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Comparing structured ambiguity sets for stochastic optimization:
Application to uncertainty quantification

Lotfi M. Chaouach Tom Oomen Dimitris Boskos

Abstract— The aim of this paper is to compare two classes
of structured ambiguity sets, which are data-driven and can
reduce the conservativeness of their associated optimization
problems. These two classes of structured sets, coined Wasser-
stein hyperrectangles and multi-transport hyperrectangles, are
explored in their trade-offs in terms of reducing conservative-
ness and providing tractable reformulations. It follows that
multi-transport hyperrectangles lead to tractable optimization
problems for a significantly broader range of objective functions
under a decent compromise in terms of conservativeness reduc-
tion. The results are illustrated in an uncertainty quantification
case study.

I. INTRODUCTION

Decisions in the face of uncertainty are abundant across
engineered systems, whose complexity and interaction with
their environment introduce factors that cannot be exactly
modeled. Taking further into account the rapidly increas-
ing amount of sensing devices and available data explains
the emerging use of stochastic optimization algorithms for
system design and operation. The probabilistic models that
capture the uncertainty often suffer from imperfections since
they are usually inferred from data, which can only provide
an approximation of the uncertainty.

Distributionally robust optimization (DRO) addresses the
issue of imperfect distributional information by using an am-
biguity set of distributions and minimizing the expected cost
over the worst-case models from this set. This paradigm has
found widespread applications that span across regularization
for machine learning [24], portfolio optimization [1], power
dispatch [19], and scheduling [17]. In addition, DRO is also
employed to solve stochastic control and estimation prob-
lems. This includes distributionally robust linear quadratic
regulator problems [30], [27], associated model predictive
control algorithms [9], [21], [31], and more general distri-
butionally robust dynamic programming formulations [20].
Further work considers also distributionally robust filtering
in settings that simultaneously capture noise and model
imperfections [32], [25].

The most common ambiguity set constructions group
distributions based on moment constraints [11], [23], or
their closeness to a nominal model. This closeness can be
determined using various discrepancy notions like statistical
divergences [6], [16], total variation metrics [26], or opti-
mal transport discrepancies [22] that are typically captured
through the Wasserstein distance [28].
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Wasserstein ambiguity sets have received significant atten-
tion in data-driven problems [12], [18], which is in part also
motivated by their statistical guarantees. These sets are balls
in the Wasserstein space and contain all the distributions up
to a certain distance from an empirical model constructed by
the samples. The radius of the ambiguity set can be tuned
in terms of the expected Wasserstein distance between the
true distribution and the empirical model, which is known
to converge to zero as the number of samples grows to
infinity [13]. However, this convergence rate is typically
exponentially slow with respect to the dimension of the
uncertainty vector [7], [13], rendering the radii of such
Wasserstein balls impractical from a statistical perspective.

One way to overcome this obstacle is to inform the
ambiguity set by the optimization problem [2], [4], [14], [24].
However, there are problems like MPC or stochastic reach-
ability, which entail the solution of multiple optimization
problems, where this rationale cannot be directly applied.
This motivates alternative approaches to mitigate the curse of
dimensionality of Wasserstein balls. To this end, [7] exploits
independence assumptions across lower-dimensional compo-
nents of the random vector to build structured ambiguity
sets of product distributions. The approach can alleviate the
curse of dimensionality but admits tractable reformulations
only for special cases of cost functions. This is resolved in
[8], which considers an alternative construction of structured
ambiguity sets that group distributions through couplings that
respect multiple optimal transport constraints.

Although important developments have been made to
construct ambiguity sets, at present there are many alter-
natives and it is not clear when to optimally use a specific
ambiguity set for a specific purpose. The aim of this paper
is to compare two recently developed structured ambiguity
sets, namely the “Wasserstein hyperrectangles” provided in
[7] and the “multi-transport hyperrectangles” introduced in
[8]. Our first contribution is to establish that multi-transport
hyperrectangles admit tractable DRO reformulations for a
much broader class of cost functions under a mild increase
of conservativeness when considering problems that can
also be solved by Wasserstein hyperrectangles. The second
contribution is the reformulation of distributionally robust
uncertainty quantification problems into convex optimization
problems using multi-transport hyperrectangles. Due to space
constraints, the proofs are omitted and will appear elsewhere.

