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A B S T R A C T

Since the development of the best–worst method (BWM) in 2015, it has become a popular research focus in
multi-criteria decision-making. The original optimization problem of the BWM is a nonlinear min–max model
that can lead to multiple optimal solutions, while the linear model of the BWM produces a unique solution.
The two models need to be solved by optimization software packages. In addition, although the linear model
of the BWM can obtain a unique solution, it produces different feasible regions than the nonlinear model
of the BWM, and it changes the objective function. This study aims to solve the nonlinear model of the
BWM mathematically to obtain the analytical forms of the optimal solutions. First, we transform the original
nonlinear model of BWM into an equivalent optimization model driven by the optimally modified comparison
vectors. The equivalent BWM provides a solid basis for computing the analytical solutions. Second, for not-fully
consistent pairwise comparison systems, we strictly prove that there is only one unique optimal solution with
three criteria, and there might be multiple optimal solutions with more than three criteria. We further develop
the analytical forms of these unique and multiple optimal solutions and the optimal interval weights. Third,
we develop a secondary objective function to select a unique solution for the BWM. The secondary objective
function retains all the characteristics of the original nonlinear model of the BWM, and we find the unique
solution analytically. Finally, some numerical examples are examined, and a comparative analysis is performed
to demonstrate the effectiveness of our analytical solution approach.
1. Introduction

Multi-criteria decision-making (MCDM) is a significant branch of
operations research and management science that supports decision-
makers (DMs) in resolving problems involving multiple conflicting and
incommensurable criteria. An essential part of MCDM is determin-
ing the weights of criteria or the priority of alternatives regarding
a criterion when the values of alternatives on this criterion are not
available [1–3]. The weighting methods usually involve assigning the
rating/importance of the criteria directly by the DM (e.g., SMARTS
(Simple Multi-Attribute Rating Technique using Swings) [4,5] and
DRM (Direct Rating Method) [6]), or making comparisons between
pairs of the criteria by the DM (e.g., AHP (Analytical Hierarchy Pro-
cess) [7], RANCOM (RANking COMparison) [8], and BWM (Best–Worst
Method) [9]). The comparison-based weighting methods elicit the cri-
teria weights based on the comparisons made between different pairs of
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j.rezaei@tudelft.nl (J. Rezaei).

the criteria following the DM’s preferences. Among them, the AHP has
been the most popular method for MCDM in the past 40 years and has
been widely studied in the operations research literature and applied
to solve many real-world problems [10–12]. As a pairwise comparison
method, the AHP makes a comparison between every pair of criteria or
alternatives using a scale of 1 (equally preferred) to 9 (absolutely pre-
ferred), and 𝑛(𝑛 − 1)∕2 pairwise comparisons are collected to construct
the preference relations and derive the weights (or priority) of 𝑛 criteria
(or alternatives). However, as the number of alternatives or criteria
increases, the number of comparisons increases substantially. Dealing
with such redundant comparison information is time-consuming and
will lead to inconsistent judgments.

Rezaei [9] argued that the leading cause of inconsistencies in the
AHP is the unstructured pairwise comparison procedure. To overcome
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this problem and some others, Rezaei [9] proposed a recently popu-
lar and well-founded MCDM method, the best–worst method (BWM).
The BWM conducts structured comparisons based on two comparison
vectors: the preference for the best criterion (e.g., the most important)
over all the other criteria and the preference for all the criteria over
the worst criterion (e.g., the least important). The weights of the
criteria are obtained by solving a nonlinear min–max model (also
known as the nonlinear BWM). Compared to similar MCDM methods,
the BWM provides several advantages [13]: (i) compared to AHP
that involves 𝑛(𝑛 − 1)∕2 pairwise comparisons, the BWM is based on
2𝑛 − 3 pairwise comparisons. The fewer number of pairwise com-
parisons not only simplifies the comparison process but also yields
more consistent preference information; (ii) compared to other pairwise
comparison methods, by identifying the Best and the Worst criteria
before conducting pairwise comparisons, the DM already has a clear
understanding of the range of evaluation, leading to more reliable
pairwise comparisons; and (iii) compared to other similar MCDM meth-
ods, including two opposite references (Best and Worst), the BWM can
mitigate several cognitive biases including anchoring bias [14] and
equalizing bias [15]. Although BWM is more data efficient compared
to some similar methods (e.g., AHP), it is less data efficient compared
to methods such as SMART and DRM. However, in methods with 𝑛− 1
ata points (e.g., SMART, Tradeoff, and DRM), we are unable to check
he consistency of the provided data by the DMs [16,17]. Due to the
fficiency of the BWM in reducing the number of pairwise comparisons
nd its satisfactory performance in maintaining consistency between
udgments, it has attracted the attention of many scholars, and many
tudies related to the BWM have been published over the past several
ears [18–22].

Current studies on the BWM mainly concern theory or application.
n terms of application, research has concentrated on the stand-alone
WM [23–25], combinations of the BWM and other decision-making
ethods [26–28], and their corresponding applications. The BWM has

een shown to be effective in various real-world applications, such
s urban environment [29], supply chain management [30], agricul-
ure [31], risk assessment [32], and others [33–35]. As this paper does
ot aim to extend the BWM into application areas, we do not review
pplication studies in detail. Theoretically, most existing studies focus
n improving the nonlinear BWM or extending the BWM into uncertain
valuation environments. Rezaei [36] found that the nonlinear BWM
ight result in multiple optimal solutions. He proposed two models to

ompute the ranges of the criteria weights and employed interval anal-
sis to rank the criteria. He also proposed a linear BWM model based on
he same philosophy as the BWM to find a unique solution. Brunelli and
ezaei [37] developed a multiplicative BWM. The multiplicative BWM

eads to a linear optimization problem. Liang et al. [20] dealt with some
onsistency issues in the BWM. They proposed input-based cardinal and
rdinal consistency measurements to check a decision maker’s (DM’s)
onsistency level during the preference elicitation process and then
stablished thresholds for the consistency ratios used in the BWM. Liang
t al. [38] incorporated the criteria interactions in MCDM using the
hoquet integral and developed a nonadditive BWM that considers
ossible interactions between the criteria. Two main kinds of uncertain
echniques combined with the BWM are fuzzy [39–41] and interval
alues [42–46].

As a nonlinear min–max model, the BWM [9] can yield either
unique optimal solution or multiple optimal solutions, determined

y the criteria number and consistency of the pairwise comparison
ystem [18]. Rezaei [36] explained the reason for unique optimality
nd multi-optimality using linear algebra. He concluded that there
s only a unique optimal solution for not-fully consistent problems
ith three criteria, and there might be multiple optimal solutions for
ot-fully consistent problems with more than three criteria. Multiple
ptimal solutions can offer DMs more flexibility in assigning criteria
eights, and a unique optimal solution gives a precise and determin-
2

stic result, so both have desirable features in guiding DMs to make
decisions in specific situations. Rezaei [36] presented two ways to
address this issue: one is based on interval analysis, and the other is
to use the developed linear BWM. Both methods work well for multi-
optimality concerning the nonlinear BWM, and they are also the most
commonly-used approaches.

Although many application studies use the BWM, theoretical re-
search related to the BWM is still relatively rare, and some theoretical
conclusions have not been proven scrupulously from a mathematical
perspective. Tu et al. [47] noted that the BWM is a non-convex op-
timization model, and it is quite challenging for it to achieve optimal
results. A state-of-the-art survey on the BWM [18] also stated that other
possible techniques for analyzing the multi-optimality of the nonlinear
BWM are interesting and challenging. The following valuable research
issues can be studied to improve the simplicity and suitability of the
nonlinear BWM in the form of analytical solutions.

• There is a lack of rigorous proofs and analytical approaches con-
cerning unique and multiple optimal solutions for the nonlinear
BWM. It is important to analyze the characteristics of the optimal
solutions of the nonlinear BWM and derive analytical solutions
from a mathematical perspective.

• Interval analysis for the case of multiple optimal solutions con-
structs a series of programming models to determine the ranges
of different criteria weights. It would be more convenient and
mathematically sound to give the analytical forms of the lower
and upper bounds of the criteria weights.

• Although the linear BWM can derive a unique optimal solution
for the criteria weights, its feasible region is different than that
of the nonlinear BWM. It is necessary to establish a secondary
objective function that keeps the features of the nonlinear BWM
and produces unique optimal criteria weights that can be solved
analytically.

Therefore, this study presents an equivalent BWM, provides some
analytical forms of the optimal solutions of the nonlinear BWM, and
constructs a secondary objective function to derive a unique optimal
solution for the BWM. In summary, the main contributions of this study
are as follows:

• We transform the initial nonlinear BWM model into an equivalent
BWM model driven by the optimally modified comparison vec-
tors. The equivalent BWM not only maintains the properties of the
solutions in the nonlinear BWM but also has fewer nonlinear con-
straints and more equality constraints, which can help identify the
potentially most inconsistent criteria, determine the adjustment
direction and obtain the analytical solution of the model.

• The unique and multiple optimal solutions of the nonlinear BWM
with different numbers of criteria and their analytical forms
are proven. The analytical forms of the optimal solutions in-
clude the optimal objective function value, feasible optimal mod-
ified comparison vectors, and optimal intervals of the criteria
weights. These results yield more convenient and effective solu-
tion methods for the nonlinear programming without using opti-
mization software and offer a good reference value for modifying
inconsistent comparison vectors.

• To derive a unique optimal solution for the BWM from multiple
optimal solutions, we construct a secondary objective function
that minimizes the maximum modified deviation of each criterion
under the condition that the feasible region is the same as that
of the nonlinear BWM. We also prove that its optimal solution
is unique and can be solved analytically. The secondary objective
function retains all the features of the nonlinear BWM and reduces
the adjustment amplitude of the original comparison vectors,
leading to a satisfactory unique optimal solution.

The remainder of the paper is organized as follows. Section 2 briefly

reviews the nonlinear BWM, the interval analysis for the nonlinear
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BWM, and the linear BWM. Section 3 proposes an analytical framework
for the BWM. Section 4 gives some numerical examples and conducts a
comparative analysis to demonstrate the effectiveness of our approach.
Finally, Section 5 concludes the study.

2. Best–worst method

In this section, we briefly review the nonlinear BWM, the inter-
val analysis for the nonlinear BWM, and the linear model of the
BWM. Then, we summarize these three BWM models, analyze their
characteristics and indicate the research topics in this paper.

2.1. Nonlinear best–worst method

BWM is a pairwise comparison-based weighting method developed
by Rezaei [9], which requires the DM to make pairwise comparisons
between the two reference points best and worst and the other criteria
to derive the weights using a min–max optimization model. The steps
of the BWM are as follows:

Step 1: Determine the decision criteria for the MCDM problem by
the DM.

Step 2: Identify the best (e.g. the most important or the most
desirable) criterion 𝑐𝐵 and the worst (e.g. the least important or the
least desirable) criterion 𝑐𝑊 by the DM.

Step 3: Determine the preference values 𝑎𝐵𝑗 (𝑗 = 1,… , 𝑛) of the best
criterion 𝑐𝐵 over all the other criteria 𝑐𝑗 (𝑗 = 1, 2,… , 𝑛) by a number
from {1, 2,… , 9} by the DM. Then, obtain the best-to-others (BO) vector
as follows:

𝐴𝐵 = (𝑎𝐵1, 𝑎𝐵2,… , 𝑎𝐵𝑛). (1)

Step 4: Express the preference values 𝑎𝑗𝑊 (𝑗 = 1, 2..., 𝑛) between all
the criteria 𝑐𝑗 (𝑗 = 1, 2,… , 𝑛) and the worst criterion 𝑐𝑊 by the DM. The
comparison results are represented as the others-to-worst (OW) vector:

𝐴𝑊 = (𝑎1𝑊 , 𝑎2𝑊 ,… , 𝑎𝑛𝑊 )𝑇 . (2)

Step 5: Calculate the optimal criteria weights 𝑤∗ = (𝑤∗
1 , 𝑤

∗
2 ,… , 𝑤∗

𝑛)
by using the following min–max optimization model:

minmax
𝑗

{

|

|

|

|

|

𝑤𝐵
𝑤𝑗

− 𝑎𝐵𝑗
|

|

|

|

|

,
|

|

|

|

𝑤𝑗

𝑤𝑊
− 𝑎𝑗𝑊

|

|

|

|

}

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

𝑛
∑

𝑗=1
𝑤𝑗 = 1,

𝑤𝑗 ∈ [0, 1],∀𝑗.

(3)

here 𝑤𝐵 , 𝑤𝑗 , and 𝑤𝑊 are the weights of criterion 𝑐𝐵 , criterion 𝑐𝑗 , and
riterion 𝑐𝑊 , respectively.

The optimization model (3) aims to minimize the maximum abso-
ute differences

|

|

|

|

𝑤𝐵
𝑤𝑗

− 𝑎𝐵𝑗
|

|

|

|

and
|

|

|

|

𝑤𝑗
𝑤𝑊

− 𝑎𝑗𝑊
|

|

|

|

for all criteria 𝑗, and it is
based on the condition that the optimal weights should satisfy 𝑤𝐵∕𝑤𝑗 =
𝑎𝐵𝑗 and 𝑤𝑗∕𝑤𝑊 = 𝑎𝑗𝑊 if all the comparisons are consistent. To better
solve the above optimization model, model (3) can be transformed into
the following programming model:

min 𝜉

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|

|

|

|

|

𝑤𝐵
𝑤𝑗

− 𝑎𝐵𝑗
|

|

|

|

|

⩽ 𝜉, ∀𝑗,

|

|

|

|

𝑤𝑗

𝑤𝑊
− 𝑎𝑗𝑊

|

|

|

|

⩽ 𝜉, ∀𝑗,

𝑛
∑

𝑗=1
𝑤𝑗 = 1,

𝑤𝑗 ∈ [0, 1],∀𝑗.

(4)

For a given sufficiently large 𝜉, the solution space of model (4) must
e non-empty. By solving model (4), one can derive the optimal criteria
eights (𝑤∗ ∗ ∗ 𝑇 ∗
3

1 , 𝑤2 ,… , 𝑤𝑛) and the optimal 𝜉 value.
For a fully consistent problem, we have a nonhomogeneous linear
system with 𝑛 weight variables and 𝑛 constraints, so we have a unique
optimal solution. It is also obvious based on the relation chains in the
consistency definition, 𝑎𝐵𝑗 × 𝑎𝑗𝑊 = 𝑎𝐵𝑊 , that a problem with two
criteria (𝑛 = 2) is always consistent, hence, has a unique solution.
or not-fully consistent pairwise comparisons with three criteria, one
an always obtain a unique solution, while for not-fully consistent
roblems with more than three criteria, model (4) might result in
ultiple optimal solutions [36].

