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Abstract This paper presents an analytical model 
to investigate the static behaviour of sandwich plates 
comprised of two isotropic face sheets and a honey-
comb core. Through-thickness transverse shear stresses 
were considered using a unified displacement field 
with which various plate theories were implemented, 
i.e., exponential, third-order, hyperbolic, sinusoidal, 
fifth-order, Mindlin, and the classic plate theory. The 
equilibrium equations of a simply-supported sandwich 
panel were derived using the principle of virtual work 
and Navier solution was obtained under static trans-
verse loading. After validating of the model, various 
mechanical and geometrical parameters were varied 
to characterise the behaviour of the structure under 

regular and auxetic response. It was found that the 
auxeticity of the core strongly affects the mechanical 
response, e.g., in controlling deflection, in-plane ani-
sotropy, and Poisson’s ratio. Cell wall angle was found 
to be most critical parameter that can be used to adjust 
anisotropy, out-of-plane shear modulus, transverse 
shear stress distribution, and deflection of the panel. 
Also the cell aspect ratio controls the sensitivity of the 
core response to other geometrical variations. In terms 
of the higher-order theories, the deflection-dependent 
parameter of the unified formulation seems to have 
more control of maximum deflection compared to 
independent rotations. Auxeticity of the core showed 
some benefits in controlling anisotropy, deflection and 
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providing additional out-of-plane shear rigidity. Over-
all, since there is not one-to-one relationship between 
specific values of Poisson’s ratio, anisotropy, and shear 
rigidity, careful design considerations must be invested 
to obtain a correct mechanical response.

Keywords Honeycomb sandwich panels · Auxetic 
structures · Higher-order shear deformation theories · 
Navier solution

1 Introduction

Overview. In the recent years, auxetic materials have 
received a great deal of attention due to their unique 
performance under mechanical loading (Dhari et  al. 
2020, 2021). Their exotic behaviour is attributed to 
the negative values of Poisson’s ratio where a longi-
tudinal compression (or tension) is accompanied by a 
transverse shrinkage (or expansion). In the classical 
theory of elasticity, Poisson’s ratio ranges between −1 
and 0.5 for isotropic media (Mott and Roland 2013) 
whereas for the anisotropic continua, there are no lim-
its for its values (Ting and Chen 2005). More interest-
ingly and in contrast to full auxeticity, a partial auxetic 
behaviour is observed at certain directions for crystals 
with cubic symmetry (Tretiakov et al. 2018; Tretiakov 
and Wojciechowski 2020), which introduces additional 
complexity. In the current work, the regular honeycomb 
structure and its auxetic counterpart—the re-entrant 
(inverse) honeycomb—is studied as the core of a com-
posite sandwich panel (Hall and Javanbakht 2021).

Honeycomb structures. As one of the oldest bio-
inspired patterns, regular honeycomb structures and 
their re-entrant configuration have been used in a vari-
ety of applications such as sports (Duncan et al. 2018; 
Wang and Hong 2014), bioengineering (Kölbl et  al. 
2020; Mirzaali et al. 2018), acoustics (Melnikov et al. 
2020), and impact resistance (Sethi et al. 2023; Korup-
olu et al. 2022; Tewari et al. 2022) among others. Pro-
gramming and tuning the mechanical properties of 
auxetics allow for a tailored response of these high-
performance metamaterials (Yang et al. 2019; Khosh-
goftar et al. 2021; Khorshidi et al. 2022). The auxetic 
property adds additional flavours to the regular mate-
rial properties such as extreme anisotropy (Dirren-
berger et  al. 2013) and unboundedness of Poisson’s 
ratio (Ting and Chen 2005) which extends the design 
space of structures. Although honeycomb structures 

have been studied a lot in the literature, characterising 
their effective behaviour can provide additional insight 
towards better designs; analytical solutions provide a 
robust and quick approach to this end.

Modelling auxetic structures. Various analytical 
and numerical methods have been used in simulat-
ing the response of auxetics. In Duc et al. (2017), the 
dampened dynamic response of double-curved shal-
low shells were investigated under blast forces. The 
nonlinear behaviour was formulated based on the 
Mindlin plate theory (Mindlin 1951) and solved using 
the Airy stress functions and Galerkin approximation. 
In Hou et al. (2013), the failure of polymorphic hon-
eycomb were studied using finite element simulations. 
By gradually modifying the geometrical parameters, 
the local and global deformation mechanism of poly-
morphic cores and thus their flexural response can be 
regulated. In Zhu et al. (2019), the eigen-frequencies 
of auxetic/regular honeycomb sandwich plates were 
obtained using the nonlinear von Kármán-type and 
third-order shear deformation theories. It was found 
that the auxetic core takes a lower total vibrational 
energy compared to the regular one. Overall, various 
combinations of analytical plate theories, numerical 
simulations, and experimental methods are used to 
model auxetic honeycombs.

Classic plate theories. Shell-like structures and 
plates, as their flat counterparts, are manifolds that 
often has a negligible thickness. Their analysis could 
take two general pathways; the direct approach 
(Javanbakht et  al. 2019, Aßmus et  al. 2023, Zhilin 
1976, Pal’mov 1982) or the engineering approach 
(Timoshenko and Woinowsky-Krieger 1959). In the 
former, the directed surfaces of generalised contin-
uum mechanics (Altenbach and Eremeyev 2009) are 
used to set up the required mathematical objects for 
the definition of a manifold; in the latter, the govern-
ing equations are reduced from three-dimensional 
elasticity onto a plane, see Carrera and Brischetto 
(2008); Khorshidi and Karimi (2020) for instance.

