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SUMMARY

Borehole operations play a crucial role in managing various subsurface activities related
to energy, including energy storage, geothermal energy production, CO2 sequestration,
oil and gas extraction, wastewater disposal, and thermal recovery processes. In recent
times, intelligent well technologies, such as long deviated multi-lateral wells equipped
with advanced inflow control valves, have been employed to enhance field profitability
and operational reliability. Additionally, different wellbore designs are utilized to effi-
ciently extract heat from the subsurface in advanced geothermal approaches. To ensure
accurate modeling, prediction, and optimization of all these energy production pro-
cesses, it is essential to employ fully-coupled models that accurately capture thermal
multi-phase compositional flow and transport in both the reservoir and the boreholes.

In Chapter 2, we present a detailed explanation of our numerical framework and
governing equations for both the reservoir and the wellbore. We introduce a novel mo-
lar formulation approach called operator-based linearization (OBL) that simplifies the
construction of the Jacobian matrix and residuals. By employing the OBL approach, we
transform the discretized nonlinear conservation equations into a quasi-linear form us-
ing state-dependent operators, which significantly enhances the simulation efficiency
when dealing with highly nonlinear physical problems. We describe the operator forms
of the mass, energy, and momentum conservation equations, taking into account both
the wellbore and the reservoir. Furthermore, we provide a comprehensive description of
the decoupled velocity formulation and the solution strategy, following the principles of
the OBL approach.

In Chapter 3, we present a comprehensive discussion on the coupled wellbore and
wellbore model, which is based on a multisegmented wellbore concept. We extend the
OBL approach to encompass both the wellbore and the reservoir domains. By conduct-
ing a series of benchmark tests and comparing the results with those obtained from a
legacy commercial simulator, we demonstrate that the extended OBL scheme signifi-
cantly enhances computational efficiency while maintaining controlled accuracy and
converging to the simulation results. Furthermore, the utilization of the multisegmented
wellbore model enables us to incorporate more sophisticated wellbore configurations,
including the co-axial wellbore model. Additionally, the decoupled velocity formulation
exhibits flexibility and generalization, allowing us to effectively model reactive scenarios
near the wellbore region, such as calcium carbonate dissolution tests.

In all simulation tests, OBL resolution plays an important role in the accuracy of the
OBL approach. With increasing degrees of freedom in the simulation problem, DARTS
(DelftAdvancedResearch TerraSimulator) shows its advantages to speed up the model-
ing process. OBL also facilitates the development of the nonlinear solver since the non-
linearity of the residual is now lumped into the operators. In Chapter 4, we developed
the nonlinear solver embedded in an operator-based linearization framework based on
the trust-region technique applied for CCUS processes. By tracking the nonlinear tra-

ix



x SUMMARY

jectory and segmenting the problem’s parameter space into a series of trust regions, we
ensure that the hyperbolic operators maintain their second-order behavior, remaining
either convex or concave. We approximate these trust regions during the solution pro-
cess by identifying the boundaries of convex regions through directional derivative anal-
ysis. By conducting multiple trial trajectories on binary and ternary diagrams, we verify
the correct detection of these boundaries by our algorithm. Moreover, our technique is
computationally efficient as we do not compute the entire Hessian matrix but instead
calculate the directional derivative while tracking the nonlinear update. Once all the
boundaries along the nonlinear trajectory are detected, our proposed nonlinear solver
locally constrains the composition update across the boundaries of these regions. We
evaluate the performance of our nonlinear solver on various reservoir models, ranging
from single cell to fully three-dimensional heterogeneous models. Our numerical results
demonstrate that the trust-region solver effectively prevents overshoots in the nonlinear
update, leading to superior convergence compared to conventional nonlinear solvers.

In Chapter 5, we investigated the application of deep learning for compositional
transport simulation applied for CCUS. in the first part, we focused on physics-informed
neural networks for compositional transport. In this study, we introduce a novel ap-
proach called sequential training PINN (Physics-Informed Neural Networks) for simu-
lating two-phase transport in porous media. The core idea is to train the neural network
to solve the partial differential equation (PDE) in successive time segments rather than
attempting to train it for the entire time domain simultaneously. Our observations re-
veal that sequential training yields more accurate solutions compared to the standard
training approach used in conventional two-phase problems.