.2. Interval analysis of the BWM

Regarding multi-optimal solutions to model (4), Rezaei [36] utilized
nterval analysis to determine the ranges of the weights of different
riteria. Specifically, Rezaei [36] proposed the following two program-
ing models to compute the lower and upper bounds of the weight of

riterion 𝑐𝑗 (𝑗 = 1, 2,… , 𝑛)

min 𝑤𝑗

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|

|

|

|

|

𝑤𝐵
𝑤𝑗

− 𝑎𝐵𝑗
|

|

|

|

|

⩽ 𝜉∗, ∀𝑗,

|

|

|

|

𝑤𝑗

𝑤𝑊
− 𝑎𝑗𝑊

|

|

|

|

⩽ 𝜉∗, ∀𝑗,

𝑛
∑

𝑗=1
𝑤𝑗 = 1,

𝑤𝑗 ∈ [0, 1],∀𝑗.

(5)

max 𝑤𝑗

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|

|

|

|

|

𝑤𝐵
𝑤𝑗

− 𝑎𝐵𝑗
|

|

|

|

|

⩽ 𝜉∗, ∀𝑗,

|

|

|

|

𝑤𝑗

𝑤𝑊
− 𝑎𝑗𝑊

|

|

|

|

⩽ 𝜉∗, ∀𝑗,

𝑛
∑

𝑗=1
𝑤𝑗 = 1,

𝑤𝑗 ∈ [0, 1],∀𝑗.

(6)

where 𝜉∗ is the optimal objective function value of model (4).
By solving models (5) and (6) for all criteria, one can determine the

optimal criteria weights as intervals. Then, one can apply the matrix
of the preference degree and the preference matrix to rank the interval
weights of the criteria.

2.3. A linear model of the BWM

Although multi-optimality can be desirable in some decision-making
problems, in other cases, DMs may prefer to have a unique solution.
Instead of minimizing the maximum value in the set

{

|

|

|

|

𝑤𝐵
𝑤𝑗

− 𝑎𝐵𝑗
|

|

|

|

,

|

|

|

|

𝑤𝑗
𝑤𝑊

− 𝑎𝑗𝑊
|

|

|

|

}

, Rezaei [36] minimized the maximum value in set
|

|

|

𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗
|

|

|

, ||
|

𝑤𝑗 − 𝑎𝑗𝑊 𝑤𝑊
|

|

|

}

and formulated the following program-
ming model:

minmax
𝑗

{

|

|

|

𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗
|

|

|

, ||
|

𝑤𝑗 − 𝑎𝑗𝑊 𝑤𝑊
|

|

|

}

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

𝑛
∑

𝑗=1
𝑤𝑗 = 1,

𝑤𝑗 ∈ [0, 1],∀𝑗.

(7)

The optimization model (7) aims to minimize the maximum abso-
lute differences |

|

|

𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗
|

|

|

and |

|

|

𝑤𝑗 − 𝑎𝑗𝑊 𝑤𝑊
|

|

|

for all the criteria 𝑗,
and it is based on the condition that the optimal weights should satisfy

𝑤𝐵 = 𝑎𝐵𝑗 ×𝑤𝑗 and 𝑤𝑗 = 𝑎𝑗𝑊 ×𝑤𝑊 if all the comparisons are consistent.
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To better solve optimization model (7), one can transform it into the
following linear programming (LP) problem:

min 𝜉𝐿

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|

|

|

𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗
|

|

|

⩽ 𝜉𝐿, ∀𝑗,
|

|

|

𝑤𝑗 − 𝑎𝑗𝑊 𝑤𝑊
|

|

|

⩽ 𝜉𝐿, ∀𝑗,
𝑛
∑

𝑗=1
𝑤𝑗 = 1,

𝑤𝑗 ∈ [0, 1],∀𝑗.

(8)

By solving model (8), one can derive the unique optimal criteria
weights (𝑤∗

1 , 𝑤
∗
2 ,… , 𝑤∗

𝑛)
𝑇 and the optimal 𝜉𝐿∗ value. 𝜉𝐿∗ is an indicator

of the comparison system’s consistency. Smaller 𝜉𝐿∗ values indicate a
higher level of consistency.

3. An analytical framework for the best–worst method

3.1. The equivalent BWM

The BWM derives the weights based on two vectors of pairwise
comparisons, the BO vector 𝐴𝐵 and OW vector 𝐴𝑊 . Given these two
vectors, the definition of cardinal consistency for the set of preferences
contained in a BWM pairwise comparison system is defined as follows:

Definition 1 ([9,20,36]). A comparison in the BWM is fully consistent
when

𝑎𝐵𝑗 × 𝑎𝑗𝑊 = 𝑎𝐵𝑊 , ∀𝑗 = 1, 2,… , 𝑛,

where 𝑎𝐵𝑗 , 𝑎𝑗𝑊 , and 𝑎𝐵𝑊 are the preference of criterion 𝑐𝐵 over
criterion 𝑐𝑗 , the preference of criterion 𝑐𝑗 over criterion 𝑐𝑊 , and the
preference of criterion 𝑐𝐵 over criterion 𝑐𝑊 , respectively.

For a fully consistent comparison system, the ratios of the criteria
weights in pairs with the two evaluation vectors 𝐴𝐵 and 𝐴𝑊 given in
Eqs. (1) and (2) must satisfy
𝑤𝐵
𝑤𝑗

= 𝑎𝐵𝑗 and
𝑤𝑗

𝑤𝑊
= 𝑎𝑗𝑊 , ∀𝑗 = 1, 2,… , 𝑛. (9)

However, not all pairwise comparisons are consistent when col-
lecting data from a DM in a real-world decision-making problem,
which is why the BWM uses a min–max strategy to determine the
optimal criteria weighting vector (𝑤∗

1 , 𝑤
∗
2 ,… , 𝑤∗

𝑛). Due to the existence
f inconsistency, there is at least one criterion that fails to meet Eq. (9),
hat is,

𝑤∗
𝐵

𝑤∗
𝑗
≠ 𝑎𝐵𝑗 or

𝑤∗
𝑗

𝑤∗
𝑊

≠ 𝑎𝑗𝑊 , for a criterion 𝑐𝑗 .

In terms of the optimal weight vector (𝑤∗
1 , 𝑤

∗
2 ,… , 𝑤∗

𝑛), one can
produce a pair of unique and fully consistent BWM pairwise comparison
systems such that

𝐴̃𝐵 = (𝑎̃𝐵1, 𝑎̃𝐵2,… , 𝑎̃𝐵𝑛) and 𝐴̃𝑊 = (𝑎̃1𝑊 , 𝑎̃2𝑊 ,… , 𝑎̃𝑛𝑊 )

ith

𝑎̃𝐵𝑗 =
𝑤∗

𝐵
𝑤∗

𝑗
and 𝑎̃𝑗𝑊 =

𝑤∗
𝑗

𝑤∗
𝑊

, ∀𝑗 = 1, 2,… , 𝑛.

The two generated evaluation vectors 𝐴̃𝐵 and 𝐴̃𝑊 are not entirely
identical to the original vector 𝐴𝐵 and vector 𝐴𝑊 , respectively. How-
ever, they constitute a consistent comparison system, and thus they are,
in essence, the optimal modified pairwise comparison vectors of the
original vectors under the minimax strategy.

Assume that (𝑤∗
1 , 𝑤

∗
2 ,… , 𝑤∗

𝑛) is the optimal weight vector, and 𝐴̃𝐵
and 𝐴̃ are the two equivalent transformed BO and OW vectors. In
4

𝑊

line with the idea of the BWM, we aim to find two modified compar-
ison vectors 𝐴̃𝐵 and 𝐴̃𝑊 such that the maximum absolute differences
|

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

and |

|

|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

for all 𝑗 are minimized, that is,

inmax
𝑗

{

|

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

, ||
|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

}

Additionally, considering the cardinal consistency of the modified
omparison system and the condition of comparison with a strength
hat is equal to or greater than 1, we have

𝑎̃𝐵𝑗 × 𝑎̃𝑗𝑊 = 𝑎̃𝐵𝑊 , with 𝑎̃𝐵𝑗 , 𝑎̃𝑗𝑊 ⩾ 1, ∀𝑗.

Then, we can turn the original nonlinear BWM, which is a criteria
eight-based programming model, into an equivalent BWM driven by

he optimal modified comparison vectors as follows:

minmax
𝑗

{

|

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

, ||
|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

}

𝑠.𝑡.

{

𝑎̃𝐵𝑗 × 𝑎̃𝑗𝑊 = 𝑎̃𝐵𝑊 , ∀𝑗,

𝑎̃𝐵𝑗 , 𝑎̃𝑗𝑊 ⩾ 1, ∀𝑗.

(10)

Model (10) can be transformed into the following model:

min 𝜉

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

⩽ 𝜉, ∀𝑗,
|

|

|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

⩽ 𝜉, ∀𝑗,

𝑎̃𝐵𝑗 × 𝑎̃𝑗𝑊 = 𝑎̃𝐵𝑊 , ∀𝑗,

𝑎̃𝐵𝑗 , 𝑎̃𝑗𝑊 ⩾ 1, ∀𝑗.

(11)

By solving model (11), the optimal modified pairwise comparison
vectors 𝐴̃𝐵 and 𝐴̃𝑊 , and 𝜉∗ are obtained. Homogeneously, the optimal
solutions for the equivalent BWM (11) satisfy the following: For not-
fully consistent comparisons with three criteria, we always have two
unique optimal modified pairwise comparison vectors 𝐴̃𝐵 and 𝐴̃𝑊 ,
while for not-fully consistent problems with more than three criteria,
we might have multiple optimal modified pairwise comparison vectors
𝐴̃𝐵 and 𝐴̃𝑊 .

Furthermore, based on only the modified BO vector 𝐴̃𝐵 or modified
OW vector 𝐴̃𝑊 , we can calculate the criteria weights as follows [48].

𝑤𝐵𝑂
𝑗 = 1

𝑎̃𝐵𝑗
∑

𝑗
1

𝑎̃𝐵𝑗

or 𝑤𝑂𝑊
𝑗 =

𝑎̃𝑗𝑊
∑

𝑗 𝑎̃𝑗𝑊
. (12)

For a fully consistent comparison system, as 𝑎̃𝐵𝑗 = 𝑎̃𝐵𝑊
𝑎̃𝑗𝑊

and 𝑎̃𝑗𝑊 =
𝑎̃𝐵𝑊
𝑎̃𝐵𝑗

hold for all 𝑗 = 1, 2,… , 𝑛, using any equation in Eq. (12) can
produce the same criteria weight vector. Finally, we can use these
weights to rank the criteria or alternatives.

Compared to the original BWM, our newly developed equivalent
BWM has the following characteristics:

1. It is an indirect way to determine the criteria weights. Regarding
the inconsistent comparison system, the equivalent BWM aims
to find two optimal modified comparison vectors to make the
comparison system fully consistent in line with the minimax rule
of the BWM. This modified system might be easier to understand
if the DM is not familiar with the relationship between the
criteria weights and comparison vectors.

2. It has fewer nonlinear constraints and more equality constraints,
and all these nonlinear constraints are precise equality con-
straints. Specifically, the BWM has 4𝑛 − 6 nonlinear constraints,
while the newly developed equivalent BWM has only 𝑛−2 nonlin-
ear constraints. Additionally, the fractional nonlinear constraints
bring difficulty for the analytical solution of the model, while
the pairwise multiplicative nonlinear equality constraints offer
possible analytical solutions for the BWM.

3. It can guide a DM regarding the modification direction of the
optimal adjusted comparison vectors. The equivalent BWM aims
to find two modified comparison vectors 𝐴̃ and 𝐴̃ , where
𝐵 𝑊
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the maximum absolute adjustments |

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

and |

|

|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

for all 𝑗 are minimized. The desired cardinal consistency con-
straints for each criterion can help identify the potentially most
inconsistent criterion, after which the adjustment direction can
be determined and the analytical solution of the model can be
obtained.

3.2. Analytical solutions of the equivalent BWM

After proposing the equivalent BWM (10), it is necessary to explore
the properties of the optimal solutions and their analytical forms of
the model. Rezaei [36] explained the reason for multi-optimality in the
BWM in terms of linear algebra and came to the conclusion that there
is a unique optimal solution for a not-fully consistent problem with
three criteria, and that not-fully consistent pairwise comparison systems
with more than three criteria might have multiple optimal solutions.
However, theoretically, there is still no analytical form of the optimal
solutions for the nonlinear BWM.

Next, we will mathematically prove the above conclusions and
give some analytical solutions for the model. Before calculating the
analytical solutions, we provide the following theorem to guide us
regarding the optimal modified strategy.

Theorem 1. For a not-fully consistent pairwise comparison system with
three criteria 𝑐𝐵 , 𝑐𝐽 and 𝑐𝑊 , 𝐽 here refers to the criterion which is not the
Best or the Worst.

(1) If 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 , then the optimal modified strategy is

(𝑎𝐵𝐽 − 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 − 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 + 𝜉𝐵𝑊 , (13)

where 0 ⩽ 𝜉𝐵𝐽 ⩽ 𝑎𝐵𝐽 − 1, 0 ⩽ 𝜉𝐽𝑊 ⩽ 𝑎𝐽𝑊 − 1, 𝜉𝐵𝑊 ⩾ 0.
(2) If 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 , then the optimal modified strategy is

(𝑎𝐵𝐽 + 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 + 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 − 𝜉𝐵𝑊 , (14)

where 𝜉𝐵𝐽 ⩾ 0, 𝜉𝐽𝑊 ⩾ 0, 0 ⩽ 𝜉𝐵𝑊 ⩽ 𝑎𝐵𝑊 − 1.

Proof. To prove that the optimal modified strategy for 𝑎𝐵𝐽 , 𝑎𝐽𝑊 , and
𝑎𝐵𝑊 satisfies Eq. (13) when 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 , we only need to prove
that any of the following modified strategies is not optimal, where

(I) (𝑎𝐵𝐽 + 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 + 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 − 𝜉𝐵𝑊 ;
(II) (𝑎𝐵𝐽 + 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 + 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 + 𝜉𝐵𝑊 ;
(III) (𝑎𝐵𝐽 + 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 − 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 + 𝜉𝐵𝑊 ;
(IV) (𝑎𝐵𝐽 − 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 − 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 − 𝜉𝐵𝑊 ;
(V) (𝑎𝐵𝐽 − 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 + 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 + 𝜉𝐵𝑊 ;
(VI) (𝑎𝐵𝐽 + 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 − 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 − 𝜉𝐵𝑊 ;
(VII) (𝑎𝐵𝐽 − 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 + 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 − 𝜉𝐵𝑊 .
First, strategy (I) is not feasible. Assume that any of the above

modified strategies (II)–(VII) is the optimal modified strategy. Then, for
strategies (II)–(V), we can find 𝜉′𝐵𝐽 = 𝜉𝐵𝐽−𝛥𝐵𝐽 and 𝜉𝐵𝑊 = 𝜉′𝐵𝑊 −𝛥𝐵𝑊 to
make strategies (II)–(IV) true as well. For strategies (VI) and (VII), we
can find 𝜉′𝐵𝐽 = 𝜉𝐵𝐽 −𝛥𝐵𝐽 and 𝜉𝐽𝑊 = 𝜉′𝐽𝑊 −𝛥𝐵𝑊 to make strategies (VI)
and (VII) true as well. That is, we can find another pair of modification
strategies that outperform strategies (VI) and (VII). Thus, none of the
above modified strategies (I)–(VII) is the optimal modified strategy, and
the optimal modified strategy is Eq. (13) when 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 . The
proof of condition (2) is similar to the proof of condition (1), and it is
omitted.

