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Abstract. We consider a nonlinear Neumann boundary value problem
which is derived for the Antarctic Circumpolar Current. By the theory of
topological degree, we prove the existence results for the problem with
semilinear oceanic vorticity term. We also construct the approximate
solutions for such a nonlinear model.

1. Introduction

Circulating ocean currents are driven by the combined forces of gravity
and Coriolis, and triggered by the wind stress (see the discussion in [24,
25]). Since the Coriolis effect deflects winds to the right in the Northern
Hemisphere and to the left in the Southern Hemisphere, the ocean currents
in the Northern Hemisphere deflect clockwise rotation and in the Southern
Hemisphere – counter-clockwise. These slow flows are a dominant factor
in the circulation of ocean water around the entire planet. There are seven
major ocean currents (North Atlantic, South Atlantic, Indian, North Pacific,
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South Pacific, Arctic, Antarctic), and each of them presents some specific
flow pattern (see the discussions in [12, 13]).

In a recent paper [14], a model of the general motion of ocean currents was
obtained in the setting of spherical coordinates, and such a model can be de-
scribed as an elliptic boundary value problem in terms of a stream function.
When the model is used to the Arctic gyre, where permanent thick ice floats
on the ocean, the elliptic boundary value problems can be transformed into
a second-order differential equation on a semi-infinite interval, constrained
by some asymptotic conditions [4, 8]. After the works [4, 8], the existence
and related dynamical behaviors for the motion of the Arctic gyres have
been studied in a series of works [5, 6, 7, 19, 21, 35], including the explicit
solutions for the linear vorticity, nontrivial solutions or monotone solutions
for the nonlinear vorticity and their stability in the sense of Lyapunov. We
remark that the short-wavelength method has been used in [22, 23] to study
the stability for some geophysical flows in rotating spherical coordinates.

We point out that the analysis in studying the Arctic gyres cannot be
used to study the Antarctic Circumpolar Current (ACC) because there are
some essential differences between the Arctic ocean and the Antarctic ocean.
For example, the North Pole is located in the middle of the Arctic ocean and
the South Pole is located in Antarctica, which is completely encircled by the
eastward moving ACC (see the discussion in [13]). Compared with the Arctic
gyres, the ACC is very important in studying the global ocean circulation and
climate because the ACC is linked to Atlantic, Indian, and Pacific oceans [1].
Besides, the ACC is one of the most significant ocean currents and the only
current that completely encircles the polar axis, flowing eastward through
the southern regions of the Atlantic, Indian and Pacific oceans [13]. We refer
to [9, 17, 20, 22, 26, 27, 28, 29, 31, 32] for recent results on the ACC.

The aim of the present paper is to investigate a nonlinear Neumann bound-
ary value problem which models the ACC. In Section 2, we will derive the
mathematical model of the ACC. In Section 3, based on an application of
topological degree theory, we prove the existence results when the vorticity
function satisfies the semilinear conditions, which are characterized by the
eigenvalues of the corresponding linear problem. Similar approaches have
been used to study the existence of second order ordinary differential equa-
tions with Dirichlet conditions or periodic conditions. See [16, 18, 33, 34]
and the references therein. Because it is very important but also even im-
possible to obtain the explicit solutions for the problem due to the presence
of the nonlinear vorticity function, we construct the approximate solutions
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for the problem in Section 3. Some numerical computations for a concrete
example are also given.

2. Mathematical model of the ACC

Let us introduce the spherical coordinates (r, θ, φ) with θ ∈ [0, π) being the
polar angle, such that θ = 0 corresponds to the North Pole, and φ ∈ [0, 2π)
being the azimuthal angle (see Fig. 1).
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Figure 1. The azimuthal and polar spherical coordinates φ and θ
of a point P on the spherical surface of the Earth: θ = 0 and θ = π
correspond to the North and South Pole, respectively, while θ = π/2
corresponds to the Equator.

In terms of the stream function ψ(φ, θ), the horizontal gyre flow on the
spherical Earth has azimuthal and polar velocity components given by

v =
1

sin θ
ψφ, w = −ψθ. (2.1)

Then, if Ψ(φ, θ) is the stream function associated with the vorticity of the
ocean motion (not accounting for the effects of the Earth’s rotation), defined
as

Ψ(φ, θ) = ω cos θ + ψ(φ, θ),

where ω > 0 is the non-dimensional form of the Coriolis parameter, the
vorticity equation of the gyre flow is given by

