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ABSTRACT
Spatial mode division de-multiplexing of optical signals has many
real-world applications, such as quantum computing and both clas-
sical and quantum optical communication. In this context, it is
crucial to develop devices able to efficiently sort optical signals
according to the optical mode they belong to and route them on
different paths. Depending on the mode selected, this problem can
be very hard to tackle. Recently, researchers have proposed using
multi-objective evolutionary algorithms (MOEAs) —and NSGA-II in
particular— combined with Linkage Learning (LL) to automate the
process of design mode sorter. However, given the very large-search
scale of the problem, the existing evolutionary-based solutions have
a very slow convergence rate. In this paper, we proposed a novel ap-
proach for mode sorter design that combines (1) stochastic linkage
learning, (2) the adaptive geometry estimation-based MOEA (AGE-
MOEA-II), and (3) an adaptive mutation operator. Our experiments
with two- and three-objectives (beams) show that our approach is
faster (better convergence rate) and produces better mode sorters
(closer to the ideal solutions) than the state-of-the-art approach. A
direct comparison with the vanilla NSGA-II and AGE-MOEA-II also
further confirms the importance of adopting LL in this domain.
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• Theory of computation→ Evolutionary algorithms; •Hard-
ware→ Emerging optical and photonic technologies.
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1 INTRODUCTION
Ourmodernworld heavily relies on optical communications. Simply
put, it involves transmitting information from one place to another
using light [1]. This process can be divided into three main phases:
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modulation, transport, and detection. Modulation involves encoding
bits of information (or quantum bits) into the properties of an
optical beam. The light must then be transported from one place to
another, either through free propagation or guided by an optical
fiber. Finally, the beam is detected to recover the information.

In theory, any property of an optical beam could work to encode
information. Besides amplitude, changes in phase, polarization, or
wavelength of the carrier light can be used, but it requires a device
able to discriminate optical beams based on that property. This
requirement has restricted the use of spatial degrees of freedom
in communication systems, which means encoding information
in the shape of an optical beam. Distinguishing beams based on
their shapes is a difficult problem [35, 48] especially when it needs
to be done on a miniaturized device [42]. Additionally, the beam
shape must also remain unchanged during propagation, meaning it
needs to be a mode. Encoding information into modes offers several
advantages, including inherent resistance to noise [5], the capability
to encode quantum information [17, 33], and, in theory, allows for
an infinite number of modes to serve as the alphabet [12].

A device that distinguishes beams based on their mode is a
device that routes every mode to different outputs. This allows the
encoded information to be recovered by placing a light detector at
each output. A mode sorter can be realized by designing a refractive
index distribution that causes each mode to propagate differently,
ensuring that the energy of each mode can be efficiently coupled
to a specific detector. Designing such devices is an inverse problem
where the optimal refractive index distribution must be determined
to perform different tasks on different inputs simultaneously.

To tackle this problem, researchers have used evolutionary algo-
rithms [9] to evolve devices (or mode sorter) that can effectively
demultiplex different modes (or light signals). In particular, Di
Domenico et al. [9] used L2-NSGA [23], which combines the multi-
objective NSGA-II [8] with linkage-learning (LL) [41]. The search
objectives to optimize are the distances between (1) the theoretical
locations where the different modes should be redirected (target
outputs) and (2) the actual locations where the device redirects the
modes. L2-NSGA uses Pareto ranking to select and evolve better
devices. Instead, linkage learning is applied to identifying and pre-
serving linkage structures, i.e., features of the devices that must be
replicated altogether into the offspring.

While prior studies show that L2-NSGA is effective at designing
Pareto-efficient two-mode and three-mode devices, it requires many
fitness evaluations to converge. Di Domenico et al. [9] reported that
L2-NSGA requires a large population of 1000 devices and thousands
of generations to converge. This is due to the very large-scale nature
of the problem since a device for demultiplexing two beams has
more than 12K decision variables.
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In this paper, we aim to tackle this slow converge rate by propos-
ing a novel evolutionary approach, namely L2-AGE-MOEA, that ex-
tends the Improved (AGE-MOEA-II) [26]. Our approach combines
AGE-MOEA-II with linkage learning methods to preserve the link
structures of the best devices generated through the generations.
L2-AGE-MOEA maintains the environmental selection methods of
AGE-MOEA-II but uses linkage-based recombination to generate
new candidate devices in each iteration. Furthermore, our approach
uses an adaptive mutation operator that linearly decreases the mu-
tation rate through the generations. It increases exploration at the
beginning of the search (higher mutation rate) while promoting
exploitation in the later generations (lower mutation rate).

We conducted an empirical study with four different types of
devices with two and three Hermite-Gauss beams to demultiplex.
These devices differ in the number of beams to demultiplex and the
device’s size. Our experimental results show that (1) L2-AGE-MOEA
outperforms the state-of-the-art L2-NSGA used in prior studies, and
(2) L2-AGE-MOEA outperforms the AGE-MOEA-II (i.e., without link-
age learning and the adaptive mutation operator). Furthermore, a
direct comparison between the NSGA-II and AGE-MOEA-IIwith the
linkage learning-based variants (i.e., L2-AGE-MOEA and L2-NSGA)
further confirms how linkage learning is a fundamental ingredient
for designing Pareto efficient mode sorters.

The remainder of the paper is organized as follows. Section 2
summarizes the preliminaries on mode sorters, multi-objective op-
timization, and AGE-MOEA-II. Section 3 introduces our approach,
highlighting its novel aspects over AGE-MOEA-II. Section 4.1 de-
scribes the empirical study and discusses the achieved results. Sec-
tion 5 concludes the paper and discusses potential future directions.

2 BACKGROUND
Multi-objective optimization has a wide range of applications en-
gineering problems [21]. A multi-objective problem requires to
optimize multiple objectives simultaneously:

𝑚𝑖𝑛 𝐹 (𝑥) = [𝑓1 (𝑥), 𝑓2 (𝑥), . . . , 𝑓𝑀 (𝑥)]𝑇 (1)
subject to 𝑥 ∈ Ω ⊆ R𝐷

where 𝑥 = (𝑥1, . . . , 𝑥𝐷 )𝑇 is the decision vector with 𝐷 decision
variables from the feasible region Ω ⊂ R𝐷 ; 𝑓 : Ω → R𝑀 is an
objective vector with𝑀 conflicting objectives to optimize.