Theorem 2. There is only one unique optimal solution for the BWM under
a not-fully consistent comparison system with three criteria, and we have the
following:

(1) The optimal objective function value 𝜉∗ is one root of the following
quadric equation:
{

(𝑎𝐵𝐽 − 𝜉) × (𝑎𝐽𝑊 − 𝜉) = 𝑎𝐵𝑊 + 𝜉, 𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 ,
(15)
5

(𝑎𝐵𝐽 + 𝜉) × (𝑎𝐽𝑊 + 𝜉) = 𝑎𝐵𝑊 − 𝜉, 𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 ,
and thus,

𝜉∗ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1 −
√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )

2
,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 ,

−(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1) +
√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )

2
,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 ,

(16)

which leads to

𝜉∗ =

|

|

|

|

|

|

|

|

𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1 −
√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )

2

|

|

|

|

|

|

|

|

.

(17)

(2) The unique optimal solution for the modified comparison vectors is

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎨

⎪

⎩

𝑎̃𝐵𝐽 = 𝑎𝐵𝐽 + 𝜉∗,

𝑎̃𝐽𝑊 = 𝑎𝐽𝑊 + 𝜉∗,

𝑎̃𝐵𝑊 = 𝑎𝐵𝑊 − 𝜉∗,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 ,

⎧

⎪

⎨

⎪

⎩

𝑎̃𝐵𝐽 = 𝑎𝐵𝐽 − 𝜉∗,

𝑎̃𝐽𝑊 = 𝑎𝐽𝑊 − 𝜉∗,

𝑎̃𝐵𝑊 = 𝑎𝐵𝑊 + 𝜉∗,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 ,

(18)

and thus the analytical forms of the optimal criteria weights are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑤𝐽 =
𝑎𝐽𝑊 + 𝜉∗

𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1
,

𝑤𝐵 =
𝑎𝐵𝑊 − 𝜉∗

𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1
,

𝑤𝑊 = 1
𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1

,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 ,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑤𝐽 =
𝑎𝐽𝑊 − 𝜉∗

𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1
,

𝑤𝐵 =
𝑎𝐵𝑊 + 𝜉∗

𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1
,

𝑤𝑊 = 1
𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1

,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 .

(19)

Proof. (1) Based on the results of Theorem 1, if 𝑎𝐵𝐽 ×𝑎𝐽𝑊 > 𝑎𝐵𝑊 , then
the optimal modified strategy is

(𝑎𝐵𝐽 − 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 − 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 + 𝜉𝐵𝑊 .

Let 𝜉 = max{𝜉𝐵𝐽 , 𝜉𝐽𝑊 , 𝜉𝐵𝑊 }; then, we have 𝜉𝐵𝐽 ⩽ 𝜉, 𝜉𝐽𝑊 ⩽ 𝜉, 𝜉𝐵𝑊 ⩽
𝜉, and thus

(𝑎𝐵𝐽 − 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 − 𝜉𝐽𝑊 ) ⩾ (𝑎𝐵𝐽 − 𝜉) × (𝑎𝐽𝑊 − 𝜉)

and

𝑎𝐵𝑊 + 𝜉 ⩾ 𝑎𝐵𝑊 + 𝜉𝐵𝑊 .

Combining the above equations, we find that

𝑎𝐵𝑊 + 𝜉 ⩾ (𝑎𝐵𝐽 − 𝜉) × (𝑎𝐽𝑊 − 𝜉).

Solving the above inequality, we can obtain

𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1 −
√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )

2
⩽ 𝜉

⩽
𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1 +

√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )
.

2
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w

𝑎

(

𝜉

(

o

𝜉

o
{

o
a
c
i

a
e
t

(

Therefore, the optimal 𝜉∗ is

𝜉∗ = min{𝜉} =
𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1 −

√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )

2
,

here equality holds if and only if

𝐵𝑊 + 𝜉 = (𝑎𝐵𝐽 − 𝜉) × (𝑎𝐽𝑊 − 𝜉).

(II) If 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 , then the optimal modified strategy is

𝑎𝐵𝐽 + 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 + 𝜉𝐽𝑊 ) = 𝑎𝐵𝑊 − 𝜉𝐵𝑊 .

Let 𝜉 = max{𝜉𝐵𝐽 , 𝜉𝐽𝑊 , 𝜉𝐵𝑊 }; then, we have 𝜉𝐵𝐽 ⩽ 𝜉, 𝜉𝐽𝑊 ⩽ 𝜉, 𝜉𝐵𝑊 ⩽
, and thus

𝑎𝐵𝐽 + 𝜉) × (𝑎𝐽𝑊 + 𝜉) ⩾ (𝑎𝐵𝐽 + 𝜉𝐵𝐽 ) × (𝑎𝐽𝑊 + 𝜉𝐽𝑊 )

and

𝑎𝐵𝑊 − 𝜉𝐵𝑊 ⩾ 𝑎𝐵𝑊 − 𝜉.

Combining the above three equations, we can obtain

(𝑎𝐵𝐽 + 𝜉) × (𝑎𝐽𝑊 + 𝜉) ⩾ 𝑎𝐵𝑊 − 𝜉.

Solving the above inequality, we can obtain

𝜉 ⩾
−(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1) +

√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )

2

r

⩽
−(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1) −

√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )

2
.

Therefore, the optimal 𝜉∗ is

𝜉∗ = min{𝜉}

=
−(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1) +

√

(𝑎𝐵𝐽 + 𝑎𝐽𝑊 + 1)2 − 4(𝑎𝐵𝐽 × 𝑎𝐽𝑊 − 𝑎𝐵𝑊 )

2
,

where equality holds if and only if

𝑎𝐵𝑊 − 𝜉 = (𝑎𝐵𝐽 + 𝜉) × (𝑎𝐽𝑊 + 𝜉).

(2) According to the proof of (1), the optimal 𝜉∗ can be found if and
nly if one of the following two quadric equations holds:

(𝑎𝐵𝐽 − 𝜉) × (𝑎𝐽𝑊 − 𝜉) = 𝑎𝐵𝑊 + 𝜉, 𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 ,

(𝑎𝐵𝐽 + 𝜉) × (𝑎𝐽𝑊 + 𝜉) = 𝑎𝐵𝑊 − 𝜉, 𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 .

Solving the quadric equation, we can obtain the optimal objective
function value 𝜉∗. Then, the unique optimal solution for the modified
comparison vectors is

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎨

⎪

⎩

𝑎̃𝐵𝐽 = 𝑎𝐵𝐽 + 𝜉∗,

𝑎̃𝐽𝑊 = 𝑎𝐽𝑊 + 𝜉∗,

𝑎̃𝐵𝑊 = 𝑎𝐵𝑊 − 𝜉∗,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 ,

⎧

⎪

⎨

⎪

⎩

𝑎̃𝐵𝐽 = 𝑎𝐵𝐽 − 𝜉∗,

𝑎̃𝐽𝑊 = 𝑎𝐽𝑊 − 𝜉∗,

𝑎̃𝐵𝑊 = 𝑎𝐵𝑊 + 𝜉∗,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 .

Based on the above modification rule for the original pairwise
comparison vectors with three criteria, the comparison system is fully
6

consistent. Applying Eq. (12), the analytical forms of the optimal t
criteria weights are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑤𝐽 =
𝑎𝐽𝑊 + 𝜉∗

𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1
,

𝑤𝐵 =
𝑎𝐵𝑊 − 𝜉∗

𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1
,

𝑤𝑊 = 1
𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1

,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 < 𝑎𝐵𝑊 ,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑤𝐽 =
𝑎𝐽𝑊 − 𝜉∗

𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1
,

𝑤𝐵 =
𝑎𝐵𝑊 + 𝜉∗

𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1
,

𝑤𝑊 = 1
𝑎𝐽𝑊 + 𝑎𝐵𝑊 + 1

,

𝑖𝑓 𝑎𝐵𝐽 × 𝑎𝐽𝑊 > 𝑎𝐵𝑊 .

According to Theorem 2, the optimal objective function value 𝜉∗

f the BWM with three criteria is unique and can be determined
nalytically using Eq. (16) or (17). Regarding a not-fully consistent
omparison system with more than three criteria, we first identify the
nconsistent criteria 𝑐𝐽 = {𝑐𝑗 |𝑎𝐵𝑗 × 𝑎𝑗𝑊 ≠ 𝑎𝐵𝑊 } and then divide them

into two groups such that

𝑐𝐽1 = {𝑐𝑗 |𝑎𝐵𝑗 × 𝑎𝑗𝑊 > 𝑎𝐵𝑊 }, 𝑐𝐽2 = {𝑐𝑗 |𝑎𝐵𝑗 × 𝑎𝑗𝑊 < 𝑎𝐵𝑊 },

which we call the upside criteria set and downside criteria set, respec-
tively. We assume that the cardinality of the inconsistent criteria sets
is 𝑛′.

If 𝑐𝐽1 = 𝑐𝐽2 = ∅, then the BWM comparisons are fully consistent.
Otherwise, the comparisons are not fully consistent. In this case, we
rebuild 𝑛′ BWM comparison systems with only three criteria (𝑐𝐵 , 𝑐𝑊 ,
and 𝑐𝑗). For the 𝑛′ BWM comparison systems, we can compute their
optimal 𝜉𝑗 values using Eq. (16).

Considering the characteristics of the pairwise comparison vectors,
it is intuitive to identify the potentially most inconsistent criterion in
line with the 𝜉𝑗 values. The larger the 𝜉𝑗 value is, the more likely
criterion 𝑐𝑗 is to be the most inconsistent criterion. Specifically, the two
criteria 𝑐𝐽∗

1
and 𝑐𝐽∗

2
in the upside and downside criteria sets are selected

as the potentially most inconsistent criteria, where

𝑐𝐽∗
1
=
{

𝑐𝐽1 |𝜉𝐽∗
1
= argmax

𝐽1

{

𝜉𝐽1
}

}

,

and

𝑐𝐽∗
2
=
{

𝑐𝐽2 |𝜉𝐽∗
2
= argmax

𝐽2

{

𝜉𝐽2
}

}

.

Next, we explore how the potentially most inconsistent criteria 𝑐𝐽∗
1

and 𝑐𝐽∗
2

affect the optimal objective function value 𝜉∗ in the BWM.
Naturally, we consider the following three conditions: (1) all the in-
consistent criteria are upside criteria; (2) all the inconsistent criteria are
downside criteria; and (3) the inconsistent criteria include both upside
and downside criteria. This idea gradually moves from two special
conditions to the general condition. We provide the following three
propositions for the above three conditions.

Proposition 1. When all the inconsistent criteria are upside criteria, 𝜉𝐽∗
1

is the optimal objective function value of the BWM.

Proof. To prove this proposition, we only need to prove that 𝜉𝐽∗
1

is the
feasible solution of all the other upside comparison systems but that no
𝜉𝐽1 is a feasible solution of the comparison system with criteria 𝑐𝐵 , 𝑐𝑊 ,
nd 𝑐𝐽∗

1
. To prove the former result, we only need to prove that there

xist two values 𝜉′𝐽1 , 𝜉
′′
𝐽1

∈ [−𝜉𝐽∗
1
, 𝜉𝐽∗

1
] that make the following equation

rue.

𝑎𝐵𝐽1 − 𝜉′𝐽1 ) × (𝑎𝐽1𝑊 − 𝜉′′𝐽1 ) = 𝑎𝐵𝑊 + 𝜉𝐽∗
1
.

According to the results in Theorem 2, the optimal objective func-
ion values 𝜉 ∗ and 𝜉 for each comparison system with three criteria
𝐽1 𝐽1
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t

𝜉

a
s

(

a
c
t

𝑎

(

𝜉

a
s

(

a
t
v

𝜉

𝑎

(

a
{

(

𝜉

satisfy (𝑎𝐵𝐽∗
1
− 𝜉𝐽∗

1
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

1
) = 𝑎𝐵𝑊 + 𝜉𝐽∗

1
and (𝑎𝐵𝐽1 − 𝜉𝐽1 ) × (𝑎𝐽1𝑊 −

𝜉𝐽1 ) = 𝑎𝐵𝑊 + 𝜉𝐽1 . As 𝜉𝐽∗
1
> 𝜉𝐽1 , we have

(𝑎𝐵𝐽1 − 𝜉𝐽∗
1
) × (𝑎𝐽1𝑊 − 𝜉𝐽∗

1
) < (𝑎𝐵𝐽1 − 𝜉𝐽1 ) × (𝑎𝐽1𝑊 − 𝜉𝐽1 ) = 𝑎𝐵𝑊 + 𝜉𝐽1 < 𝑎𝐵𝑊 + 𝜉𝐽∗

1
,

that is,

(𝑎𝐵𝐽1 − 𝜉𝐽∗
1
) × (𝑎𝐽1𝑊 − 𝜉𝐽∗

1
) < 𝑎𝐵𝑊 + 𝜉𝐽∗

1
,

and

(𝑎𝐵𝐽1 + 𝜉𝐽∗
1
) × (𝑎𝐽1𝑊 + 𝜉𝐽∗

1
) > 𝑎𝐵𝐽1 × 𝑎𝐽1𝑊 + 𝜉𝐽∗

1
> 𝑎𝐵𝑊 + 𝜉𝐽∗

1
.

Combining the above two equations, there must exist two values
𝜉′𝐽1 , 𝜉

′′
𝐽1

∈ [−𝜉𝐽∗
1
, 𝜉𝐽∗

1
] such that

(𝑎𝐵𝐽1 − 𝜉′𝐽1 ) × (𝑎𝐽1𝑊 − 𝜉′′𝐽1 ) = 𝑎𝐵𝑊 + 𝜉𝐽∗
1
.

Thus, 𝜉𝐽∗
1

is the feasible solution of all the other upside comparison
systems.

To prove the second result, we shall prove that for any two values
𝜉′𝐽1 , 𝜉

′′
𝐽1

∈ [−𝜉𝐽1 , 𝜉𝐽1 ],

(𝑎𝐵𝐽∗
1
− 𝜉′𝐽1 ) × (𝑎𝐽∗

1𝑊
− 𝜉′′𝐽1 ) > 𝑎𝐵𝑊 + 𝜉𝐽∗

1
.

Because 𝜉𝐽∗
1
> 𝜉𝐽1 and 𝜉′𝐽1 , 𝜉

′′
𝐽1

∈ [−𝜉𝐽1 , 𝜉𝐽1 ], we have

(𝑎𝐵𝐽∗
1
− 𝜉′𝐽1 ) × (𝑎𝐽∗

1𝑊
− 𝜉′′𝐽1 ) ⩾ (𝑎𝐵𝐽∗

1
− 𝜉𝐽1 ) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽1 )

> (𝑎𝐵𝐽∗
1
− 𝜉𝐽∗

1
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

1
) = 𝑎𝐵𝑊 + 𝜉𝐽∗

1
,

that is,

(𝑎𝐵𝐽∗
1
− 𝜉′𝐽1 ) × (𝑎𝐽∗

1𝑊
− 𝜉′′𝐽1 ) > 𝑎𝐵𝑊 + 𝜉𝐽∗

1
.