The engineering approach, in its displacement-
based variant, takes the unknown displacements as 
the primary variable. The simplest plate theory in this 
sense, is the classical plate theory (Kirchhoff-Love 
theory or shear-rigid theory) Kirchhoff (1850) which 
is used for thin plates as it neglects the shear defor-
mations and considers an independent equilibrium 
for shear stresses (Zienkiewicz and Holister 1965). 
Consequently, the critical buckling loads and natural 
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frequencies are overestimated by the theory whereas 
the stress components and deflections are underes-
timated. The first-order shear deformation theory or 
Mindlin theory (Mindlin 1951) includes the shear 
deformations and assumes a constant transverse shear 
stress through the thickness. Although it addresses the 
stiffness issue of the classic plate theory, the traction-
free boundary conditions are violated at the bottom and 
top free surfaces, see Rahimi et al. (2012); Khoshgof-
tar et al. (2015, 2022); Xiang (2002); Khorshidi et al. 
(2019) for more recent developments. Such shortcom-
ings are tackled by higher-order plate theories.

Higher-order plate theories. Higher-order plate 
theories can mathematically capture various through-
thickness distributions of transverse shear stress and 
thus can represent cross-sectional warping without 
using shear correction factors. In the recent years, the 
development of these theories have attracted interest in 
the literature (Khorshidi and Karimi 2019; Khorshidi 
et al. 2020; Mashat et al. 2020; Furtmüller and Adam 
2020; Tran Vinh et al. 2016). For example, exponential 
shear deformation theory (Sayyad and Ghugal 2012) 
was developed for moderately thick plates, including 
the impacts of rotary inertia and transverse deflections. 
It was shown that the precision and reliability of this 
theory are higher than polynomial shear deformation 
theories because exponential theories can reduce to 
polynomial theories by truncating the expanded power 
series. In some cases, higher order shear deforma-
tion theories are not computationally suitable because 
through-thickness modifications increase the number 
of unknowns in the displacement field (Pradyumna 
and Bandyopadhyay 2008; Neves et  al. 2012; Talha 
and Singh 2010). In the context of auxetics, provid-
ing a formulation, which incorporates various theories, 
seems to be an interesting journey to embark.

Motivation. Many higher-order theories have been 
used to model the mechanical response of regular or 
auxetic honeycombs. For instance, the linear static 
response of an auxetic core in a sandwich panel was 
formulated using a third-order shear theory, which 
included stress–strain response and a parametric study 
showing a range of values for Poisson’s ratio (Pham 
et al. 2020). The classic plate theory was used to obtain 
natural frequencies of vibration for a regular honey-
comb sandwich panel in a parametric study (Jweeg 
2016); the effect of changing the wall angle and layer 
thickness were studied therein. The vibration response 
of a regular honeycomb cores and composite skin layers 

was studied under blast loads using a third-order shear 
deformation theory in Pham et al. (2023). The formula-
tion uses the rule of mixtures (Javanbakht et al. 2020) 
to obtain the effective properties of layers (Javanbakht 
et al. 2016) and set up a new finite element for improved 
accuracy. Most of the literature discusses the results of 
the auxetic cores using a certain theoretical approach 
combined with the finite element method. Synthesising 
these approaches reveal that most of the analytical for-
mulations for honeycombs are based on Gibson’s beam 
model (Gibson and Ashby 1997) and a plate theory; the 
results cover static, dynamic, and eigenvalue analysis of 
vibration. Nevertheless, they all lack a comprehensive 
modelling that include various theories and a compari-
son of their performance. Herein, this aspect will be 
addressed within a theory—that synthesises various 
plate theories—in addition to a comprehensive analy-
sis of the regular and auxetic behaviour. The success of 
the approach is demonstrated through a static analysis 
which can be extended to other types as well.

Aim. Although various theories have been used to 
simulate the response of auxetics, a uniform formula-
tion has not been provided for sandwich panels with 
auxetic honeycomb cores. Thus, it is aimed to provide 
an analytical solution for sandwich panels with regu-
lar and re-entrant honeycomb cores, which encompass 
various higher-order shear theories. The solutions will 
help to compare the response of the sandwich panel in 
regular and auxetic modes and its affecting parameters 
such as vertical cell rib length, inclined cell rib length, 
and cell wall angle. The provided formulation can be 
used as a design roadmap for such structures. In the 
following sections, a unified higher-order plate formu-
lation is developed for a general honeycomb structure; 
after validating the results with a finite element model 
and benchmark values in the literature, parametric 
analyses on the core properties and the sandwich panel 
were conducted. After discussing the results, the study 
concludes by highlighting the key findings.

2  Formulation

2.1  Physical geometry of the model

A sandwich structure subjected to static loading, con-
sisting of an auxetic core and two isotropic facesheets 
is assumed. The width, length, total thickness, and 
effective density (Bergmann et  al. 2020) of the 
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structure are denoted by b, a, h, and � , respectively; 
the thickness of the core and each facesheet, are 
denoted by tc , tf  , respectively. A right-handed frame of 
reference is placed at the corner of the sandwich plate, 
where x1–x2 axes span the structural plane, see Fig. 1. 
The unit cell of the auxetic core is shown in Fig. 1b, 
where the geometrical parameters l1 , l2 and � denote 
the length of the inclined rib, horizontal length of the 
cell, and cell wall angle, respectively. Note that a posi-
tive angle characterises a re-entrant/inverted honey-
comb whereas regular honeycombs are obtained from 
negative angles, e.g., l1 = l2 , t1 = t2 , and � = −30 
result in regular hexagonal honeycombs. Additionally, 

the aspect ratio ( �1 ), thickness ratio ( �2 ), and the thick-
ness-to-length ratio ( �3 ) of the cell are defined as 

(1a)�1 ∶=
l2

l1
,

(1b)�2 ∶=
t2

t1
,

(1c)�3 ∶=
t1

l1
.