A solution 𝑥 dominates another solution 𝑦 (𝑥 ≺ 𝑦), if 𝑓𝑖 (𝑥) ≤
𝑓𝑖 (𝑦) ∀𝑓𝑖 ∈ 𝐹 and there exists at least one objective 𝑓𝑗 ∈ 𝐹 such that
𝑓𝑗 (𝑥) < 𝑓𝑗 (𝑦). A Pareto optimal solution 𝑥∗ ∈ Ω is a solution that
is non-dominated by any other solution in Ω, i.e., � 𝑦 ∈ Ω such
that 𝑦 ≺ 𝑥∗. The set of all Pareto optimal solutions is called Pareto
optimal solution set (PS), while the corresponding objective vectors
form the so-called Pareto front (PF).

2.1 Mode Sorter
Mode sorters (or demultiplexers) are devices that distinguish beams
based on their mode and route them to different outputs. The most
common mode of the electromagnetic wave equation is the Gauss-
ian beam due to both theoretical and practical considerations. The-
oretically, Gaussian beams have a simple mathematical formulation
characterized by a radially symmetrical intensity profile that fol-
lows a Gaussian function with respect to the distance from the

beam axis [3]. In practice, most lasers produce Gaussian beams due
to their design and construction of laser resonators [13, 36].

We focus on the family of Hermite-Gauss (HG) beams [12], which
intensity distribution is represented by Hermite polynomials of
various orders, with Gaussian beams being the first order1. HG
beams are ideal in communication systems due to their ability to
resist noise [5] and their orthogonality which allows them to be
perfectly distinguished [32] limiting the crosstalk between channels.
Besides, their unlimited number does not restrict the size of the
alphabet that can be used [12].

Inverse design of optical devices. Researchers have proposed
various techniques to automatically design and produce optical de-
vices with various functionalities, such as wavelength demultiplex-
ers [28, 34], polarization splitters [30], and mode converters [16].
These methods differ in the underline optimization techniques (e.g.,
line search [34] or steepest descent method [28]), which typically
start with a randomly initialized device with continuous refractive
index distribution that is iteratively updated until converging to a
binary device structure [20]. Furthermore, these approaches can
successfully design small-scale devices, with size in the order of
a few 𝜇𝑚2 and target a pre-defined fixed number of beams and
channels (e.g., three channels in [34]).

Inverse design of large-scale mode sorters. In this work, we
focus on a specific type of optical devices, namely large-scale mode
sorters. In otherwords, wewant to design large-scale (i.e., > 100𝑛𝑚2

in size) devices that can distinguish and route the input beams based
on their mode (mode sorter) and with different numbers of beams.
To the best of our knowledge, the only prior work that focused on
large-scale mode sorters is the work by Di Domenico et al. [9]. The
authors have formulated the problem of designing mode sorters
for HG beams on a surface plasmon polarization platform as a
multi-objective optimization problem, which can be tackled using
evolutionary algorithms. In particular, a device 𝑋 is encoded as
an 𝑛 × 𝑘 binary matrix, where each entry 𝑥𝑖, 𝑗 corresponds to a
400𝑛𝑚×400𝑛𝑚 region of the device. 𝑥𝑖, 𝑗=1 indicates that the region
in row 𝑖 and column 𝑗 contains a polymethyl methacrylate (PMMA)
layer, which increases the refractive index locally; while 𝑥𝑖, 𝑗=0
indicate the absence of such layers. The refractive index distribution
that makes up the devices (i.e., a grid of PMMA layers) affects the
propagation of various beams differently and will determine where
each beam will be routed.

Given a device 𝑋 , the goal is to route 𝑀 HG beams (modes)
towards𝑀 different output locations. Therefore, the objectives to
optimize are the distances between the target locations and the
actual locations where the HG beams are routed by the device 𝑋 .
In other words, let 𝐻𝐺0, . . . , 𝐻𝐺𝑀 input beams, the objectives to
optimize are:

min

{
𝑓1 = ∥𝑡 (𝐻𝐺0 ) − 𝑔 (𝑋,𝐻𝐺0 ) ∥2
. . .

𝑓𝑀 = ∥𝑡 (𝐻𝐺𝑀−1 ) − 𝑔 (𝑋,𝐻𝐺𝑀−1 ) ∥2
(2)

where 𝑡 (𝐻𝐺𝑖 ) indicates the theoretical (target) output signal for the
beam 𝐻𝐺𝑖 while 𝑔(𝑋,𝐻𝐺𝑀−1) denotes the actual output produced
by the device 𝑋 when given as input the beam 𝐻𝐺𝑖 . Note that

1In this context, Gaussian beams are called “HG00”, which stands for Hermite-Gauss
beam of zero order, while a general “HGmn” is a Hermite-Gauss beam of order𝑚 in
the 𝑥 direction and 𝑛 in the 𝑦 direction, given 𝑧 as the axis of propagation. One index
is dropped, as in “HGn”, for the case of two-dimensional beams.
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Algorithm 1: Pseudo-code of AGE-MOEA-II [26]
Input: 𝑀 : Number of objectives and 𝑁 : Population size
Result: Final population 𝑃

1 begin
2 𝑃 ←− RANDOM-POPULATION(𝑁 )
3 while not (stop_condition) do
4 𝑄 ←− GENERATE-OFFSPRING(𝑃 )
5 F←− FAST-NONDOMINATED-SORT(𝑃 ⋃

𝑄 )
6 F←− NORMALIZE(F)
7 𝑝 ←− NEWTON-RAPHSON(F1) /* Eq. 3 */

8 𝑑 ←− 1 /* First non-dominated rank */

9 while | 𝑃 | + | F𝑑 |⩽ 𝑁 do
10 F⊥ ←− MANIFOLD-PROJECTION(F𝑑 , 𝑝)
11 𝐷 ←− GEODESIC-DIV(F⊥ , 𝑝)
12 SURVIVAL-SCORE(D, F, 𝑑 , 𝑝)
13 𝑃 ←− 𝑃

⋃
F𝑑

14 𝑑 ←− 𝑑 + 1
15 SORT(F𝑑 ) /* by survival scores */

16 𝑃 ←− 𝑃
⋃
F𝑑 [1 : (𝑁 − |𝑃 | ) ]

17 return 𝑃

the output is simulated using the beam propagation method [9]
(BPM), considering the material’s characteristics (e.g., refractive
index) that will be used to implement the device. The problem is
inherently multi-objective since the goal is to design a device that
routes multiple beams. Devices that find the optimal structure to
route one individual beam may introduce obstacles for the other
beams to route through the same device.