Moreover, we extend the sequential training methodology to tackle compositional
problems, where non-linearity becomes more pronounced due to complex phase tran-
sitions. To evaluate the effectiveness of our approach, we conducted tests on both mis-
cible and immiscible scenarios. The results demonstrate that the sequential training
approach outperforms the standard training method in terms of accuracy for both trans-
port scenarios. In the second part of this chapter, we focus on the Application of Deep
Neural Networks to the Operator Space of Nonlinear PDE for Physics-Based Proxy Mod-
elling. In this study, we employ deep neural networks to approximate the operators of
a nonlinear partial differential equation (PDE) within the Operator-Based Linearisation
(OBL) simulation framework. Our aim is to identify the physical space for a physics-
based proxy model with reduced degrees of freedom. To enhance the predictive accu-
racy of the proxy model, we utilize observations from a high-fidelity model within a su-
pervised learning scheme to directly train the PDE operators.

Specifically, we focus on training the governing operators of a pseudo-binary gas va-
porization problem using a transfer learning scheme. Our methodology involves a two-
stage process. In the first stage, we utilize labeled data from the full compositional prob-
lem, as well as an analytical physics-based approximation of the operator space, to train
the neural network. This initial training stage helps establish a foundation for the net-
work’s understanding of the problem.

In the second stage, we incorporate a fully implicit PDE solver directly into the neural
network’s loss function. This is achieved through the inclusion of a Lebesgue integration
of the shocks in space and time. By integrating the PDE solver in the loss function, we can
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effectively capture the complex dynamics of the system and further refine the network’s
predictive capabilities.

Overall, our methodology combines transfer learning, supervised learning, operator-
based linearization, and the integration of a fully implicit PDE solver to improve the ac-
curacy and performance of the physics-based proxy model.

Chapter 6 serves as the concluding chapter of this dissertation, providing an overview
and summary of the key findings and contributions from each preceding chapter. Addi-
tionally, it explores potential future directions and aspects for further research in relation
to each chapter’s proposed ideas and approaches.





SAMENVATTING

Boorgatoperaties spelen een cruciale rol bij het beheer van verschillende ondergrondse
activiteiten met betrekking tot energie, waaronder energieopslag, geothermische ener-
gieproductie, CO2-vastlegging, olie- en gaswinning, afvalwaterverwijdering en thermi-
sche terugwinningsprocessen. De laatste tijd zijn intelligente puttechnologieën gebruikt,
zoals lang afwijkende multilaterale putten die zijn uitgerust met geavanceerde instroom-
regelkleppen, om de winstgevendheid in het veld en de operationele betrouwbaarheid
te verbeteren. Bovendien worden verschillende boorputontwerpen gebruikt om effici-
ënt warmte uit de ondergrond te halen in geavanceerde geothermische benaderingen.
Om nauwkeurige modellering, voorspelling en optimalisatie van al deze energieproduc-
tieprocessen te garanderen, is het essentieel om volledig gekoppelde modellen te ge-
bruiken die de thermische meerfasencompositiestroom en het transport in zowel het
reservoir als de boorgaten nauwkeurig vastleggen.

In Hoofdstuk 2 presenteren we een gedetailleerde uitleg van ons numerieke raam-
werk en heersende vergelijkingen voor zowel het reservoir als de boorput. We intro-
duceren een nieuwe molaire formuleringsbenadering genaamd operator-gebaseerde li-
nearisatie (OBL) die de constructie van de Jacobiaanse matrix en residuen vereenvou-
digt. Door gebruik te maken van de OBL-benadering, transformeren we de gediscreti-
seerde niet-lineaire behoudsvergelijkingen in een quasi-lineaire vorm met behulp van
toestandsafhankelijke operatoren, wat de simulatie-efficiëntie aanzienlijk verbetert bij
het omgaan met zeer niet-lineaire fysieke problemen. We beschrijven de operatorvor-
men van de vergelijkingen voor massa-, energie- en momentumbehoud, rekening hou-
dend met zowel de boorput als het reservoir. Verder geven we een uitgebreide beschrij-
ving van de ontkoppelde snelheidsformulering en de oplossingsstrategie, volgens de
principes van de OBL-benadering.