II. PRELIMINARIES AND NOTATION

Throughout this paper, we use the following notation.
We denote by ∥·∥ the Euclidean norm. The diameter of



S ⊂ Rd is diam(S) := sup{∥x− y∥∞ |x, y ∈ S}, where
∥ · ∥∞ is the infinity norm. For N ∈ N\{0}, we denote
[N ] := {1, . . . , N}. We denote by Sc the complement of a
set S ⊂ Rd. Given ξ = (ξ1, . . . , ξd), ζ = (ζ1, . . . , ζd) ∈
Rd, ζ ⪯ (≺)ξ if ζk ≤ (<)ξk holds for all k ∈ [d].
Given ξ = (ξ1, . . . , ξn) ∈ Rd1 × . . . × Rdn , we denote
prdk(ξ) := ξk, k ∈ [n], where d := (d1, . . . , dn), and omit the
superscript d when it is clear form the context. Vectors will
be interpreted as column vectors in linear algebra operations
unless indicated by a transpose and as vectors of the same
type (row or column) when appearing in an inner product.

We denote by B(Rd) the Borel σ-algebra on Rd, and by
P(Rd) the space of probability measures on (Rd,B(Rd)).
Given the measurable spaces (Ω,F) and (Ω′,F ′), a measur-
able map Ψ : (Ω,F) → (Ω′,F ′) assigns to each measure µ
in (Ω,F) the pushforward measure Ψ#µ in (Ω′,F ′) defined
by Ψ#µ(B) := µ(Ψ−1(B)) for all B ∈ F ′. The Dirac
distribution at ξ ∈ Rd is denoted by δξ. The indicator
function 1Ξ of Ξ ⊆ Rd is 1Ξ(ξ) = 1 if ξ ∈ Ξ and 0
otherwise. Given p ≥ 1, we denote by Pp(Rd) the set of
probability measures in P(Rd) with finite pth moment. The
pth Wasserstein distance of P,Q ∈ Pp(Rd) is

Wp(P,Q) :=
(

inf
π∈M(P,Q)

∫
Rd×Rd

∥x− y∥p π(dx, dy)
)1/p

,

(cf. [28]). Each π ∈ M(P,Q) is a transport plan, i.e., a
distribution on Rd × Rd with marginals pr1#π = P and
pr2#π = Q. We denote by P ⊗ Q the product measure of
P and Q.

III. PROBLEM FORMULATION

We consider data-driven DRO problems of the form

inf
x∈X

sup
P∈PN

EP [f(x, ξ)], (1)

where f is the objective function, x ∈ X is the decision
variable, ξ ∈ Rd is a random vector, and PN is an ambiguity
set of probability distributions that is inferred from data.
Here, (1) represents a robust formulation of the problem

inf
x∈X

EPξ
[f(x, ξ)], (2)

which one would solve if the distribution Pξ of ξ were
known. To compensate for the lack of knowledge of Pξ, data-
driven DRO formulations exploit i.i.d. samples ξ1, . . . , ξN of
ξ to build the ambiguity set PN in a way that it contains Pξ

with high confidence.
A common way to construct data-driven ambiguity sets is

to consider all the distributions up to a given distance ε from
the empirical distribution PN

ξ := 1
N

∑N
i=1 δξi using the pth

Wasserstein metric. This yields the ball

Bp(P
N
ξ , ε) := {P ∈ Pp(Rd) : Wp(P

N
ξ , P ) ≤ ε},

which is centered at PN
ξ and has radius ε. Wasserstein am-

biguity balls are accompanied by finite-sample guarantees of
containing the distribution Pξ of the data [13] and enable the
derivation of tractable reformulations of the DRO problem
(1) with PN ≡ Bp(P

N
ξ , ε) [3], [12], [15].

A. Structured ambiguity set
The motivation to structure a data-driven ambiguity set

is to facilitate including distributions that are closer to the
true distribution Pξ. This results in a smaller ambiguity
set PN , which avoids including irrelevant distributions and
reduces the gap between the solution of the original stochas-
tic optimization problem (2) and its distributionally robust
formulation (1).

