

Delft University of Technology

Searching for Quality: Genetic Algorithms and Metamorphic Testing for Software
Engineering ML

Applis, L.H.; Panichella, A.; Marang, R.J.

DOI
10.1145/3583131.3590379
Publication date
2023
Document Version
Final published version
Published in
GECCO 2023 - Proceedings of the 2023 Genetic and Evolutionary Computation Conference

Citation (APA)
Applis, L. H., Panichella, A., & Marang, R. J. (2023). Searching for Quality: Genetic Algorithms and
Metamorphic Testing for Software Engineering ML. In GECCO 2023 - Proceedings of the 2023 Genetic and
Evolutionary Computation Conference (pp. 1490–1498). (GECCO 2023 - Proceedings of the 2023 Genetic
and Evolutionary Computation Conference). ACM/IEEE. https://doi.org/10.1145/3583131.3590379
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3583131.3590379
https://doi.org/10.1145/3583131.3590379

Searching forQuality: Genetic Algorithms and Metamorphic
Testing for Software Engineering ML

Leonhard Applis
L.H.Applis@tudelft.nl

Technical University Delft
Delft, The Netherlands

Ruben Marang
rmar@live.nl

Technical University Delft
Delft, The Netherlands

Annibale Panichella
A.Panichella@tudelft.nl
Technical University Delft
Delft, The Netherlands

ABSTRACT
More machine learning (ML) models are introduced to the field
of Software Engineering (SE) and reached a stage of maturity to
be considered for real-world use; But the real world is complex,
and testing these models lacks often in explainability, feasibility
and computational capacities. Existing research introduced meta-
morphic testing to gain additional insights and certainty about
the model, by applying semantic-preserving changes to input-data
while observing model-output. As this is currently done at random
places, it can lead to potentially unrealistic datapoints and high
computational costs. With this work, we introduce genetic search
as an aid for metamorphic testing in SE ML. Exploiting the delta in
output as a fitness function, the evolutionary intelligence optimizes
the transformations to produce higher deltas with less changes. We
perform a case study minimizing F1 and MRR for Code2Vec on
a representative sample from java-small with both genetic and
random search. Our results show that within the same amount of
time, genetic search was able to achieve a decrease of 10% in F1
while random search produced 3% drop.

CCS CONCEPTS
• Software and its engineering→ Search-based software engi-
neering; Software testing and debugging; •Computingmethod-
ologies → Neural networks.

ACM Reference Format:
Leonhard Applis, Ruben Marang, and Annibale Panichella. 2023. Searching
for Quality: Genetic Algorithms and Metamorphic Testing for Software En-
gineering ML. In Genetic and Evolutionary Computation Conference (GECCO
’23), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3583131.3590379

1 INTRODUCTION
Producing a good model is hard. Not only is achieving good metrics
often quite a challenge itself, but once entering the real world new
problems emerge: Fairness [1], extrapolation [2], speed [3], secu-
rity and robustness [4] are important non-functional requirements
when it comes to machine learning (ML). And while good metrics
make it into academic publications, poor non-functional qualities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Gecco 2023, 15-19 July, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590379

make the news [5]. In the realm of programming languages, ML
applications have unique benefits, such as a large body of data
publicly available in version control systems like GitHub or GitLab
and discussion forums such as StackOverflow.

Unlike other domains, SE tasks have well-defined problems (e.g.,
code completion, test generation) and metrics (e.g., code coverage)
that can be tackled with ML. Still, previous research shows that
even in clean domains like software engineering problems with
robustness and performance exist [6–9]. How is that?

We argue that onemissing piece is the lack of tools for expressing
non-functional requirements as actionable tests. A meta-survey on
Requirements-Engineering for ML [10] found that a considerable
amount of publications are aware of non-functional requirements,
but few go beyond defining the problem. Hence, we have a rich con-
cept of requirements, but any good requirement must be expressed
as a (repeatable) test.

Within this work, we target robustness of ML models as an
exemplary non-functional requirement. Robustness expresses the
ability of the model to perform reliably when facing noise and
degrading data quality. Such noise in code consists of poor naming-
standards, unused elements and redundant structures. As the rules
for programming languages are well-defined, we can produce noise
while keeping the program identical in behavior usingmetamorphic
transformations. Metamorphic transformations utilize metamor-
phic relations to generate new alternative datapoints for which a
ML model should give the same prediction/classification outcome.
A robust model is capable of detecting redundant elements and stay
mostly unaffected by variable names. Robust models do not come
for free and existing research shows that Code2Vec[11] is affected
by metamorphic transformations; even just renaming variables can
completely change its outcome [6].

Assessing robustness as part of quality is the job of a tester,
adapted for working on machine-generated models instead of code
written by human developers. We argue that a non-functional re-
quirement like robustness can be expressed using a statistical test
which is explainable in layman terms. Similar approaches have
been done by previous research [7–9], which are limited by blind
(random or stacking) application of transformations. To implement
the test, we use a search technique (genetic algorithms) in combina-
tion with metamorphic transformations. Introducing evolutionary
intelligence ought to deal with these two crucial limitations, realism
and computational efficiency. We aim to produce datapoints creat-
ing similar deltas, while requiring less computation and enabling
more realistic datapoints. The created datapoints can be saved and
re-used, to re-evaluate the model, forming an acceptance test.

The contributions of this paper can be summarized as follows:

1490

https://orcid.org/0000-0002-4341-8840
https://orcid.org/0009-0007-9886-6724
https://orcid.org/0000-0002-7395-3588
https://doi.org/10.1145/3583131.3590379
https://doi.org/10.1145/3583131.3590379
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590379&domain=pdf&date_stamp=2023-07-12

Gecco 2023, 15-19 July, 2023, Lisbon, Portugal Leonhard Applis, Ruben Marang, and Annibale Panichella

(1) Formulation of metamorphic testing as a search based prob-
lem within the SE4ML domain

(2) Expand existing metamorphic testing within the domain
with genetic search

(3) Assess differences between random and genetic search w.r.t.
generating effective metamorphic tests that affect code2vec

(4) Sound statistical analysis based on multiple experiments
utilizing genetic search, in particular for repeated transfor-
mations

Our results show that genetic search performs significantly bet-
ter in reducing F1 score than random application of transformers.
Based on the assumption that less transformations yield more re-
alistic input-data, genetic search produces the same statistical dif-
ference in metrics with less transformations which we consider an
increase in realism. Aligning with existing research, applying more
transformation leads to bigger differences, which is further ampli-
fied if the right transformations are kept through genetic selection.
An inspection of the most dominant transformation showed that es-
pecially those which add elements to the abstract syntax tree (AST)
prevail, which we argue is connected to Code2Vecs’ mechanisms
based on AST-traversal.