Thus, there exist no feasible solutions in any interval [−𝜉𝐽1 , 𝜉𝐽1 ]
that make the comparison system with criteria 𝑐𝐵 , 𝑐𝑊 , and 𝑐𝐽∗

1
fully

consistent. Therefore, 𝜉𝐽∗
1

is the optimal objective function value of the
BWM when all the inconsistent criteria are upside criteria.

Proposition 2. When all the inconsistent criteria are downside criteria,
𝜉𝐽∗

2
is the optimal objective function value of the BWM.

Proof. To prove this proposition, we only need to prove that 𝜉𝐽∗
2

is
the feasible solution of all the other downside comparison systems but
that no 𝜉𝐽2 value is the feasible solution of the comparison system
with criteria 𝑐𝐵 , 𝑐𝑊 , and 𝑐𝐽∗

2
. The proof is similar to the proof of

Proposition 1, and it is omitted.

Proposition 3. When the inconsistent criteria include both upside and
downside criteria, the optimal objective function value 𝜉∗ of the BWM is
determined by the following rules:

(1) If (𝑎𝐵𝐽∗
2
+ 𝜉𝐽∗

1
) × (𝑎𝐽∗

2𝑊
+ 𝜉𝐽∗

1
) ⩾ 𝑎𝐵𝑊 + 𝜉𝐽∗

1
, then 𝜉∗ = 𝜉𝐽∗

1
;

(2) If (𝑎𝐵𝐽∗
1
− 𝜉𝐽∗

2
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

2
) ⩽ 𝑎𝐵𝑊 − 𝜉𝐽∗

2
, then 𝜉∗ = 𝜉𝐽∗

2
;

(3) If (𝑎𝐵𝐽∗
2
+𝜉𝐽∗

1
)×(𝑎𝐽∗

2𝑊
+𝜉𝐽∗

1
) < 𝑎𝐵𝑊 +𝜉𝐽∗

1
or (𝑎𝐵𝐽∗

1
−𝜉𝐽∗

2
)×(𝑎𝐽∗

1𝑊
−

𝜉𝐽∗
2
) > 𝑎𝐵𝑊 − 𝜉𝐽∗

2
, then the optimal objective function value 𝜉∗ of the BWM

is the root of the equation

(𝑎𝐵𝐽∗
1
− 𝜉) × (𝑎𝐽∗

1𝑊
− 𝜉) = (𝑎𝐵𝐽∗

2
+ 𝜉) × (𝑎𝐽∗

2𝑊
+ 𝜉),

and thus,

𝜉∗ =
𝑎𝐵𝐽∗

1
× 𝑎𝐽∗

1𝑊
− 𝑎𝐵𝐽∗

2
× 𝑎𝐽∗

2𝑊

𝑎𝐵𝐽∗
1
+ 𝑎𝐽∗

1𝑊
+ 𝑎𝐵𝐽∗

2
+ 𝑎𝐽∗

2𝑊
.

Proof. (1) Based on Propositions 1 and 2, we know that 𝜉𝐽∗
1

and 𝜉𝐽∗
2

are
the optimal 𝜉 values of the upside and downside comparison systems,
respectively. Then, the following two equations are true:

(𝑎𝐵𝐽∗
1
− 𝜉𝐽∗

1
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

1
) = 𝑎𝐵𝑊 + 𝜉𝐽∗

1

and

(𝑎 ∗ + 𝜉 ∗ ) × (𝑎 ∗ + 𝜉 ∗ ) = 𝑎 − 𝜉 ∗ .
7

𝐵𝐽2 𝐽2 𝐽2𝑊 𝐽2 𝐵𝑊 𝐽2
As

(𝑎𝐵𝐽∗
2
+ 𝜉𝐽∗

1
) × (𝑎𝐽∗

2𝑊
+ 𝜉𝐽∗

1
) ⩾ 𝑎𝐵𝑊 + 𝜉𝐽∗

1
> 𝑎𝐵𝑊 − 𝜉𝐽∗

2

= (𝑎𝐵𝐽∗
2
+ 𝜉𝐽∗

2
) × (𝑎𝐽∗

2𝑊
+ 𝜉𝐽∗

2
),

hen we can obtain that

𝐽∗
1
> 𝜉𝐽∗

2
,

nd thus 𝜉𝐽∗
1

is also the feasible solution of all the downside comparison
ystems.

In the opposite case, we can obtain that

𝑎𝐵𝐽∗
1
− 𝜉𝐽∗

2
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

2
) > (𝑎𝐵𝐽∗

1
− 𝜉𝐽∗

1
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

1
) = 𝑎𝐵𝑊 + 𝜉𝐽∗

1
,

nd thus 𝜉𝐽∗
2

is not the feasible 𝜉 value of the pairwise comparison with
riterion 𝑐𝐽∗

1
. Then, 𝜉𝐽∗

1
is the optimal objective function value 𝜉∗ of all

he comparison systems.
(2) When (𝑎𝐵𝐽∗

1
− 𝜉𝐽∗

2
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

2
) ⩽ 𝑎𝐵𝑊 − 𝜉𝐽∗

2
, as 𝑎𝐵𝑊 − 𝜉𝐽∗

2
<

𝐵𝑊 + 𝜉𝐽∗
1
, we have

𝑎𝐵𝐽∗
1
− 𝜉𝐽∗

2
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

2
) < (𝑎𝐵𝐽∗

1
− 𝜉𝐽∗

1
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

1
).

Then, we can obtain that

𝐽∗
1
< 𝜉𝐽∗

2
,

nd thus 𝜉𝐽∗
2

is also a feasible solution of all the upside comparison
ystems.

As (𝑎𝐵𝐽∗
2
+ 𝜉𝐽∗

2
) × (𝑎𝐽∗

2𝑊
+ 𝜉𝐽∗

2
) = 𝑎𝐵𝑊 − 𝜉𝐽∗

2
and 𝜉𝐽∗

1
< 𝜉𝐽∗

2
, we have

𝑎𝐵𝐽∗
2
+ 𝜉𝐽∗

1
) × (𝑎𝐽∗

2𝑊
+ 𝜉𝐽∗

1
) < (𝑎𝐵𝐽∗

2
+ 𝜉𝐽∗

2
) × (𝑎𝐽∗

2𝑊
+ 𝜉𝐽∗

2
) = 𝑎𝐵𝑊 − 𝜉𝐽∗

2
,

nd thus 𝜉𝐽∗
1

is not the feasible 𝜉 value of the pairwise comparison
oward criterion 𝑐𝐽∗

2
. Therefore, 𝜉𝐽∗

2
is the optimal objective function

alue 𝜉∗ of the whole BWM comparison system.
(3) If (𝑎𝐵𝐽∗

2
+𝜉𝐽∗

1
)×(𝑎𝐽∗

2𝑊
+𝜉𝐽∗

1
) < 𝑎𝐵𝑊 +𝜉𝐽∗

1
or (𝑎𝐵𝐽∗

1
−𝜉𝐽∗

2
)×(𝑎𝐽∗

1𝑊
−

𝐽∗
2
) > 𝑎𝐵𝑊 − 𝜉𝐽∗

2
, then the optimal modified 𝑎̃𝐵𝑊 should satisfy

𝐵𝑊 − 𝜉𝐽∗
2
< 𝑎̃𝐵𝑊 < 𝑎𝐵𝑊 + 𝜉𝐽∗

1
.

In this case, the optimal 𝜉𝐽∗
1

and 𝜉𝐽∗
2

should satisfy

𝑎𝐵𝐽∗
1
− 𝜉𝐽∗

1
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

1
) = 𝑎̃𝐵𝑊 = (𝑎𝐵𝐽∗

2
+ 𝜉𝐽∗

2
) × (𝑎𝐽∗

2𝑊
+ 𝜉𝐽∗

2
),

nd the feasible objective function value 𝜉 of the BWM is 𝜉 = max
𝜉𝐽∗

1
, 𝜉𝐽∗

2
}, which leads to

𝑎𝐵𝐽∗
1
− 𝜉) × (𝑎𝐽∗

1𝑊
− 𝜉) ⩽ (𝑎𝐵𝐽∗

2
+ 𝜉) × (𝑎𝐽∗

2𝑊
+ 𝜉).

Solving the above inequality, we can obtain that

⩾
𝑎𝐵𝐽∗

1
× 𝑎𝐽∗

1𝑊
− 𝑎𝐵𝐽∗

2
× 𝑎𝐽∗

2𝑊

𝑎𝐵𝐽∗
1
+ 𝑎𝐽∗

1𝑊
+ 𝑎𝐵𝐽∗

2
+ 𝑎𝐽∗

2𝑊
.

Therefore, the optimal 𝜉∗ = min{𝜉} is

𝜉∗ = min{𝜉} =
𝑎𝐵𝐽∗

1
× 𝑎𝐽∗

1𝑊
− 𝑎𝐵𝐽∗

2
× 𝑎𝐽∗

2𝑊

𝑎𝐵𝐽∗
1
+ 𝑎𝐽∗

1𝑊
+ 𝑎𝐵𝐽∗

2
+ 𝑎𝐽∗

2𝑊
,

where equality holds if and only if

(𝑎𝐵𝐽∗
1
− 𝜉) × (𝑎𝐽∗

1𝑊
− 𝜉) = (𝑎𝐵𝐽∗

2
+ 𝜉) × (𝑎𝐽∗

2𝑊
+ 𝜉).

Synthesizing the results of Propositions 1 to 3, we can derive the
analytical form of the unique optimal objective function value 𝜉∗

of the BWM. Furthermore, we can determine the analytical form of
the multiple optimal solutions of the BWM. They are expressed in
Theorem 3.

Theorem 3. There might be multiple optimal solutions for the BWM under
a not-fully consistent pairwise comparison system with more than three

criteria, and we have the following:
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(1) The unique optimal objective function value 𝜉∗ of the BWM is

𝜉∗ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜉𝐽∗
1
, 𝑖𝑓 (𝑎𝐵𝐽∗

2
+ 𝜉𝐽∗

1
) × (𝑎𝐽∗

2𝑊
+ 𝜉𝐽∗

1
) ⩾ 𝑎𝐵𝑊 + 𝜉𝐽∗

1
,

𝜉𝐽∗
2
, 𝑖𝑓 (𝑎𝐵𝐽∗

1
− 𝜉𝐽∗

2
) × (𝑎𝐽∗

1𝑊
− 𝜉𝐽∗

2
) ⩽ 𝑎𝐵𝑊 − 𝜉𝐽∗

2
,

𝑎𝐵𝐽∗
1
× 𝑎𝐽∗

1𝑊
− 𝑎𝐵𝐽∗

2
× 𝑎𝐽∗

2𝑊

𝑎𝐵𝐽∗
1
+ 𝑎𝐽∗

1𝑊
+ 𝑎𝐵𝐽∗

2
+ 𝑎𝐽∗

2𝑊
, 𝑒𝑙𝑠𝑒.

(20)

(2) The unique optimal modified values in the comparison system are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎨

⎪

⎩

𝑎̃𝐵𝐽∗
1
= 𝑎𝐵𝐽∗

1
− 𝜉𝐽∗

1

𝑎̃𝐽∗
1 𝑊

= 𝑎𝐽∗
1 𝑊

− 𝜉𝐽∗
1
,

𝑎̃𝐵𝑊 = 𝑎𝐵𝑊 + 𝜉𝐽∗
1
,

𝑖𝑓 (𝑎𝐵𝐽∗
2
+ 𝜉𝐽∗

1
) × (𝑎𝐽∗

2 𝑊
+ 𝜉𝐽∗

1
) ≥ 𝑎𝐵𝑊 + 𝜉𝐽∗

1
,

⎧

⎪

⎨

⎪

⎩

𝑎̃𝐵𝐽∗
2
= 𝑎𝐵𝐽∗

2
+ 𝜉𝐽∗

2

𝑎̃𝐽∗
2 𝑊

= 𝑎𝐽∗
2 𝑊

+ 𝜉𝐽∗
2
,

𝑎̃𝐵𝑊 = 𝑎𝐵𝑊 − 𝜉𝐽∗
2
,

𝑖𝑓 (𝑎𝐵𝐽∗
1
− 𝜉𝐽∗

2
) × (𝑎𝐽∗

1 𝑊
− 𝜉𝐽∗

2
) ≤ 𝑎𝐵𝑊 − 𝜉𝐽∗

2
,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎̃𝐵𝐽∗
1
= 𝑎𝐵𝐽∗

1
− 𝜉∗

𝑎̃𝐽∗
1 𝑊

= 𝑎𝐽∗
1 𝑊

− 𝜉∗,
𝑎̃𝐵𝐽∗

2
= 𝑎𝐵𝐽∗

2
+ 𝜉∗

𝑎̃𝐽∗
2 𝑊

= 𝑎𝐽∗
2 𝑊

+ 𝜉∗,
𝑎̃𝐵𝑊 = (𝑎𝐵𝐽∗

1
− 𝜉∗) × (𝑎𝐽∗

1 𝑊
− 𝜉∗),

𝑒𝑙𝑠𝑒.

(21)

(3) The feasible optimal solution for the left modified comparison vectors is

𝑎̃𝑗𝑊 ∈
[

max
{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

,
𝑎̃𝐵𝑊

𝑎𝐵𝑗 + 𝜉∗

}

,

min

{

𝑎𝑗𝑊 + 𝜉∗,
𝑎̃𝐵𝑊

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

}]

with 𝑎̃𝐵𝑗 =
𝑎̃𝐵𝑊
𝑎̃𝑗𝑊

, ∀ 𝑗

(22)

or

𝑎̃𝐵𝑗 ∈
[

max
{

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

,
𝑎̃𝐵𝑊

𝑎𝑗𝑊 + 𝜉∗

}

,

min

{

𝑎𝐵𝑗 + 𝜉∗,
𝑎̃𝐵𝑊

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

}]

with 𝑎̃𝑗𝑊 =
𝑎̃𝐵𝑊
𝑎̃𝐵𝑗

, ∀ 𝑗.

(23)

roof. (1) According to the results of Propositions 1 to 3, we can
irectly summarize the analytical form for the unique optimal objective
unction value 𝜉∗ of the BWM with Eq. (20).

(2) According to the proof of (1), the optimal 𝜉∗ can be found if and
nly if one of the following three quadric equations holds

(𝑎𝐵𝐽∗
1
− 𝜉) × (𝑎𝐽∗

1 𝑊
− 𝜉) = 𝑎𝐵𝑊 + 𝜉, 𝑖𝑓 (𝑎𝐵𝐽∗

2
+ 𝜉) × (𝑎𝐽∗

2 𝑊
+ 𝜉) ⩾ 𝑎𝐵𝑊 + 𝜉,

(𝑎𝐵𝐽∗
2
+ 𝜉) × (𝑎𝐽∗

2 𝑊
+ 𝜉) = 𝑎𝐵𝑊 − 𝜉, 𝑖𝑓 (𝑎𝐵𝐽∗

1
− 𝜉) × (𝑎𝐽∗

1 𝑊
− 𝜉) ⩽ 𝑎𝐵𝑊 − 𝜉,

(𝑎𝐵𝐽∗
1
− 𝜉) × (𝑎𝐽∗

1 𝑊
− 𝜉) = (𝑎𝐵𝐽∗

2
+ 𝜉) × (𝑎𝐽∗

2 𝑊
+ 𝜉), 𝑒𝑙𝑠𝑒.