To this end, [7] considers the case where the random
vector ξ = (ξ1, . . . , ξn) consists of n lower-dimensional
independent components ξk ∈ Rdk , k ∈ [n]. This implies
that Pξ is a product measure, i.e., Pξ = Pξ1 ⊗ . . . ⊗ Pξn

and the ambiguity set PN is built so that it only contains
products of lower-dimensional probability distributions. In
particular, using N i.i.d. samples of ξ and a vector of radii
ε := (ε1, . . . , εn) (with positive entries), we consider the
product empirical distribution

PN
ξ := PN

ξ1 ⊗ . . .⊗ PN
ξn , (3)

where PN
ξk

:=
∑N

i=1 δξik , and define the Wasserstein hyper-
rectangle

Hp(P
N
ξ , ε) := {P1 ⊗ . . .⊗ Pn :

Pk ∈ Bp(P
N
ξk
, εk) for all k ∈ [n]}. (4)

Essentially, the Wasserstein hyperrectangle is built by taking
the products of the distributions across all lower-dimensional
ambiguity balls Bp(P

N
ξk
, εk) that are centered at the marginal

empirical distributions PN
ξk

.
For the same type of distributions, [8] considers an alter-

native construction of structured ambiguity sets. Using again
the product empirical distribution PN

ξ as a reference measure
and a vector ε as above, which represents available transport
budgets, we define the multi-transport hyperrectangle

Tp(PN
ξ , ε) :=

{
pr2#π : π ∈ Pp(Ξ× Ξ), pr1#π = PN

ξ ,

and
∫
Rdk

∥ζk − ξk∥pdπ(ζk, ξk) ≤ εpk

for all k ∈ [n]
}
. (5)

Namely, the multi-transport hyperrectangle consists of all
distributions P for which there exists a transport plan π
between P and the baseline distribution PN

ξ that respects
the n transport constraints in (5). This set has notable dif-
ferences when compared to the Wasserstein hyperrectangle
(4). First, since Hp(P

N
ξ , ε) is built from lower dimensional

Wasserstein balls, each marginal Pk of a distribution from
Hp(P

N
ξ , ε) is determined through a transport plan πk that

reallocates mass between Pk and its empirical counterpart
PN
ξk

. Thus, by construction, the transport plans πk are com-
pletely decoupled while in (5) all lower-dimensional trans-
port constraints should be respected by the same transport
plan. This impacts the type of distributions that are found
in each set. For instance, Hp(P

N
ξ , ε) contains only product

measures while Tp(PN
ξ , ε) also contains distributions that

are not product measures. On the other hand, one can readily
check from the definition of Tp(PN

ξ , ε) that it is a convex
set, which is a nice property that Hp(P

N
ξ , ε) does not share.



B. Problem formulation

The two structured ambiguity set constructions provided
above raise the question of which is more appropriate to use
for a specific optimization problem. For instance, Wasserstein
hyperrectangles contain only product distributions, which
hints that they should be smaller in size, and thus, less con-
servative. On the other hand, multi-transport hyperrectangles
are convex, which implies that they should admit tractable
reformulations for a broader class of objective functions.
Based on these observations, our goal in this paper is to
compare the two structured ambiguity sets in terms of their
size and the class of problems they can efficiently solve.

IV. STATISTICAL GUARANTEES FOR STRUCTURED
AMBIGUITY SETS

The DRO formulation (1) seeks to provide a robust
approximation of the stochastic optimization problem (2).
In particular, if the true distribution Pξ belongs to PN ,
the optimal value of (1) will always be an upper bound
of the optimal value of (2), excluding overly-optimistic
solutions. Therefore, if PN in (1) contains Pξ with a certain
confidence, the value of any DRO problem that exploits this
ambiguity set will represent an upper bound for the value of
its associated stochastic optimization problem over the true
distribution with the same confidence. We next review such
guarantees for Wasserstein ambiguity balls and elaborate on
how they can be improved when using structured ambiguity
sets. To simplify the exposition, we will only consider
compactly supported distributions.

A. Statistical guarantees for Wasserstein balls

Given N i.i.d. samples from the random vector ξ and a
confidence level 1− β, we can always select the radius ε of
a Wasserstein ball so that

P(Pξ ∈ Bp(P
N
ξ , ε)) ≥ 1− β, (6)

see, e.g. [13], [10], [29]. For a fixed confidence level, a radius
ε which guarantees that Bp(P

N
ξ , ε) contains Pξ with this

confidence decreases with the number of samples. In fact,
the radius can usually be determined by a bound of the form
ε(N, β) ≤ K/N1/max{d,2p}, see e.g., [7, Proposition 4.3],
where d is the dimension of the vector ξ. Thus, for high-
dimensional random vectors, the decrease rate of ε becomes
excessively slow. This implies that exploiting further samples
cannot guarantee any significant size reduction of the Wasser-
stein ball. Obtaining the specific constant K in the above
bound for any possible values of Wasserstein exponents p and
random vector dimensions d is in general hard. Nevertheless,
[5, Proposition 24] provides explicit formulas to determine
the ambiguity radius when d ≥ 2p+1, which covers several
cases of interest and allows us to compare the sizes of
Wasserstein balls and structured hyperrectangles based on
the upper bounds that define them.