2 BACKGROUND & RELATED WORK
2.1 Code2Vec & Method-name Prediction
Our experiments reuse the approach and artifacts1 of Code2Vec
[11] by Alon et al. Code2Vec is based on AST-path extraction for
which code is translated into an AST and sampled into triples
of [leaf,path,leaf]. These triples are merged into an vector-
embedding per method, which shows promising results for the task
of method-name prediction, and in particular their embeddings
behave similar to generic nlp-embeddings. An important detail for
this work is that the paths are extracted by performing random
walks (default 200), limited by some further constraints (e.g. max-
imum width and depth). Due to the walks, the structure of the
AST has paramount effect on the embeddings, as a single new leaf
node doubles the amount of possible paths. Not only can the intro-
duction of new nodes drastically change the amount of available
paths, but also changes in the AST can lead to exclusion of previous
valid paths. Hence, manipulation of the AST can lead to significant
changes for better or worse - both important information as well
as noise can be left out either by exclusion criteria or by chance.

Method-name prediction is a research area [12] where for a
given method-body, a descriptive method-name is wanted. Descrip-
tiveness is measured as F1-score by calculating sub-word token
overlap of produced and actual method-names. Code2Vec outputs
method-names with corresponding certainties, suitable to evaluate
mean-reciprocal rank (MRR) that is based on the rank at which
the correct prediction was placed. Within Code2Vec, the MRR was
reported but only the F1-score was used for model training.

In addition to their work, Alon et al. provide java-datasets and
we use java-small for our experiments. We sample 350 of the ∼6000
files, which satisfies 95% significance at 5% error rate.

1Note: We use a fork with minor changes due to machine dependencies https://github.
com/ciselab/code2vec

2.2 Metamorphic Testing
Metamorphic testing is based on the concept of metamorphic rela-
tions, relations that generate new test inputs that should result in
the same test outcome. Humans as well as tools can easily create
new test cases based on these relations. An overview of the meta-
morphic testing landscape can be found in a survey by Segura et
al. [13]. While metamorphic testing is not yet widely adopted to
machine learning for software engineering (ML4SE), both trans-
formations and relations are known in SE and are well explored for
test case generation, refactoring, program optimization, and linting.

Metamorphic Testing forML. Metamorphic testing has gained
popularity in machine learning, particularly in image-based object-
detection tasks [14][15]. These transformations on images apply
information-preserving changes to images: The picture of a dog can
be mirrored, but a model should still be able to classify it as such.

Researchers have adapted and evaluated metamorphic testing
to ML models in the ML4SE domain, i.e., to models that aim to
semi-automate SE tasks. Compton et al. [7] introduced obfuscation
techniques for variable names and showed how Code2Vec models
are vulnerable to variable name changes. Our underlying frame-
work and approach share similarities, which we extend by adding
search algorithms. The combination of existing research (transform-
ers for models of code), search algorithms and statistical tests forms
the unique novelty of this paper.

Yefet et al. [6] proposed a further metamorphic relation intro-
ducing unused variables in addition to variable-name obfuscation.
Their study on Code2Vec-based classifiers showed how these simple
code-snipped transformations could generate adversarial attacks
that fool the model under test. While this forms a search using
metamorphic transformations, our approach differs in three pri-
mary aspects: 1 we use Code2Vec as a black-box model, 2 we
approach search as a quantitative task on multiple (many) data-
points, instead of creating single counter-examples and lastly 3
we target robustness as a quality attribute, and not security.

Cito et al. [16] generated “counterfactual examples” to assess the
robustness of BERT-like models. Although they use different termi-
nology, these examples are generated by applying perturbations to
initial code-snippets by replacing tokens with plausible alternatives
that do not alter the code’s behavior; hence, these transformations
are metamorphic. Their study showed how transformations could
find counterexamples for BERT-like models that are in line with
the rationale provided by human experts.

A more extensive list of metamorphic transformations for ML-
models applied to source code has been introduced in Lampion by
Applis et al. [9]. In particular, Lampion considers multiple different
metamorphic transformations, which either add unused informa-
tion (e.g., add unused variables, input parameters, and wrap an
expression in identity-lambda functions) or replace a code element
with another equivalent element (e.g., rename a class, method or
variable). Their study investigated the extent to which different
transformations affect the performance of CodeBERT [17].

Limitations. Despite these undisputed advances, metamorphic
tests for ML models are created in ML4SE by using random sam-
pling. In particular, given a set of possible transformations, existing
approaches randomly select and apply these transformations (one

1491

https://github.com/ciselab/code2vec
https://github.com/ciselab/code2vec

Searching for Quality: Genetic Algorithms and Metamorphic Testing for Software Engineering ML Gecco 2023, 15-19 July, 2023, Lisbon, Portugal

or more times) until the model under test produces different test re-
sults (e.g., wrong classification). In this paper, we proposed the use
of evolutionary intelligence (and evolutionary algorithms in partic-
ular) with the goal of 1 leading to model miss-prediction faster via
intelligent search and 2 reducing the number of transformations
needed to do so.

2.3 Genetic Algorithms
Search-based software testing (SBST) relies on search algorithms
to seek for solutions to software testing problems. Since the 1990s,
researchers have proposed and applied different meta-heuristics to
optimize various testing problems, such as test case generation [18–
20], regression testing [21, 22], and mutation testing [23]. The most
applied meta-heuristics in the SBST literature include but are not
limited to hill climbing [18], simulated annealing [24], and genetic
algorithms [20, 25, 26]. Previous work has also shown how evolu-
tionary intelligence can outperform random sampling (or random
search) in specific testing applications [27–30], thus motivating our
idea to use evolutionary testing for metamorphic testing.

