Kanamycin and

chloramphenicol resistant.)
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Lactose Merck N/A
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Uracil Merck N/A
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
12 Cell Reports 42, 113284, October 31, 2023

mailto:tans@amolf.nl
https://www.moleculardevices.com
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://doi.org/10.5281/zenodo.8335363
https://doi.org/10.5281/zenodo.8335363
https://www.wolfram.com/mathematica


Report
ll

OPEN ACCESS
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Microbe strains
All strains usedwere based onwild type strain MG1655 (CGSC 8003, bBT12). The CRPr and nCRPr promoters were based on the lac

operon promoter, with respectively the lacI binding site or both lacI and CRP binding site scrambled.5 To obtain the C-sector reporter

(CRPr) and constitutive reporter (nCRPr), we fused these promoters to mCerulean and mVenus sequences respectively. The re-

porters where then inserted into the chromosomes of the bBT12 strain and a cyaA cpda null mutant strain constructed earlier

(bBT80), using a lambda red protocol.5 See key resource table for strain details and Figure S1A for promoter sequences.

Bulk measurements
To determine growth rates of the cyaA cpdA null mutant strain (strain ASC1004, also referred to as cAMP-fixed) at different cAMP

concentrations, this strain was inoculated from a freeze mix stock (kept at �80 C) into TY medium, and grown for several hours until

exponential growth was achieved. The culture was then diluted (>1000x) into M9minimal medium supplemented with 0.2 mM uracil,

0.1% lactose, 800 mMcAMP and grown O/N to allow cells to adjust to the lactose medium. Subsequently, the culture was inoculated

into separate wells each containing M9 medium with a different final concentration of cAMP (3.1M, 8.7M, 25.8 mM, 82.7 mM,

272.1 mM, 903.1 mM, 3004.3 mMand 10001.3 mMcAMP,with identical supplements, on a 96well plate). The samples were then grown

for several hours in a Wallac 1420 VICTOR3 Multilabel Counter (PerkinElmer) to record OD values over time in triplicate. Everything

was conducted at 37 C.

Single cell experiments
Micro-colonies of cells were grown on gel pads, imaged under a microscope, and analyzed by computer as described earlier.13,55

Briefly, polyacrylamide gel pads (approx. 5 mm3 5 mm x 1 mm in size) were pre-soaked in M9 minimal medium supplemented with

lactose (0.01% g/mL), uracil (0.2 mM), Tween 20 (0.001%) and the desired concentration of cAMP (Sigma Aldrich) if applicable. Pads

were placed in a sealed glass chamber created by amicroscope slide and a 2nd glass cavity slide, covered by a glass coverslip. Cells

were pre-grown overnight in the same medium, and 1 mL of exponentially growing culture (OD 0.005) was then inoculated on the gel

pad at the start of the experiment. Everything was done at 37�C, and the glass chamber with pad and cells was then placed in a

customized scaffold, and imaged under a microscope with a customized incubation chamber at 37�C. For the WT, cAMP-fixedlow,

cAMP-fixed* and cAMP-fixedhigh conditions, we respectively processed time series data from 6, 2, 4 and 2 micro-colonies.

METHOD DETAILS

Microscopy
Weused a Nikon, TE2000microscope, equippedwith 1003 oil immersion objective (Nikon, Plan Fluor NA 1.3), cooled CMOS camera

(Hamamatsu, Orca Flash4.0), xenon lamp with liquid light guide (Sutter, Lambda LS), GFP, mCherry, CFP and YFP filter set (Chroma,

41017, 49008, 49001 and 49003), computer controlled shutters (Sutter, Lambda 10–3 with SmartShutter), automated stage (März-

häuser, SCAN IM 120 x 100) and an incubation chamber (Solent) allowing precise 37�C temperature control. An additional 1.5X lens

was used, resulting in images with pixel size of 0.0438 mm. Themicroscopewas controlled byMetaMorph software, which allowed us

to automatically take pictures at set intervals. Image acquisition intervals were adjusted to doubling times to obtain multiple fluores-

cent images per cell cycle; phase contrast imageswere taken every 60–90 s, CFP andYFP fluorescent images (150–200ms exposure

time) were taken at intervals ranging from 13.5 to 26 min.