B. Statistical guarantees for ambiguity hyperrectangles

Here, we provide statistical guarantees for both classes of
structured ambiguity sets and elaborate on their relation to
Wasserstein balls. The following result from [8] establishes
that for the same Wasserstein radii/transport budget vectors
ε = (ε1, . . . , εn), Wasserstein hyperrectangles are always
contained inside multi-transport hyperrectangles when they
are built around the same product empirical distribution.

Proposition 4.1: (Ambiguity hyperrectangle contain-
ment). Consider the Wasserstein hyperrectangle Hp(P

N
ξ , ε)

given by (4) and the multi-transport hyperrectangle
Tp(PN

ξ , ε) in (5). Then Hp(P
N
ξ , ε) ⊂ Tp(PN

ξ , ε).
The above containment implies that Tp(PN

ξ , ε) inherits
from Hp(P

N
ξ , ε) the statistical guarantees of containing the

true distribution Pξ. These guarantees are based on the
following independence assumption.

Assumption 4.2: (Independence of random vector com-
ponents). The components of ξ = (ξ1, . . . , ξn) ∈ Rd1×. . .×
Rdn ≡ Rd are independent random vectors.

Under this assumption, we next provide guarantees about
how to tune the transport budgets of a multi-transport hyper-
rectangle so that it contains the true distribution with pre-
scribed confidence. The result follows directly from Propo-
sition 4.1 and [7, Proposition 4.4].

Corollary 4.3: (Multi-transport hyperrectangle proba-
bilistic guarantees). Assume that the random vector ξ is
supported on the compact set Ξ ⊂ Rd with ρ := diam(Ξ)
and satisfies Assumption 4.2 with dk ≥ 2p + 1 for each
k ∈ [n]. For any confidence 1 − β, consider the multi-
transport hyperrectangle Tp(PN

ξ , ε) given by (5) with

εk : = ρε⋆(βk, p, dk)N
−1/dk

ε⋆(β, p, d) : =
√
d21/2p(C(d, p) + (lnβ−1)1/2p)

C(d, p) : = 2(d−2)/2p
( 1

21/2 − 1
+

1

21/2 − 21/2−p

)1/p

and βk := β dk

d for each k ∈ [n]. Then the hyperrectangle
Tp(PN

ξ , ε) contains Pξ with confidence 1− β.
The next result from [8] illustrates how multi-transport

hyperrectangles can mitigate the curse of dimensionality of
monolithic Wasserstein balls.

Proposition 4.4: (Multi-transport hyperrectangle size re-
duction). Consider a confidence 1−β and the multi-transport
hyperrectangle Tp(PN

ξ , ε) with the transport budgets εk as
given in Corollary 4.3. Then Tp(PN

ξ , ε) ⊂ Bp(P
N
ξ , ε), with

ε := cn1/p+max{0,1/2−1/p}ρε⋆(β, p, d)N
−1/max{d1,...,dn},

c := (
√
5 + 1)/

(
2e(

√
5+1)2/4

)
≈ 1.1043, and ε⋆ as given in

Corollary 4.3.
The same inclusion as in Proposition 4.4 is established for

Wasserstein hyperrectangles in [7, Proposition 4.4], which
for the same confidence level are contained in a Wasserstein
ball of the exact same radius ε. Thus, although the multi-
transport hyperrectangle always contains the Wasserstein
hyperrectangle, it still enjoys the same guarantees in terms
of size reduction with respect to the number of samples.