Genetic algorithms (GAs) [31] are a group of search techniques
inspired by natural selection and natural evolution. GAs evolve a
pool of solutions (referred to as “individuals” or “chromosomes”) or
“population”. Usually, the initial population is randomly generated
and it is iteratively recombined and mutated using crossover and
mutation operators. Solutions are selected for reproduction accord-
ing to a fitness function that measures how good the solutions
are toward solving a specific problem (e.g., generating tests that
maximize coverage). Over the course of different iterations (or gen-
erations), this procedure of selecting, recombining, and mutating
solution converges towards best-fit solutions. GAs terminate when
either the optimal solution to the problem is found or when the
search budget (e.g., the number of generation) is depleted. For a
detailed reading on the matter, we suggest the work by Sette et al.
[32].

3 APPROACH
Proofing a program (or here a model) to be correct is generally
unfeasible; instead, one tests for failures. Programs are asserted for
a general quality expressed through happy-paths, and checked for
negative behavior, error recovery, and other issues through tests.
In this tradition, we also design our model-test-cases failure-based:
We are looking for input that makes the model perform poorly.
We assume the happy-path is successfully covered through the
performance in training and test.

Creating a single faulty data point to produce errors is an easy
task, but also one that does the model’s statistical nature injustice:
The issue here is that single data points likely will not be useful
in producing a fix. An easy way for a model to deal with a single
faulty data point would be over-fitting to avoid this particular data
point, and any generalization could be mere coincidence. Hence,
we zoom out a bit and consider approaches that focus on multiple
data points and attributes of the dataset.

Howwould you go about finding these datapoints?We formulate
this as a classic search problem:

Figure 1: schematic Control-Flow of Guided-MT Program

Definition 1. Let 𝑋 : 𝑃 −→ 𝑂 be a pre-trained model that takes
as input a program 𝑃 and returns an outcome 𝑜 ∈ 𝑂 (e.g., method-
name prediction). Let 𝐹 = {𝑓1, · · · , 𝑓𝑛} be a set of metamorphic trans-
formations such that 𝑓𝑖 (𝑃) ≡ 𝑃 ∀𝑓𝑖 ∈ 𝐹 . Let𝑚 : (𝑋, 𝑃) −→ R be a
performance metric (e.g., F1-score) computed on a pre-trained model
𝑋 with input program 𝑃 .
Problem: finding a program 𝑃 ′ obtained by applying 𝐹 to 𝑃 that
maximizes the differences in the performance metric𝑚:

max
��𝑚(𝑋, 𝑃 ′) −𝑚(𝑋, 𝑃)

�� with 𝑃 ′ ≡ 𝑃 (1)

The formulation above can be applied to any performance metric.
In this paper we focus on F1-score; our goal consists in finding a pro-
gram 𝑃 ′ that is equivalent to an initial program 𝑃 (hereafter referred
to as seed) that maximizes the difference in F1-score achieved by a
model 𝑋 on 𝑃 and 𝑃 ′, i.e., max |𝐹1(𝑋, 𝑃 ′) − 𝐹1(𝑋, 𝑃) |. Equation (1)
corresponds to our fitness function to optimize for metamorphic
testing (our search guidance).

3.1 Guided Metamorphic Testing
To optimize Equation (1), we implemented a genetic algorithm,
whose high-level workflow and its components are depicted in
Figure 1. Within our experiments, we focused on Java programs
and target Code2Vec as main the model under test. For Code2Vec,
we re-use the artifacts provided by Alon et al. [11], including code,
model, and dataset. To apply the metamorphic transformations, we
use the Lampion framework [9] since it provides the most extensive
set of metamorphic transformations for Java programs.

3.1.1 Encoding. As mentioned before, solutions to the problem in
Definition 1 are produced by altering a seed program 𝑃 by applying
metamorphic transformations. Instead of encoding a solution as a
complete code-snippet, we only encode the changes applied to the
AST of the seed image (mask). In particular, given the seed program
𝑃 , we encode a solution (genotype) as a sequence of changes to the
AST of 𝑃 : 𝑃 ′ = ⟨𝑝1, . . . , 𝑝𝑘 ⟩. Each entry 𝑝 in 𝑃 ′ is a tuple [𝑛𝑜𝑑𝑒𝑖 , 𝑓𝑗],
where 𝑛𝑜𝑑𝑒𝑖 denotes the 𝑖-th nodes in the AST of P and 𝑓𝑗 is the
𝑗-th metamorphic transformation applied to that AST node.

3.1.2 Initialization. The first step for our GA requires creating an
initial population of metamorphic tests (or solutions). The initial
population consists of creating 𝑁 copies of the seed program 𝑃 (i.e.,

1492

Gecco 2023, 15-19 July, 2023, Lisbon, Portugal Leonhard Applis, Ruben Marang, and Annibale Panichella

Table 1: List of metamorphic transformations (MTs) for Java
programs [9].

ID Description

MT-IF Wrapping a random expression in an if(true) statement
MT-FI Wrapping a random expression in an if(false) else statement
MT-UV Add a random unused variable
MT-RE Rename a variable
MT-PR Rename a parameter
MT-ID Wrap an expression in an identity-lambda function (including function call)
MT-NE Add the neutral element to a primitively typed expression

empty mask 𝑆 = ⟨⟩) and randomly applying one of the available
metamorphic transformations at a randomly selected AST node of
𝑃 . In this paper, we consider seven metamorphic transformations
proposed in Lampion [9] and listed in Table 1.

3.1.3 Selection. Metamorphic tests are selected for reproduction
using simple tournament selectionwith a tournament size 𝑡𝑠 =4 [32].
This selection method first randomly samples four solutions from
the last population and selects the solution with the best fitness
function (Equation (1) in our case) as the winner of the tournament
(parent).

3.1.4 Crossover. New solutions/tests are generated by recombining
parent solutions selected as described in the previous subsection.
In particular, we apply the multi-point (also known as scattered)
crossover. This operator creates two new metamorphic tests by
combining the entries of two parent solutions around multiple cut
points. First we create a crossover-mask consisting of a binary vector
with randomly generated entries, this entry determines whether a
crossover at this position will take place. Each offspring is created
as a copy of one of the two parents, and the transformation at index
𝑖 is replaced by the gene of the other parent if the mask entry at 𝑖
is 𝑡𝑟𝑢𝑒 .