Image analysis
Series of phase contrast images were analyzed with theMATLAB (Mathworks) program Schnitzcells,60 extended with custom scripts

written by Daan Kiviet, Philippe Nghe, and Noreen Walker.13,61 Cells were segmented and tracked to follow cells and lineages

through time in line with Kiviet et al.13 For each frame, cell lengths were determined by fitting a 3rd (or, in some cases 5th) order poly-

nomial to the curved segmentation regions. Cells were assumed to have a constant width. Growth rates (dbl/hr) were determined by

fitting an exponential function to the cell lengths overmultiple frames (5–9). To determine the production rate per volume, first the sum

of the fluorescence signal (a.u.) over all pixels that make up a cell was calculated. If on frame n also a fluorescence image was taken,

we then calculated the slope of a linear fit through three points n � l, n, and n+ l (where l is the frame interval at which fluorescence

pictures are taken), the resulting number is divided by the total number of pixels of the cell in frame n to obtain the production rate.

Concentrations were determined by dividing the sum of the fluorescence signal by the total number of pixels in a cell. To determine

scatterplots and correlations, only frames where fluorescence images were taken are considered.

Mathematical model
As mentioned, our model consists of stochastic differential equations, and includes variables representing protein production rates

(p), protein concentrations (4), metabolism (M), growth rate (l), and Ornstein-Uhlenbeck noise sources N. Parameters include noise

transfer coefficients T that couple equations for dp=dt, dM=dt, and d l=dt; concentrations are determined by d4=dt = p � 4l. This

model is solved analytically to predict cross-correlations between the quantities. See Data S1 for an extensive description of the
Cell Reports 42, 113284, October 31, 2023 13
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model, procedures to fit the model to experimental data, a statistical null model for the cross-correlations, and a toy model that de-

scribes the mean behavior of p, 4, and l for CRPr and nCRPr in different conditions as observed in Figure 3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments are listed in figure captions. In Figure 1, data from n = 1671 (WT) and n = 1580 (cAMP-fixed*) cells

are shown. To determine the statistical significance of the difference between the 4CRPr-l slopes inWT and cAMP-fixed*, a Student’s

t-test was performed, after confirmation that the test’s assumptions were valid (based on n = 6 and n = 4 microcolonies). To deter-

mine the statistical significance of the difference between the WT and cAMP-fixed* 4nCRPr-l slopes, a Welch’s t-test was performed,

as the variances were unequal (based on n = 6 and n = 4 microcolonies). Cross-correlations in Figure 2 are based on n =

113;63;110;953;729;1667 cells (WT) and n = 1568;1626; 1500; 837 cells (cAMP-fixed*), from respectively 6 (WT) and 4 (cAMP-

fixed*) microcolony measurements. Data presented in Figure 3 are based on n = 1165;623 (cAMP-fixedlow), n = 1568; 1626;1500

(cAMP-fixed*) and n = 1437; 837 (cAMP-fixedhigh) cells from respectively 2, 3 and 2 microcolonies. See below for further details of

the cross-correlation analysis.

Cross-correlation analysis
In general, the cross-covariance c and cross-correlation R between two signals in discrete time are defined as:

cf;gðtÞ =
1

N � jtj � 1

XN� jtj � 1

n = 0

bf ðnÞbgðn + tÞ; and Rf;gðtÞ =
cf;gðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cf ;fð0Þcg;gð0Þ
p ;

where hats indicate mean-subtracted signals.

Cells that are born earlier in the experiments appear inmore lineages. When calculating cross-correlations along lineages, wemust

therefore be careful to not count such cells repeatedly. Therefore, we introduce for each data point a weight representing in the num-

ber of branches it occurs in. The result is a composite cross-correlation with contributions of points from multiple branches i. Lastly,

we also introduce time-average-subtracted variables. We therefore define a composite cross-covariance and cross-correlation:

Sf;gðtÞd 1

Wtotal;t

X
i

1

Ni � jtj � 1

XNi � jtj � 1

n = 0

wn;i;t
bfi ðnÞ bgi ðn + tÞ
Rf;gðtÞ =
Sf;gðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sf;fð0ÞSg;gð0Þ
p

bfi ðnÞ = fiðnÞ � CfiDn
wn;i;t = 1
�
Kn;i;t;
Wtotal;t =
X
n;i

wn;i;t:

Here, the summations run over all branches i and time points n. Weights are indicated with w, where Kn;i;t is the frequency with

which a specific point pair bfi ðnÞ bgi ðn + tÞ was used. Throughout the manuscript we refer to the composite cross-correlation R as

the cross-correlation R. The mean-subtracted signal bfi ðnÞ is now recalculated in each branch, for each time point, to compensate

for a changing overall average during the experiment.

To confirm that the measured cross-correlations correspond to biological signals inside the cells, we performed a permutation

analysis on the time-series data. We kept the temporal information of the data, but randomized at each time point the growth rate

and expression data for all the cells in the colony. Any biological correlations between variables should therewith be removed.