Fig. 1  Schematic of the hexagonal honeycomb core embedded in a sandwich panel: a Geometry of a sandwich panel, b the unit cell 
of hexagonal honeycomb core, and c three-dimensional layout of the honeycomb panel
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2.2  Kinematics of higher-order shear deformation 
theories

In contrast to the first-order shear deformation theory, 
higher-order shear deformation theories are needless of 
shear correction factor as their transverse shear stresses 
automatically vanish at the top and bottom surfaces of 
the plate. Based on these theories, a general descrip-
tion of the displacement field is assumed to be 

 where u1 ≡ u1
(

x1, x2, x3
)

 , u2 ≡ u2
(

x1, x2, x3
)

 and 
u3 ≡ (

x1, x2, x3
)

 express the displacement of an arbi-
trary point in the x1 , x2 and x3 directions, respec-
tively. The mid-plane displacement components 
of the sandwich panel are expressed in terms of the 
planar coordinates, i.e., u ≡ u(x1, x2) , v ≡ v(x1, x2) 
and w ≡ w(x1, x2) along the x-, y-, and z-axes, respec-
tively. Moreover, independent rotation angles caused 
by bending about the y- and x1 - axes are defined by 
�(x1, y1) and �(x1, y1) , respectively. Depending on 
the adopted theory, specific continuous functions are 
used for g ≡ g(x3) and f ≡ f (x3) which assign dif-
ferent weights to the deflection-dependent and inde-
pendent rotations of the plate, respectively. In conse-
quence, a specific through-thickness distribution of 
stress is obtained for the transverse shear stress, see 
Table 1 for an overview.

.

(2a)u1 ∶= u + gw,1 + f � ,

(2b)u2 ∶= v + gw,2 + f� ,

(2c)u3 ∶= w,

2.3  Compatibility equations and constitutive 
relations

Within the elastic regime, the infinitesimal strain field 
can be deduced from Eq. (2): 

 The constitutive equations for the considered sand-
wich plate are expressed using the generalised 
Hooke’s law:

where the properties of the i-th layer are marked by 
the superscript [i], i.e., the bottom facesheet ([1]), 
core ([2]), and the top facesheet/skin ([3]); moreover, 
the stiffness coefficients ( Qij ) are 

(3a)�11 = u,1 + gw,11 + f �,1,

(3b)�22 = v,2 + gw,22 + f�,2,

(3c)�12 = 1∕2
[

u,2 + v,1 + 2gw,12 + f
(

�,1 + �,2
)]

,

(3d)�13 = 1∕2
[

g,3w,1 + � f,3 + w,1

]

,

(3e)�23 = 1∕2
[

g,3w,2 + � f,3 + w,2

]

.

(4)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�11

�22

�23

�13

�12

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

[i]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[i]
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�11

�22

�23

�13

�12

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

∀i ∈
�

1, 2, 3
�

,

Table 1  A unified overview of various plate theories in terms of two general continuous functions

Plate theory Continuous function

g(x3) f (x3)

Classical plate theory (CPT) (Kirchhoff 1850) −x
3

0
Mindlin plate theory (MPT) (Mindlin 1951) 0 x

3

Third-order shear deformation theory (TSDT) (Aghababaei and Reddy 2009) −
4

3h2
x
3
3

x
3
−

4

3h2
x
3
3

Exponential shear deformation theory (ESDT) (Sayyad and Ghugal 2012) −x
3

x
3
e
−2

(

x3

h

)2

Sinusoidal shear deformation theory (SSDT) (Thai and Vo 2013) −x
3

h

�
sin

(

�x3

h

)

Hyperbolic shear deformation theory (HSDT) (El Meiche et al. 2011) −x
3 h sinh

(

x3

h

)

− x
3
cosh

(

1

2

)

Fifth-order shear deformation theory (FSDT) (Khorshidi et al. 2022) −x
3 x

3

(

1

h
−

2

h3
x
3
2 +

8

5h5
x
3
4

)
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 where G[i]

13
, G

[i]

23
, G

[i]

12
, E

[i]

1
,E

[i]

2
, �

[i]

12
 and �[i]

21
 are shear 

elastic modulus, Young’s modulus and Poisson’s 
ratios, respectively. For the isotropic face sheets 
( i = 1, 3 ), the stiffness coefficients in Eq. (5) reduce to

where E ≡ E[1] ≡ E[3] , ≡ G[1] ≡ G[3] and 
� ≡ �[1] ≡ �[3] denote the Young’s modulus, shear 
modulus and Poisson’s ratio of the symmetric iso-
tropic face sheets, respectively. For the auxetic core 
with the assumed honeycomb cells, the extended Gib-
son’s formulation is readily obtained (Zhu et al. 2019): 

(5a)Q
[i]

11
=

E
[i]

1

1 − �
[i]

12
�
[i]

21

,

(5b)Q
[i]

22
=

E
[i]

2

1 − �
[i]

12
�
[i]

21

,

(5c)Q
[i]

12
= Q

[i]

21
=

E
[i]

2
�
[i]

12

1 − �
[i]

12
�
[i]

21

,

(5d)Q
[i]

44
= G

[i]

23
,

(5e)Q
[i]

55
= G

[i]

13
,

(5f)Q
[i]

66
= G

[i]

12
,

(6)∀i ∈
�

1, 3
�

∶

⎧

⎪

⎨

⎪

⎩

Q
[i]

11
= Q

[i]

22
=

E

1−�2
,

Q
[i]

12
= Q

[i]

21
=

E�

1−�2
,

Q
[i]

44
= Q

[i]

55
= Q

[i]

66
= G =

E

2(1+�)
,

(7a)E
[2]

1
= E

�3
3
sec3 �

(

�1 − sin �
)

�2
3

(

�1 sec
2 � + tan2 �

)

+ 1
,

(7b)E
[2]

2
= E

�3
3
sec �

(

�1 − sin �
)(

�2
3
+ tan2 �

) ,

 where the dimensionless geometrical parameters of 
the cell, i.e., �1 , �2 , and �3 , are involved. Note that �2 
is included in (7f) and (7h) and thus for simplicity, a 
unit value is assumed for this ratio.