V. TRACTABLE REFORMULATIONS OF DRO PROBLEMS
OVER STRUCTURED AMBIGUITY SETS

This section provides tractable reformulations of problem
(1) when the ambiguity set PN is a structured hyperrect-
angle. The main difficulty in solving (1) relies on the fact
that its inner maximization problem is infinite-dimensional.
Since the main goal is to reformulate this inner problem,
to facilitate notation, we fix the decision variable x and
denote h(ξ) := f(x, ξ). Therefore, we seek to reformulate
the maximization problem

sup
P∈PN

EP [h(ξ)]. (7)

Typical duality results and tractable reformulations are avail-
able for this inner problem when the ambiguity set is the ball
Bp(P

N
ξ , ε) [12], [15] or when it is defined through a single

transport cost [3].
Dual reformulations of (7) when PN ≡ Hp(P

N
ξ , ε) are

provided in [7, Proposition 5.3]. This result, presented below,
requires the objective function to be the sum or product of
functions that depend only on one of the lower-dimensional
components ξ1, . . . , ξn of ξ.

Proposition 5.1: (DRO dual over Wasserstein hyperrect-
angles). Consider the problem (7) with PN ≡ Hp(P

N
ξ , ε)

and assume that h(ξ) =
∑n

k=1 hk(ξk) or h(ξ) =∏n
k=1 hk(ξk) and hk(ξk) ≥ 0. Then (7) admits the strong

dual reformulations

inf
λ⪰0

n∑
k=1

1

N

N∑
i=1

sup
ξk∈Rdk

{hk(ξk) + λk(ε
p
k −

∥∥ξk − ξik
∥∥p)}

inf
λ⪰0

n∏
k=1

1

N

N∑
i=1

sup
ξk∈Rdk

{hk(ξk) + λk(ε
p
k −

∥∥ξk − ξik
∥∥p)}.

The limited applicability of Proposition 5.1 is due to the
fact that Wasserstein hyperrectangles are non-convex sets,
and thus, admit tractable reformulations only in special cases.
On the other hand, by leveraging a duality analysis inspired
by [3], the following result from [8] establishes that multi-
transport hyperrectangles admit dual reformulations for a
much broader class of objective functions.

Proposition 5.2: (DRO dual over multi-transport hyper-
rectangles). Assume that h is upper semicontinuous and the
support of Pξ is contained in Ξ. Then the problem (7) with
PN ≡ Tp(PN

ξ , ε) admits the strong dual reformulation

inf
λ⪰0

1

Nn

∑
(i1,...,in)∈[N ]n

sup
ξ∈Ξ

{h(ξ)

+

n∑
k=1

λk(ε
p
k − ∥ξikk − ξk∥p)

}
. (8)

The following set of virtual samples consists of the ele-
ments of the product empirical distribution (3).

Definition 5.3: (Set of virtual samples). Given N samples
ξ1, . . . , ξN of a random vector ξ ∈ Rd satisfying Assumption
4.2, we define the set Ξ̂ = {ξ̂l}Nn

l=1 of all the vectors formed
by the tuples (ξi11 , . . . , ξinn ) for some indexing l ∈ [Nn] of
the elements (i1, . . . , in) ∈ [N ]n.

VI. UNCERTAINTY QUANTIFICATION USING
STRUCTURED AMBIGUITY SETS

In this section, we provide tractable reformulations of un-
certainty quantification problems over multi-transport hyper-
rectangles. Such problems are for instance of great interest
in applications where we seek to assess whether a physical
or engineered system is safe or not.

We focus on scenarios where the probability distribution of
the state is unknown and we can only use samples to bound
the probability of being in a desired set with high confidence.
To achieve this, we exploit the reformulations from [12,
Corollary 5.3], which determine the highest probability that
a random vector belongs to a polytope or its complement
over all distributions in a Wasserstein ball. To overcome
the potential conservativeness of these results for high-
dimensional random vectors that satisfy Assumption 4.2,
we exploit multi-transport hyperrectangles. Specifically, we
solve the problem

sup
P∈T1(PN

ξ ,ε)

P [ξ ∈ A], (9)

where A = ∪m
j=1Aj and Aj are convex polytopes.

Theorem 6.1: (Uncertainty quantification for unions of
polytopes). Assume that the distribution Pξ is supported on
the polytope Ξ := {ξ ∈ Rd : Cξ ⪯ f} and that Aj := {ξ ∈
Rd : Ajξ ⪯ bj}, j ∈ [m] are closed polytopes that have
nonempty intersection with Ξ. Then (9) can be evaluated by
solving the convex program

inf
λ,sl,γlj ,θlj

⟨λ, ε⟩+ 1

Nn

Nn∑
l=1

sl

s.t. 1 + ⟨θlj , bj −Aj ξ̂
l⟩+ ⟨γlj , f − Cξ̂l⟩ ≤ sl

∥prdk [A
⊤
j θlj + C⊤γlj ]∥ ≤ λk

γlj ⪰ 0, θlj ⪰ 0, sl ≥ 0

j ∈ [m], k ∈ [n], l ∈ [Nn],

with ξ̂l ∈ Ξ̂ as in Definition 5.3 and d := (d1, . . . , dn).
Alternatively, we may also want to know with high con-

fidence what is the highest probability that ξ lies outside A,
which corresponds to solving

sup
P∈T1(PN

ξ ,ε)