The masks’ length is bounded by the shortest gene, in case of
diverging length the crossover happens between the overlapping
genes and the remaining genes are left untouched in the longer
offspring (copy of the longer parent).

3.1.5 Mutation. Given a newly generated test 𝑂 , we designed two
types of mutation operators that in turns add or deletemetamorphic
transformations to𝑂 . The probability of application is configurable
(for the experiments we chose 80% add and 20% shrink), the appli-
cation is mutually exclusive. The chance to trigger a mutation is set
to 50%, leading to (in average) one of the offsprings to be mutated.

The add operator iteratively adds multiple metamorphic trans-
formations following a hyperbolic distribution. In detail it adds a
(randomly selected) metamorphic transformation to 𝑂 to an AST
node with probability 𝜎 . Once it is added, a second (randomly se-
lected) transformation is applied with probability 𝜎2, and so on
until no more transformation is added. In general, at each muta-
tion iteration 𝑛, a new transformation is added with probability
𝜎𝑛 . Notice that a new transformation is added if and only if the
limit 𝐿 = 20 is not reached. This non-linear operator is inspired
by the add operator used in EvoSuite [19, 33] for unit-test suite/-
case generation. In this paper, we set 𝜎 = 2/3 as it asymptotically
applies three metamorphic transformations on average (statistical
expectation).

The remove operator randomly removes one metamorphic trans-
formation previous applied to 𝑂 . This corresponds to deleting one
of the entries 𝑜 𝑗 in the mask 𝑂 = ⟨𝑜1, . . . , 𝑜𝑘 ⟩, with 𝑗 ∈ {1...𝑘}.
This operator tackles the potential bloating effect [34, 35], i.e., the
length of the metamorphic tests might steadily increase through the
generations. This remove operator can shorten solutions with spu-
rious transformations that do not contribute to the fitness function
throughout the generations.

3.1.6 Elitism. At the end of each generation, there are 𝑁 parent
solutions and 𝑁 offspring solutions produced via the selection,
crossover, and mutation. The new population for the next genera-
tion is obtained by selecting the 𝑁 best solutions among parents
and offspring. This survival mechanism is called elitism since the
best solutions can survive across the generations.

3.1.7 Termination. The search terminates when the total search
budget is reached or the fitness function cannot be further im-
proved. We prefer running time over number of iterations as a
search budget as it is considered the fairest metric to measure the
cost of test generation approaches [27, 28, 30]. This is because the
cost of applying the genetic operators (<10 seconds) is —in our
context— negligible compared to the cost of computing the fitness
function, which requires evaluating the generated solutions against
the model under test (2-10 minutes for Code2Vec).

4 METHODOLOGY
4.1 Research Questions
Based on existing research (Section 2) Code2Vec is vulnerable to
metamorphic transformations, especially centered around iden-
tifiers. Thus, we want to investigate if genetic search improves
the produced effect and the speed needed to influence the model.
Differences between random search and evolutionary search for a
performance drop are covered in the first research question:

RQ1: Effectiveness of Search
How effective is searching for metamorphic transformations
that produce a maximum drop in performance metrics (F1, MRR)
of Code2Vec?

The random search adds a number of randomly chosen trans-
formations. Primarily it is the search technique used in the exist-
ing body of research w.r.t. metamorphic testing in the ML4SE do-
main [6, 9, 16] and it is the current state-of-the-art. Second, random
search is natural baselines when assessing search-based approaches
considering its simplicity and strength. Previous studies showed
that random search can outperform evolutionary algorithms in
specific SE domains [36, 37].

We want to explore trade-offs between the number of transfor-
mations and their produced effect. We expect a larger number of
transformations to produce bigger changes in Code2Vec output, but
how much difference can be achieved for fixed 𝑛 transformations?
A low number of transformations keeps the code understandable,
i.e., a few redundant control structures or variable names could
very well be an oversight in normal programming. These realistic
data points are the golden fleece of our second research question:

1493

Searching for Quality: Genetic Algorithms and Metamorphic Testing for Software Engineering ML Gecco 2023, 15-19 July, 2023, Lisbon, Portugal

RQ2: Minimizing Number of Transformations
What are the trade-offs between keeping a low amount of trans-
formations and producing a difference in metrics?

To position this work better in the body of existing research, we
unravel the genotypes and investigate the obtained transformations.
With our third research question, we aim to get an insight into the
models behavior and/or data — we aim to answer a set of questions
such as: "Align our distributions of transformers with other publica-
tions?" or "For different metrics, do we get different transformations?"

RQ3: Distribution of Transformations
What are the dominant transformation that leads to highest
changes in performance?

Existing work shows that metamorphic transformations reduce
the metrics on average — but individual transformed datapoints can
produce a better prediction. We consider this an exotic premise:
Can noise make our data better? We hope to gain insights on the
topics data quality, model fitting and the stochastic nature of ML
with our last research question:

RQ4: Search-Goal Inversion
Can the search be inverted, to produce an increase in perfor-
mance metrics?

4.2 Benchmark and Dataset
Code2Vec, the model under test, is a neural attention-based ap-
proach that learns embeddings for programs (e.g., method-names)
as continuous distributed vectors. The code embedding aims to pre-
serve the semantics of the programs such that semantically similar
methods are mapped into similar vectors. To this aim, programs
are represented as path contexts, i.e., paths between nodes on the
program AST.

We use the pre-trained model by Alon et al. [11], trained on more
than 12M Javamethods extracted from 10,072 Java projects available
on GitHub. Together with the pre-trained model, the training-,
validation-, and test-sets are also available in the replication package
by Alon et al. [11].

For our paper, we focus on the pre-trained model and use the
java-small test-set, which contains ∼6000 Java methods. We ran-
domly sampled 350methods from the test-set to use a representative
sample. We restricted our evaluation to a smaller set of methods in
the test-set because of the large number of runs needed for a sound
statistical analysis. We had to choose between using a larger sample
of seed programswith few runs or a smaller sample but with enough
runs to allow sound statistical analysis within a feasible wall time.
We have opted for the latter based on the existing guidelines on
assessing randomized algorithms in SE [38, 39], which highlight
the importance of performing multiple runs for a proper assess-
ment of search algorithms (including random search and genetic
algorithms).