2.2 The Improved Adaptive Geometry
Estimation based MOEA (AGE-MOEA-II)

AGE-MOEA-II is a many-objective evolutionary algorithm (MOEA)
that adapts the diversity and proximity metrics based on the shape
(or geometry) of the non-dominated front. Algorithm 1 [26] re-
ports the pseudo-code AGE-MOEA-II. There are three main steps in
AGE-MOEA-II [26]: (1) non-dominated sorting, (2) fronts normaliza-
tion, (3) computing the curvature 𝑝 of the first-non dominated front,
and (4) applying the environmental selection based on proximity
and diversity, both computed using the estimated value for 𝑝 . In
the following, we briefly describe these main steps.

2.2.1 Non-dominated sorting and front normalization. First, the
parent and offspring populations are combined, and their solutions
are ranked in subsequent fronts using the fast non-dominated sorting
algorithm from NSGA-II [8] (line 5 in Algorithm 1). Then, all fronts
are normalized such that the objectives are scaled into the interval
[0; 1]𝑀 , where𝑀 is the number of objectives (line 6 in Algorithm 1).
The normalization is done by using the hyperplane method of
NSGA-III [2]. In particular, the front F𝑖 is scaled to the origin of
the axes using the ideal point F𝑚𝑖𝑛

𝑖
and divided by the hyperplane

intercepting the extreme points of the front [26].

2.2.2 Front modeling. After normalization, AGE-MOEA-II uses the
Newton-Raphson method to determine its geometry, or curva-
ture 𝑝 (line 7 in Algorithm 1) of the first non-dominated front.
The Newton-Raphson method is an iterative procedure used in
AGE-MOEA-II [26], which provides a better (more accurate) esti-
mation of the curvature [26] compared to the heuristic used in
AGE-MOEA [25]. More specifically, the iterative Newton-Raphson

formula for computing 𝑝 is the following:

𝑝𝑛+1 = 𝑝𝑛 +
𝑙𝑜𝑔

[
𝑀∑︁
𝑖=1
(𝑎𝑖 )𝑝𝑛

]
[
𝑀∑︁
𝑖=1
(𝑎𝑖 )𝑝𝑛 · 𝑙𝑜𝑔 (𝑎𝑖 )

] (3)

with 𝑝𝑛 and 𝑝𝑛+1 are the approximated roots obtained at the itera-
tions 𝑛 and 𝑛 + 1, respectively. To initialize the procedure, the initial
value 𝑝0 is set 1, and the formula is applied for four iterations. As
reported by Panichella [26], four iterations are enough to achieve
an accurate approximation of 𝑝 with an error lower than 0.0001.

2.2.3 Environmental selection. Given the curvature 𝑝 computed us-
ing Equation 3, the non-dominated solutions are projected onto the
estimated front manifold with curvature 𝑝 . Finally, each solution
is assigned a survival score that combines the convergence and di-
versity scores. The convergence score measures how distance each
solution is from the utopia/ideal points. Instead, the diversity score
measures the distance between the non-dominated points on the
manifold with curvature 𝑝 . The diversity of each non-dominated
solution 𝐴 corresponds to the geodesic distance, which generalizes
the Euclidean distance for manifolds with curvature 𝑝 ≠ 1. In par-
ticular, the geodesic distance between two points 𝐴 and 𝐵 is as
follows:

𝑔𝑑 (𝐴, 𝐵) = | |𝐴 − 𝐶⊥ | |2 + | |𝐵 − 𝐶⊥ | |2 (4)

where 𝐶⊥ is the central point of the arch (curved line) connecting
𝐴 and 𝐵; | |𝐴 −𝐶⊥ | |2 is the Euclidean distance between 𝐴 and 𝐶⊥;
finally, and | |𝐵 − 𝐶⊥ | |2 is the Euclidean distance between 𝐵 and
middle point 𝐶⊥.

3 APPROACH
This paper introduces a variant of AGE-MOEA-II, hereafter referred
to as L2-AGE-MOEA, which combines the adaptive geometry-based
Pareto front modeling with linkage learning.

Motivation. We have decided to use AGE-MOEA-II as start-
ing point for our approach since it was designed for large-scale
problems [26] and outperformed other state-of-the-art MOEAs, in-
cluding LMEA [46], NSGA-III [7], and MOEA/D [24]. Besides, in our
preliminary experiments, we have also observed that the Pareto
fronts for our problem (designing mode sorters) have a hyper-
bolic geometry (curvature). Prior studies [22, 25, 26, 31] showed
that AGE-MOEA-II performs better than other state-of-the-art algo-
rithms for problems with hyperbolic shapes.

Furthermore, not all elements in a device (i.e., entries in the
device matrix as explained in Section 2) do contribute to routing
the beams towards the right/correct locations. The core idea for
using linkage learning methods is that (through the generations)
these methods are able to infer which entries in the matrix structure
contribute to the objectives (i.e., routing the beams successfully)
and, therefore, should be inherited by the children for the next
generation.