P [ξ /∈ A], (10)

where A = ∪m
j=1Aj and Aj are open convex polytopes. The

next result exploits Theorem 6.1 to evaluate this probability.
Corollary 6.2: (Uncertainty quantification for comple-

ments of unions of polytopes). Assume that the distribution
Pξ is supported on the polytope Ξ = {ξ ∈ Rd : Cξ ⪯ f}
and consider the open polytopes Aj := {ξ ∈ Rd : ⟨alj , ξ⟩ <
blj for all l ∈ [αj ]}, j ∈ [m]. Then the value of the program

inf
λ,sl,γlq,θlq

⟨λ, ε⟩+ 1

Nn

Nn∑
l=1

sl

s.t. 1− ⟨θlq, bq −Aq ξ̂
l⟩+ ⟨γlq, f − Cξ̂l⟩ ≤ sl

∥prdk(C
⊤γlq −A⊤

q θlq)∥ ≤ λk



Fig. 1. The figure shows the worst-case probabilities of the event that
at least one drone reaches the target across 30 realizations. The results
obtained by using the monolithic ball are depicted by the diamonds while
those obtained from the multi-transport hyperrectangle are depicted by the
red stars. In all cases, the ambiguity sets are built using 18 samples.
The results obtained by the hyperrectangle show a clear decrease of
conservativenness. Moreover, the corresponding worst-case probabilities are
most often above the minimum probability threshold, which happens rarely
with the monolithic ball.

γlq ⪰ 0, θlq ⪰ 0, sl ≥ 0

q ∈ Q, j ∈ [m], k ∈ [n], l ∈ [Nn],

is equal to the probability (10). Here d = (d1, . . . , dn) and
for any q = (q1, . . . , qm) ∈

∏m
j=1[αj ], Aq ∈ Rm×d is the

matrix formed by concatenating the row vectors (a
qj
j )⊤, j ∈

[m] and bq := (bq11 , . . . , bqmm ). In addition, Q comprises of all
indices q ∈

∏m
j=1[αj ] for which the sets {ξ ∈ Rd : Aqξ ⪰

bq} have nonempty intersection with Ξ.

VII. SIMULATION EXAMPLE

In this section, we solve an uncertainty quantification
problem to illustrate the properties of each ambiguity hy-
perrectangle. We consider two drones that need to reach a
region within a specific deadline to perform a search-and-
rescue task. The probability that these drones succeed in
reaching the region before the deadline determines whether
a fallback plan for the mission has to be used or not.

The maximum velocity and the distance from the region
are assumed to be random and independent across the drones.
The probability distribution of these variables is unknown
and we only consider historical data about them from pre-
vious deployments. Our goal is to build an ambiguity set
from these data and determine a lower probability bound
for two different events. The first is that at least one drone
reaches the region before the deadline, whereas the second
is that both drones reach it in time. To this end, we want
to determine the worst-case probability of each event among
all the distributions in the inferred ambiguity set.

Let τ denote the deadline and vk, rk denote the maximum
velocity and distance of each drone from the target. Each
drone k reaches the region iff

rk − τvk < 0 ⇐⇒ akξ < 0, k = 1, 2,

where a1 = (1,−τ, 0, 0), a2 = (0, 0, 1,−τ), and ξ =
(r1, v1, r2, v2)

⊤ represents the random vector of our prob-
lem. Denoting Rk the event that drone k reaches the target
before the deadline, we get Rk = {ξ ∈ R4 : akξ < 0},
for k = 1, 2. Then the event that at least one drone reaches
the region before the deadline is described by the set E1 :=

Fig. 2. The figure shows the worst-case probability of the event that
both drones reach the target across 30 realizations for all three ambiguity
sets. The results obtained by using the monolithic ball, the Wasserstein
hyperrectangle, and the multi-transport hyperrectangle are depicted by the
diamonds, the blue stars, and the red stars, respectively. In all cases, the
ambiguity sets are built using 18 samples. The results obtained by both
hyperrectangles outperform those obtained by the monolithic ball.