2.4  Equilibrium equations

To derive the governing equations and related bound-
ary conditions of the system, virtual work principle is 
applied as follows

where the strain energy of the sandwich plate U and 
work done by applied forces V are calculated as

where V[i] is the volume occupying by the i-th layer, 
and q is the total transverse load.

(7c)G
[2]

12
= E

�3
3
sec �

�1
(

2�1 + 1
) ,

(7d)G
[2]

23
= G

�3 cos �

�1 − sin �
,

(7e)

G
[2]

31
=

1

2
G�3 sec �

(

�1 + 2 sin �

2
(

�1 − sin �
) +

�1 − sin �

2�1 + 1

)

,

(7f)�
[2]

12
= −

(

1 − �2
3

)

tan � sec �
(

�1 − sin �
)

�2
3

(

�1

�2
sec2 � + tan2 �

)

+ 1

,

(7g)�
[2]

21
= −

(

1 − �2
3

)

sin �
(

�1 − sin �
)(

�2
3
+ tan2 �

) ,

(7h)�[2] = �

(

�1�2 + 2
)

�3 sec �

2
(

�1 − sin �
) ,

(8)∫
t

0

(�V + �U) dt = 0,

(9)�U =
1

2

3
∑

i=1
∫
V
[i]

(

�
[i]

11
��11 + �

[i]

22
��22 + 2�

[i]

12
��12 + 2�

[i]

13
��13 + 2�

[i]

23
��23

)

dV[i] ∀i ∈
{

1, 2, 3
}

,

(10)�V = −∫
A

q �w dA,



957An analytical model for the static behaviour of honeycomb sandwich plates with auxetic cores…

1 3
Vol.: (0123456789)

Five coupled governing equations can be derived 
in terms of displacement field by incorporating 
Eqs. (2)–(7a) and Eqs. (9)–(10) into Eq. (8) as follows 

 where Li , ∀i ∈
{

1,… , 15
}

 denote various differen-
tial operators, see appendix A.

2.5  Navier solution

Navier solution (Timoshenko and Woinowsky-
Krieger 1959) expresses the deflection of simply-
supported rectangular plates in terms of double 
trigonometric infinite series which naturally satisfy 
the essential boundary conditions. Following this 
approach, all the displacement terms are expressed 
as double trigonometric infinite series: 

 where um,n , vm,n , wm,n , �m,n and �m,n are unknown coef-
ficients which satisfy Eqs. (11a)–(11e). Additionally, 

(11a)L1u + L2v + L3w + L4� + L5� = 0,

(11b)L2u + L6v + L7w + L8� + L9� = 0,

(11c)L3u + L7v + L10w + L11� + L12� = 0,

(11d)L4u + L8v + L11w + L13� + L14� = 0,

(11e)L5u + L9v + L12w + L14� + L15� = 0,

(12a)

u(x1, x2) =

∞
∑

n=1

∞
∑

m=1

um,n cos
(

m�

a
x1

)

sin
(

n�

b
x2

)

,

(12b)

v(x1, x2) =

∞
∑

n=1

∞
∑

m=1

vm,n sin
(

m�

a
x1

)

cos
(

n�

b
x2

)

,

(12c)

w(x1, x2) =

∞
∑

n=1

∞
∑

m=1

wm,n sin
(

m�

a
x1

)

sin
(

n�

b
x2

)

,

(12d)

�(x1, x2) =

∞
∑

n=1

∞
∑

m=1

�m,n cos
(

m�

a
x1

)

sin
(

n�

b
x2

)

,

(12e)

�(x1, x2) =

∞
∑

n=1

∞
∑

m=1

�m,n sin
(

m�

a
x1

)

cos
(

n�

b
x2

)

,

the transverse load q(x,  y) can be also expanded as 
follows

where Qm,n can be calculated as follows

Substituting Eqs.  (12a)–(14) into Eqs.  (11a)–(11e) 
leads to a system of algebraic equations in terms of 
the introduced unknown coefficients. These coupled 
algebraic equations are given in the appendix A.

Finally, the following dimensionless parameters 
are defined for quantifying the numerical results: 

 where wc is deflection at the plate centre, hr is the 
core-to-face thickness ratio, and � is the width-to-
thickness ratio of the plate (reciprocal of thickness 
ratio).

(13)

q
(

x1,x2
)

=

∞
∑

n=1

∞
∑

m=1

Qm,n sin
(

m�

a
x1

)

sin
(

n�

b
x2

)

,

(14)

Qm,n =
4

a b ∫
a

0 ∫
b

0

q
(

x1,x2
)

sin
(

m�

a
x1

)

sin
(

n�

b
x2

)

dx2 dx1.

(15a)w ∶= wc

(

Eh3

b4q

)

,

(15b)�11 ∶= �11

(

h2

b2q

)

,

(15c)�22 ∶= �22

(

h2

b2q

)

,

(15d)�12 ∶= �12

(

h2

b2q

)

,

(15e)�13 ∶= �13

(

h

bq

)

,

(15f)�23 ∶= �23

(

h

bq

)

,

(15g)hr ∶=
hc

hf
,

(15h)� ∶=
a

h
,
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3  Result and discussion

In this section, the developed analytical models are 
benchmarked against a full-field finite element model. 
Then, a parametric study is conducted to further 
understand the behaviour of the model.