Device encoding and evaluation. We use the same encoding
scheme used by Di Domenico et al. [9] and discussed in Section 2.
Therefore, a device 𝑋 is encoded as an 𝑛 × 𝑘 binary matrix, where
each entry 𝑥𝑖, 𝑗 corresponds to a 400𝑛𝑚 × 400𝑛𝑚 region of the
device. Each entry 𝑥𝑖, 𝑗 takes values in 0, 1 and denotes the absence
or presence of a PMMA layer in that location of the device.
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Algorithm 2: L2-AGE-MOEA
Input: 𝑀 : Number of objectives and 𝑁 : Population size
Result: Final population 𝑃

1 begin
2 𝑃 ←− RANDOM-POPULATION(N)
3 F←− FAST-NONDOMINATED-SORT(𝑃 ⋃

𝑄 )
4 FOS←− INFER-MODEL(F1 , Λ)
5 while not (stop_condition) do
6 𝑄 ←− ∅
7 forall i in 1.. |𝑃 | do
8 Parent←− P𝑖
9 Donor←− TOURNAMENT-SELECTION(𝑃 )

10 O←− REPRODUCTION(Parent, Donor, FOS)
11 O←− ADAPTIVE-MUTATION(O)
12 𝑄 ←− 𝑄

⋃
{O}

13 F←− FAST-NONDOMINATED-SORT(𝑃 ⋃
𝑄 )

14 F←− NORMALIZE(F)
15 𝑝 ←− NEWTON-RAPHSON(F1) /* Eq. 3 */

16 𝑑 ←− 1 /* First non-dominated rank */

17 while | 𝑃 | + | F𝑑 |⩽ 𝑁 do
18 F⊥ ←− MANIFOLD-PROJECTION(F𝑑 , 𝑝)
19 𝐷 ←− GEODESIC-DIV(F⊥ , 𝑝)
20 SURVIVAL-SCORE(D, F, 𝑑 , 𝑝)
21 𝑃 ←− 𝑃

⋃
F𝑑

22 𝑑 ←− 𝑑 + 1
23 SORT(F𝑑 ) /* by survival scores */

24 𝑃 ←− 𝑃
⋃
F𝑑 [1 : (𝑁 − |𝑃 | ) ]

25 FOS←− INFER-MODEL(F1 , Λ)

26 return 𝑃

The solutions/devices are evaluated using the beam propaga-
tion method [9] and considering the following device and beam
characteristics. We consider a device with a plasmonic refractive
index for air silver interface 𝑛0=1.008856. As for the beams, we
consider a plasmonic field with wavelength 𝜆 = 1.064 · 10−6/𝑛0 and
vacuum wavevector 2𝜋/𝜆. The difference of index of refraction is
1.049321 − 𝑛0 for the case of 40nm of PMMA. Finally, for the target
fields, we consider the width𝑤0𝐶 = 1.6·10−6 and field displacement
equal to 12 · 106.

Pesudo-code. The Pseud-code of L2-AGE-MOEA is outlined in
Algorithm 2. The Algorithm starts in line 2 with a randomly gen-
erated population of 𝑁 individuals. In our case, an individual is a
randomly-generated binary matrix whose size corresponds to the
dimensions (number of rows and columns) of the device to design.
Then, the solutions in the initial population are ranked using the
fast non-dominated sorting Algorithm (line 3 of Algorithm 2). The
first front F1 is used to derive the linkage structures and extract
the family of subsets (FOS). We detail this procedure in Section 3.1.

The linkage model is then used in lines 8-12 to generate the new
offspring population𝑄 . For each solution 𝑃𝑖 ∈ 𝑃 , a new offspring so-
lution𝑂 is created by recombining 𝑃𝑖 with a donor solution selected
from 𝑃 using the binary tournament selection. The recombination
procedure is detailed in Section 3.2. It uses the linkage model to
determine which genes (linkage structures) of the donor solutions
will be replicated altogether in the offspring solution.

The binary tournament selection operator promotes solutions
with better (lower) dominance ranking or better (larger) survival
score (see Section 2.2.3) at the same level of dominance rank. The
offspring𝑂 is created using the REPRODUCTION routine in line 10
Algorithm 2, which uses the FOS to decidewhich genewill be copied
from the parent or the donor solution. This procedure is detailed
in Section 3.2. Furthermore, the new solution 𝑂 is further mutated
using the adaptive mutation operator detailed in Section 3.3.

The remainder of Algorithm 2 is identical to the main loop of
the original AGE-MOEA-II. In a nutshell, parent 𝑃 and offspring 𝑄
populations are combined and sorted using the fast non-dominated
sorting algorithm (line 13) and normalized (line 14). The first front
F1 is then used to compute the curvature 𝑝 using the Newton-
Raphson method (Equation 3). Finally, in lines 17-22, the survival
score (line 20) is computed iteratively for all fronts using the geo-
desic distance (line 19).

The loop between lines 17 and 24 inserts as many individuals
to the new population 𝑃 as possible, based on their ranks and
until reaching the population size 𝑁 . L2-AGE-MOEA first selects the
non-dominated solutions from F1; if | F𝑖 |< 𝑁 , the loop selects
the non-dominated solutions from F𝑖 , etc. The loop ends when
inserting all the solutions from the front 𝐹𝑑 exceeds the maximum
population size, as shown in line 24. In this case, the algorithm
selects the remaining solutions from the front F𝑑 according to the
descending order of survival score in lines 24-25.

Finally, the linkage model is retrained in line 25 based on the
first non-dominated front F1 previously computed on line 13, i.e.,
on the latest population.

3.1 Linkage learning with Clustering Methods
Linkage learning [41] is a category of techniques applied to infer
linkage structures from a population, i.e., groups or clusters of
promising decision variable values that contribute to achieving
better (more optimal) results. The linkage structures are critical to
identifying and preserving good partial solutions.

Various techniques have been proposed in the literature to derive
linkage structures, such as Bayesian Network [27], Dependency
Structure Matrix [44], and hierarchical clustering [23, 37]. In this
work, we focus on hierarchical clustering since they have been used
in the past for binary problems [23, 37] and by Di Domenico et
al. [9] for the same problem we are addressing in this paper, i.e.,
mode sorter design.