1

sin2 θ
Ψφφ +Ψθ cot θ +Ψθθ = F (Ψ− ω cos θ) , (2.2)

where F (Ψ − ω cos θ) is the oceanic vorticity and 2ω cos θ is the planetary
vorticity generated by the Earth’s rotation (see the discussions in [14]).
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By applying the stereographic projection of the unit sphere centered at
origin from the North Pole to the equatorial plane (see Fig. 2), the model
(2.2) in spherical coordinates is thus transformed into an equivalent planar
elliptic partial differential equation.
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O

Figure 2. The stereographic projection P 7→ P ′ from the North Pole
to the equatorial plane: for any point P in the Southern Hemisphere,
the straight line connecting it to the North Pole intersects the equato-
rial plane in a point P ′ belonging to the interior of the circular region
delimited by the Equator. The depicted thick band, delimited by two
parallels of latitude, represents one of the jets of the Antarctic Circum-
polar Current and is mapped bijectively into an annular planar region
concentric with the Equator.

In our coordinates the stereographic projection, defined by

ξ = r ei ϕ with r = cot
(θ
2

)
=

sin θ

1− cos θ
, (2.3)

with (r, ϕ) being the polar coordinates in the equatorial plane, transforms
(2.2) into

ψξξ̄ + 2ω
1− ξξ̄

(1 + ξξ̄)3
− F (ψ)

(1 + ξξ̄)2
= 0 .

The above equation is equivalent, using the Cartesian coordinates (x, y) in
the complex ξ-plane, to the following semilinear elliptic partial differential
equation

∆ψ + 8ω
1− (x2 + y2)

(1 + x2 + y2)3
− 4F (ψ)

(1 + x2 + y2)2
= 0. (2.4)

See the discussions in [11, 14, 15], where the stereographic projections are
used to investigate flows in rotating spherical coordinates. The ACC presents
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a considerable uniformity in the azimuthal direction and this feature is help-
ful to simplify the problem further. Indeed, gyres with no variation in the
azimuthal direction correspond to radially symmetric solutions ψ = ψ(r) of
(2.4). In this setting, the change of variables ψ(r) = U(s), s1 < s < s2 with

r = e−s/2 for 0 < s1 = −2 ln(r+) < s2 = −2 ln(r−),

for 0 < r− < r+ < 1, transforms the equation (2.4) to the second-order
ordinary differential equation

U ′′(s)− es

(1 + es)2
F (U(s)) +

2ωes(1− es)

(1 + es)3
= 0 , s1 < s < s2 . (2.5)

Finally let us introduce the change of variables

u(t) = U(s) with t =
s− s1
s2 − s1

.

Then (2.5) is equivalent to the following equation

u′′ = a(t)F (u) + b(t) , 0 < t < 1 , (2.6)

where a(t) and b(t) are two positive continuous functions given as
a(t) =

(s2 − s1)
2 e(s2−s1)t+s1

(1 + e(s2−s1)t+s1)2
,

b(t) = − 2ω(s2 − s1)
2e(s2−s1)t+s1(1− e(s2−s1)t+s1)

(1 + e(s2−s1)t+s1)3
.

(2.7)

It follows from (2.3) that

u′(t) = −1

2
r ψr = −1

2
ψθ sin θ.

Note that throughout the Southern ocean, sin θ is always positive. Then
(2.1) shows that the flow in a jet component of the ACC, between the par-
allels of latitude defined by an appropriate choice of r± ∈ (0, 1), is modeled
by coupling the differential equation (2.6) with the Neumann boundary con-
ditions

u′(0) = u′(1) = 0, (2.8)

which express the fact that there is no flow across the boundary of the
jet. The boundary value problem (2.6)-(2.8) is therefore a model for a jet
component of the ACC.
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3. Existence results

In order to prove the existence results for the problem (2.6)-(2.8), we need
some preliminary facts on the weighted eigenvalue problem{

u′′(t) + λa(t)u(t) = 0,

u′(0) = 0, u′(1) = 0.
(3.1)

See [2, 10] and a recent monograph [3] for the discussions on weighted Sturm-
Liouville problems. It is obvious that λ0 = 0 is an eigenvalue of (3.1) with
the eigenfunction being constant. Moreover, it is easy to check that if λ is
an eigenvalue of (3.1) and u is a corresponding eigenfunction, then

λ =

∫ 1
0 (u

′(t))2dt∫ 1
0 a(t)u

2(t)dt
.

Therefore, all nonzero eigenvalues of (3.1) are positive since a(t) given as in
(2.7) is positive. It is well-known that all nontrivial eigenvalues admit vari-
ational characterizations, and can be ordered in a non-decreasing sequence,
that is, problem (3.1) has a sequence of eigenvalues:

0 = λ0(a) ≤ λ1(a) ≤ · · · ≤ λk(a) ≤ λk+1(a) ≤ · · · ,

and lim
k→∞

λk(a) = +∞.