In Hoofdstuk 3 presenteren we een uitgebreide discussie over de gekoppelde boorput
en het boorputmodel, dat gebaseerd is op een multigesegmenteerd boorputconcept. We
breiden de OBL-benadering uit om zowel het boorgat als het reservoirdomein te omvat-
ten. Door een reeks benchmarktests uit te voeren en de resultaten te vergelijken met die
van een oude commerciële simulator, tonen we aan dat het uitgebreide OBL-schema de
rekenefficiëntie aanzienlijk verbetert, terwijl de gecontroleerde nauwkeurigheid behou-
den blijft en convergeert naar de simulatieresultaten. Bovendien stelt het gebruik van
het multigesegmenteerde boorputmodel ons in staat om meer geavanceerde boorcon-
figuraties op te nemen, waaronder het coaxiale boorputmodel. Bovendien vertoont de
ontkoppelde snelheidsformulering flexibiliteit en generalisatie, waardoor we reactieve
scenario’s in de buurt van het boorgatgebied effectief kunnen modelleren, zoals tests
voor het oplossen van calciumcarbonaat.

In alle simulatietesten speelt OBL-resolutie een belangrijke rol in de nauwkeurigheid
van de OBL-benadering. Met toenemende vrijheidsgraden in het simulatieprobleem,
toont DARTS zijn voordelen om het modelleringsproces te versnellen. OBL vergemak-

xiii
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kelijkt ook de ontwikkeling van de niet-lineaire oplosser, aangezien de niet-lineariteit
van het residu nu op één hoop wordt gegooid in de operatoren. In Hoofdstuk 4 hebben
we de niet-lineaire oplosser ontwikkeld die is ingebed in een operatorgebaseerd linea-
risatieraamwerk op basis van de trust-region-techniek die wordt toegepast voor CCUS-
processen. Door het niet-lineaire traject te volgen en de parameterruimte van het pro-
bleem te segmenteren in een reeks vertrouwensgebieden, zorgen we ervoor dat de hy-
perbolische operatoren hun gedrag van de tweede orde behouden en convex of con-
caaf blijven. We benaderen deze vertrouwensregio’s tijdens het oplossingsproces door
de grenzen van convexe regio’s te identificeren door middel van directionele afgeleide
analyse. Door meerdere proeftrajecten uit te voeren op binaire en ternaire diagram-
men, verifiëren we de correcte detectie van deze grenzen door ons algoritme. Boven-
dien is onze techniek rekenkundig efficiënt omdat we niet de volledige Hessische ma-
trix berekenen, maar in plaats daarvan de directionele afgeleide berekenen terwijl we de
niet-lineaire update volgen. Zodra alle grenzen langs het niet-lineaire traject zijn gede-
tecteerd, beperkt onze voorgestelde niet-lineaire oplosser lokaal de compositie-update
over de grenzen van deze regio’s. We evalueren de prestaties van onze niet-lineaire op-
losser op verschillende reservoirmodellen, variërend van enkele cellen tot volledig drie-
dimensionale heterogene modellen. Onze numerieke resultaten tonen aan dat de trust-
region-oplosser effectief overschrijdingen in de niet-lineaire update voorkomt, wat leidt
tot superieure convergentie in vergelijking met conventionele niet-lineaire oplossers.

In Hoofdstuk 5 onderzochten we de toepassing van deep learning voor compositie-
transportsimulatie toegepast voor CCUS. in het eerste deel hebben we ons gericht op
fysica-geïnformeerde neurale netwerken voor samenstellingstransport. In deze studie
introduceren we een nieuwe benadering genaamd sequentiële training PINN (Physics-
Informed Neural Networks) voor het simuleren van tweefasig transport in poreuze me-
dia. Het kernidee is om het neurale netwerk te trainen om de partiële differentiaalverge-
lijking (PDE) eerder in opeenvolgende tijdsegmenten op te lossen



PREFACE

Dear reader,
This dissertation is the product of the research work conducted in Delft Advanced

Research Terra Simulator (DARTS) group in the Delft University of Technology between
August 2018 and May 2023, under the supervision of my promotors, Dr. Denis Voskov
and Prof. David Bruhn. I studied in the Reservoir Engineering section, part of the De-
partment of Geoscience & Engineering within the Faculty of Civil Engineering & Geo-
sciences. The objective of this research was designed to develop an efficient and accu-
rate simulator to capture the highly nonlinear coupled wellbore and reservoir behavior.
The Operator-based linearization (OBL) approach is applied to provide an approximate
representation of the exact physics with controlled error. Machine learning and specifi-
cally neural networks have been applied for proxy modeling and speed-up. The scientific
motivations of this research are carefully highlighted in Chapter 1.