We selected UPGMA [14] (unweighted pair group method with
arithmetic mean) as the hierarchical clustering method and used the
hamming distance to measure the dissimilarities between genes (or
decision variables). UPGMA is a bottom-up approach that iteratively
clusters decision variables into larger clusters. The output of the
clustering is a tree structure (or dendrogram), as in the example
of Figure 1. In the dendrogram, the leaf nodes are the decision
variables, which are, in turn, clustered together based on their
distance. In the example of Figure 1, the variables 𝑥3 and 𝑥4 are first
clustered together, and the resulting cluster is then augmented with
another variable closest to this cluster. This process is repeated until
all decision variables are clustered in the root of the dendrogram.
The internal nodes of the dendrogram are the linkage structures, also
referred to as Family Of Subsets (FOS) in the literature [9, 23, 37].

The FOS has𝐷 leaf nodes and𝐷−1 internal nodes, where𝐷 is the
number of decision variables. The FOS is a set {Ω0,Ω1, . . . ,Ω𝐷−1}
in which an entry Ω𝑖 is the subset of decision variables clustered
together at the 𝑖-th level (or node) in the dendrogram.

The distance between two decision variables 𝑥𝑖 and 𝑥 𝑗 measures
how frequently they have the same values in the best individuals
of a population 𝑃 . For example, if 𝑥𝑖 and 𝑥 𝑗 always have the same
values (either zero or one) in all individuals, their distance will
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Figure 1: Example of dendrogram or Family Of Subset (FOS)

be zero and clustered together in the lower internal nodes of the
dendrogram. Instead, decision variables that never have the same
values across the different individuals are clustered together but in
the top internal nodes of the dendrogram. The distance between
pairs of decision variables is computed using the hamming distance,
a well-known distance function for binary vectors. This is also
the distance recommended in the literature due to its low (linear)
computational complexity [9, 23].

3.2 Linkage-based Reproduction
The FOS derived used the method described in Section 3.1 is then
used during reproduction. In line 10 of Algorithm 2, a new solution
𝑂 is obtained by recombining a solution 𝐴 (parent) with a donor
solution selected via binary tournament selection. Recombination is
done by copying all decision variable values from the parent to the
offspring solution 𝑂 . Then, 𝑘 randomly selected decision variable
values are copied by the donor (mask) into the offspring solution
based on the clusters in the FOS.

To this aim, the dendrogram is cut at the distance level so that
the number of clusters is equal to 𝐷/4, where 𝐷 is the number of
decision nodes. Then, 50% of these clusters are randomly selected
and used as recombination masks. Let C be the set of clusters
obtained from the dendrogram with cut point 𝐷/4; let C∗ ⊂ C be
the 50% or randomly selected clusters from C; the new offspring
solution O is created as follows:

O𝑖 =

{
Donor𝑖 ∃ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ C∗such that 𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
A𝑖 � 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ C∗such that 𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (5)

where O𝑖 , A𝑖 , and Donor𝑖 denote the 𝑖-th decision variable of O, A,
and Donor respectively.

3.3 Adaptive Mutation
Adaptive mutation operators have been widely investigated in the
related literature and shown to be both theoretically [10, 11] and
empirically [43] useful in improving the performance of evolution-
ary algorithms. In this paper, we propose and investigate a simple
linear adaptive mutation in L2-AGE-MOEA. We aim to consider more
advanced adaptive schema as part of our future agenda.

Given that we handle a binary problem, L2-AGE-MOEA uses the
bit-flip mutation, which randomly flips some decision variable val-
ues from one to zero (or vice versa) based on the mutation rate
𝑅. Instead of using a constant mutation rate, we use a linearly de-
creasing mutation rate, such as it has a large mutation rate in the
initial generation (for better exploration) and a lower mutation rate
in the last generation (for better exploitation). More precisely, the
mutation rate 𝑅 at the generation 𝑖 is computed as follows:

𝑅𝑖 = 𝑅𝑒𝑛𝑑 +
𝐹𝐸𝑆𝑚𝑎𝑥 − 𝐹𝐸𝑆

𝐹𝐸𝑆𝑚𝑎𝑥

× (𝑅𝑠𝑡𝑎𝑟𝑡 − 𝑅𝑒𝑛𝑑 ) (6)

where 𝑅𝑠𝑡𝑎𝑟𝑡 is the initial mutation rate, while 𝑅𝑒𝑛𝑑 is the final
mutation rate (with 𝑅𝑠𝑡𝑎𝑟𝑡 > 𝑅𝑒𝑛𝑑 ); 𝐹𝐸𝑆 denotes the number of
solution evaluations performed at the generation 𝑖 and 𝐹𝐸𝑆𝑚𝑎𝑥 is
the maximum number of solution evaluations (total search budget).

4 EMPIRICAL STUDY
To assess the performance of L2-AGE-MOEA in generating mode
sorters, we performed a computational experiment with different
types of sorters. We describe the setup of our study in Section 4.1
while the results are discussed in Section 4.2.

4.1 Empirical Setup
In this paper, we consider four formulations of the mode-sorter de-
sign problem. First, we consider two-mode and three-mode sorters
that aim at demultiplex two and three Hermite-Gauss beams, re-
spectively. In the following, we refer to these sorters as Two-Beams
and Three-Beams. The two-beams sorter is encoded as a 95×130 bi-
nary matrix, corresponding to 12350 decision variables in total. The
two-beams sorter is a 90×180 binary matrix with 16200 decision
variables in total.

In addition, we consider another additional objective that aims
at simplifying the generated devices. As described in Section 2, the
main objectives measure how well the device route the input beams
towards the target output locations. On top of these objectives, we
aim to minimize the number of entries in the device (binary matrix)
equal to one, which leads to removing the PMMA layers that are
not useful for sorting the beams, simplifying the device structure.

This results in two additional problem formulations, hereafter
referred to as TwoBeams+Structure and ThreeBeams+Structure.
Given a device𝑋 , the objectives for the TwoBeams+Structure prob-
lem are as follows:

min


𝑓1 = ∥𝑡 (𝐻𝐺0 ) − 𝑔 (𝑋,𝐻𝐺0 ) ∥2
𝑓2 = ∥𝑡 (𝐻𝐺1 ) − 𝑔 (𝑋,𝐻𝐺1 ) ∥2

𝑓3 =
1

𝑛 × 𝑘

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑋 (𝑖, 𝑗 )
(7)

with𝑋 (𝑖, 𝑗) being the value of the device/matrix in row 𝑖 and column
𝑗 . The TwoBeams+Structure problem has four objectives: three for
the beam output locations, and one for the device’s structure.