Now, we first establish the existence results for the nonlinear problem{
u′′(t) + g(t, u) = b(t),

u′(0) = 0, u′(1) = 0,
(3.2)

where g(t, u) : [0, 1]× R → R is continuous and the function b(t) is given as
in (2.7). Note that b is also non-negative.

Theorem 3.1. Assume that the function g(t, u) is continuous and satisfies
the inequality

lim sup
|u|→∞

g(t, u)

u
≤ Φ(t), uniformly in t, (3.3)

and

λ1(Φ) > 1. (3.4)

Then the problem (3.2) has at least one solution.

Proof. We shall work in the space

CN =
{
u : [0, 1] → R is continuous and u′(0) = u′(1) = 0

}
.
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Let us consider the following homotopic problems{
u′′(t) + τg(t, u)− τb(t) + (1− τ)Φ(t)u = 0,

u′(0) = 0, u′(1) = 0.
(3.5)

It is obvious that one can transform the problem (3.5) into a fixed point
problem in CN . In fact, u is a solution of (3.5) if and only if u is a fixed
point in CN of the following operator

Tτu(t) := u(0)−
∫ t

0
(t− s)

[
τg(s, u(s))− τb(s) + (1− τ)Φ(s)u(s)

]
ds.

To apply the topological degree theory, we will find a priori bounds for
all solutions of the homoptopic problem (3.5). Let ε0 be small enough. By
condition (3.3), we know that there exists ψ ∈ L1[0, 1] with ψ ≥ 0 such that

ug(t, u) ≤ (Φ(t) + ε0)u
2 + ψ(t)

for all u ∈ R and t ∈ [0, 1]. Thus, for all u ∈ R and t ∈ [0, 1],

u
[
τg(t, u)− τb(t) + (1− τ)Φ(t)u

]
≤
[
Φ(t) + ε0

]
u2 + b(t)u+ ψ(t).

Let u(t) be a solution of (3.5) for some τ ∈ [0, 1]. Then∫ 1

0
u′′(t)u(t)dt = −

∫ 1

0

[
τg(t, u(t))u(t)− τb(t)u(t) + (1− τ)Φ(t)u2(t)

]
dt,

and thus

∥u′∥22 =
∫ 1

0

[
τg(t, u(t))u(t)− τb(t)u(t) + (1− τ)Φ(t)u2(t)

]
dt.

Note that λ1(Φ) has the following variational characterization

λ1(Φ) = inf
u∈H

∫ 1
0 |u′|2dt∫ 1

0 Φ(t)|u|2dt
, (3.6)

where H = {u ∈ W2,1(0, 1)|u′(0) = u′(1) = 0, u(t) is not constant}. Thus,
we obtain that∫ 1

0

[
τg(t, u(t))u(t)− τb(t)u(t) + (1− τ)Φ(t)u2(t)

]
dt

≤
∫ 1

0

[
(Φ(t) + ε0)u

2(t) + b(t)u(t) + ψ(t)
]
dt

≤
[ 1

λ1(Φ)
+

ε0
λ1(1)

]
∥u′∥22 +

∫ 1

0
b(t)u(t)dt+ ∥ψ∥1.
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Using the Hölder inequality and (3.6), it is easy to obtain∫ 1

0
b(t)u(t)dt ≤ ∥b∥2∥u′∥2/λ1(1).

Therefore,

∥u′∥22 ≤
[ 1

λ1(Φ)
+

ε0
λ1(1)

]
∥u′∥22 +

∥b∥2
λ1(1)

∥u′∥2 + ∥ψ∥1.

Due to the condition (3.4), the above equality implies that if ε0 is small
enough such that

ε0 < λ1(1)
[
1− 1

λ1(Φ)

]
,

then there exists a constant K1 > 0 such that ∥u′∥2 ≤ K1.
Using the Hölder inequality, we obtain that

|u(t)| =
∣∣∣ ∫ t

0
u′(s)ds+ u(0)

∣∣∣ ≤ ∫ t

0
|u′(s)|ds+ |u(0)|

≤ ∥u′∥2 + |u(0)| ≤ K1 + |u(0)| =: K2.

Thus,

∥u∥∞ ≤ K2. (3.7)

It follows from (3.7) that there exists some φ ∈ L1[0, 1] with φ ≥ 0 such that

|τg(t, u(t))− τb(t) + (1− τ)Φ(t)u(t)| ≤ φ(t)

for all t ∈ [0, 1], τ ∈ [0, 1] and all solutions u of problem (3.5).
Now,

|u′(t)| =
∣∣∣ ∫ t

0
u′′(s)ds

∣∣∣ = ∣∣∣ ∫ t

0

[
τg(s, u(s))− τb(s) + (1− τ)Φ(s)u(s)

]
ds
∣∣∣

≤
∫ 1

0
|τg(t, u(t))− τb(t) + (1− τ)Φ(t)u(t)|dt ≤ ∥φ∥1 =: K3.