3.1  Validation of the model

Due to the limited experimental results available in 
the literature, the developed models are validated 
against the results of 

1. The analytical model of Reddy (2003) where a 
three-layer (0/90/0) square laminate plate is sub-
jected to sinusoidal loading; and

2. A full-field finite element model (Javanbakht and 
Öchsner 2017, 2018) created by the ABAQUS 
commercial package.

Finite element model. A full-field finite element 
model was created accounting for all the mesoscopic 
details. Eight-node isoparametric quadrilateral lin-
ear elements were used to discretise the geometry of 
both core and face sheets. A sinusoidal distributed 
load with an amplitude of 100  N, and wavelengths 
of 2a and 2b (along x and y directions, respectively) 
was applied to the top face. The Young’s modulus, 
Poisson’s ratio, and mass density of the sample were 
assumed to be 69 GPa, 0.3, and 2700 Kg∕m3 , respec-
tively. The side faces of the model were fixed along 
three directions, see Fig. 2a.

Mesh convergence study To achieve mesh inde-
pendence, the total reaction force ( Ftot ) and maxi-
mum deflection ( wc ) were plotted against various 
mesh densities (Javanbakht et al. 2017):

where � is the characteristic length of the mesh. A 
mesh density of 0.125 1∕mm was used based on the 
mesh sensitivity analysis in Fig. 2b where the maxi-
mum deflection and total reaction force were used as 
target values.

Benchmarking against the finite element model. 
Under a linear static analysis, the dimensionless 
maximum deflection ( w ) was calculated at the cen-
tre of the sandwich panel, see Table 2. Overall, the 
percentage relative error of models are below 14% 
among which the fifth-order theory provides the 
best estimate for deflection.

Analytical benchmark model. In Table  3, the 
maximum deflection of the plate and normal/shear 
stress components at various monitoring points are 
calculated using the developed models; The results 
are compared against TSDT, MPT and 3D elastic-
ity solution (ELS) of Reddy (2003). The transverse 
shear stress at the middle of the core �23(a∕2, 0, 0) ) 
is the least accurate results,compared to ELS, as 
relative percentage errors up to 16% are observed. 
In contrast, maximum deflection at the centre of the 
panel along with the other stress values are in good 
agreement with the benchmark model.

(16)� ∶=
1

�
,

Fig. 2  Finite element model: a fixed boundary conditions of the circumference (in orange) and surface loading of the top skin (in 
pink), b mesh sensitivity analysis
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3.2  Parametric analysis of the core mechanical 
properties

To better comprehend the behaviour of the developed 
analytical models, a parametric analysis was con-
ducted for the isolated regular and re-entrant honey-
comb cores, i.e., negative and positive inclination 
angles, respectively. To provide dimensionless results, 
the effective elastic moduli were normalised relative 
those of the face sheets 

(

E ≡ E[1] ≡ E[3] = 69GPa
)

 , 

i.e., the normalised elastic moduli along the principal 
directions 

(

E
[2]

1
∕E andE

[2]

2
∕E

)

 and normalised core 
transverse shear modulus 

(

G[2]
23 ∕G

)

 were used in pre-
senting the results. The sensitivity of various material 
properties to geometrical variation is presented in this 
subsection, see Fig.  3. Note that all the results are 
presented for a constant thickness-to-length ratio of 
�3 = 0.1 ; increasing this ratio only magnifies the val-
ues, see the numerators in Eq. (7a).

Core auxeticity. Cell wall angle triggers the auxetic 
behaviour of honeycomb cells, see Fig.  3a. Positive 
cell wall angles ( 𝜃 > 0◦ ) induce negative Poisson’s 
ratio whereas the negative angles represent the regu-
lar honeycomb structures in the current formulation. 
In the vicinity of � = 0◦ , a sharp transition between 
auxetic and regular behaviour occurs, which is a result 
of changing the internal geometry of the core layer 
from inverted honeycomb to the regular hexagonal 
arrangement. Note that at larger angles a zero Pois-
son’s ratio is asymptotically obtained, irrespective of 
the auxetic or regular behaviour. Finally, in larger cell 
aspect ratios ( �1 ), the jump between two behaviours 
become milder but vanishes asymptotically faster.

Core anisotropy. The geometry of the cell adjusts 
the anisotropy of the core, see Fig.  3b. By taking 
the elastic moduli ratios of two principal directions 

Table 2  Maximum deflection of the honeycomb sandwich 
panel against the finite element results

Deformed structure Model w(a∕2, b∕2) Percent-
age relative 
error (%)

FEM 0.05701 n/a
TSDT 0.04931 13.51
ESDT 0.05101 10.53
SSDT 0.05015 10.52
HSDT 0.04923 13.65
FSDT 0.05139 9.87

Honeycomb parameters:
a = 0.89946m , b = 0.93229m , h = 7 cm , t

c
= 5 cm , 

�
3
= 0.0625 , �

1
= 1.26875 , � = 15◦

Table 3  Validation of the maximum deflection and stress components for a three-layer (0/90/0) square laminate plate modelled in 
Reddy (2003)

Values within the square brackets denote the percentage relative error with respect to the corresponding TSDT benchmark values
Dimensionless stress values �11 and �22 were calculate at the centre of the plate, i.e., at (a/2, b/2, h/2)

� Method w(a∕2, b∕2) ⋅ 100 �11 �22 �12(a, b, h∕2) �23(a∕2, 0, 0)

4 ELS (Reddy 2003) – 0.7550 – – 0.2170
MPT (Reddy 2003) 1.7758 0.4370 – – 0.1561
TSDT (Reddy 2003) 1.9218 0.7345 – – 0.1832
ESDT 1.9432 [1.11] 0.7759 [2.76] 0.0808 0.0516 0.1918 [11.61]
SSDT 1.9345 [0.66] 0.7554 [0.05] 0.0795 0.0507 0.1876 [13.54]
HSDT 1.9204 [0.07] 0.7325 [2.98] 0.0781 0.0496 0.1827 [15.80]
FSDT 1.9218 [0.00] 0.7344 [2.72] 0.0782 0.0497 0.1832 [15.57]