R1 ∪R2 and we seek to compute the worst-case probability

min
P∈PN

P [ξ ∈ E1] = 1− max
P∈PN

P [ξ /∈ E1], (11)

where PN is an ambiguity set that we infer from N i.i.d.
samples of ξ. Since

max
P∈PN

P [ξ /∈ E1] = max
P∈PN

E[1E c
1
(ξ)]

and the objective function 1E c
1
(ξ) does not have the de-

coupled structure of Proposition 5.1, we cannot evaluate
(11) using Wasserstein hyperrectanles. Nevertheless, since
E1 is the union of two open polytopes, we can exploit
Corollary 6.2 to evaluate the worst-case probability (11) over
a multi-transport hyperrectangle, which we also compare to
a Wasserstein ball.

Analogously, the event that both drones reach the region
in due time is described by the set E2 := R1 ∩ R2. Then,
we aim to determine the worst-case probability

min
P∈PN

P [ξ ∈ E2] = 1− max
P∈PN

P [ξ /∈ E2],

= 1− max
P∈PN

P [ξ ∈ E c
2 ], (12)

where E c
2 = Rc

1∪Rc
2. The set E c

2 is the union of two closed
polytopes. Thus, we can evaluate (12) with PN ≡ B1(P

N
ξ , ε)

or PN ≡ T1(PN
ξ , ε) by exploiting the program of Theorem

6.1. In the case where PN ≡ H1(P
N
ξ , ε), we get in analogy

to the derivation of (17) in [7] that

min
P∈H1(PN

ξ ,ε)
P [ξ ∈ E2] =

2∏
k=1

(
1− max

Pk∈B1(PN
ξk

,εk)
Pk[Rc

k]
)
.

Consequently, this uncertainty quantification problem admits
a tractable reformulation that hinges on solving two robust
uncertainty quantification problems over Wasserstein balls.

For the simulations, the initial distances (in km) of
the drones 1 and 2 follow the distributions 0.5U [6, 10] +
0.5U [10.1, 11.1] and 0.95U [9, 10] + 0.05U [10.1, 11.1], re-
spectively, where U denotes the uniform distribution. All
velocities (in m/sec) follow the distribution U [50, 50.5] and
the deadline is set to τ = 200sec. We also assume that
the supports of these distributions are known and that this
is the only knowledge that we have about the distributions
besides the data. Using this information, and to avoid the



potential conservativeness of confidence bounds as e.g., in
[5, Proposition 24], we tune the radius ε of the monolithic
ball and the radii εk of the hyperrectangle in relative terms
by imposing the requirement εk ≤ cρk

ρ N−1/2+1/4ε (see [7]).
Figure 2 shows the solution of problem (11) across 30

realizations of the simulation that leverage 18 samples each.
The multi-transport hyperrectangle exhibits superior perfor-
mance compared to the Wasserstein ball since the worst-case
probabilities are above the probability threshold of avoiding
the fallback plan (set at 0.8) in 90% of the realizations in
the former case compared to 16.67% in the latter. The true
probability of at least one of the drones reaching the target
equals 0.975, which implies that worst-case probabilities of
the multi-transport hyperrectangle are much closer to the
true probability compared to those of the ball. Figure 1
shows the solution of (12) across 30 realizations of the
simulation, again using 18 samples each. This figure allows
us to compare the worst-case probabilities across all three
ambiguity sets. Again, the results from both hyperrectangles
outperform those from the ambiguity ball in every realiza-
tion. In addition, although the multi-transport hyperrectangle
is more conservative than the Wasserstein one, it leads to
an analogous improvement, providing a convenient tradeoff
between tractability and conservativeness-reduction.

VIII. CONCLUSION

We compared two structured ambiguity sets for data-
driven DRO problems. Both sets can be tuned to contain
the true distribution with prescribed confidence and favor
fast decay rates with the number of samples for high-
dimensional uncertainty compared to traditional ambiguity
balls. The Wasserstein hyperrectangle is the tightest am-
biguity set but has limited practical applicability to DRO
problems compared to the multi-transport hyperrectangle,
which is slightly more conservative. Using duality of DRO
problems over multi-transport hyperrectangles, we developed
tractable reformulations of distributionally robust uncertainty
quantification problems over unions or intersections of con-
vex polytopes.
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