Up to now, we have proved that all possible solutions of problem (3.5) admit
a priori bounds in CN , that is, we are able to find a positive constant r large
enough such that r > max{K2,K3} and all possible solutions of (3.5) belong
to the set

Ω = {u ∈ CN : ∥u∥∞ < r, ∥u′∥∞ < r}.
By the invariance of Leray-Schauder degree under homotopies [30], we know

deg(I − T1,Ω, 0) = deg(I − T0,Ω, 0).
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It follows from the condition (3.4) that{
u′′(t) + Φ(t)u = 0,

u′(0) = 0, u′(1) = 0,

has only the trivial solution u = 0, and thus deg(I−T0,Ω, 0) ̸= 0. Therefore,

deg(I − T1,Ω, 0) ̸= 0,

which implies that problem (3.2) has at least one solution in Ω. □

In the literature, the conditions (3.3)-(3.4) are called the first nonuniform
non-resonance conditions. The next result deals with the higher nonuniform
non-resonance conditions.

Theorem 3.2. Assume that the function g(t, u) is continuous and there
exist two continuous functions ϕ,Φ such that

ϕ(t) ≤ lim inf
|u|→∞

g(t, u)

u
≤ lim sup

|u|→∞

g(t, u)

u
≤ Φ(t), uniformly in t,

and there exists k ∈ N with k ≥ 2 such that

λk−1(ϕ) < 1, λk(Φ) > 1. (3.8)

Then the problem (3.2) has at least one solution.

Proof. For any γ ∈ L1[0, 1] satisfying

ϕ(t) ≤ γ(t) ≤ Φ(t), t ∈ [0, 1].

The condition (3.8) ensures that the problem{
u′′(t) + γ(t)u = 0,

u′(0) = 0, u′(1) = 0,

has only the trivial solution u = 0. Thus, the results can be proved by
the similar methods in the proof of [18, Theorem 2.4]. Here, we omit the
details. □

Now, we return to the original problem (2.6)-(2.8), which corresponds to

g(t, u) = −a(t)F (u).

Therefore,

lim inf
|u|→∞

g(t, u)

u
= −a(t) lim sup

|u|→∞

F (u)

u
,
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lim sup
|u|→∞

g(t, u)

u
= −a(t) lim inf

|u|→∞

F (u)

u
.

The following two results are direct consequences of Theorem 3.1 and The-
orem 3.2, respectively.

Theorem 3.3. Assume that the function F (u) is continuous and there exists
a constant α < 0 such that

lim inf
|u|→∞

F (u)

u
≥ α and λ1(a) < − 1

α
. (3.9)

Then the problem (2.6)-(2.8) has at least one solution.

Theorem 3.4. Assume that the function F (u) is continuous and there exist
two negative constants α, β such that

α ≤ lim inf
|u|→∞

F (u)

u
≤ lim sup

|u|→∞

F (u)

u
≤ β. (3.10)

Suppose further that there exists k ∈ N with k ≥ 2 such that

λk−1(a) < − 1

α
, λk(a) > − 1

β
. (3.11)

Then the problem (2.6)-(2.8) has at least one solution.

Remark 3.5. If we consider the linear vorticity function F (u) = −κu with
κ > 0, then condition (3.10) becomes α = β = −κ. Thus, condition (3.9)
becomes λ1(a) < 1/κ and (3.11) reads as

λk−1(a) <
1

κ
< λk(a), k ≥ 2.

It is easy to see that no eigenvalues of (3.1) are rational. Therefore problem
(2.6)-(2.8) always has at least one solution when κ is rational. In next
section, we will present the numerical approximate solutions for a concrete
example with F (u) = −2u.

4. Approximate solutions

We present a numerical-analytic technique to obtain the approximate so-
lutions of problem (2.6)-(2.8). Although Neumann boundary conditions give
us no information about the initial state of the flow or the values of solution
at t = 0 and t = 1, the technique we derive below allows us to achieve this.
Indeed, we construct a sequence of functions that approximates the solution
of (2.6)-(2.8) and show that its limit is in fact the exact solution.
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4.1. Equivalent parametrized system. Let x1(t) = u(t) and x2(t) =
u′(t). Then we can rewrite the differential equation (2.6)-(2.8) as the follow-
ing problem 

x′1(t) = x2(t),

x′2(t) = a(t)F (x1) + b(t),

x2(0) = x2(1) = 0.