4.3 Evaluation Methods
In our experiment, we run GA and random search 10 times for each
program seed in the dataset; this accounts for the random nature of
the employed search algorithms. In each run, we collected the best

solution (i.e., the metamorphic tests with the best fitness function
value), its corresponding performance metrics, and its sequence
of metamorphic transformations such solution included. We re-
ran the same experiments twice, once for each fitness function in
Equation (1) instantiated with F1-score and a second time using
MRR (Mean Reciprocal Rank). In total, for RQ1, we run 350 (seed
programs) × 2 (algorithms) × 10 (runs) × 2 (fitness functions) =
14,000 runs.

To answer RQ1, we compare the average (median) differences in
F1-score and MRR scores achieved by the two search algorithms
in the comparison. Note that achieving a lower F1-score indicates
a better ability of a search algorithm to find metamorphic tests
that impact Code2Vec. In addition to analyzing the median results,
we also applied sound statistical tests as suggested by Arcuri and
Briand [38, 39].

In particular, we applied the Wilcoxon rank sum test [40], with
threshold 𝑝-value=0.05. We complement the Wilcoxon test with
Vargha-Delaney Â12 statistics [41], which provides a measure of the
effect size (or magnitude of the difference). Â12=0.50 indicates that
two distributions in the comparison (e.g., F1-score drops achieved
by GA and random search) are equivalent. For F1-score, Â12 > 0.50
indicates that GA achieves a significantly larger drop in F1-score
compared to random search (i.e., GA is better). Â12 also provides an
easy-to-interpret classification of the effect size in negligible, small,
medium, and large [41].

We use non-parametric tests for both significance and effect size
over parametric alternatives (e.g., the paired t-test) because the data
does not follow a normal distribution [42]2.

To answer RQ2, we compare the number of transformations
required by genetic algorithms and random search to achieve the
same delta for Code2Vec. In particular, we analyze how F1-score
and MRR vary when applying varying number of metamorphic
transformations.

For RQ3, we performed a deeper analysis of the data collected
for RQ1. We analyze the genotype (sequence of applied transfor-
mation) of the best solution produced by random search and GA
in each individual run. Our goal is to determine whether certain
metamorphic transformations appear more than others in the best
solutions.

Finally, we re-run the experiment for RQ1 but search for improv-
ing rather than decreasing the performance metrics for Code2Vec,
i.e., increasing the F1-score and reducing MRR. We want to under-
stand the extent metamorphic testing could be used to increase the
robustness of Code2Vec rather than looking for adversary examples
in which it is vulnerable. Hereafter we refer to F1-min and F1-max
to distinguish between the setting used in RQ1 to assess the ro-
bustness of Code2Vec and the one used in RQ4 to strengthen the
performance of Code2Vec.

4.4 Experiment Setup
We ran the experiments utilizing CPUs on a server with an AMD
EPYC 7H12 64-Core Processor. We conducted ten experiments in
parallel, which lead to a total wall-time of 3 days and a computation-
time of ∼400h. We provide all experiments, data and model within

2We pre-tested the nature of the data distribution using the Shapiro-Wilk test of
normality [43]

1494

Gecco 2023, 15-19 July, 2023, Lisbon, Portugal Leonhard Applis, Ruben Marang, and Annibale Panichella

Figure 2: Comparison of F1 for random and genetic search

Figure 3: Overview of Metric-Movements

a replication package https://doi.org/10.5281/zenodo.7306931 . The
code is separately provided at https://doi.org/10.5281/zenodo.7307012
and results are available at https://doi.org/10.5281/zenodo.7307208 .

For the GA, we set a small population size of 10 individuals. This
choice considered the high cost of the fitness evaluation (against
the model), which can take between 2 and 10 minutes for our
population size. Small population size is widely recommended in the
literature for expensive fitness functions [44, 45]. For the selection
operator, we used tournament selection with a tournament size of 4,
which allows better exploitation and fast convergence rate [32]. The
mutation rate is set to 0.50, which is relatively high, but it prevents
genetic drift in case of a small population size [32]. Finally, we
set the crossover rate 𝑐𝑟=1.00, which is within the recommended
range [46]. For both random search and genetic algorithm, we
use the same termination criteria of 360 minutes search time. For
GA, we terminate earlier if the (best) fitness has not changed for 8
continuous steady generations. Most of the experiments terminated
around 4 hours due to convergence.

5 RESULTS
5.1 RQ1 - Effectiveness of Search
Figure 3 shows an overview of the achieved changes in metrics for
different experiment setups, with a detailed view on the primary
experiments in Figure 2. Experiments prefixed with random exploit
random search, while those without utilize genetic search. Most
of the configurations do not achieve a visible difference of metrics

Figure 4: Metric-movement for random & genetic of F1-min

within the search budget, except for F1-min detailed in Figure 2.
Table 2 summarizes the statistical tests for comparison of F1-min
and random-F1-min: Both experiments achieve a statistical signif-
icant difference and F1-min achieves higher levels of difference
quicker than its random pardon. On average random search needs
three generations for 1% drop in F1 while genetic search needs two.
The reported Wilcoxon p-value prooves that there is a significant
different distribution for the algorithms, and effect size (Â12) shows
that after one generation there is a large difference between random
and genetic search.

The second biggest difference in F1 are achieved by random-MRR-
max/min, which simply apply random transformations. Random
search produces less movement than F1-min, but creates a higher
delta than genetic search for MRR or F1-max.

Our setup seems unable to search for a change in MRR (at least
as an dedicated objective). We expect this to be inherent for the
model as it was trained solely for F1 and MRR was only reported
for comparison with other research. Hence, while side-effects are
possible, we consider that the model is blind towards unknown
metrics — which is somewhat expected. Within the F1-min experi-
ment we see an unexpected effect: While the F1-score is dropping,
the MRR rises accordingly.