In this book, most of the chapters were already published in journal articles or in con-
ference papers throughout the years. In Chapter 2 where I described the methodology of
this research, I endeavored to avoid the slightly inconsistent notations and repetitions;
however, these small mistakes may still be present. I hope that all readers can enjoy
reading this book.

I would like to utilize the remainder of this brief preface to share my personal expe-
rience as a Ph.D. candidate at TU Delft. I vividly remember the first day of reaching the
Netherlands. I had a direct flight in the evening from Milan where I established some
great friends and memories. It was not that easy to say goodbye to all the memories and
great moments I had made in that city. When I arrived at Schipol it was my first time in
Amsterdam. It was raining cats and dogs. Luckily, a taxi driver was waiting for me to take
me home. Wow! I was pleasantly surprised by the fact that TU Delft arranged a taxi to
pick me up from the airport. Then the taxi driver forgot the key to my house so he had
to take me to a hotel nearby. The next day morning I went to the TU Delft and dived into
the new journey of my life.

My doctoral study is a long story filled with unforgettable experiences. While there
were moments of disappointment, I learned that the life of a Ph.D. student is not a sprint
but rather an enduring journey. Over the past years, my main activities have revolved
around extensive reading and paper writing, algorithm development, delivering presen-
tations, and coding. Computer programming has consistently occupied a significant
portion of my time, and it has grown into an activity that I unexpectedly developed a
strong affinity for. Furthermore, I have taken on various responsibilities, including orga-
nizing practical sessions for master courses, delivering a few lectures, and assisting with
student supervision during their thesis projects.

Apart from the demanding tasks of my Ph.D., the previous years have been brimming
with delightful experiences. These encompass engaging in social gatherings with fellow
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colleagues, joining football matches alongside Ph.D. students from various disciplines,
and embarking on exhilarating runs with geo-runners.

I express my gratitude to you for choosing to review my thesis and I sincerely hope
that you will discover valuable insights within its contents.

Kiarash Mansour Pour
Delft, June 2023



1
INTRODUCTION

1.1. ENERGY TRANSITION
In recent decades, the world has witnessed a growing recognition of the urgent need to
address climate change and reduce greenhouse gas emissions. As societies increasingly
grapple with the consequences of fossil fuel dependence, an energy transition towards
renewable sources has emerged as a pivotal solution to mitigate environmental impacts
and ensure a sustainable future. Global climate change is one universal issue mainly
caused by the emissions of greenhouse gases (GHGs). Carbon dioxide (CO2) emissions
are the principal driver of global warming. The burning of fossil fuels, such as coal, oil
and gas, for energy and power, is the primary source of GHG emissions. According to
Our World in Data, the global annual CO2 emissions in 2019 is over 35 billion tonnes due
to the burning of fossil fuels for energy and cement production (Fig. 1.1(a)) [1].

Subsurface can provide many resources for innovative low-carbon energy solutions
such as geothermal energy production, hydrogen storage, carbon dioxide sequestration,
etc. Geothermal energy, which has been ignored in many regions around the world for
a long time, is now gaining more recognition [2, 3]. In addition to having a minimal car-
bon footprint, geothermal energy offers a reliable and stable source of power compared
to other renewable energy sources like wind and solar energy. It can act as a base load
and is not significantly affected by weather conditions or seasonal variations. The poten-
tial competitiveness of geothermal energy is highlighted by its widespread distribution
and impressive reserves [4]. This substantial theoretical potential is visually depicted
in Figure 1.2 which presents the global distribution of temperature gradients derived
from heat flow calculations. Regions with higher temperature gradients typically indi-
cate greater geothermal potential and naturally attract significant attention.

However, transitioning to low-carbon energy sources alone may not be sufficient to
meet the ambitious emission reduction targets necessary to mitigate climate change ef-
fectively. The concentration of carbon dioxide in the atmosphere has already surpassed
a safe level, necessitating additional efforts to remove this excess carbon actively. Carbon
removal technologies, also known as negative emissions technologies, play a crucial role

1
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(a)
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Figure 1.1: (a) The yearly release of carbon dioxide (CO2) into the atmosphere resulting from the combus-
tion of fossil fuels for energy generation and the production of cement; data sourced from Our World in Data
(2019) indicates the projected global primary energy consumption for the year 2040.; data World Energy Out-
look (2018) by the International Energy Agency.