(4.1)

Let us introduce two parameters x1(0) = z1 and x1(1) = η1. Then the
boundary condition in (4.1) can be written as

Ax(0) +Bx(1) = d(η), (4.2)

where

A =

[
0 1
0 0

]
, B = I2 =

[
1 0
0 1

]
,

d(η) = [η1, 0]
T , η = [x1(1), x2(1)]

T = [η1, 0]
T .

Let x(t) = [x1(t), x2(t)]
T ∈ D ⊂ R2 and f(t, x(t)) = [x2(t), a(t)F (x1) +

b(t)]T , where D is a closed and bounded domain. Then (4.1) is equivalent
to the vector form

x′(t) = f(t, x(t)), x ∈ R2. (4.3)

We shall study the equivalent parametrized problem (4.3) with (4.2).

4.2. Approximate solutions. Let us introduce a vector

δD(f) :=
1

2

[
max

(t,x)∈[0,1]×D
f(t, x)− min

(t,x)∈[0,1]×D
f(t, x)

]
.

It is obvious that
δD(f) ≤ max

(t,x)∈[0,1]×D
|f (t, x)| .

We make the following assumptions with respect to the original problem
(4.1).

(A1) the subset

Dβ :=
{
z ∈ D : B

(
z, max

t∈[0,T ]
|t[d(η)− (A+ I2)z]|

)
⊂ D,∀η ∈ D

}
,

is non-empty, with z = [x1(0), x2(0)]
T = [z1, 0]

T ∈ D corresponding
to the initial values of solution of (4.3) under the constraints (4.2).

(A2) the function f(t, x) in (4.3) satisfies the Lipschitz condition

|f(t, u)− f(t, v)| ≤ K |u− v| , t ∈ [0, 1] , {u, v} ⊂ D,

with a non-negative constant matrix K = (kij)
2
i,j=1.
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(A3) r(Q) < 1, where r(Q) is the spectral radius of the matrix Q := 3T
10K.

Now, we consider the following sequence of functions:
xm(t, z, η) = z +

∫ t

0
f(s, xm−1(s, z, η))ds

−t
∫ 1

0
f(s, xm−1(s, z, η))ds+ t[d(η)− (A+ I2)z], m ≥ 1,

x0(t, z, η) = z + t[d(η)− (A+ I2)z] ∈ D,

(4.4)

where t ∈ [0, 1], z = [x1(0), x2(0)]
T = [z1, 0]

T and η = [x1(1), x2(1)]
T =

[η1, 0]
T .

Theorem 4.1. Assume that the function f : [0, 1] × D → R2 and the
parametrized boundary constraints (4.2) satisfy (A1)–(A3). Then for all
fixed z ∈ Dβ, η ∈ D:

(1) The sequences (4.4) are continuously differentiable and satisfy the
parametrized boundary conditions

Axm(0, z, η) +Bxm(1, z, η) = d(η), m ≥ 0.

(2) The sequences (4.4) converge uniformly to the limit function

x∞(t, z, η) = lim
m→∞

xm(t, z, η).

(3) The limit function x∞(t, z, η) satisfies the parametrized boundary
conditions

Ax∞(0, z, η) +Bx∞(1, z, η) = d(η).

(4) x∞(t, z, η) is the unique continuously differentiable solution of the
integral equation

x(t) = z +

∫ t

0
f(s, x(s))ds− t

∫ 1

0
f(s, x(s))ds+ t[d(η)− (A+ I2)z], (4.5)

and thus is also a solution of the Cauchy problem for a modified
system {

x′(t) = f(t, x(t)) + ∆(z, η),

x(0) = z,
(4.6)

where

∆(z, η) := [d(η)− (A+ I2)z]−
∫ 1

0
f(s, x(s))ds. (4.7)
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(5) The following error estimation holds:

|x∞(t, z, η)− xm(t, z, η)| ≤ 20

9
t (1− t)Qm(I2 −Q)−1δD(f).

Proof. We prove that the sequence (4.4) is a Cauchy sequence in the Banach
space C([0, 1],R2). First, we show that xm(t, z, η) ∈ D, for all (t, z, η) ∈
[0, T ]×Dβ ×D, m ∈ N.