4.1.1 Baselines selection. As baseline, we selected L2-NSGA [9],
AGE-MOEA-II [26], and NSGA-II [8]. We selected L2-NSGA since it
is the algorithm used by Di Domenico et al. [9] to generate mode
sorters. Hence, our goal is to determine whether our approach
outperforms the state-of-the-art algorithm used in the literature
for the problem addressed in this paper. Our second baseline is
AGE-MOEA-II [26] since it corresponds to the starting point we use
to develop/design our approach. Finally, we considered NSGA-II as
the third baseline because it does not use any linkage learning or
front modeling techniques. Furthermore, this baseline allows us to
directly compare NSGA-II with L2-NSGA. Note that Di Domenico
et al. [9] only reported the results of L2-NSGA without a direct
comparison with vanilla NSGA-II, i.e., without linkage learning.

4.1.2 Parameter Values. For all MOEAs, we used the same param-
eter settings for the shared genetic operators [45]. For all MOEAs,
we set the population size 𝑁 = 100 devices and the number of gen-
erations 𝐺 = 1000, corresponding to 100K solutions evaluations.
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For AGE-MOEA-II and NSGA-IIwe use the uniform crossover [45].
With this operator, each gene in the offspring solution 𝑂 has a 50%
probability of being selected from the first parent 𝐴 and 50% proba-
bility from the second parent 𝐵. The choice is made using a number
𝛼 randomly sampled from the uniformly distributed interval [0, 1].
For all MOEAs, we used the crossover probability 𝑝𝑐=1.00 [39]. As
the mutation operator, we use the bit-flip mutation with mutation
rate 𝑅 = 1/𝐷 , where 𝐷 is the number of decision variables [39, 45].

L2-AGE-MOEA required to set some additional parameters. It uses
the linkage-learning-based recombination described in Section 3.2.
This operator requires setting the cut point for the dendrogram. In
our preliminary experiments, we experimented with different val-
ues for the cut point used to extract clusters from the dendrogram.
We obtained good results by selecting the cut point to 𝐷/4. Fur-
thermore, L2-AGE-MOEA uses the adaptive mutation rate described
in Section 3.3. We set the final mutation rate 𝑅𝑒𝑛𝑑 = 1/𝐷 and the
initial mutation rate 𝑅𝑠𝑡𝑎𝑟𝑡 = 2‰. Note that this is a large mutation
rate considering that 𝐷 = 12350 and 𝐷 = 16200 for the devices
with two and three HG beams to demultiplex, respectively. For
both L2-NSGA and L2-AGE-MOEA, we recompute the linkage model
(FOS) every Λ=20 generation (the constant Λ in lines 4 and 25 of
Algorithm 2) as suggested by Di Domenico et al. [9].

4.1.3 Implementation. We have implemented L2-AGE-MOEA, the
state-of-the-art L2-NSGA, and the four formulations of the device
design problem in Matlab within the PlatEMO framework [39]. We
have selected this framework because it contains the original imple-
mentation of AGE-MOEA-II. It is also publicly available on GitHub2,
and it is easy to extend by adding more optimization problems
and MOEAs. We reimplemented L2-NSGA in PlatEMO, re-using the
original code by Di Domenico et al. [9] already written in Matlab
and available on Zenodo3. We re-adapted the code to be compatible
with PlatEMO by applying as little change as possible to the original
code of L2-NSGA. Instead, for AGE-MOEA-II and NSGA-II, we used
their implementation already available on PlatEMO.

The source code of L2-AGE-MOEA is also available on Zenodo at:
https://doi.org/10.5281/zenodo.7851998

We conducted all experiments on the same machine with the fol-
lowing characteristics: 6-Core, Intel Core i7 processor running at
3.2GHz with 16GB RAM.

4.1.4 Performance metrics. Given the stochastic nature of the ex-
perimented MOEAs, we ran them 20 times for each problem formu-
lation. In each run, we stored the non-dominated front produced at
the end of the search by each MOEA. Then, we assess the overall
performance of the different MOEAs by using the inverted genera-
tional distance (IGD) [49] as well as the hypervolume (HV) [29]. Both
metrics take values in [0, 1], but they measure different properties
of the generated fronts. The IGD measures the distance of the front
𝑃𝐴 generated by an algorithm 𝐴; therefore, smaller IGD values are
preferable. Instead, HV measures the (hyper)volume (or portion)
of the feasible region that is dominated by the generated front 𝑃𝐴 .
Hence, a large HV value indicates better results.

To compute IGD and HV scores, we need to compare the non-
dominated fronts produced by the MOEAs against the optimal

2https://github.com/BIMK/PlatEMO
3https://zenodo.org/record/5115118

(true) Pareto front. Since we do not know the true front for the
mode sorter design problem, we build the so-called reference front,
which combines the fronts produced by the evaluated MOEAs and
selects the overall non-dominated solutions in this union set. More
precisely, let {𝐹1, . . . , 𝐹𝑘 } be all non-dominated fronts produced the
different MOEAs; the reference front R is built as follows:

R ⊆
𝑘⋃
𝑖=1

𝐹𝑖 , ∀𝑝1 ∈ R, 𝑝2 ∈ R : 𝑝2 ≺ 𝑝1 (8)

To calculate theHV scorewe have to specify a reference point [15]
(or reference vector). In this study, we consider the reference point
to be 2 ·𝑍𝑚𝑎𝑥 , where 𝑍𝑚𝑎𝑥 denotes the nadir point of the reference
front R computed using Equation 8.

To assess the significance of the differences among the different
MOEAs, we use the Wilcoxon rank-sum test [4] with a significance
level 𝛼 = 0.05. A significant 𝑝-value indicates that an algorithm 𝐴

achieves significantly lower IGD values (or significantly higher HV
values) than another algorithm 𝐵 across the 20 runs.