The counter-play of F1 and MRR seems to be related with the
dataset and the properties of the metrics. In general, the method-
names of the datasets are short andmost are between 2-4 sub-tokens.
The average prediction without any MTs tends to be slightly longer
(2-6 tokens). Minimizing F1 pushes the predictions to be shorter,
which as a side-effect moves the predictions more towards the right
token-distribution, achieving a better MRR in the process. The
shorter words are worse for F1, as in general longer words are more
forgiving. Given 5 or 6 sub-tokens, a partial overlap can produce
some scores, but with 1 or 2 sub-tokens it is "hit or miss".

Summary RQ1
Within 15 generations, we found datapoints resulting in a drop
of up to 10% in F1-score. While the F1-Score drops for this ex-
periment, the MRR rises respectively. Random search performs
about half as good the genetic search, but is in itself significant.

1495

https://doi.org/10.5281/zenodo.7306931
https://doi.org/10.5281/zenodo.7307012
https://doi.org/10.5281/zenodo.7307208

Searching for Quality: Genetic Algorithms and Metamorphic Testing for Software Engineering ML Gecco 2023, 15-19 July, 2023, Lisbon, Portugal

Table 2: Statistical Tests for F1 Score and MRR

Gen Results for F1-score Results for MRR

Random GA 𝑝-value Â12 Random GA 𝑝-value Â12

0 0.50 0.50 <0.01 0.59 small 0.56 0.56 <0.01 0.41 small
1 0.51 0.49 <0.01 0.84 large 0.55 0.57 <0.01 0.17 large
2 0.51 0.47 <0.01 0.93 large 0.55 0.59 <0.01 0.07 large
3 0.50 0.46 <0.01 0.91 large 0.56 0.60 <0.01 0.07 large
4 0.50 0.45 <0.01 0.97 large 0.56 0.62 <0.01 0.03 large
5 0.49 0.44 <0.01 0.97 large 0.57 0.63 <0.01 0.02 large
6 0.49 0.43 <0.01 0.97 large 0.57 0.64 <0.01 0.03 large
7 0.49 0.43 <0.01 0.97 large 0.57 0.65 <0.01 0.02 large
8 0.48 0.42 <0.01 0.98 large 0.58 0.66 <0.01 0.01 large
9 0.48 0.41 <0.01 0.99 large 0.58 0.67 <0.01 0.01 large
10 0.48 0.41 <0.01 0.99 large 0.59 0.67 <0.01 0.01 large
11 0.48 0.40 <0.01 0.98 large 0.59 0.68 <0.01 0.02 large
12 0.47 0.40 <0.01 0.99 large 0.59 0.68 <0.01 0.01 large
13 0.47 0.40 <0.01 0.99 large 0.59 0.68 <0.01 0.01 large
14 0.47 0.40 <0.01 0.99 large 0.60 0.68 <0.01 0.00 large

5.2 RQ2: Minimizing Number of
Transformations

In terms of (co-)relations between transformations and deltas in
metrics, the clear trend we found was a simple correlation between
produced movement and number of transformations: More trans-
formations produce a higher change, being nearly proportional
(See Table 2 and Figure 2). Over the generations, initial iterations
produced a higher drop in metrics and more transformations being
added which eased out in later generations, however the symmetry
between transformations and deltas persists.

Our intended tradeoff-analysis utilizing a weighted-sum ap-
proach failed due to this correlation: When equally weighting num-
ber of transformations and the observed delta, the fitness remained
at roughly the same value producing a stale search, degrading into
behavior similar to random search. Introducing more sophisticated
approaches such as multi-objective optimization over different met-
rics is considered valuable future work, as we attribute issues solely
to a simplistic fitness function.

Summary RQ2
Movements in metrics are proportional with the amount of trans-
formations. A weighted-sum approach to find tradeoffs failed
due to this correlation.

5.3 RQ3: Distribution of Transformations
Figure 5 shows the distribution of transformers over generations for
minimizing the F1-score. Over the generations, it crystallizes that If-
True Transformations and Lambda-Identity-Transformations seem
to have the greatest effect on metrics, while renaming variables
occur the least.

We attribute this to the embedding-logic as presented in sec-
tion 2.1 as the prominent transformations alter the AST quite heav-
ily: The added redundant condition adds a total of 6 nodes to the
AST, the lambda creates additional 5. On the contrary, renaming a
variable adds no node and are less represented in our results. The
work by Compton et al. [7] proves that the variable names play an

Figure 5: Applied Transformers for minimizing F1-score

important role in prediction, but given our results, it seems that
structural changes out-weight the changes in information, i.e. the
form of the AST weights more than the content of the nodes.

The failed experiments (MRR-based and F1-maximization) show
a near-evenly distributed composition of transformers. They behave
parallel to random search, and form another piece of evidence that
with the current model and approach we cannot search for these
optimization goals.

Summary RQ3
The most common transformations were IfTrue and
LambdaIdentity. Transformations seen in existing research
had less impact than these structural changes.

5.4 RQ4: Search-Goal Inversion
Initially this RQ was inspired by existing research [7, 9] that found
flaky datapoints when applying transformations: some got worse,
while others got better, with the average being worse. We expected
to find symmetrical behavior for maximizing and minimizing alike;

1496

Gecco 2023, 15-19 July, 2023, Lisbon, Portugal Leonhard Applis, Ruben Marang, and Annibale Panichella

If we can find datapoints that produce worse metrics once we add
noise, we found a model that overfits on clean data. If we can find
datapoints that produce better metrics once we add noise, we found
a model that is still underfit.

Our experiments show that with the presented approach we
cannot search for a maximization, or that the model is truly robust
against the changes. Regarding the latter, we still observe the flaki-
ness, but there is no clearmovement on average. Further generations
produce stronger oscillating results, but it cannot keep positive-
changes while discarding those that decrease, simply because any
change applies in both directions.

It is however strange that the approach did not proxy the search
for MRR by the inverse optimization of F1 — after all, given Figure 3
they seem near correlated.

Summary RQ4
Neither maximizing F1 nor MRR was possible. The MRR no-
ticeably increased when minimizing F1, but this is related to a
specific attribute in F1 for the dataset.