Therefore, the unique optimal modified values in the comparison
system can be analytically expressed by Eq. (21).

(3) Based on the results of (1) and (2), we know that both the
optimal 𝜉∗ and 𝑎̃𝐵𝑊 in the BWM are unique and analytical. The optimal
modified comparison values 𝑎̃𝐵𝑗 and 𝑎̃𝑗𝑊 must satisfy

𝑎̃𝐵𝑗 ∈
[

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

, 𝑎𝐵𝑗 + 𝜉∗
]

,

𝑎̃𝑗𝑊 ∈
[

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

, 𝑎𝑗𝑊 + 𝜉∗
]

, ∀ 𝑗.

Additionally, the optimal modified comparison vectors should be
fully consistent so that 𝑎̃𝐵𝑗 × 𝑎̃𝑗𝑊 = 𝑎̃𝐵𝑊 , ∀ 𝑗, so the optimal modified
comparison values 𝑎̃𝐵𝑗 and 𝑎̃𝑗𝑊 also need to satisfy

𝑎̃𝐵𝑗 =
𝑎̃𝐵𝑊
𝑎̃𝑗𝑊

∈

[

𝑎̃𝐵𝑊
𝑎𝑗𝑊 + 𝜉∗

,
𝑎̃𝐵𝑊

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

]

,

𝑎̃𝑗𝑊 =
𝑎̃𝐵𝑊
𝑎̃𝐵𝑗

∈

[

𝑎̃𝐵𝑊
𝑎𝐵𝑗 + 𝜉∗

,
𝑎̃𝐵𝑊

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

]

, ∀𝑗.
8

t

Then, the feasible regions of the optimal modified comparison
values 𝑎̃𝐵𝑗 and 𝑎̃𝑗𝑊 should be

𝑎̃𝐵𝑗 ∈

[

𝑎̃𝐵𝑊
𝑎𝑗𝑊 + 𝜉∗

,
𝑎̃𝐵𝑊

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

]

∩
[

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

, 𝑎𝐵𝑗 + 𝜉∗
]

, ∀𝑗.

𝑎̃𝑗𝑊 ∈

[

𝑎̃𝐵𝑊
𝑎𝐵𝑗 + 𝜉∗

,
𝑎̃𝐵𝑊

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

]

∩
[

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

, 𝑎𝑗𝑊 + 𝜉∗
]

, ∀ 𝑗.

The following inequality must be true:

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

× max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

⩽ 𝑎̃𝐵𝑊

⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

⩽
𝑎̃𝐵𝑊

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

⩽
𝑎̃𝐵𝑊

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

∀𝑗.

Thus, the lower and upper bounds of the optimal modified 𝑎̃𝐵𝑗 and
̃𝑗𝑊 values are

inf{𝑎̃𝑗𝑊 } = max
{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

,
𝑎̃𝐵𝑊

𝑎𝐵𝑗 + 𝜉∗

}

,

up{𝑎̃𝑗𝑊 } = min

{

𝑎𝑗𝑊 + 𝜉∗,
𝑎̃𝐵𝑊

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

}

, ∀𝑗,

inf{𝑎̃𝐵𝑗} = max
{

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

,
𝑎̃𝐵𝑊

𝑎𝑗𝑊 + 𝜉∗

}

,

sup{𝑎̃𝐵𝑗} = min

{

𝑎𝐵𝑗 + 𝜉∗,
𝑎̃𝐵𝑊

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

}

, ∀𝑗.

Because the optimal 𝑎̃𝐵𝑊 value is analytically fixed and the optimal
odified 𝑎̃𝐵𝑗 and 𝑎̃𝑗𝑊 satisfy 𝑎̃𝐵𝑗 × 𝑎̃𝑗𝑊 = 𝑎̃𝐵𝑊 , ∀ 𝑗, we only need to
etermine one value between 𝑎̃𝐵𝑗 and 𝑎̃𝑗𝑊 ; then, the feasible optimal

solution for the modified comparison vectors is

̃𝑗𝑊 ∈
[

max
{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

,
𝑎̃𝐵𝑊

𝑎𝐵𝑗 + 𝜉∗

}

,

min

{

𝑎𝑗𝑊 + 𝜉∗,
𝑎̃𝐵𝑊

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

}]

with 𝑎̃𝐵𝑗 =
𝑎̃𝐵𝑊
𝑎̃𝑗𝑊

, ∀𝑗

or

̃𝐵𝑗 ∈
[

max
{

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

,
𝑎̃𝐵𝑊

𝑎𝑗𝑊 + 𝜉∗

}

,

min

{

𝑎𝐵𝑗 + 𝜉∗,
𝑎̃𝐵𝑊

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

}]

with 𝑎̃𝑗𝑊 =
𝑎̃𝐵𝑊
𝑎̃𝐵𝑗

, ∀𝑗.

The original BWM used the optimal objective function value 𝜉∗ as
a consistency measurement of a comparison system, where the smaller
𝜉∗ is, the higher the consistency of the comparison system. According
to Theorems 2 and 3, the optimal 𝜉∗ value of the BWM is unique and
can be determined analytically. Thus, we can derive some interesting
properties of this analytical function from a mathematical point of
view.

Proposition 4. The optimal modified function value 𝜉∗ of the BWM
satisfies the following:

(1) 𝜉∗ is a continuous function with respect to the values of 𝑎𝐵𝐽∗
1
, 𝑎𝐽∗

1𝑊
,

nd 𝑎𝐵𝑊 ; 𝑎𝐵𝐽∗
2
, 𝑎𝐽∗

2𝑊
, and 𝑎𝐵𝑊 ; or 𝑎𝐵𝐽∗

1
, 𝑎𝐽∗

1𝑊
, 𝑎𝐵𝐽∗

2
and 𝑎𝐽∗

2𝑊
;

(2) 𝜉∗ = 0 if and only if the comparison system is fully consistent;
(3) 𝜉∗ is invariant with respect to a permutation of the indices of the

riteria;
(4) For a fully consistent comparison system, moving one of the prefer-

nces 𝑎𝐵𝑗 or 𝑎𝑗𝑊 away from its original value in the range [1, 𝑎𝐵𝑊 ] will
ead to an increase in the 𝜉∗ value;

(5) If we remove a criterion that is not the best, the worst, or the
otentially most inconsistent criterion 𝑐𝐽∗

1
or 𝑐𝐽∗

2
from the criteria set, then

∗
he 𝜉 value of the BWM does not change.
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The proofs of the above properties are similar to the proofs in [20],
so we omit them here for simplicity. Furthermore, as the optimal modi-
fied best to worst value 𝑎̃𝐵𝑊 of the BWM has a direct relationship with
𝜉∗, the optimal analytical form of 𝑎̃𝐵𝑊 has the following properties:

Proposition 5. The optimal modified best to worst value 𝑎̃𝐵𝑊 of the BWM
satisfies the following:

(1) 𝑎̃𝐵𝑊 is a continuous function with respect to the values of 𝑎𝐵𝐽∗
1
,

𝑎𝐽∗
1𝑊

, and 𝑎𝐵𝑊 ; 𝑎𝐵𝐽∗
2
, 𝑎𝐽∗

2𝑊
, and 𝑎𝐵𝑊 ; or 𝑎𝐵𝐽∗

1
, 𝑎𝐽∗

1𝑊
, 𝑎𝐵𝐽∗

2
and 𝑎𝐽∗

2𝑊
;

(2) 𝑎̃𝐵𝑊 = 𝑎𝐵𝑊 if and only if the comparison system is fully consistent;
(3) 𝑎̃𝐵𝑊 is invariant with respect to a permutation of the indices of the

criteria;
(4) If we remove a criterion that is not the best, the worst, or the

potentially most inconsistent criteria from the criteria set, then the 𝑎̃𝐵𝑊
value of the BWM does not change.

Theorem 4. The analytical forms of the lower and upper bounds of the
criteria weights are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑤̄𝐽 =
sup{𝑎̃𝐽𝑊 }

sup{𝑎̃𝐽𝑊 } +
∑

𝑗≠𝐽 inf{𝑎̃𝑗𝑊 }

=
min

{

𝑎𝐽𝑊 + 𝜉∗, 𝑎̃𝐵𝑊
max{𝑎𝐵𝑗−𝜉∗ ,1}

}

min
{

𝑎𝐽𝑊 + 𝜉∗, 𝑎̃𝐵𝑊
max{𝑎𝐵𝑗−𝜉∗ ,1}

}

+
∑

𝑗≠𝐽 max
{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

, 𝑎̃𝐵𝑊
𝑎𝐵𝑗+𝜉∗

} ,

𝑤𝐽 =
inf{𝑎̃𝐽𝑊 }

inf{𝑎̃𝐽𝑊 } +
∑

𝑗≠𝐽 sup{𝑎̃𝑗𝑊 }

=
max

{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

, 𝑎̃𝐵𝑊
𝑎𝐵𝐽+𝜉∗

}

max
{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

, 𝑎̃𝐵𝑊
𝑎𝐵𝐽+𝜉∗

}

+
∑

𝑗≠𝐽 min
{

𝑎𝑗𝑊 + 𝜉∗, 𝑎̃𝐵𝑊
max{𝑎𝐵𝑗−𝜉∗ ,1}

} ,

(24)

here the unique optimal 𝜉∗ and 𝑎̃𝐵𝑊 values are determined by Eqs. (20)
nd (21), respectively.

roof. According to Theorem 3, the feasible optimal range for the
odified 𝑎̃𝑗𝑊 is

𝑎̃𝑗𝑊 ∈
[

max
{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

,
𝑎̃𝐵𝑊

𝑎𝐵𝑗 + 𝜉∗

}

,

min

{

𝑎𝑗𝑊 + 𝜉∗,
𝑎̃𝐵𝑊

max
{

𝑎𝐵𝑗 − 𝜉∗, 1
}

}]

, ∀𝑗.

The optimal modified comparison vectors 𝐴̃𝐵 and 𝐴̃𝑊 construct a
fully consistent comparison system. Therefore, the criteria weights can
be computed based on only modified OW vector 𝐴̃𝑊 as

𝑤𝑂𝑊
𝐽 =

𝑎̃𝐽𝑊
𝑎̃𝐽𝑊 +

∑

𝑗≠𝐽 𝑎̃𝑗𝑊
.

𝑤𝑂𝑊
𝐽 is a monotonically increasing function of 𝑎̃𝐽𝑊 and a monoton-

cally decreasing function of 𝑎̃𝑗𝑊 (𝑗 ≠ 𝐽 ). Because the optimal modified
𝑎̃𝐵𝑊 value is unique and analytically determined, the optimal mod-
fied 𝑎̃𝑗𝑊 (𝑗 ≠ 𝐵) values are mutually independent. The lower bound
eight 𝑤𝐽 of criteria 𝑐𝐽 can be derived when 𝑎̃𝐽𝑊 reaches its lower
ound inf{𝑎̃𝐽𝑊 } while the other 𝑎̃𝑗𝑊 (𝑗 ≠ 𝐽 ) reach their upper bounds
up{𝑎̃𝑗𝑊 }(𝑗 ≠ 𝐽 ) so that

𝐽 =
inf{𝑎̃𝐽𝑊 }

inf{𝑎̃𝐽𝑊 } +
∑

𝑗≠𝐽 sup{𝑎̃𝑗𝑊 }

=
max

{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

, 𝑎̃𝐵𝑊
𝑎𝐵𝐽+𝜉∗

}

max
{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

, 𝑎̃𝐵𝑊
𝑎𝐵𝐽+𝜉∗

}

+
∑

𝑗≠𝐽 min
{

𝑎𝑗𝑊 + 𝜉∗, 𝑎̃𝐵𝑊
max{𝑎𝐵𝑗−𝜉∗ ,1}

} ,

and the upper bound 𝑤̄𝐽 of the weight of criteria 𝑐𝐽 can be derived
when the value 𝑎̃𝐽𝑊 reaches its upper bound sup{𝑎̃𝐽𝑊 } while the other
𝑎̃𝑗𝑊 (𝑗 ≠ 𝐽 ) values reach their lower bounds inf{𝑎̃𝑗𝑊 }(𝑗 ≠ 𝐽 ) so that

𝑤̄𝐽 =
sup{𝑎̃𝐽𝑊 }

∑

9

sup{𝑎̃𝐽𝑊 } + 𝑗≠𝐽 inf{𝑎̃𝑗𝑊 }
=
min

{

𝑎𝐽𝑊 + 𝜉∗, 𝑎̃𝐵𝑊
max{𝑎𝐵𝑗−𝜉∗ ,1}

}

min
{

𝑎𝐽𝑊 + 𝜉∗, 𝑎̃𝐵𝑊
max{𝑎𝐵𝑗−𝜉∗ ,1}

}

+
∑

𝑗≠𝐽 max
{

max
{

𝑎𝑗𝑊 − 𝜉∗, 1
}

, 𝑎̃𝐵𝑊
𝑎𝐵𝑗+𝜉∗

} .

□

Based on Eq. (24), we can analytically calculate the interval weights
of the criteria instead of solving the optimization programming models
one by one. Similar to the method in [36], we can use the center of
the intervals to rank the criteria or alternatives. We can also compare
and rank the interval weights based on the preference degree and
preference matrix.

3.3. A secondary objective function for determining the unique optimal
solution

Interval analysis is effective in helping analyze the multiple optimal
solutions in the nonlinear BWM. However, in some cases, DMs prefer
to have a unique solution. Next, we present a secondary objective
function to enhance multi-optimality, which can preserve the solution
characteristics of the nonlinear BWM.

From the previous analytical results, we know that at least three
pairs of evaluation values are analytically fixed (criteria 𝑐𝐽∗

1
, 𝑐𝐽∗

2
, 𝑐𝐵 ,

nd 𝑐𝑊 , which are denoted as 𝐽𝐹 𝑖𝑥). Because the optimal modified
̃𝐵𝑊 value is unique and analytically determined, the optimal modified
air of values for the optimized criteria are mutually independent. In
ine with the min–max strategy of the BWM, we aim to determine the
ptimal modified pairwise values, such that the maximum adjustment
eviations |

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

and |

|

|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

for each criterion 𝑐𝑗 (𝑗 ∉ 𝐽𝐹 𝑖𝑥)
re minimized, where

inmax
{

|

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

, ||
|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

}

, ∀𝑗 ∉ 𝐽𝐹 𝑖𝑥.

In addition, the maximum adjustment range of each evaluation
alue should satisfy

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

⩽ 𝜉∗, ||
|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

⩽ 𝜉∗, ∀𝑗 ∉ 𝐽𝐹 𝑖𝑥.

After the modification, the modified comparison system is fully
onsistent, where

̃𝐵𝑗 × 𝑎̃𝑗𝑊 = 𝑎̃𝐵𝑊 , ∀𝑗 ∉ 𝐽𝐹 𝑖𝑥.