10 ELS (Reddy 2003) – 0.5900 – – 0.1230
MPT (Reddy 2003) 0.6693 0.5134 – – 0.0915
TSDT (Reddy 2003) 0.7125 0.5684 – – 0.1033
ESDT 0.7231 [1.48] 0.5771 [2.18] 0.0393 0.0281 0.1284 [4.39]
SSDT 0.7180 [0.77] 0.5727 [2.93] 0.0390 0.0279 0.1059 [13.90]
HSDT 0.7119 [0.08] 0.5679 [3.74] 0.0386 0.0276 0.1030 [16.26]
FSDT 0.7124 [0.01] 0.5683 [3.677] 0.0387 0.0277 0.1033 [16.01]



960 M. Karimi et al.

1 3
Vol:. (1234567890)

(

E
[2]

1
∕E

[2]

2

)

 as an anisotropy metric, it can be seen 
that higher cell wall angles increase anisotropy. For 
negative cell wall angles, a sharper rise denotes the 
increased sensitivity of anisotropy in the regular 
hexagonal arrangement. Namely, more extreme ani-
sotropy can be achieved in regular honeycomb cores 
compared to the auxetic one. More importantly, 
negligible cell wall angles (about −10◦ < 𝜃 < +10◦ ) 
induce the least amount of anisotropic response in 
the core—this range is about the same for both aux-
etic and regular cores. Note that at zero degrees, the 
formulation represents a rectangular box 

cross-section, which can be completely isotropic if 
it becomes a square box. Therefore, the mentioned 
range of angles becomes more limited for higher 
cell aspect ratios where anisotropy is more 
pronounced.

Elastic moduli and Poisson’s ratio. The relative 
elastic moduli along two principal directions 
(

E
[2]

1
∕E andE

[2]

2
∕E

)

 were plotted for three values of 
cell aspect ratio ( �1=1.8, 2.4 and 3) in Fig.  3c. In 
both re-entrant and regular cases, the following 
observations are obtained—provided that the abso-
lute value of Poisson’s ratio is used for the auxetic 

(a) (b)

(c) (d)

Fig. 3  Variation of the core properties due to its geometrical 
variation: a core Poisson’s ratio versus cell wall angle, b core 
anisotropy ratio versus cell wall angle, c core Poisson’s ratio 

versus normalised elastic moduli of core, and d core Poisson’s 
ratio versus normalised shear modulus
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case. Decreasing the value of Poisson’s ratio 
increases the elastic modulus along 1-axis in both 
regular and auxetic cores. In either case, elastic 
modulus along 2-axis may increase or decrease 
depending on other principal value of elastic mod-
ulus. Zero Poisson’s ratio corresponds to increased 
elastic modulus along 1-axis whereas along 2-axis, 
either a more restricted increase occurs or its value 
vanishes. The elastic modulus value along 2-axis is 
more sensitive to the cell aspect ratio, i.e., higher 
aspect ratios results in smaller Poisson’s ratio and a 
smaller maximum value for the same range of Pois-
son’s ratios. On the other hand, E1 seems to be less 
sensitive to the aspect ratio change as l2 was kept 
constant during this variation.

Transverse shear modulus and Poisson’s ratio. 
Fig.  3d illustrates the variation of Poisson’s ratio 
versus the shear modulus ratio. Similar to normal-
ised elastic moduli, higher aspect ratios produce 
more controlled stiffness values in the same range 
of Poisson’s ratios. For the regular core, normal-
ised shear modulus decreases by increasing the 
cell wall angle; this reduction is more severe for 
larger aspect ratios. In contrast, the auxetic core 
experiences a slight increase before starting the 
decreasing regime; similarly, this increase is more 
severe for smaller aspect ratios. It is noted that 
smaller aspect ratios can potentially provide larger 
transverse shear moduli for a specific Poisson’s 
ratio.

3.3  Mechanical response of the sandwich panel

In this subsection, a parametric study is conducted 
to reveal the behaviour of the sandwich panel with 
an auxetic core under linear static loading. Vari-
ous plate theories are used to calculate the deflec-
tion under sinusoidal distributed load (amplitude of 
q, and wavelengths 2a and 2b in the x1 and x2 direc-
tions, respectively) and the transverse shear stress of 
the panel, see Fig.  4. In these structures, isotropic 
face sheet are assumed to have an elastic modulus of 
( E ≡ E[1] ≡ E[3] = 69GPa and a shear modulus of 
(

G ≡ G[1] ≡ G[3] = 26.5GPa
)

 . The core-to-face-sheet 
thickness ratio is assumed to be hc∕hf = 4 for a total 
thickness of h = 0.1.

Maximum deflection dependence on the cell 
geometry. As illustrated in Fig. 4a, all plate theories 
asymptotically result in the same deflection at higher 
values of � (reciprocal of thickness ratio), i.e., for thin 
sandwich panels, all theories correspond to CPT. In 
contrast at lower values of � , higher-order theories 
deviate from the solution of CPT while MPT stand-
outs with an underestimation of the values. This 
could be attributed to dropping the shear contribu-
tion of deflection in MPT ( g = 0 ). The most com-
pliant response is that of FSDT whereas TSDT and 
HSDT identically show the stiffest behaviour (exclud-
ing MPT). Finally, the insensitivity of CPT to thick-
ness changes is clearly depicted. It is understood that 
in terms of deflection values, the shear contribution 

(a) (b)

Fig. 4  Estimations of various plate theories for the sandwich panel: a maximum dimensionless deflection, and b dimensionless 
transverse shear stress of the panel at mid-edge (a/2, 0)
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of deflection-dependent component (g) is more det-
rimental compared to the independent rotations (via 
f). In addition, the deflections can become up to 2.5 
times of the shear-rigid theories for thick sandwich 
panels.