Applying the estimate∣∣∣ ∫ t

0

[
f(τ)− 1

T

∫ T

0
f(s)ds

]
dτ
∣∣∣ ≤ 1

2
α1(t)

[
max
t∈[0.T ]

f(t)− min
t∈[0,T ]

f(t)
]
, (4.8)

where

α1(t) = 2t
(
1− t

T

)
, |α1(t)| ≤

T

2
, t ∈ [0, T ] , (4.9)

on the sequence (4.4) for T = 1, we obtain that

|xm (t, z, η)− x0 (t, z, η)|

≤
∣∣∣ ∫ t

0

[
f(s, xm−1 (s, z, η))−

∫ 1

0
f(s, xm−1 (s, z, η))ds

]
dt
∣∣∣

≤ α1(t)δD(f) ≤
1

2
δD(f), m ∈ N,

which implies that xm(t, z, η) ∈ D whenever (t, z, η) ∈ [0, 1]×Dβ ×D.
Let

xm+1(t, z, η)− xm(t, z, η)∫ t

0
[f(s, xm(s, z, η))− f(s, xm−1(s, z, η))] ds

− t

∫ 1

0
[ f (s, xm(s, z, η))− f (s, xm−1(s, z, η)) ] ds, m ∈ N,

rm(t, z, η) := |xm(t, z, η)− xm−1(t, z, η)| , m ∈ N.
By virtue of the estimate (4.8) and the Lipschitz condition (A2), we have:

rm+1(t, z, η) ≤ K
[
(1− t)

∫ t

0
rm(s, z, η)ds+ t

∫ 1

t
rm(s, z, η)ds

]
, m ≥ 0.

By the fact

r1(t, z, η) = |x1(t, z, η)− x0(t, z, η)| ≤ α1(t)δD(f),

and using the inequality

αm+1(t) ≤
10

9

( 3

10
T
)m

α1(t), m ≥ 0, (4.10)
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which was obtained from

αm+1(t) =
(
1− t

T

)∫ t

0
αm(s)ds+

t

T

∫ T

t
αm(s)ds, m ≥ 0, (4.11)

α0(t) = 1, α1(t) = 2t
(
1− t

T

)
,

we know that

rm+1(t, z, η) ≤ Kmαm+1(t)δD(f), m ≥ 0.

Therefore,

rm+1(t, z, η) ≤
10

9
α1(t)

[
QmδD(f) +KQm−1

∣∣d(η)− (A+ I2)z
∣∣], m ≥ 0,

and thus

|xm+j(t, z, η)− xm(t, z, η)| ≤ 10

9
α1(t)

j∑
i=1

Qm+iδD(f) (4.12)

=
10

9
α1(t)Q

m
j−1∑
i=0

QiδD(f).

It follows from the condition (A3) that

j−1∑
i=0

Qi ≤ (In −Q)−1 , lim
m→∞

Qm = O2,

where O2 is a zero 2× 2 matrix.
Now, we conclude from (4.12) that the sequence {xm(t, z, η)} uniformly

converges in the domain (t, z, η) ∈ [0, 1] × Dβ × D to the limit function
x∞(t, z, η). Since each function of such sequence satisfies the boundary con-
ditions (4.2) for all values of z1 and η1, the limit function x∞(t, z, η) also
satisfies the boundary conditions. Let m → ∞ in equality (4.4), we know
that the limit function satisfies (4.5) and (4.6), where ∆ (z, η) is given as
(4.7). □

4.3. Relation between the limit function and the solution of (4.1).
Let us consider the problem with a control parameter{

x′(t) = f(t, x(t)) + µ, t ∈ (0, 1),

x(0) = z,
(4.13)

where µ = [µ1, µ2]
T is the control parameter.
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Theorem 4.2. Assume that (A1)-(A3) hold. Then x = x (·, z, η, µ) is the
solution of problem (4.13) with the boundary conditions (4.2) if and only if
x = x(·, z, η, µ) coincides with the limit function x∞(·, z, η, µ). Moreover,

µ = µz,η = [d(η)− (A+ I2)z]−
∫ 1

0
f(s, x∞(s, z, η, µ))ds. (4.14)

Proof. Sufficiency. Suppose that µ is given as (4.14). By Theorem 4.1,
the limit function x∞(·, z, η, µ) is the unique solution of problem (4.13) with
(4.2) for the fixed values of parameters z and η when µ = µz,η. Besides,
it is obvious that x∞(t, z, η, µ) satisfies initial condition x∞(0, z, η, µ) = z.
Therefore, x∞(t, z, η, µ) is a solution of problem (4.13) with µ = µz,η.

Necessity. Fix an arbitrary µ̄ ∈ R2. We assume that the initial value prob-
lem (4.13) with µ = µ has a solution x̄(t) satisfying the boundary conditions
(4.2). Then x̄(t) satisfies the integral equation

x̄(t) = z +

∫ t

0
f(s, x̄(s))ds+ µ̄t, t ∈ [0, 1],

from which we know

µ̄ = x̄(1)− z −
∫ 1

0
f(s, x̄(s))ds.