4.2 Results
Table 1 reports the median and the Interquartile Range (IQR) val-
ues for the IGD indicator (top half) and HV (bottom half) scores
achieved by the different MOEAs over 20 independent repetitions.
In the Table, results highlighted with ▼ indicate that the IGD and
HV values achieved by L2-AGE-MOEA are statistically better than
the baselines, as indicated by the Wilcoxon rank-sum test [4].

From the tables, we can observe that L2-AGE-MOEA achieves sig-
nificantly better (lower) IGD values and better (higher) HV values
than all baselines, according to the Wilcoxon rank-sum test, inde-
pendently of the problem formulation. In the following, we discuss
the comparison among the different MOEAs separately.

4.2.1 L2-AGE-MOEA vs. L2-NSGA. From a direct comparison be-
tween the approach used by Di Domenico [9] and our approach, we
can observe that the latter achieves both better HV and IGD values.
We can also observe that for Two-Beams, Two-Beams+Structure,
and Three-Beams, there is one order of magnitude difference be-
tween the IGD values yielded by L2-AGE-MOEA over the baseline.
Our approach’s IQR values are also smaller, indicating that it pro-
duces more stable (less variable) results over the different runs.

Furthermore, L2-NSGA always achieves smaller HV values than
L2-AGE-MOEA, with differences of one order of magnitude for the
Three-Beams and Three-Beams+Structure devices.

4.2.2 L2-AGE-MOEA vs. L2-AGE-MOEA. Our approach also outper-
forms its predecessor AGE-MOEA-II in terms of IGD values. Note
that the latter MOEA does not use linkage learning or the adaptive
mutation operator. The differences are statistically significant for
to the Wilcoxon test but also remarkably large. For example, on
Two-Beams, L2-AGE-MOEA achieves (on average) less than 1/3 of
the IGD values produced by the baseline. Similar results can be
observed regarding HV values where our approach achieves better
scores, e.g., 0.258 vs. 3.35 HV values for Three-Beams+Structure.

4.2.3 AGE-MOEA-II vs. L2-NSGA. This comparison is particularly
noteworthy. The latter is the algorithm used by Di Domenico et
al. [9] to generate mode sorters and also uses linkage learning
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Table 1: Median and Interquartile Range (IQR) values achieved by the different evolutionary algorithms.𝑀 denotes the number
of objectives while 𝐷 is the number of decision variables. The best values are highlighted in grey color.

Results for IGD

Problem 𝑀 𝐷 NSGA-II AGE-MOEA-II L2-NSGA L2-AGE-MOEA

Two-Beams 2 12350 1.4232e+0 (4.85e-1) ▼ 8.6429e-1 (3.13e-1) ▼ 1.0086e+0 (4.65e-1) ▼ 2.6545e-1 (2.19e-1)
Two-Beams + Structure 3 12350 1.2744e+0 (2.40e-1) ▼ 7.3520e-1 (3.44e-1) ▼ 6.2873e-1 (1.86e-1) ▼ 4.1567e-1 (2.02e-1)
Three-Beams 3 16200 1.1844e+1 (1.73e+0) ▼ 2.5116e+0 (9.56e-1) ▼ 6.4420e+0 (3.62e+0) ▼ 3.5408e-1 (2.10e-1)
Three-Beams + Structure 4 16200 6.7468e-1 (2.92e-2) ▼ 3.701e-1 (9.61e-2) ▼ 2.462e-1 (2.48e-2) ▼ 1.9041e-1 (3.86e-3)

Results for HV

Problem 𝑀 𝐷 NSGA-II AGE-MOEA-II L2-NSGA L2-AGE-MOEA
Two-Beams 2 12350 2.0254e-1 (4.65e-2) ▼ 2.6338e-1 (3.51e-2) ▼ 2.7187e-1 (4.40e-2) ▼ 3.4791e-1 (4.13e-2)
Two-Beam + Structure 3 12350 7.7192e-2 (1.63e-2) ▼ 2.1024e-1 (1.76e-2) ▼ 1.3591e-1 (7.30e-2) ▼ 3.3073e-1 (2.47e-2))
Three-Beams 3 16200 5.2256e-5 (2.17e-3) ▼ 2.2892e-1 (3.84e-2) ▼ 7.7827e-2 (1.10e-1) ▼ 3.7184e-1 (2.34e-2)
Three Beams + Structure 4 16200 2.5452e-2 (1.18e-2) ▼ 2.5838e-1 (2.78e-2) ▼ 1.4414e-2 (4.82e-3) ▼ 3.3585e-1 (1.76e-2)

methods. Instead, AGE-MOEA-II does not use any linkage learn-
ing methods but uses front modeling methods. As we can observe,
AGE-MOEA-II outperforms L2-NSGA in producing more optimal
devices according to the IGD indicator. The differences are also
confirmed as statistically significant by the Wilcoxon rank-sum
test (𝑝-values <0.01). Instead, AGE-MOEA-II outperforms L2-NSGA
in terms of HV values only for three out of four problems. In-
deed, for Two-Beams, both MOEAs achieve a statistically equiv-
alent hypervolume, on average. The statistical difference holds
for Two-Beams, Three-Beams, and Three-Beams+Structure (all
𝑝-values are <0.01).

4.2.4 L2-NSGA vs. NSGA-II. Adirect comparison between L2-NSGA
vs. NSGA-II shows that the former clearly outperforms the latter in
terms of IGD values. The only difference between these twoMOEAs
is that L2-NSGA uses linkage learning methods while NSGA-II does
not. The differences in terms of IGD values between these two
MOEAs are statistically significant for all problem formulations (all
𝑝-values are <0.01). This also empirically supports the choice made
by Di Domenico [9] in using L2-NSGA over NSGA-II.

4.2.5 The impact of using linkage learning. Our results confirm the
importance of using linkage learning methods for large-scale binary
problems like designing mode sorters. Indeed, it is worth highlight-
ing that L2-AGE-MOEA outperforms its predecessor AGE-MOEA-II,
while L2-NSGA outperforms its predecessor NSGA-II according to
the median IGD values reported in Table 1.