6 DISCUSSION
MRR Experiments. It is puzzling that searching for MRR did
not succeed, despite F1-min quite successfully maximizing MRR.
Why does the MRR-max not simply do what F1-min does? Looking
back at the setup, the error seems to be in the Genetic Search.
Measurement and evaluation works, and creation of datapoints that
increase MRR is successful as per F1-min. The reasons could either
be related to the feedback-loop as a whole, or be inherent to the
search algorithm and its configuration.

To solve this open question, we suggest further research includ-
ing a model trained on both metrics. We envision a set of models
trained for MRR, F1 and in best case both, adopting the experiment
from this work for each model. If we observe the same blindness
towards F1 when trained on MRR, we see a connection between
training metrics and search success.

Failed Maximizing. The performed experiments failed to
achieve a maximization of metrics showing a behaviour similar to
random search. With the current configuration we apply a change
to every datapoint in the test-set, but a more fine grained applica-
tion is possible. In theory, a gene could be constructed consisting
of changes-per-file. While this forms classic future research, we
want to take a moment to dis-encourage attempts: The used dataset
with 680 methods forms a representative sample of the original
dataset, with an average F1-score of 0.50 Gaussian distributed. Even
if every single transformation would maximize F1 for a given dat-
apoint from 0 to 1, this transformation will at most contribute
1
680 = 0.14% towards a better F1 score. To achieve movements sim-
ilar to those observed in this work, hundreds of generations are
necessary3.

7 THREATS TO VALIDITY
Construct validity While we assume the metamorphic tests gen-
erated by either GA or random search are equivalent to the original
seed programs (due to the metamorphic relations), the resulting

3This is only for java-small — the other available datasets are magnitudes bigger

mutated programs might not be realistic (e.g., too many nested if
conditions).

Internal validity.We selected 350 programs from the Code2Vec
test-set using a randomised sampling that ensured diverse pro-
grams were selected considering (1) the original source project
from GitHub, (2) the application domain, and (3) code character-
istics (e.g., code complexity). We picked a representative sample
size; however, due to implementation details, we had to re-draw
the sample in some corner cases. Some elements were unsupported
by our transformers, such as java files consisting of (only) enums.
The final elements are unaltered from the original dataset and are
provided in the replication package. In a similar direction, some
files contained multiple classes, and many of the files contained
varying amounts of methods — leading to different weight in the fit-
ness calculation as we apply the transformers per class. We consider
these uncertainties to be addressed by our statistically significant
sample size.

Conclusion validity. To address the randomness in the search
process, we ran each search algorithm ten times on each seed
program with a different random seed (for the random number
generator) in each run. Besides, we applied statistical tests (i.e.,
the Wilcoxon rank sum test and the Vargha-Delaney statistics)
following the existing guidelines on how to assess randomized algo-
rithms [38, 39]. While the choice to re-run the algorithms multiple
times reduced the number of seed programs we could consider, our
analysis is statistically sound.

8 CONCLUSION
The goal of this paper is to expand existing metamorphic testing
for SE4ML with an evolutionary search to save on computational
costs and produce more realistic data points (w.r.t. the number
of applied transformations). To that end, we implemented a java
program combining Code2Vec and a genetic algorithm using the
models’ metrics as fitness functions. We designed an experiment
sampling a representative amount of data points from Code2Vecs’
java-small-dataset and tried to minimize F1 and MRR with both
random and genetic search.

Our results show that both random and genetic search signifi-
cantly change the model metrics, with genetic search being stronger
with progressing generations (determined per effect size) and lead-
ing to a total reduction of 10% in F1 for genetic and 3% in F1 for
random. Minimizing MRR did not succeed with genetic search, per-
forming similar to random search, likely due to the model being
trained solely on F1 score. We found a near-proportional relation
between change in metrics and applied transformations, failing our
trade-off analysis experiments due to leveling the weighted-sum
fitness function.

In summary, genetic search improved the existing research by
proposing a more intelligent way to generate example. We consider
our successes a worthwhile adoption for current approaches and
our failures to be good starting points to address topics such as
derived metrics and tradeoff analysis.

REFERENCES
[1] Z. Chen, J. M. Zhang, M. Hort, F. Sarro, and M. Harman, “Fairness testing: A

comprehensive survey and analysis of trends,” arXiv preprint arXiv:2207.10223,
2022.

1497

Searching for Quality: Genetic Algorithms and Metamorphic Testing for Software Engineering ML Gecco 2023, 15-19 July, 2023, Lisbon, Portugal

[2] G. Hooker,Diagnostics and extrapolation in machine learning. stanford university,
2004.

[3] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical study on
tensorflow program bugs,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp. 129–140.

[4] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing: Survey,
landscapes and horizons,” IEEE Transactions on Software Engineering, 2020.

[5] J. Zou and L. Schiebinger, “Ai can be sexist and racist—it’s time to make it fair,”
2018.

[6] N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for models of code,” Pro-
ceedings of the ACM on Programming Languages, vol. 4, no. OOPSLA, pp. 1–30,
2020.

[7] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java classes with
code2vec: Improvements from variable obfuscation,” in Proceedings of the 17th
International Conference on Mining Software Repositories, 2020, pp. 243–253.

[8] M. R. I. Rabin, N. D. Bui, K. Wang, Y. Yu, L. Jiang, andM. A. Alipour, “On the gener-
alizability of neural programmodels with respect to semantic-preserving program
transformations,” Information and Software Technology, vol. 135, p. 106552, 2021.

[9] L. Applis, A. Panichella, and A. van Deursen, “Assessing robustness of ml-based
program analysis tools using metamorphic program transformations,” in 2021
36th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 1377–1381.

[10] K. Ahmad, M. Bano, M. Abdelrazek, C. Arora, and J. Grundy, “What’s up with
requirements engineering for artificial intelligence systems?” in 2021 IEEE 29th
International Requirements Engineering Conference (RE). IEEE, 2021, pp. 1–12.

[11] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed
representations of code,” Proceedings of the ACM on Programming Languages,
vol. 3, no. POPL, pp. 1–29, 2019.