Therefore, we can establish the following optimization model for
ach criterion 𝑐𝑗 (𝑗 ∉ 𝐽𝐹 𝑖𝑥)

inmax
{

|

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

, ||
|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

}

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|

|

|

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗
|

|

|

⩽ 𝜉∗, ∀𝑗 ∉ 𝐽𝐹 𝑖𝑥,
|

|

|

𝑎̃𝑗𝑊 − 𝑎𝑗𝑊
|

|

|

⩽ 𝜉∗, ∀𝑗 ∉ 𝐽𝐹 𝑖𝑥,

𝑎̃𝐵𝑗 × 𝑎̃𝑗𝑊 = 𝑎̃𝐵𝑊 , ∀𝑗 ∉ 𝐽𝐹 𝑖𝑥,

𝑎̃𝐵𝑗 , 𝑎̃𝑗𝑊 ⩾ 1.

(25)

heorem 5. Model (25) can be transformed into the following two
ptimization models, where

(1) If 𝑎𝐵𝑗 × 𝑎𝑗𝑊 < 𝑎̃𝐵𝑊 , model (25) is equivalent to the following
ptimization model

min 𝜂𝑗

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

𝑎̃𝐵𝑗 − 𝑎𝐵𝑗 = 𝜂𝐵𝑗 ,
𝑎̃𝑗𝑊 − 𝑎𝑗𝑊 = 𝜂𝑗𝑊 ,
(𝑎𝐵𝑗 + 𝜂𝐵𝑗 ) × (𝑎𝑗𝑊 + 𝜂𝑗𝑊 ) = 𝑎̃𝐵𝑊 ,
0 ⩽ 𝜂𝐵𝑗 ⩽ 𝜂𝑗 ,

(26)
⎩
0 ⩽ 𝜂𝑗𝑊 ⩽ 𝜂𝑗 .
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(2) If 𝑎𝐵𝑗 × 𝑎𝑗𝑊 > 𝑎̃𝐵𝑊 , model (25) is equivalent to the following
optimization model

min 𝜂𝑗

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎𝐵𝑗 − 𝑎̃𝐵𝑗 = 𝜂𝐵𝑗 ,
𝑎𝑗𝑊 − 𝑎̃𝑗𝑊 = 𝜂𝑗𝑊 ,
(𝑎𝐵𝑗 − 𝜂𝐵𝑗 ) × (𝑎𝑗𝑊 − 𝜂𝑗𝑊 ) = 𝑎̃𝐵𝑊 ,
0 ⩽ 𝜂𝐵𝑗 ⩽ 𝜂𝑗 ,
0 ⩽ 𝜂𝑗𝑊 ⩽ 𝜂𝑗 .

(27)

roof. To prove that model (26) is equivalent to model (25) when
𝐵𝑗 × 𝑎𝑗𝑊 < 𝑎̃𝐵𝑊 , we only need to prove that to make the modified

evaluations consistent, the optimal adjustment strategy for 𝑎𝐵𝑗 and 𝑎𝑗𝑊
is

𝑎̃𝐵𝑗 = 𝑎𝐵𝑗 + 𝜂𝐵𝑗 , 𝑎̃𝑗𝑊 = 𝑎𝑗𝑊 + 𝜂𝑗𝑊 , 𝜂𝐵𝑗 , 𝜂𝑗𝑊 ⩾ 0.

First, if 𝑎𝐵𝑗 × 𝑎𝑗𝑊 < 𝑎̃𝐵𝑊 , then (𝑎𝐵𝑗 − 𝜂𝐵𝑗 ) × (𝑎𝑗𝑊 − 𝜂𝑗𝑊 ) < 𝑎̃𝐵𝑊 , so
the adjustment strategy

𝑎̃𝐵𝑗 = 𝑎𝐵𝑗 − 𝜂𝐵𝑗 , 𝑎̃𝑗𝑊 = 𝑎𝑗𝑊 − 𝜂𝑗𝑊 , 𝜂𝐵𝑗 , 𝜂𝑗𝑊 ⩾ 0

is not feasible for the modification. Then, we assume that the optimal
adjustment strategy for 𝑎𝐵𝑗 and 𝑎𝑗𝑊 is

𝑎̃𝐵𝑗 = 𝑎𝐵𝑗 − 𝜂𝐵𝑗 , 𝑎̃𝑗𝑊 = 𝑎𝑗𝑊 + 𝜂𝑗𝑊 , 𝜂𝐵𝑗 , 𝜂𝑗𝑊 ⩾ 0

or

𝑎̃𝐵𝑗 = 𝑎𝐵𝑗 + 𝜂𝐵𝑗 , 𝑎̃𝑗𝑊 = 𝑎𝑗𝑊 − 𝜂𝑗𝑊 , 𝜂𝐵𝑗 , 𝜂𝑗𝑊 ⩾ 0.

Regarding the above two strategies, we can find a pair of feasible
𝜂′𝐵𝑗 and 𝜂′𝑗𝑊

𝜂′𝐵𝑗 = 𝜂𝐵𝑗 − 𝛥𝐵𝑗 , 𝜂
′
𝑗𝑊 = 𝜂𝑗𝑊 − 𝛥𝑗𝑊 , 𝛥𝐵𝑗 , 𝛥𝑗𝑊 ⩾ 0

such that the modified evaluations remain consistent. However, 𝜂′𝐵𝑗 and
𝜂′𝑗𝑊 satisfy

minmax
{

𝜂′𝐵𝑗 , 𝜂
′
𝑗𝑊

}

⩽ minmax
{

𝜂𝐵𝑗 , 𝜂𝑗𝑊
}

,

which is contrary to the assumption that the modification rule is
the optimal adjustment strategy. Therefore, the optimal adjustment
strategy for 𝑎𝐵𝑗 and 𝑎𝑗𝑊 has the form of Eq. (26) when 𝑎𝐵𝑗×𝑎𝑗𝑊 < 𝑎̃𝐵𝑊 .

In addition, as (𝑎𝐵𝑗 + 𝜉∗) × (𝑎𝑗𝑊 + 𝜉∗) ⩾ 𝑎̃𝐵𝑊 , there must exist
𝜂𝐵𝑗 , 𝜂𝑗𝑊 ⩽ 𝜉∗ that make the equality (𝑎𝐵𝑗+𝜂𝐵𝑗 )×(𝑎𝑗𝑊 +𝜂𝑗𝑊 ) = 𝑎̃𝐵𝑊 true,
thus the range of 𝜂𝐵𝑗 and 𝜂𝑗𝑊 is 𝜂𝐵𝑗 , 𝜂𝑗𝑊 ⩾ 0. Consequently, we can
obtain that model (25) is equivalent to model (26) if 𝑎𝐵𝑗 × 𝑎𝑗𝑊 < 𝑎̃𝐵𝑊 .
In the same way, we can prove that model (25) is equivalent to model
(27) if 𝑎𝐵𝑗 × 𝑎𝑗𝑊 > 𝑎̃𝐵𝑊 , and it is omitted here.

After determining two equivalent programming models (26) and
(27) of the optimization model (25), we can analytically solve the two
optimization models (26) and (27), and their optimal solutions are
shown in Theorem 6.

Theorem 6. The optimal objective function value 𝜂∗𝑗 of model (26) or (27)
is one root of the following quadric equation

{

(𝑎𝐵𝑗 − 𝜂𝑗 ) × (𝑎𝑗𝑊 − 𝜂𝑗 ) = 𝑎̃𝐵𝑊 , 𝑖𝑓 𝑎𝐵𝑗 × 𝑎𝑗𝑊 > 𝑎̃𝐵𝑊
(𝑎𝐵𝑗 + 𝜂𝑗 ) × (𝑎𝑗𝑊 + 𝜂𝑗 ) = 𝑎̃𝐵𝑊 , 𝑖𝑓 𝑎𝐵𝑗 × 𝑎𝑗𝑊 < 𝑎̃𝐵𝑊

(28)

and thus

𝜂∗𝑗 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑎𝐵𝑗 + 𝑎𝑗𝑊 −
√

(𝑎𝐵𝑗 + 𝑎𝑗𝑊 )2 − 4(𝑎𝐵𝑗 × 𝑎𝑗𝑊 − 𝑎̃𝐵𝑊 )

2
,

𝑖𝑓 𝑎𝐵𝑗 × 𝑎𝑗𝑊 > 𝑎̃𝐵𝑊

−(𝑎𝐵𝑗 + 𝑎𝑗𝑊 ) +
√

(𝑎𝐵𝑗 + 𝑎𝑗𝑊 )2 − 4(𝑎𝐵𝑗 × 𝑎𝑗𝑊 − 𝑎̃𝐵𝑊 )

2
,

(29)
10

⎩

𝑖𝑓 𝑎𝐵𝑗 × 𝑎𝑗𝑊 < 𝑎̃𝐵𝑊
Table 1
Comparison vectors for the transportation mode selection.

Criteria 𝐶1 𝐶2 𝐶3

Best criterion: 𝐶3 8 2 1
Worst criterion: 𝐶1 1 5 8

Thus the unique optimal solution for the modified comparison vectors is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{

𝑎̃𝐵𝑗 = 𝑎𝐵𝑗 + 𝜂∗𝑗 ,

𝑎̃𝑗𝑊 = 𝑎𝑗𝑊 + 𝜂∗𝑗 ,
𝑖𝑓 𝑎𝐵𝑗 × 𝑎𝑗𝑊 < 𝑎𝐵𝑊

{

𝑎̃𝐵𝑗 = 𝑎𝐵𝑗 − 𝜂∗𝑗 ,

𝑎̃𝑗𝑊 = 𝑎𝑗𝑊 − 𝜂∗𝑗 ,
𝑖𝑓 𝑎𝐵𝑗 × 𝑎𝑗𝑊 > 𝑎𝐵𝑊

(30)

Proof. The proof is similar to the proof of Theorem 2, and it is omitted.

4. Example validation

This section provides several numerical examples to validate the
feasibility and effectiveness of the proposed analytical framework for
the BWM. Specifically, some of the data in the evaluation example are
adopted from existing BWM papers. In addition, to verify the correct-
ness of our obtained theoretical results, we make some adjustments
to the data based on actual demand. Finally, we make a comparative
analysis with existing BWM models and discuss it to illustrate the
convenience and benefits of the proposed method.

4.1. Numerical examples

First, considering a not-fully consistent BWM comparison system
with three criteria, we use the analytical formulas in Theorem 2 to
calculate the unique optimal solution.

Example 1. [9] A company aims to transport its products to a market,
and the transportation mode selection problem involves three decision
criteria: 𝐶1–load flexibility, 𝐶2–accessibility, and 𝐶3–cost. The company
identifies cost (𝐶3) and load flexibility (𝐶1) as the best and worst
criteria respectively. Table 1 shows the comparison vectors.

With the data in Table 1, as 2×5 > 8, based on the results Eqs. (16)
nd (19) of Theorem 2, we have

∗ =
2 + 5 + 1 −

√

(2 + 5 + 1)2 − 4(2 × 5 − 8)

2
= 0.2583,

𝑤1 =
1

5 + 8 + 1
= 0.0714, 𝑤2 =

5 − 0.2583
5 + 8 + 1

= 0.3387,

𝑤3 =
8 + 0.2583
5 + 8 + 1

= 0.5899.

Furthermore, we discuss how different 𝑎32 (𝑎𝐵𝑗) and 𝑎21 (𝑎𝑗𝑊 ) val-
ues affect the criteria weights and the 𝜉∗ value. As 𝑎𝐵𝑊 = 8, we select
different values for 𝑎32, 𝑎21 ∈ {1, 2,… , 8}. Based on the analytical forms
(17) and (19) for 𝜉∗ and the optimal criteria weights, we can directly
draw their function images. Fig. 1 shows the relationship between 𝑎32,
𝑎21, and 𝜉∗. As shown in Fig. 1, when 𝑎32×𝑎21 is close to 𝑎𝐵𝑊 = 𝑎31 = 8,
𝜉∗ is close to zero, which provides high consistency; when 𝑎32 × 𝑎21 is
far from 𝑎31 = 8, 𝜉∗ becomes larger, which shows a low consistency.
The maximum 𝜉∗ value is 4.4689 when both 𝑎32 and 𝑎21 are assigned
the maximum value of 8, leading to the most inconsistent situation.

Fig. 2 displays the variation in the weights of the three criteria with
different values for 𝑎32 and 𝑎21. As seen from the simulation of the 3D
projective view, the weight 𝑤1 of the worst criterion 𝑐1 is only affected
by the 𝑎𝑗𝑊 (𝑎21) value (not by the 𝑎𝐵𝑗 (𝑎32) value). Additionally, the
weight 𝑤3 of the best criterion 𝑐3 decreases as the 𝑎𝑗𝑊 (𝑎21) value

increases, while the weight 𝑤2 of criterion 𝑐2 increases as the 𝑎𝑗𝑊 (𝑎21)
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Fig. 1. The variation of 𝜉∗ in a comparison system with three criteria when 𝑎𝐵𝑊 = 8.

Table 2
Comparison vectors for the car purchase.

Criteria 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

Best criterion: 𝐶2 3 1 4 3 8
Worst criterion: 𝐶5 4 8 4 3 1

value increases. The dynamic results of the optimal criteria weights and
the 𝜉∗ value are consistent with their mathematical functions, Eqs. (17)
and (19).

The above calculation results are the same as the results in [9],
which indicates that the results of Theorem 2 are mathematically
correct and our method is effective. Instead of solving the programming
model one by one with one pair of 𝑎32 and 𝑎21 values to obtain
the results, we directly substitute them into the analytical functions
Eqs. (17) and (19), leading to more general and convenient solutions.

Second, considering that a not-fully consistent BWM comparison
system with more than three criteria might have multiple optimal
solutions, we use the following three Examples 2–4, which correspond
to the three conditions in Propositions 1–3, and then use the analytical
formulas in Theorem 3 to compute their multiple optimal solutions.

Example 2. A buyer wants to buy a car, and he considers the following
five criteria: 𝐶1–quality, 𝐶2–price, 𝐶3–comfort, 𝐶4–safety, and 𝐶5–style.
The buyer identifies price (𝐶2) and style (𝐶5) as the best and worst
criteria, respectively. The buyer provides his comparison vectors, as
shown in Table 2.

First, the inconsistent criteria are 𝐶1, 𝐶3, and 𝐶4, and they are
all upside criteria. Based on Eq. (16), we can compute their separate
optimal 𝜉∗ values such that

𝜉∗1 =
3 + 4 + 1 −

√

(3 + 4 + 1)2 − 4(3 × 4 − 8)

2
= 0.5359,

𝜉∗3 =
4 + 4 + 1 −

√

(4 + 4 + 1)2 − 4(4 × 4 − 8)

2
= 1,

𝜉∗4 =
3 + 3 + 1 −

√

(3 + 3 + 1)2 − 4(3 × 3 − 8)

2
= 0.1459.