Transverse shear stress dependence on the cell 
geometry. Transverse shear distribution of the panel 
is depicted in Fig. 4b. From top to bottom, the jumps 
in the shear stress values mark the regions for top 
face sheet, core, and bottom face sheet. In all lay-
ers, CPT cannot capture any shear stress distribution. 
MPT fails at satisfying the traction-free boundary 
conditions in the face sheet layers while estimating 
a small shear value through the core. The advantage 
of higher-order theories is highlighted by providing 
much better estimates in all layers and satisfying the 
traction-free conditions. Most higher-order theories 
seem to be in agreement with each other except at 
the middle of the core and in the skin layer around 
the skin-core interface. In the skin layers and in the 
core layer at the vicinity of the skin-core interface, 
stress estimates follow the same trend, i.e., HSDT 
and FSDT give the highest and lowest stress values, 
respectively. In contrast, this trend reverses about the 
middle of the core. Similar to maximum deflection, 
the estimations of TSDT and HSDT are very similar 
denoting the lowest stress on the mid-plane (except 
the CLT and MPT); on the other hand, the highest 
stress on the mid-plane is generated by FSDT. Most 

unreliable results are provided CPT and MPT—espe-
cially in the core layer.

Effect of core material properties. In Fig. 5, FSDT 
was used to illustrate the variation of the maximum 
deflections ( w ) of both regular and re-entrant honey-
comb structures against the variation of their core 
material properties—which is a direct cause of vary-
ing cell wall angle ( −70◦ ≤ � ≤ +70◦ ), see Figs.  3a 
and 3b. Namely, the anisotropy of the core 

(

E
[2]

1
∕E

[2]

2

)

 
and core Poisson’s ratio can be adjusted by fine-tun-
ing the cell wall angle. In consequence, the maximum 
deflection of the sandwich panel can be controlled, 
too. In either auxetic or regular behaviour, increasing 
the wall thickness-to-length ratio ( �3 ) reduces the 
deflection since stiffness of the structure increases. 
On the contrary, increasing the core anisotropy causes 
a reduction in deflection for auxetic behaviour while 
slightly increases the deflection in the regular one, see 
Fig.  5b. In the auxetic core, increasing the positive 
cell wall angle results in higher anisotropy, and sud-
den drop in the negative Poisson’s ratio which is fol-
lowed by an asymptotic increase towards zero. Con-
sequently, the deflection of the plate decreases for the 
auxetic core when the negative Poisson’s ratio is nul-
lified. It should be noted that deflection experiences 
more sensitivity to the values of Poisson’s ratio in 
smaller cell aspect ratios, see Fig.  5a. On the other 
hand, deflection seems to be less sensitive to the 

(a) (b)

Fig. 5  Effect of core material properties on maximum deflec-
tion of the honeycomb core based on the results of FSDT: a 
variation of core Poisson’s ratio for different thickness-to-

length ratios ( �
3
 ), and b variation of core elastic modulus ratio 

for different cell aspect ratios ( �
1
)
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changes of the positive values of Poisson’s ratio 
except producing a slight increase. In summary to 
control deflection, it is suggested to use the auxetic 
core and increase the cell wall angle.

Effect of the core-to-face thickness ratio. Fig. 6 shows 
the influence of auxetic core-to-skin thickness ratio ( hr ) 
on the maximum dimensionless deflection of the plate. 
Increasing the hr ratio magnifies the maximum deflection 
because thicker auxetic cores are softer. The aspect ratio 
and the thickness-to-length ratios of the cell have neg-
ligible effect for hr < 2 ; in contrast, at higher values of 
hr , the difference is more noticeable. This can be attrib-
uted to the emerging dominance of core properties as its 
thickness increases.

Transverse shear stress dependence on the cell 
geometry. The variation of dimensionless transverse 
shear stress versus various geometrical parameters 
of an auxetic core ( � = 30◦ ) is depicted in Fig.  7. 
Increasing the cell aspect ratio reduces the trans-
verse shear stress in the core; this effect is more pro-
nounced in the middle of the core and slightly reduces 
towards the skins, see Fig. 7a. In contrast, higher cell 
aspect ratios has the opposite effect in the skins and 
increases the transverse shear stress therein. Never-
theless, towards the outer boundaries of the skins, the 
stress distribution diminishes to comply with the trac-
tion-free boundary conditions. Increasing the thick-
ness-to-length ratio has the effect opposite to the cell 

(a) (b)

(c) (d)

Fig. 7  Through-thickness distribution of dimensionless transverse shear stress versus a cell aspect ratio, b thickness-to-length ratio, 
c cell wall angle (contour), and d) cell wall angle (graph) for a re-entrant honeycomb under SDL
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aspect ratio, see Fig. 7b. Namely, higher thickness-to-
length ratios increase the transverse shear in the core 
while reducing it in the skins. However, the increase 
of transverse shear stress becomes less sensitive to 
the thickness-to-length ratio towards the skins.

Increasing the cell wall angle decreases the trans-
verse shear stress both in the auxetic core and in the 
skins, see Fig.  7d; this effect is slightly more pro-
nounced in the middle of the core. Nevertheless, the 
shear modulus can increase or decrease as a func-
tion of cell wall angle, see Fig.  3d. For instance, 
take �1 = 1.8 and �3 = 0.1 , shear modulus peaks at 
about �=30°after which the stiffness starts to decline 
and asymptotically approach zero. Thus, comparing 
angles more than 40°, the stiffness is diminished and 
the shear stress will increase. Therefore, increasing 
cell wall angle can have an opposite effect depending 
on its value; this highlights the importance of select-
ing a correct cell wall angle for minimising shear 
stress.