1.2. THE NEED FOR RESERVOIR SIMULATION

1

3

Figure 1.2: Geothermal gradients in aquifers around the world [5].

in this regard. These innovative approaches, including direct air capture, afforestation,
enhanced weathering, and carbon capture, utilization, and storage (CCUS), offer the po-
tential to extract carbon dioxide from the atmosphere and store it underground or utilize
it in beneficial ways. By actively removing carbon from the atmosphere, we can com-
pensate for remaining emissions and accelerate the transition towards a carbon-neutral
or even carbon-negative future. There have been some CO2 storage projects related to
enhanced oil recovery (EOR) around the world since the 1970s (Table 1.1) in which the
storage capacity is above 0.4 Mt/year according to the data from International Energy
Agency [6]. These target geological formations, such as depleted oil and gas reservoirs,
provide potential storage capacity for large-scale long-term CO2 sequestration.

Undoubtedly, the energy transition towards a low-carbon future with active carbon
removal and exploiting renewable geothermal energy poses significant challenges. A
model that captures multiphase compositional flow and transport is required to sim-
ulate CO2 use and storage (CCUS) in subsurface reservoirs with complicated heteroge-
neous structures. Moreover, to model the geothermal energy production we need to con-
sider the thermal effect. Lastly, It is inevitable to overlook the role of well and borehole
operations for the successful management of any energy-related subsurface activities
e.g., energy storage, geothermal energy production, carbon capture and sequestration,
oil and gas production, wastewater disposal, and thermal recovery processes.

1.2. THE NEED FOR RESERVOIR SIMULATION

A comprehensive understanding of fluid and heat transport, their physical and chemi-
cal interactions, as well as their impact on geological formations is essential in the field
of geoengineering, whether applied to energy production (such as hydrocarbons and
geothermal energy) or storage (like CO2 or hydrogen storage). Accurate and scalable
models for simulating fluid and heat transport in subsurface porous media are of paramount
importance to meet scientific, economic, and societal expectations in the successful de-
velopment of energy resources and storage plans. These computer models and their
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resulting predictions significantly contribute to the efficiency and safety of operations
in production and storage facilities across various geo-engineering applications. These
predictions offer valuable insights for optimizing hydrocarbon extraction, outlining en-
ergy production strategies, determining the lifespan of geothermal systems, evaluating
the storage potential of underground formations for CO2 or hydrogen, and much more.
Reservoir simulation is one essential tool to maximize both the economy of the field and
the reliability of the operations of sustainable subsurface applications.

Numerical simulation, a tool developed by combining physics, mathematics, and
computer programming, is an efficient way to understand complex fluid flow in sub-
surface reservoirs with applications to the evaluation of hydrocarbon recovery, energy
efficiency, performance analysis, and various optimization problems [7–9]. It involves
solving the partial differential equations (PDEs) governing coupled multiphase flow and
transport in porous media with highly nonlinear physics [10, 11].

In this study, we are interested in a fully implicit coupling of the complex Thermal-
Hydraulic-Chemical (THC) flow model in the wellbore and reservoir due to uncondi-
tional stability. In the fully implicit approach, we use Newton’s method to linearize and
solve a set of nonlinear equations. Linearization of discrete mass and energy govern-
ing equations of multiphase, multicomponent flow, and transport is a challenging task
due to the highly nonlinear coupling and complex thermodynamic phase behavior that
needs to resolve multiphase partitioning of different components at each nonlinear iter-
ation to accurately evaluate the fluid/rock properties [12, 13].

The linearization stage for such problems is always a demanding task due to the com-
plexity of Jacobian assembly in the presence of fully coupled physical-chemical interac-
tions. A new approach for the linearization of governing equations called operator-based
linearization (OBL), was proposed by [14] following ideas from tie-simplex parametriza-
tion [15, 16]. In this approach, the exact physics kernels of the governing partial dif-
ferential equations were approximated using abstract algebraic operators. Later this
technique was extended and implemented in the open-source Delft Advanced Research
Terra Simulator [17]. DARTS is a scalable parallel modeling framework that aims to ac-
celerate the simulation performance while capturing multi-physics geo-application pro-
cesses such as hydrocarbon production[18, 19], geothermal energy extraction [20, 21]
and CO2 sequestration [22–24].

1.3. CHALLENGES
The wellbore plays an almost indispensable role in all geo-energy applications. To ef-
fectively design, predict, and optimize processes crucial for energy production, precise
fully-coupled models for thermal multiphase flow in both the reservoir and boreholes
are essential.