Repeating this randomization 50 times, and each time re-calculating cross-correlations, indeed gives a band of cross-correlations

around zero, allowing us to infer what kind of signals could still be explained purely by technical noise (see for example

Figures S3J–S3M). Any part of the originally measured cross-correlations that fall outside this band can then be concluded to

stem from a real biological signal :

To create Figures 2 and 3 of themain text, the cross-correlations calculated per microcolony were averaged. Here, we explain how

we averaged for each growth-condition themultiple (independent) experiments (eachmicrocolony being an experiment), and howwe

calculated error bars. In short, we determine the consistency of a microcolony by dividing the colony in multiple roughly equal parts
14 Cell Reports 42, 113284, October 31, 2023
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and calculate for each delay time the (cross)-correlations of growth rate and protein production/concentration over these parts. To

determine an average using multiple microcolonies grown at the same condition, microcolonies with a higher internal variance are

weighted less (as a high variance is likely the result of non-uniform growth conditions across the agar plate, or it could hint at other

biological processes like filamentation that would disrupt the measurement).

To be more precise, we writeN for the number of experiments and ni for the number of subgroups within experiment i. To estimate

error bars, we use a statistical model with random effects. We assumed that a measurement yij based on part j˛ f1;.;nig of exper-
iment i˛ f1; ::;Ng is determined by the average of interest, m, plus two noise sources: within-experiment noise xij, and between-

experiment noise hi:

yij = m + hi + xij:

Here, the random variable hi represents the systematic off-set of the mean in experiment i, and the random variable xij represents

noise in themeasurements specific to part j of group i. Both hi and xij are assumed to be sampled independently from their respective

probability distributions, with means zero, i.e., ½hi� = E½xij� = 0.

It follows that E½yij� = m.

Furthermore, wewrite Var½xij� = s2i for the variance introduced by the randomdifferences between parts within experiment i (s2i might

differ between experiments), and Var½hi� = s2 for the variance introduced by systematic differences between experiments.

The mean over all measurements is written as y, and equals, per definition of the mean:

y =

PN
i = 1

Pni
j = 1

yij

PN
i = 1

ni

:

With the notation above, the variance of the mean of the measurements can be written as:

Var½y�d
Var

" PN
i = 1

Pni
j = 1

m+ hi + xij

#
� PN

i = 1

ni

�2
=
1� PN

i = 1

ni

�2
Var

"XN
i = 1

nihi +
XN
i = 1

Xni
j = 1

xij

#

=
1� PN

i = 1

ni

�2

 XN
i = 1

n2
i Var½hi� +

XN
i = 1

niVar
�
xij
�!
=

s2
PN
i = 1

n2
i +

PN
i = 1

nis
2
i� PN

i = 1

ni

�2

Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½y�p

is the standard deviation of the mean (standard error). This standard error
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½y�p

can estimated by using the

above equation and estimating s and si from the experiments. To estimate si, we calculated the standard deviation si among the

measurements of parts j in experiment i; to estimate swe calculated the standard deviation among the means calculated per exper-

iment. The error bars in Figures 2B and and 3D and E represent the resulting standard errors.

In practice, ni had the same value in all our experiments (ni = 4 for all i).

Writing ni = n, the equation for the standard error reduces to

Var½y� =
s2

N
+

PN
i = 1

s2
i

�
N

nN
:
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This shows that the variance of the observed mean y has two contributions: the variance introduced by systematic differences be-

tween experiments, which decreases with the number of experiments, and the variance introduced by differences between parts of

the same experiment, which decreases with the number of observations n:

To best estimate the average, m, we again use knowledge of within-experiment variances to calculate a weight factor for each mi-

crocolony. Let yiðtÞ be the measured mean value of an observable in experiment i at time t, with within-experiments error siðtÞ. Then
we estimate the weighted average as:

CyðtÞD =

PN
i = 1

s� 2
i ðtÞyiðtÞ

PN
k = 1

s� 2
k ðtÞ

= :

PN
k = 1

wiðtÞyiðtÞ
WðtÞ :

Here,wiðtÞ = s� 2
i ðtÞ andWðtÞ =

PN
k = 1wkðtÞ. That is, more precisemeasurements (i.e., thosewith smaller within-experiment error si)

obtain a higher weight.

The within experiment variances s2i are estimated by dividing each microcolony into four lineages (i.e., ni = 4 for all experiments);

from the moment there were four cells in the microcolony, we followed each of their lineages separately, and calculated and

compared cross-correlations along each lineage.
16 Cell Reports 42, 113284, October 31, 2023
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