Using the the boundary restrictions (4.2), we get:

µ̄ = [d(η)− (A+ I2)z]−
1

T
z −

∫ 1

0
f(s, x̄(s))ds. (4.15)

Similarly,

x∞(t, z, η, µ) = z +

∫ t

0
f(s, x∞(s, z, η, µ))ds+ µz,ηt,

µz,η = [d(η)− (A+ I2)z]−
∫ 1

0
f(s, x∞(s, z, η, µ))ds. (4.16)

Thus, for all t ∈ [0, 1],

x̄(t) = z +

∫ t

0
f(s, x̄(s))ds− t

∫ 1

0
f(s, x̄(s))ds+ t[d(η)− (A+ I2)z],

x∞(t, z, η, µ) = z +

∫ t

0
f(s, x∞(s, z, η, µ))ds

− t

∫ T

0
f(s, x∞(s, z, η, µ))ds+ t[d(η)− (A+ I2)z].
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Now, we conclude that x̄(t) ∈ D and x∞(t, z, η, µ) ∈ D, and

x∞(t, z, η, µ)− x̄(t) =

∫ t

0
[f(s, x∞(s, z, η, µ))− f(s, x̄(s))]ds

− t

∫ 1

0
[f(s, x∞(s, z, η, µ))− f(s, x̄(s))]ds.

Let σ(t) = |x∞(t, z, η, µ)− x̄(t)|. Then by the condition (A2) and the above
equality, we obtain that

σ(t) ≤ K
[ ∫ t

0
σ(s)ds+ t

∫ 1

0
σ(s)ds

]
≤ Kα1(t) max

s∈[0,1]
ω(s), t ∈ [0, 1], (4.17)

where α1(t) is given by (4.9).
Using (4.17) recursively, we arrive at an inequality:

σ(t) ≤ Kmαm(t) max
s∈[0,1]

ω(s), t ∈ [0, 1], m ∈ N

where αm(t) are given by (4.11). Taking into account (4.10), we obtain that

σ(t) ≤ Kα1(t)
10

9

(3K
10

)m−1
· max
s∈[0,1]

σ(s), t ∈ [0, 1].

By the condition (A3) and taking the limit m→ ∞, it holds that

max
s∈[0,1]

σ(s) ≤ Qm max
s∈[0,1]

σ(s) → 0,

which means that x̄(t) coincides with x∞(t, z, η, µ). Besides, it follows from
(4.15) and (4.16) that µ̄ = µz,η. □

As a consequence of Theorem 4.2, the following result presents the re-
lation between the limit function x = x∞ (t, z, η) and the solution of the
parametrized problem (4.3).

Theorem 4.3. Assume that conditions (A1)-(A3) hold. Then the pair
(x∞(·, z∗, η∗), η∗) is a solution of the parametrized problem (4.3) with (4.2)
if and only if z∗ = (z∗1 , 0), η

∗ = (η∗1, 0) satisfy the determining equation

∆(z, η) = [d(η)− (A+ I2)z]−
∫ 1

0
f(s, x∞(s, z, η))ds = 0. (4.18)

Next, we show that the determining equation (4.18) defines all possible
solutions of problem (4.3).
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Theorem 4.4. Assume that conditions (A1)-(A3) hold. Suppose further that
there exist vectors z ∈ Dβ and η ∈ D satisfying the determining equation
(4.18). Then problem (4.3) has the solution x(·) such that x(0) = z, x(1) = η,
and this solution is given as

x(t) = x∞(t, z, η), t = [0, 1], (4.19)

where x∞(t, z, η) is the limit function of the sequence (4.4). On the other
hand, if problem (4.3) has a solution x(·), then x(·) is given by (4.19) and
satisfies the determining equation (4.18) when z = x(0), η = x(1).

Proof. Assume that there exist such z ∈ Dβ and η ∈ D satisfying the
determining system (4.18). Then by Theorem 4.3, the function (4.19) is a
solution of problem (4.3).

On the other hand, if x(·) is the solution of problem (4.3), then this
function is the solution of problem (4.13) for µ = 0, z = x(0). Since x(·)
satisfies the boundary restrictions (4.2), we know that the equality (4.19)
hold by Theorem 4.2. Besides, µ = µz,η = 0, z = x(0), where the vector η is
given as x1(0) = z1, x1(1) = η1. But µz,η is given by formula (4.14), which
ensures that the first equation (4.18) of the determining system is satisfied
if z = x(0), η = x(1), that is, ∆(z, η) = 0. Therefore, we have specified such
pairs (z, η) = (x(0), x(1)), which satisfy (4.18). □

4.4. Example. Now, we give a concrete example to illustrate the derived
algorithm for approximation of solutions. For this purpose, we take a phys-
ically relevant oceanic linear vorticity F (u) = −2u. The original problem
(2.6)-(2.8) is decomposed as x′1(t) = x2(t)(:= f1(t, x2)),

x′2(t) = a(t)F (x1(t)) + b(t)(:= f2(t, x1)),
x2(0) = x2(1) = 0.