Modeling such wells presents several challenges. To begin with, accurately repre-
senting the complex physics involved in the wellbore, including thermal dynamics, mul-
tiphase flow, and multi-component interactions, is a formidable task. Furthermore, in
applications related to energy transition, it is imperative to account for chemical inter-
actions between the wellbore and the flowing fluids.

The interaction between the wellbore and the reservoir introduces additional lay-
ers of complexity. This complexity arises from the deviation of flow behavior in the
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wellbore from Darcy’s law. Consequently, when solving for the momentum equation,
one must consider pressure losses resulting from friction, acceleration, and gravitational
forces acting within the fluid. Additionally, the model needs to be sufficiently robust to
accommodate more intricate and intelligent well topologies while maintaining reliabil-
ity. Moreover, it should demonstrate computational efficiency while encompassing the
complete range of physical phenomena.

Moreover, for the simulation of CO2 utilization and storage (CCUS) in subsurface
reservoirs with complicated heterogeneous structures, a model that includes multiphase
compositional flow and transport is needed. The governing equations are highly nonlin-
ear due to the complex thermodynamic behavior, which involves the appearance and
disappearance of multiple phases. This nonlinearity causes difficulties for a nonlinear
solver, leading to an increase in computational costs as smaller time steps are required
for the simulation. Consequently, robust and efficient techniques are needed to solve
the resulting nonlinear system of algebraic equations.

The literature provides various nonlinear solvers tailored to compositional formu-
lations. An intriguing approach introduced by [25] involves the continuation method,
which smoothly transitions a parameter from 0 to 1 over timesteps, enabling precise con-
trol of residuals during nonlinear trajectory integration in parameter space. A Dissipation-
Based Nonlinear Solver, as recently proposed [26], utilizes numerical dissipation to con-
struct a homotopy of discrete governing equations, incorporating a continuation param-
eter to limit dissipation and maintain solution accuracy. Additionally, the flux-based
trust region method, initially developed by [27] for two-phase immiscible flow, demon-
strates unconditional convergence by constraining saturation updates based on flux func-
tion inflection points. Extensions by [28–30] expanded this method to scenarios with
buoyancy, capillary, and viscous forces, even for black oil three-phase physics. However,
there’s a notable gap in trust region solvers for molar formulations. While [31] employed
tie-lines to parametrize compositional space in flow simulations, trust-region correc-
tion strategies for molar formulations proved less robust compared to those designed
for natural formulations. [32], in detecting phase boundaries, overlooked inflection lines
within two-phase zones, explaining the complexities and computational expenses asso-
ciated with inflection line detection in compositional problems, necessitating second-
order derivatives, and Hessian analysis.

Machine learning, particularly deep learning [33], has gained considerable traction
in computer science and engineering fields. Physics-informed neural networks (PINNs)
have emerged as a valuable tool for solving problems where engineering conservation
equations and constitutive closure relationships are known, but labeled data is unavail-
able [34]. PINNs, constructed with multiple hidden layers and nonlinear activation func-
tions, enable the approximation of complex nonlinear solutions. Consequently, they
have found applications in diverse domains governed by differential equations, includ-
ing the Euler equation [35, 36], gas dynamics [37, 38], water dynamics [39], and chemical
kinetics [40, 41]. PINNs showcase their versatility in various applications such as data
assimilation, parameter identification, and uncertainty quantification [34, 42–44].

Recent developments have extended PINNs to subsurface flow and transport, ad-
dressing two-phase immiscible transport in porous media, characterized by the non-
linear first-order hyperbolic Buckley-Leverett equation [45]. While standard PINNs ini-
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tially struggled to find solutions for cases with steep saturation fronts and nonconvex
flux functions, the addition of an artificial diffusion term to the conservation equation al-
lowed them to approximate the true solution [45]. Alternative approaches have also been
explored, such as the introduction of physics-informed attention-based neural networks
(PIANNs) [46] and the incorporation of entropy and velocity constraints into the neural
network residual [47]. However, saving a pure hyperbolic one-oder PDE remains a chal-
lenge for standard PINNs. Moreover, it has not been tested on compositional problems
which is more complicated due to the phase appearance and disappearance.

Furthermore, compositional issues involve the interaction of numerous components,
necessitating a set of equations equal to the number of components for each grid cell.
This can result in high computational costs for a high-fidelity model fine-scale model.