4.2.6 Graphical comparison. To graphically compare the differ-
ent MOEAs experimented in this study, Figure 2 depicts the non-
dominated fronts achieved for Two-Beams as well as the reference
Pareto front R. For the sake of this analysis, we selected the front
with the median IGD values across the 20 independent runs.

Aswe can observe, L2-AGE-MOEA produced a set of non-dominated
solutions (marked as red points) that are very close to the referent
front R. The corresponding median IGD value is 0.2654. Unlike
L2-AGE-MOEA, the baseline MOEAs generate fronts that are farthest
from the reference front. AGE-MOEA-II produces the second-best
non-dominated front, followed by L2-NSGA, while NSGA-II pro-
duces the least optimal front.

2 2.5 3 3.5 4
2

2.5
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3.5
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𝑓1

𝑓 2

Reference R L2-AGE-MOEA L2-NSGA NSGA-II AGE-MOEA-II

Figure 2: Fronts produced by the different MOEAs for
Two-Beams with 𝑀=2 and population size 𝑁=100. The refer-
ence front R includes all best (non-dominated) solutions
produced among all runs and algorithms as described in
Equation 4.1.4 (Equation 8).

We can also observe that the reference Pareto front R has a
hyperbolic geometry (convex) with 𝑝 < 1 curvature. Similarly, all
fronts generated by the MOEAs follow a hyperbolic geometry. This
observation explains why L2-AGE-MOEA and AGE-MOEA-II are the
best-performing MOEAs since they use front modeling methods
that adapt the diversity and proximity measures based on this geom-
etry. As reported by prior studies [25, 26], geometry-based MOEAs
work better than NSGA-II, NSGA-III and other traditional MOEAs
(e.g. MOEA/D) for problems with 𝑝 < 1 Pareto front curvatures.

4.2.7 Generated devices and simulation results. In this section, we
aim to analyze the characteristics of the device by selecting the knee
points among the non-dominated front obtained by our approach.
First, we selected the front with the median IGD value among the 20
independent runs. Then, from such a median front, we selected the
knee point [47], which is the solution with the maximum marginal
rates of return. We opted for the knee point since it is the point
on the Pareto front that achieves the highest HV value [6]. The
resulting device and its beam propagation simulation results are
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(a) Generated device (right side) and the corresponding
beams propagation (left side)

(b) Target output signal (red line) and generated output
signal (blue line) for the two HG input beams

Figure 3: Example of device generated by L2-AGE-MOEA for the Two-Beams+Structure problem.

depicted in Figure 3. Figure 3a plots the device (right-hand side);
in the figure, the yellow dots are the device grid entries set to one.
Figure 3a also depicts the beam propagation results (left-hand side),
showing how the two beams are routed into the desired locations.
The plot in Figure 3b highlights the high quality of the beam routing.
In the figure, the red line indicates the target output signals, while
the blue lines indicate the output obtained by propagating the two
Hermite-Gauss beams through the device. As we can observe, the
two lines are comparable.

The device in Figure 3a (right side) displays a distinct pattern in
the central area, while the four corners do not contribute to beam
routing. This suggests two potential improvements for future work:
First, the current mutation operator targets all entries in the de-
vice/matrix structure, which can be mutated with equal probability.
Therefore, the first direction for future improvements is related
to using non-uniform probabilities for the entries in the different
areas of the devices (higher probability for the central area). Second,
different methods could be considered to initialize the search with
initial devices (individuals) such that more focus (variety) is given
to the central area of the devices.

4.2.8 Additional Analysis. As explained in Section 3.1, we used
the hamming distance (HD) for the UPGMA method because of
its linear complexity. Previous work on linkage learning methods
suggested using mutual information (MI) instead [19, 38]. How-
ever, this function has a much larger computational complexity
compared to HD. To assess this, we performed some preliminary
experiments using MI over HD. Inferring the linkage structures and
extracting the FOS (routine INFER-MODEL in Algorithm 1) takes
2.7s on average with HD compared to 7.42 minutes with MI for the
Two-Beam devices.

5 CONCLUSION AND FUTUREWORK
Optical devices that demultiplex optical signals with differentmodes
have a wide range of real-world applications. However, the design
of such devices is particularly complex and can not be performed

manually. Multi-objective evolutionary algorithms (MOEAs) have
been recently applied in the literature [9] to generate such devices in
an automated fashion. The state-of-the-art approach used L2-NSGA,
a variant of the NSGA-II algorithm that relies on linkage learning
to produce high-accurate demultiplexers. However, this algorithm
is very slow to converge due to the very large scale of the problem
(with more than 12K decision variables for a two-beams device).

In this paper, we proposed a novel multi-objective approach
called L2-AGE-MOEA. The new MOEA incorporates linkage learn-
ing methods into AGE-MOEA-II, a many-objective algorithm that
dynamically adapts its environmental selection based on the geom-
etry of the Pareto front. We extend AGE-MOEA-II by introducing
a recombination operator based on linkage learning and hierar-
chical clustering (UPMGA method) in particular [14]. Second, we
introduce an adaptive mutation operator that linearly decreases the
mutation rate such that exploration and exploitation are promoted
in different stages of the search process.

We conducted an empirical study to assess the performance of
L2-AGE-MOEA in designing different demultiplexers for Hermite-
Gauss beams. A comparison between L2-NSGA and AGE-MOEA-II
showed that L2-AGE-MOEA achieved better performance w.r.t. the
IGD and HV indicators. Besides, our results also indicate that link-
age learning plays a critical role in achieving better results.

In our future work, we aim to assess the performance of our
approach on different types of demultiplexers and beams, such as
non-linear complex devices and devices capable of sorting beams
from different families (e.g., Hermite-Gauss from Airy beams). We
plan to investigate different adaptive schemes for the mutation
operators (e.g., [10, 11, 43]) as well as different distance functions
for the hierarchical clustering algorithm. We also aim to apply
L2-AGE-MOEA to other large-scale engineering problems, such as
feature selection [40] and sparse signal reconstruction [18].
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