4  Conclusion

In the current study, Navier solution has been 
employed to investigate the static bending response 
of simply supported sandwich panel with regu-
lar and re-entrant honeycomb core. Various clas-
sic and higher order theories were employed under 
a unified scheme to formulate the behaviour of the 
structure under a sinusoidal loading. The analytical 
model was validated using a finite element model 
and some benchmark values available in the lit-
erature. Extensive parametric studies were carried 
out to shed light on the intricate behaviour of this 
particular structure. It was found that the behaviour 
of the core can be adjusted by fine-tuning the cell 
wall angle ( � ), the aspect ratio ( �1 ), the thickness-
to-length ratio ( �3 ), and core-to-skin thickness ( hr ). 
These parameters affect the auxetic/regular behav-
iour, the value of Poisson’s ratio, anisotropy of the 
cell, out-of-plane shear modulus, transverse shear 
stress distribution, and deflection of the panel. Par-
ticularly, the cell wall angle has an overarching 
effect on other parameters.

The following key findings can be highlighted 
about the mechanical response of the core:

– Cell wall angles ranging about −10◦ < 𝜃 < +10◦ 
results in the least anisotropic response of the aux-
etic and regular core.

– Increasing the cell wall angle can result in highly 
anisotropic behaviour of the auxetic core, i.e., the 
contrast of elastic moduli increases from below 
0.2 to 20 at higher aspect ratios.

– In estimating the deflection using higher-order the-
ories, the deflection-dependent component of the 
unified solution (g) in Eq. (2) is more critical than 
independent rotations (f). Considering the shear 
deformations results in maximum deflections 2.5 
times those of the CPT predictions.

– The main advantage of higher-order theories is pro-
viding better estimates of transverse shear stress and 
deflection while satisfying the traction-free bound-
ary conditions.

– Cell aspect ratio controls the sensitivity of the core 
response to geometrical variations. For instance, 
normalised shear modulus experiences higher vari-
ations in both auxetic and regular cores.

– For core-to-skin thickness ratios smaller than two 
( hr < 2 ), the cell aspect ratio and thickness-to-
length ratio have negligible effect of the maximum 
deflection of the sandwich panel.

– By increasing the cell wall angle within a cer-
tain range can reduce the transverse shear stress 
in both auxetic core and skin layers, e.g., within 
0◦ < 𝜃 < + 40◦ in the current study.

By combining the generalised Gibson’s formulation 
with a family of higher-order plate theories, this study 
provides an analytical estimation of the linear static 
response of a sandwich panel. The approach can be 
used for any unit cells that can be modelled by a beam 
theories. In addition to static response, it can be used 
in dynamic and vibration analyses. More importantly, 
it was shown that no one-to-one relationship exists 
between auxeticity, anisotropy, and shear rigidity in 
re-entrant honeycomb auxetics; thus, geometrical 
parameters must be selected carefully during design to 
fine-tune the desired mechanical response. Future stud-
ies might include the viscoelastic behaviour of such 
structures.
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Appendix

Dependency of various functions are summarised as 
follows: 

 The expanded form of Eqs. (11a)–(11e) can be writ-
ten as follows: 

(A.1a)u ≡ u(x1, x2),

(A.1b)v ≡ v(x1, x2),

(A.1c)w ≡ w(x1, x2),

(A.1d)� ≡ �(x1, x2),

(A.1e)� ≡ �(x1, x2).

(A.2a)

A1v,12 + A2�,12 + A3w,122 + B1u,11 + B2�,11
+ B3w,111 + C1

(

v,12 + C2�,12 + u,22
)

+ C2�,22 + 2C3w,122 = 0,

(A.2b)

A1u,12 + A3w,112 + A2�,12

+ C1u,12 + 2C3w,112 + C2�,12

+ E1v,22 + E3w,222 + E2�,22

+ C1v,11 + C2�,11 = 0,

 The shear correction factor Ks is 5/6 for FSDT and 
1 for other theories given in Table 1. Material coef-
ficients of Eqs. (A.2a)–(A.2e) are given as follows: 

 Linear algebraic system of equations obtained by 
inserting trial functions into governing equations are 
given as follows: 

(A.2c)

− A3u,122 − A3v,112 − 2A5w,1122 − A4�,112

− A4�,122 − 2C3u,122 − 2C3v,112 − 4C5w,1122

− 2C4�,112 − 2C4�,122 − B3u,111 − B5w,1111 − B4�,111

− E3v,222 − E5w,2222 − E4�,222 + E1Ksw,22

+ 2D2Ksw,22 + D5Ksw,22 + D3Ks�,2 + D4Ks�,2

+ G1Ksw,11 + 2G2Ksw,11 + G5Ksw,11

+ G3Ks�,1 + G4Ks�,1 + q = 0,

(A.2d)

A2v,12 + A4w,122 + A6�,12 + C2v,12 + 2C4w,122

+ C6�,12 + B2u,11 + B4w,111 + B6�,11

+ C2u,22 + C6�,22 − G3Ksw,1

− G4Ksw,1 − G6Ks� = 0,

(A.2e)

A2u,12 + A4w,112 + A6�,12 + C2u,12 + 2C4w,112 + C6�,12

+ E2v,22 + E4w,222 + E6�,22 + C2v,11

+ C6�,11 − D3Ksw,2 − D4Ksw,2 − D6Ks� = 0.

(A.3a)
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⎥

⎥
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∫
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�
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, Q

[i]
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, Q

[i]

66
, Q

[i]
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�T

�
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�

dx3

(A.3b)

[

D1 D2 D3 D4 D5 D6

G1 G2 G3 G4 G5 G6

]
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3
∑
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∫
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Q
[i]
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[i]
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}T

{
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}

dx3.
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