Based on Proposition 1, the unique optimal 𝜉∗ is 𝜉∗ = 𝜉∗3 = 1. Then,
the unique optimal modified values 𝑎̃23 and 𝑎̃35 for criterion 𝐶3 and 𝑎̃25
(𝑎̃𝐵𝑊 ) are

𝑎̃23 = 𝑎23 − 𝜉∗ = 3, 𝑎̃35 = 𝑎35 − 𝜉∗ = 3, 𝑎̃25 = 𝑎25 + 𝜉∗ = 9.

Using Eq. (22), the ranges of the optimal feasible solutions for 𝑎̃15
and 𝑎̃45 are

𝑎̃15 ∈
[

max
{

max
{

𝑎15 − 𝜉∗, 1
}

,
𝑎̃25

}

,

11

𝑎21 + 𝜉∗
Table 3
Comparison vectors for the car purchase.

Criteria 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

Best criterion: 𝐶2 3 1 2 2 8
Worst criterion: 𝐶5 2 8 2 4 1

min

{

𝑎15 + 𝜉∗,
𝑎̃25

max
{

𝑎21 − 𝜉∗, 1
}

}]

= [3, 4.5] ,

̃45 ∈
[

max
{

max
{

𝑎45 − 𝜉∗, 1
}

,
𝑎̃25

𝑎24 + 𝜉∗

}

,

min

{

𝑎45 + 𝜉∗,
𝑎̃25

max
{

𝑎24 − 𝜉∗, 1
}

}]

= [2.25, 4] .

Therefore, we can obtain the optimal feasible solutions of the mod-
ified OW and BO vectors such that

̃15 ∈ [3, 4.5] , 𝑎̃25 = 9, 𝑎̃35 = 3, 𝑎̃45 ∈ [2.25, 4] , 𝑎̃55 = 1 with 𝑎̃2𝑗 =
𝑎̃25
𝑎̃𝑗5

, ∀ 𝑗.

Choosing any two 𝑎̃15 and 𝑎̃45 values in their optimal feasible ranges
and using Eq. (12), we can obtain a group of optimal weights for the
criteria.

Example 3. Suppose the comparison vectors for the car purchase are
as shown in Table 3.

First, the inconsistent criteria are 𝐶1 and 𝐶3, and they are all
downside criteria. Based on Eq. (16), we can compute their separate
optimal 𝜉∗ values such that

𝜉∗1 = −
3 + 2 + 1 −

√

(3 + 2 + 1)2 − 4(3 × 2 − 8)

2
= 0.3166,

𝜉∗3 = −
2 + 2 + 1 −

√

(2 + 2 + 1)2 − 4(2 × 2 − 8)

2
= 0.7016.

Based on Proposition 2, the unique optimal 𝜉∗ of the BWM is 𝜉∗ =
𝜉∗3 = 0.7016; then, the unique optimal modified values 𝑎̃23 and 𝑎̃35 for
criterion 𝐶3 and 𝑎̃25 (𝑎̃𝐵𝑊 ) are

̃23 = 𝑎23 + 𝜉∗ = 2.7016, 𝑎̃35 = 𝑎35 + 𝜉∗ = 2.7016, 𝑎̃25 = 𝑎25 − 𝜉∗ = 7.2984.

Based on Eq. (22), the ranges of the optimal feasible solutions for
̃15 and 𝑎̃45 are

̃15 ∈
[

max
{

max
{

𝑎15 − 𝜉∗, 1
}

,
𝑎̃25

𝑎21 + 𝜉∗

}

,

min

{

𝑎15 + 𝜉∗,
𝑎̃25

max
{

𝑎21 − 𝜉∗, 1
}

}]

= [1.9717, 2.7016] ,

̃45 ∈
[

max
{

max
{

𝑎45 − 𝜉∗, 1
}

,
𝑎̃25

𝑎24 + 𝜉∗

}

,

min

{

𝑎45 + 𝜉∗,
𝑎̃25

max
{

𝑎24 − 𝜉∗, 1
}

}]

= [3.2984, 4.7016] .

Therefore, we can obtain the optimal feasible solutions of the mod-
ified OW and BO vectors such that

̃15 ∈ [1.9717, 2.7016] , 𝑎̃25 = 7.2984, 𝑎̃35 = 2.7016,

̃45 ∈ [3.2984, 4.7016] , 𝑎̃55 = 1 with 𝑎̃2𝑗 =
𝑎̃25
𝑎̃𝑗5

, ∀ 𝑗.

Choosing any two 𝑎̃15 and 𝑎̃45 values in their optimal feasible ranges
and using Eq. (12), we can obtain a group of optimal weights for the
criteria.

Example 4. Suppose the comparison vectors for the car purchase are
as shown in Table 4.
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Fig. 2. The variation of criteria weights with different values for 𝑎32 and 𝑎21.
𝑎

𝑎

𝑎

Table 4
Comparison vectors for the car purchase.

Criteria 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

Best criterion: 𝐶2 3 1 2 3 8
Worst criterion: 𝐶5 4 8 2 2 1

First, the inconsistent criteria are 𝐶1, 𝐶3, and 𝐶4, and they include
both upside and downside criteria. Based on Eq. (16), we can compute
their separate optimal 𝜉∗ values such that

𝜉∗1 =
3 + 4 + 1 −

√

(3 + 4 + 1)2 − 4(3 × 4 − 8)

2
= 0.5359,

𝜉∗3 = −
2 + 2 + 1 −

√

(2 + 2 + 1)2 − 4(2 × 2 − 8)

2
= 0.7016,

𝜉∗4 = −
3 + 2 + 1 −

√

(3 + 2 + 1)2 − 4(3 × 2 − 8)

2
= 0.3166.

As (𝑎21−𝜉∗3 )×(𝑎15−𝜉∗3 ) = 2.2984×3.2984 = 7.5810 > 𝑎25−𝜉∗3 = 7.2984,
𝜉∗3 is not the feasible solution for criterion 𝐶1. Based on Proposition 3,
the unique optimal 𝜉∗ of the BWM is

𝜉∗ = 3 × 4 − 2 × 2
3 + 4 + 2 + 2

= 0.7273.

Then, the unique optimal modified 𝑎̃21 and 𝑎̃15 for criterion 𝐶1, 𝑎̃23
and 𝑎̃35 for criterion 𝐶3, and 𝑎̃25 are

𝑎̃21 = 𝑎21 − 𝜉∗ = 2.2727, 𝑎̃15 = 𝑎15 − 𝜉∗ = 3.2727, 𝑎̃23 = 𝑎23 + 𝜉∗ = 2.7273,

𝑎̃35 = 𝑎35 + 𝜉∗ = 2.7273, 𝑎̃25 = 𝑎̃21 × 𝑎̃15 = (𝑎21 − 𝜉∗) × (𝑎15 − 𝜉∗) = 7.4380.

Based on Eq. (22), the feasible optimal solution for 𝑎̃45 is

𝑎̃45 ∈
[

max
{

max
{

𝑎45 − 𝜉∗, 1
}

,
𝑎̃25

𝑎24 + 𝜉∗

}

,

min

{

𝑎45 + 𝜉∗,
𝑎̃25

max
{

𝑎24 − 𝜉∗, 1
}

}]

= [1.9956, 2.7273] .

Therefore, we can obtain the optimal feasible solutions of the mod-
ified BO and OW vectors such that

𝑎̃15 = 3.2727, 𝑎̃25 = 7.4380, 𝑎̃35 = 2.7273, 𝑎̃45 ∈ [1.9956, 2.7273] ,

𝑎̃55 = 1 with 𝑎̃2𝑗 =
𝑎̃25
𝑎̃𝑗5

, ∀ 𝑗.

Finally, we can obtain a group of optimal weights for the criteria.
The calculations of Example 2–4 on three typical inconsistent com-

parison systems correspond to the results of Proposition 1–3 and The-
orem 3. They yield the unique optimal objective function value 𝜉∗,
the unique optimal modified best to worst value 𝑎̃ and the feasible
12

𝐵𝑊
Table 5
Comparison vectors for the car purchase.

Criteria 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

Best criterion: 𝐶2 2 1 4 3 8
Worst criterion: 𝐶5 4 8 2 3 1

optimal modified comparison vectors for the equivalent BWM using the
analytical functions directly. This method takes advantage of the inher-
ent strengths of the analytical solutions to make the whole computation
process more accessible or more convenient.

Third, to calculate the lower and upper bounds of the criteria
weights when multiple optimal solutions exist, we use the analytical
formulas in Theorem 4 to calculate the interval weights for the criteria,
which can then be used to rank the criteria.

Example 5. Consider the data in [36] for the car purchase problem, as
shown in Table 5.

First, the inconsistent criterion is 𝐶4. Based on Eq. (16), we can
compute its optimal 𝜉∗ value such that

𝜉∗4 =
3 + 3 + 1 −

√

(3 + 3 + 1)2 − 4(3 × 3 − 8)

2
= 0.1459.

The unique optimal 𝜉∗ of the BWM is 𝜉∗ = 0.1459, and then the
unique optimal modified values 𝑎̃24 and 𝑎̃45 for criterion 𝐶4 and 𝑎̃25
(𝑎̃𝐵𝑊 ) are

̃24 = 𝑎24 − 𝜉∗4 = 2.8541, 𝑎̃45 = 𝑎45 − 𝜉∗4 = 2.8541, 𝑎̃25 = 𝑎25 + 𝜉∗4 = 8.1459.

Based on Eq. (22), the feasible optimal solutions for 𝑎̃15 and 𝑎̃35 are

̃15 ∈
[

max
{

max
{

𝑎15 − 𝜉∗, 1
}

,
𝑎̃25

𝑎21 + 𝜉∗

}

,

min

{

𝑎15 + 𝜉∗,
𝑎̃25

max
{

𝑎21 − 𝜉∗, 1
}

}]

= [3.8541, 4.1459] ,

̃35 ∈
[

max
{

max
{

𝑎35 − 𝜉∗, 1
}

,
𝑎̃25

𝑎23 + 𝜉∗

}

,

min

{

𝑎35 + 𝜉∗,
𝑎̃25

max
{

𝑎23 − 𝜉∗, 1
}

}]

= [1.9648, 2.1136] .

Therefore, we can obtain the lower and upper bounds of the optimal
modified BO and OW vectors. Specifically, the ranges of the optimal
modified OW vector are shown in the first two lines of Table 6.

Finally, based on Eq. (24) and the ranges of the optimal modified
OW vector, we can calculate the lower and upper bounds of the optimal
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Table 6
Ranges of the optimal modified OW vector and the optimal criteria weights.

Optimal solutions Ranges 𝑎̃15(𝑤1) 𝑎̃25(𝑤2) 𝑎̃35(𝑤3) 𝑎̃45(𝑤4) 𝑎̃55(𝑤5)

Optimal modified values Lower bounds 3.8541 8.1459 1.9648 2.8541 1
Upper bounds 4.1459 8.1459 2.1136 2.8541 1

Optimal criteria weights Lower bounds 0.2145 0.4461 0.1085 0.1563 0.0545
Upper bounds 0.2289 0.4571 0.1176 0.1602 0.0561
𝑎
t

𝑎

t

𝑤

E
T
w

6

𝜂

Table 7
BWM comparison vectors for the car purchase.

Criteria 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

Best criterion: 𝐶2 2 1 4 3 8
Worst criterion: 𝐶5 4 8 4 2 1

weights of the criteria. Taking the weight of criterion 𝐶1, for instance,
the computations are

𝑤1 =
inf{𝑎̃15}

inf{𝑎̃15} +
∑

𝑗≠1 sup{𝑎̃15}

= 3.8541
3.8541 + 8.1459 + 2.1136 + 2.8541 + 1

= 0.2145,

𝑤̄1 =
sup{𝑎̃15}

sup{𝑎̃15} +
∑

𝑗≠1 inf{𝑎̃𝑗5}

= 4.1459
4.1459 + 8.1459 + 1.9648 + 2.8541 + 1

= 0.2289.

Similarly, we can compute the ranges of the optimal weights of the
other criteria, and the results are summarized in the last two lines of
Table 6.

Example 6. Consider the data in [36] for the car purchase problem, as
shown in Table 7.

First, the inconsistent criteria are 𝐶3 and 𝐶4. Based on Eq. (16), their
optimal 𝜉∗ values are

𝜉∗3 =
4 + 4 + 1 −

√

(4 + 4 + 1)2 − 4(4 × 4 − 8)

2
= 1,

𝜉∗4 = −
3 + 2 + 1 −

√

(3 + 2 + 1)2 − 4(3 × 2 − 8)

2
= 0.3166.

Because (𝑎24 + 𝜉∗3 )× (𝑎45 + 𝜉∗3 ) = 12 > 𝑎25 + 𝜉∗3 = 9, the unique optimal
𝜉∗ of the BWM model is 𝜉∗ = 𝜉∗3 = 1; then, the unique optimal modified
values 𝑎̃23 and 𝑎̃35 for criterion 𝐶3 and 𝑎̃25 (𝑎̃𝐵𝑊 ) are

𝑎̃23 = 𝑎23 − 𝜉∗3 = 3, 𝑎̃35 = 𝑎35 − 𝜉∗3 = 3, 𝑎̃25 = 𝑎25 + 𝜉∗3 = 9.

Based on Eq. (22), the feasible optimal solutions for 𝑎̃15 and 𝑎̃45 are

𝑎̃15 ∈
[

max
{

max
{

𝑎15 − 𝜉∗, 1
}

,
𝑎̃25

𝑎21 + 𝜉∗

}

,

min

{

𝑎15 + 𝜉∗,
𝑎̃25

max
{

𝑎21 − 𝜉∗, 1
}

}]

= [3, 5] ,

𝑎̃45 ∈
[

max
{

max
{

𝑎45 − 𝜉∗, 1
}

,
𝑎̃25

𝑎24 + 𝜉∗

}

,

min

{

𝑎45 + 𝜉∗,
𝑎̃25

max
{

𝑎24 − 𝜉∗, 1
}

}]

= [2.25, 3] .

Therefore, the optimal modified OW vector ranges are as shown
in the first two lines of Table 8. Based on Eq. (24) and the ranges of
the optimal modified OW vector, we can calculate the optimal interval
criteria weights, and the results are summarized in the last two lines of
Table 8. Specifically, the computations for criterion 𝐶1 are

𝑤1 =
inf{𝑎̃15}

inf{𝑎̃15} +
∑

𝑗≠1 sup{𝑎̃15}
= 3

3 + 9 + 3 + 3 + 1
= 0.1579,

𝑤̄1 =
sup{𝑎̃15}

∑ = 5 = 0.2469.
13

sup{𝑎̃15} + 𝑗≠1 inf{𝑎̃𝑗5} 5 + 9 + 3 + 2.25 + 1
Examples 5 and 6 utilize the same data and yield the same results as
in [36]. The derived results confirm the effectiveness and precision of
the method. The interval weights contribute to weighting and ranking
the criteria for the case of multiple optimal solutions.

Finally, to determine a unique optimal solution among the mul-
tiple optimal solutions of Examples 5 and 6, we use the developed
secondary objective function in Section 3.3 and the analytical formulas
in Theorem 6 to obtain the unique optimal criteria weights.