(4.20)

Additionally, we introduce two parameters

z1 = x1(0) and η1 = x1(1)

and modify the Neumann boundary conditions as follows

Ax(0) + I2x(1) =

[
η1
0

]
,

where x(·) = [x1(·), x2(·)]T , A =

[
0 1
0 0

]
and d(η) =

[
η1
0

]
.
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It is easy to check that the functions fi, i = 1, 2 satisfy (A2) with a matrix

K =

[
0 1
1
4 0

]
.

Moreover, the maximal eigenvalue of matrix Q =

[
0 3

10
3
40 0

]
defined in (A3)

satisfies

r(Q) = 0.15 < 1.

Thus, all conditions of Theorem 4.1 are satisfied, and we can construct
a sequence of functions {xm(t, z, η)} that approximates solutions to (4.20).
This sequence is given by

xm(t, z, η) =(
z1 +

∫ t
0 x1,m(s, z, η)ds− t

∫ 1
0 x1,m(s, z, η)ds+ t(η1 − z1)∫ t

0 (−2a(s)x2,m(s, z, η) + b(s))ds− t
∫ 1
0 (−2a(s)x2,m(s, z, η) + b(s))ds

)
,

for m ∈ N, with the zeroth approximation defined by

x0(t, z, η) =

(
z1 + t(η1 − z1)

0

)
. (4.21)

The numerical values of the artificially introduced parameters z1, η1 are
found as solutions to the determining system

∆m(z, η) =

(
−
∫ 1
0 x1,m(s, z, η)ds+ (η1 − z1)

−
∫ 1
0 (−2a(s)x2,m(s, z, η) + b(s))ds

)
= 0, m ∈ N0. (4.22)

As mentioned before, the zeroth approximation to the exact solution of
(4.20) depending on parameters, is given by (4.21). After solving the de-
termining system (4.22) for m = 0 we define the zeroth approximation to
values of the unknown parameters z1,0, η1,0 which are

z1,0 = 1074.320725, η1,0 = 1074.320725.

Then substituting these values into (4.21), we get the zeroth approximation
to the exact solution of problem (4.20) as

X1,0(t) = 1074.320725, X2,0(t) = 0.

Now, we proceed with the approximation process in the case of m = 1.
Computations show that the first approximation to the exact solution of
(4.20) is

X1,1(t) = 1115.212769− 85.16415t,
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X1,2(t) =
1

(1 + et)2
(0.02(−8516.415e2t ln(1 + et) + 66381.4906e2t

+ 8516.415te2t − 17032.83et ln(1 + et)− 220671.7419et

+ 8516.415tet − 8516.415 ln(1 + et) + 177902.7676)),

which corresponds to the following values of parameters:

z1,1 = 1115.212769, η1,1 = 1030.048619.

In Fig. 3, we give a componentwise comparison between the zeroth and
the first approximations to the exact solution of (4.20).

Figure 3. The first (red line) and the second (blue line) components
of the approximate solution in the zeroth (to the left) and the first (to
the right) approximations

These calculations can be continued in order to obtain an even more pre-
cise approximation. In particular, in the second approximation we obtain
the following values of the unknown parameters:

z2,1 = 1115.891767, η2,1 = 1030.721175,

while the third iteration leads to

z3,1 = 1116.219099, η3,1 = 1030.367006.

The componentwise comparison of the graphs of the approximate solutions
in the second and the third approximations are given in Fig. 4. Summarizing
the obtained results, one can depict the components to the exact solution
obtained in all 4 iteration steps (including the zeroth approximation). These
graphs are given in Fig. 5.

In addition, the graphs of the error functions

ϵm(t) = Xm(t)− f(t,Xm(t)), t ∈ [0, 1]
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Figure 4. The first (red line) and the second (blue line) components
of the approximate solution in the second (to the left) and the third (to
the right) approximations

Figure 5. The first (to the left) and the second (to the right) com-
ponents of the approximate solution and their 0-th (red line), first (blue
line), second (green line) and third (brown points) approximations

for the first, second and third approximations are given in Fig. 6.
Thus, by this example, we have verified the applicability and effectiveness

of the developed algorithm in the case of the linear oceanic vorticity. More-
over, we have constructed graphs of these approximations to give a more
clear picture of the profile of the ACC flow.
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