[12] K. Meinke and A. Bennaceur, “Machine learning for software engineering: Models,
methods, and applications,” in 2018 IEEE/ACM 40th International Conference on
Software Engineering: Companion (ICSE-Companion), 2018, pp. 548–549.

[13] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey on metamorphic
testing,” IEEE Transactions on software engineering, vol. 42, no. 9, pp. 805–824,
2016.

[14] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,” Journal
of Systems and Software, vol. 84, no. 4, pp. 544 – 558, 2011, the Ninth
International Conference on Quality Software. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0164121210003213

[15] C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties of machine learning applica-
tions for use in metamorphic testing,” 20th International Conference on Software
Engineering and Knowledge Engineering, SEKE 2008, pp. 867–872, 2008.

[16] J. Cito, I. Dillig, V. Murali, and S. Chandra, “Counterfactual explanations for
models of code,” in Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice, 2022, pp. 125–134.

[17] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang et al., “Codebert: A pre-trained model for programming and natural
languages,” arXiv preprint arXiv:2002.08155, 2020.

[18] P. McMinn, “Search-based software test data generation: a survey,” Software
testing, Verification and reliability, vol. 14, no. 2, pp. 105–156, 2004.

[19] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for object-
oriented software,” in Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, 2011, pp.
416–419.

[20] P. Tonella, “Evolutionary testing of classes,” ACM SIGSOFT Software Engineering
Notes, vol. 29, no. 4, pp. 119–128, 2004.

[21] S. Yoo and M. Harman, “Regression testing minimization, selection and prioriti-
zation: a survey,” Software testing, verification and reliability, vol. 22, no. 2, pp.
67–120, 2012.

[22] ——, “Pareto efficient multi-objective test case selection,” in Proceedings of the
2007 international symposium on Software testing and analysis, 2007, pp. 140–150.

[23] R. A. Silva, S. d. R. S. de Souza, and P. S. L. de Souza, “A systematic review on
search based mutation testing,” Information and Software Technology, vol. 81, pp.
19–35, 2017.

[24] H.Waeselynck, P. Thévenod-Fosse, and O. Abdellatif-Kaddour, “Simulated anneal-
ing applied to test generation: landscape characterization and stopping criteria,”
Empirical Software Engineering, vol. 12, no. 1, pp. 35–63, 2007.

[25] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic method
for automatic software repair,” Ieee transactions on software engineering, vol. 38,
no. 1, pp. 54–72, 2011.

[26] M. Martinez and M. Monperrus, “Astor: A program repair library for java,” in
Proceedings of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 441–444.

[27] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri, “An empirical
evaluation of evolutionary algorithms for unit test suite generation,” Information
and Software Technology, vol. 104, pp. 207–235, 2018.

[28] A. Panichella, F. M. Kifetew, and P. Tonella, “A large scale empirical comparison
of state-of-the-art search-based test case generators,” Information and Software

Technology, vol. 104, pp. 236–256, 2018.
[29] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and A. Panichella, “Single

and multi-objective test cases prioritization for self-driving cars in virtual envi-
ronments,” Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 2022.

[30] S. Panichella, A. Gambi, F. Zampetti, and V. Riccio, “Sbst tool competition 2021,”
in 2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing
(SBST). IEEE, 2021, pp. 20–27.

[31] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992.

[32] S. Sette and L. Boullart, “Genetic programming: principles and applications,”
Engineering applications of artificial intelligence, vol. 14, no. 6, pp. 727–736, 2001.

[33] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch coverage as a
many-objective optimization problem,” in 2015 IEEE 8th international conference
on software testing, verification and validation (ICST). IEEE, 2015, pp. 1–10.

[34] G. Fraser and A. Arcuri, “Evosuite: On the challenges of test case generation in
the real world,” in 2013 IEEE sixth international conference on software testing,
verification and validation. IEEE, 2013, pp. 362–369.

[35] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case generation as
a many-objective optimisation problem with dynamic selection of the targets,”
IEEE Transactions on Software Engineering, vol. 44, no. 2, pp. 122–158, 2017.

[36] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random search on
automated program repair,” in Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 254–265.

[37] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.”
Journal of machine learning research, vol. 13, no. 2, 2012.

[38] A. Arcuri and L. Briand, “A practical guide for using statistical tests to assess
randomized algorithms in software engineering,” in Proceedings of the 33rd inter-
national conference on software engineering, 2011, pp. 1–10.

[39] ——, “A hitchhiker’s guide to statistical tests for assessing randomized algorithms
in software engineering,” Software Testing, Verification and Reliability, vol. 24,
no. 3, pp. 219–250, 2014.

[40] W. J. Conover, Practical nonparametric statistics. john wiley & sons, 1999, vol.
350.

[41] A. Vargha and H. D. Delaney, “A critique and improvement of the CL common
language effect size statistics of McGraw and Wong,” Journal of Educational and
Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[42] M. D. Smucker, J. Allan, and B. Carterette, “A comparison of statistical significance
tests for information retrieval evaluation,” in Proceedings of the sixteenth ACM
conference on Conference on information and knowledge management, 2007, pp.
623–632.

[43] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete
samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[44] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter, “Automated
repair of feature interaction failures in automated driving systems,” in Proceed-
ings of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 88–100.

[45] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, “A survey on handling com-
putationally expensive multiobjective optimization problems with evolutionary
algorithms,” Soft Computing, vol. 23, 2019.

[46] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking changing
environments.” Naval Research Lab Washington DC, Tech. Rep., 1993.

1498

http://www.sciencedirect.com/science/article/pii/S0164121210003213
http://www.sciencedirect.com/science/article/pii/S0164121210003213

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Code2Vec & Method-name Prediction
	2.2 Metamorphic Testing
	2.3 Genetic Algorithms

	3 Approach
	3.1 Guided Metamorphic Testing

	4 Methodology
	4.1 Research Questions
	4.2 Benchmark and Dataset
	4.3 Evaluation Methods
	4.4 Experiment Setup

	5 Results
	5.1 RQ1 - Effectiveness of Search
	5.2 RQ2: Minimizing Number of Transformations
	5.3 RQ3: Distribution of Transformations
	5.4 RQ4: Search-Goal Inversion

	6 Discussion
	7 Threats to Validity
	8 Conclusion
	References