Example 7. We continue with the data in Example 5 for buying a
car. Because there are multiple optimal solutions regarding the criteria
weights, we use the proposed secondary goal function to determine a
unique optimal solution. As there are multiple optimal modified values
of criteria 𝐶1 and 𝐶3, we can construct the following two optimization
models
minmax

{

|

|

𝑎̃21 − 𝑎21|| , ||𝑎̃15 − 𝑎15||
}

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|

|

𝑎̃21 − 𝑎21|| ⩽ 𝜉∗,
|

|

𝑎̃15 − 𝑎15|| ⩽ 𝜉∗,

𝑎̃21 × 𝑎̃15 = 𝑎̃25,

𝑎̃21, 𝑎̃15 ⩾ 1,

and

minmax
{

|

|

𝑎̃23 − 𝑎23|| , ||𝑎̃35 − 𝑎35||
}

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|

|

𝑎̃23 − 𝑎23|| ⩽ 𝜉∗,
|

|

𝑎̃35 − 𝑎35|| ⩽ 𝜉∗,

𝑎̃23 × 𝑎̃35 = 𝑎̃25,

𝑎̃23, 𝑎̃35 ⩾ 1.

Based on Theorem 5, the above two models are equivalent to the
following two optimization models

min 𝜂1

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

(2 + 𝜂21) × (4 + 𝜂15) = 8.1459,
0 ⩽ 𝜂21 ⩽ 𝜂1,
0 ⩽ 𝜂15 ⩽ 𝜂1,

and

min 𝜂3

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

(4 + 𝜂23) × (2 + 𝜂35) = 8.1459,
0 ⩽ 𝜂23 ⩽ 𝜂3,
0 ⩽ 𝜂35 ⩽ 𝜂3.

According to Theorem 6, as 𝑎21 × 𝑎15 = 𝑎23 × 𝑎25 = 8 < 𝑎̃25 = 8.1459,
the optimal solutions for 𝜂1 and 𝜂3 are

𝜂∗1 = 𝜂∗3 =
−(2 + 4) +

√

(2 + 4)2 − 4(2 × 4 − 8.1459)

2
= 0.0242.

Therefore, 𝜂∗15 = 𝜂∗21 = 𝜂∗35 = 𝜂∗23 = 0.0242, leading to 𝑎̃15 =
15+𝜂∗15 = 4.0242, 𝑎̃21 = 2.0242, 𝑎̃35 = 2.0242, 𝑎̃23 = 4.0242. Consequently,
he unique optimal modified OW vector is

̃15 = 4.0242, 𝑎̃25 = 8.1459, 𝑎̃35 = 2.0242, 𝑎̃45 = 2.8541, 𝑎̃55 = 1.

Using Eq. (12) based on only the modified OW vector, we can derive
he following unique criteria weights.

1 = 0.2230, 𝑤2 = 0.4513, 𝑤3 = 0.1122, 𝑤4 = 0.1581, 𝑤5 = 0.0554.

xample 8. We use the same data as in Example 6 for buying a car.
here are multiple optimal modified values of criteria 𝐶1 and 𝐶4, and
e obtain the following two independent optimization models

min 𝜂1

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

(2 + 𝜂21) × (4 + 𝜂15) = 9,
0 ⩽ 𝜂21 ⩽ 𝜂1,
0 ⩽ 𝜂15 ⩽ 𝜂1,

and

min 𝜂4

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

(3 + 𝜂24) × (2 + 𝜂45) = 9,
0 ⩽ 𝜂24 ⩽ 𝜂4,
0 ⩽ 𝜂45 ⩽ 𝜂4.

According to Theorem 6, as 𝑎21 × 𝑎15 = 8 < 𝑎̃25 = 9 and 𝑎24 × 𝑎45 =
< 𝑎̃25 = 9, the optimal solutions for 𝜂1 and 𝜂4 are

∗
1 =

−(2 + 4) +
√

(2 + 4)2 − 4(2 × 4 − 9)

2
= 0.1623,

𝜂∗ =
−(2 + 3) +

√

(2 + 3)2 − 4(2 × 3 − 9)
= 0.5414.
4 2



Omega 123 (2024) 102974Q. Wu et al.

t

Table 8
Ranges of the optimal modified OW vector and the optimal criteria weights.

Optimal solutions Ranges 𝑎̃15(𝑤1) 𝑎̃25(𝑤2) 𝑎̃35(𝑤3) 𝑎̃45(𝑤4) 𝑎̃55(𝑤5)

Optimal modified values Lower bounds 3 9 3 2.25 1
Upper bounds 5 9 3 3 1

Optimal criteria weights Lower bounds 0.1579 0.4286 0.1429 0.1111 0.0476
Upper bounds 0.2469 0.4932 0.1644 0.1579 0.0548
Table 9
The comparative analysis among different BWM models.

Methods Optimization Optimal Interval Analytic Solution Preference modification
model solutions weights solutions tools suggestion

Nonlinear BWM [9] NLP Multiple No No Software No
Interval weights and LP Unique Yes No Software No
a linear BWM [36]
Multiplicative BWM [37] LP Multiple Yes No Software No
The proposed method NLP Unique Yes Yes Analytical Yes
Therefore, 𝜂∗15 = 𝜂∗21 = 0.1623 and 𝜂∗24 = 𝜂∗45 = 0.5414, leading
o 𝑎̃15 = 𝑎15 + 𝜂∗15 = 4.1623, 𝑎̃21 = 2.1623, 𝑎̃45 = 2.5414, 𝑎̃24 = 3.5414.

Consequently, the unique optimal modified OW vector is

𝑎̃15 = 4.1623, 𝑎̃25 = 9, 𝑎̃35 = 3, 𝑎̃45 = 2.5414, 𝑎̃55 = 1.

Using Eq. (12) based on only the modified OW vector, we can derive
the following unique criteria weights.

𝑤1 = 0.2112, 𝑤2 = 0.4568, 𝑤3 = 0.1523, 𝑤4 = 0.1290, 𝑤5 = 0.0508.

The results in Examples 7 and 8 continue the work of Examples 5
and 6, aiming to select a unique solution from the multiple optimal
solutions of the nonlinear BWM. The unique solutions are easy to cal-
culate, and we find that they are very close to the center of the intervals
we derived before, so they yield great convenience and reasonable
criteria weights for the decision-making problem.

4.2. Comparative analysis and discussion with existing BWM models

The nonlinear BWM and linear BWM models in the two pioneering
papers [9,36] connect logically, echo each other, and form a com-
plete BWM framework. The multiplicative BWM [37] uses a modified
objective function with an algebraic approach, making the entire op-
timization problem easy to linearize and able to be solved quickly
and without distortions. It is a solid supplement and extension of the
BWM from a more mathematical perspective. By introducing alterna-
tive linear objective functions and interval analysis, both the methods
in [36,37] can handle the nonlinearity and multi-optimality of the
original BWM. Instead of developing a new metric in the framework
of the BWM, we propose an equivalent BWM, obtain some optimal
analytical solutions of the nonlinear BWM, and finally construct a
secondary objective function to derive a unique optimal solution for
the BWM. Specifically, we compare our method with the existing BWM
models based on some theoretical (see Table 9) and practical aspects
(see Table 10).

Based on Table 9, the following three theoretical points are com-
pared: (1) multiple optimal solutions based on the criteria weights;
(2) interval analysis for multiple optimal solutions; and (3) the unique
optimal solution.

• First, both the initial nonlinear BWM [9] and the multiplicative
BWM [37] have multiple optimal solutions. We might obtain
different results if we use different optimization software to solve
them. Instead of solving them with the help of optimization soft-
ware, using the analytical form for the multiple optimal solutions
is mathematically rigorous and more general, guiding us to de-
termine the optimal feasible criteria weights more conveniently.
As a result, we can arbitrarily select the optimal modified values
within their optimal feasible ranges and then obtain a group of
optimal weights.
14
• Second, regarding the lower and upper bounds of the optimal cri-
teria weights, the methods in [36,37] construct two optimization
models and solve them one by one for all criteria using optimiza-
tion software. However, the weights derived in the multiplicative
BWM [37] are additive weights, and we need to transform them
into multiplicative weights using a normalization process, which
might lead to information distortions. Our results on the interval
weights are the same as those in [36], but our analytical results
are more straightforward, without the need to solve too many
optimization models.

• Third, neither of the methods in [9,37] yields the unique opti-
mal solution to the criteria weights. The linear BWM [36] can
yield a unique solution. However, it might be different from
the nonlinear BWM, and thus, it leads to different feasible re-
gions and results. In contrast, our developed secondary objective
function maintains all the nonlinear BWM characteristics and
offers an analytical form of the unique optimal solution, which
is more mathematically sound while retaining the philosophy of
the nonlinear BWM.

Furthermore, as all the existing BWM models are optimization mod-
els, the computation time when using optimization software to solve
these models is an important indicator for comparing the performance
merits of these methods. To measure the performance of these models
in terms of computation time, we randomly generate 10000 best–
worst pairwise comparison vectors with different numbers of criteria.
The best to worst value 𝑎𝐵𝑊 is drawn independently from the scale
{2, 3, 4, 5, 6, 7, 8, 9}, and the remaining BO values 𝑎𝐵𝑗 (𝑗 ≠ 𝐵,𝑊 ) and
OW values 𝑎𝑗𝑊 (𝑗 ≠ 𝐵,𝑊 ) are drawn independently from the scale
{2,… , 𝑎𝐵𝑊 −1}. To ensure the reliability of the experimental results, we
use the fmincon and linprog functions in MATLAB to solve the nonlin-
ear BWM model and multiplicative/linear BWM models, respectively,
with simulated data to derive the criteria weights. All the tests are
conducted in MATLAB 2020b on a computer with an Intel(R) Core(TM)
i5-8265U CPU @ 1.60 GHz and a memory of 8 GB. Table 10 shows the
simulated computation time (seconds) of different BWM models with
different numbers of criteria.

According to the average computation time of the 10000 simulation
examples shown in Table 10, the proposed analytical framework is the
fastest computational method, almost 300 times faster than the linear
BWM and multiplicative BWM. This is because the derived optimal
analytical solutions are simple arithmetic calculations. The slowest is
the nonlinear BWM, which needs an average of 1 s to solve a nonlinear
optimization model and takes approximately 25 000 times longer than
the proposed method. Although there is a significant difference in
computation time between the fastest and slowest methods, all methods
can yield the optimal solution quickly. However, in the context of
a large-scale MCDM or group decision-making (GDM) problem, the
differences are noticeable.
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Table 10
The computation time (seconds) of different BWM models with different numbers of criteria.

Methods 𝑛 = 5 𝑛 = 7 𝑛 = 9 𝑛 = 11 𝑛 = 13 𝑛 = 15

Nonlinear BWM [9] 0.5533 0.6256 0.8718 0.9430 1.0644 1.1028
Linear BWM [36] 0.0095 0.0092 0.0103 0.0107 0.0106 0.0117
Multiplicative BWM [37] 0.0097 0.0106 0.0112 0.0104 0.0114 0.0130
The proposed method 2.6253E−05 2.8474E−05 3.0250E−05 3.3161E−05 3.4699E−05 3.7256E−05
m

Practically speaking, we discuss the characteristics of our approach
egarding the following three points: (1) practical model interpretabil-
ty; (2) practical preference-modification suggestions; and (3) practical
omputational convenience.

• First, the proposed optimization model of the BWM is driven by
the preference-modification process, and the criteria weights are
calculated based on the optimally modified comparison vectors.
However, the criteria weights in [9,36,37] are based directly
upon the optimization models. From a practical perspective, the
decision results derived from the optimally modified preference
information are more interpretable.

• Second, the proposed equivalent BWM offers practical preference-
modification suggestions to improve the consistency level of the
pairwise comparison systems. However, the models in [9,36,37]
cannot directly embody the preference-modification process. By
using the proposed analytical framework, obtaining the optimal
interval modified comparison vectors or unique optimal modified
comparison vectors, and finally providing DMs with the adjusted
preference information, the results in this paper would be more
flexible and reliable.

• Third, the proposed analytical framework gives several optimal
closed-form solutions, and the analytical solution saves the most
time. Although one can also use optimization software to solve
the optimization models in [9,36,37] quickly for a single DM’s
preference information, it is time-consuming to handle large-scale
group preference information one by one using these methods
in practical applications. In such situations, the advantage of the
proposed analytical results is more prominent.

In summary, the comparison results indicate that the proposed
ethod can be successfully applied to the solutions of the BWM.
ur approach can accurately and comprehensively determine different
ptimal criteria weights for inconsistent BWM comparison systems. The
nalytical results can provide DMs with both multiple flexible optimal
olutions and unique precise optimal solutions, all in the form of
athematical formulas. Hence, the proposed analytical framework for

he BWM offers a solid theoretical foundation and is more convenient
han solving these optimization models using optimization software.

. Conclusions and future studies

The BWM, as a novel MCDM method that has emerged in recent
ears, has been widely and successfully applied in many fields and
as received increasing attention. This study proposes an analytical
ramework for the optimal solutions of the BWM based on an equivalent
WM. Our approach comprehensively determines the analytical forms
f the criteria weights in terms of optimal solutions, optimal interval
eights, and a unique optimal solution. The numerical examples reveal

hat we can directly utilize the analytical solutions to calculate the
elated optimal solutions without the help of optimization software.
ur research makes significant contributions to the theory of the BWM.
irst, introducing an equivalent BWM and a secondary objective func-
ion makes the proposed method complete and effective in addressing
oth multiple and unique optimal solutions involved in the original
WM. Second, the analytical solutions can simplify the solution process
f these programming models while maintaining good performance in
erms of computational accuracy, and they can be easily adapted to

different number of criteria without increasing the computational
15
complexity, so the proposed method is more convenient and practical
than solving these optimization models using optimization software.
Finally, the secondary objective function that determines the unique
solution inherits all the features of the nonlinear BWM, and the unique
solution is also close to the interval center found in the nonlinear BWM.

For future studies, we will consider the following research direc-
tions: First, most existing criteria weighting methods are prone to
several cognitive biases, such as splitting bias, anchoring bias, and
equalizing bias. The BWM was tested as an effective debiasing solution
to reduce the anchoring bias [14] and equalizing bias [15] in MCDM
based on an experimental study. Thus, it will be of theoretical and
practical significance to examine how the BWM helps remedy these
cognitive biases with its analytical solutions. Second, the BWM has been
widely used in current evaluation and MCDM problems, but research
on GDM is still limited. The Bayesian BWM [19] has been introduced
to find the optimal weights of a set of criteria based on the input
preferences of multiple DMs using the best–worst framework. Based on
our derived analytical optimal criteria weights, it is also interesting to
investigate the aggregation of these output optimal criteria weights of
DMs from a probabilistic perspective. Finally, the Bayesian BWM helps
find the aggregated weights of criteria for a group of DMs by using the
Bayesian statistical method. Given the existence of interactive behav-
iors in GDM, it may be unrealistic to assume that all DMs are fluent in
the decision-making problem and can reach an agreement. Hence, it is
necessary to conduct further research on group consensus [49–51] for
the BWM in GDM in the future.
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