1.4. THESIS OBJECTIVES
This thesis revolves around three distinct facets of reservoir simulation in the context of
energy transition. First, we have developed a new computational framework in DARTS
applying the general decoupled velocity formulation and extending OBL to couple well
and reservoir model. Well and reservoir are both discretized similarly into nodes and
connections following the general unstructured grid framework [connection list approach,
e.g., 48] using the finite volume method. Total velocity serves as an additional non-
linear unknown written at each interface (connection) on the total computational do-
main and bounded by a suitable momentum equation. Similar to the staggered gridding
method, this framework adopts a simultaneous approach by coupling the mass and en-
ergy balance equations at the center of each cell with the momentum balance equations
at the cell interfaces. Moreover, transforming both reservoir and well nonlinear govern-
ing equations into an operator form benefits from OBL techniques and reduce further
the computational cost related to linearization.

Next, we focus on accelerating near-wellbore modeling by developing an advanced
nonlinear solver for high-fidelity forward simulation and a proxy model for inverse sim-
ulation. We first present an advanced nonlinear solver based on a generalization of the
trust-region technique for compositional multiphase transport applied for CCUS. We
investigate the nonlinearity of convective operators written in fractional flow form and
detect boundaries of the trust region for the hyperbolic operator by assembling the di-
rectional approximation of the Hessian matrix. Next, we design the nonlinear solver in
which we track the nonlinear trajectory for binary and ternary kernel in OBL parameter
space and approximate these trust regions in the solution process via directional analysis
of the derivative. By drawing some trial Newton trajectories on OBL parameter space, we
observe that our directional analysis of derivatives predicts the boundaries of these trust
regions correctly. Furthermore, it is less computationally expensive than computing the
full Hessian matrix. In conclusion, we evaluate the effectiveness of the new nonlinear
solver through extensive testing on various complex examples.

Furthermore, we shift our focus towards the application of machine learning tech-
niques in porous media. A novel method utilizing physics-informed neural networks
(PINNs) has been introduced as an alternative approach for solving partial differential
equations (PDEs). Unlike conventional machine learning algorithms that heavily rely
on labeled datasets for training, PINNs have the capability to train the neural network
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using unlabeled data. The potential of this approach has been investigated in the con-
text of multiphase flow and transport in porous media. However, it should be noted that
when it comes to nonlinear hyperbolic transport equations, the performance of the so-
lution deteriorates noticeably. In the first part, we introduce sequential training for the
physics-informed neural network. The primary concept revolves around the retraining
of the neural network to address the solution of partial differential equations (PDEs) by
dividing the time domain into successive time segments, rather than training for the en-
tire time domain concurrently. In the subsequent section, departing from the approach
of PINNs, which relies on employing a neural network as a specialized solver to esti-
mate the solution of a given partial differential equation (PDE), we adopted an alterna-
tive method. Our approach involved training the PDE operators using a neural network
and then integrating them into the DARTS framework. By utilizing a fully implicit finite
volume solver, we were able to effectively obtain the desired solution for the PDE.

To summarize, the main objective of this thesis is to develop a robust numerical
framework to accurately model subsurface physical phenomena applied for energy tran-
sition applications. The research objectives addressed in this work are:

• Developing a high-fidelity framework to model coupled wellbore and reservoir for
geo-energy applications.

• Accelerate the convergence of a high-fidelity model using the efficient nonlinear
solver for OBL utilization in energy transition applications.

• Develop proxy modeling methodology using physics-driven machine learning for
inverse modeling in reservoir simulation.

1.5. THESIS OUTLINE
This thesis comprises six chapters following journal articles published or presented at
the conferences. The thesis starts with an introductory chapter 1. Chapter 2 describes
the numerical models, including the conservation equations used for general-purpose
coupled reservoir and wellbore simulation and their operator forms within the Operator-
based linearization framework.

In chapter 3, we have developed a new computational framework that can simulate
thermal multiphase, multi-component flow both along the wellbore and the reservoir.
The implementation is based on an operator-based linearization method in which the
governing equations are represented in an operator form. This framework was tested for
several complex physical kernels including thermal compositional multiphase reactive
flow and transport. The proposed model was validated using a comparison with analytic
and numerical results.

In chapter 4, we focus on the simulation of multiphase multicomponent flow applied
for carbon capture utilization and storage simulation. We investigate the nature of non-
linearities in CCUS simulations and suggest solutions to a general compositional prob-
lem. We present an advanced nonlinear solver based on a trust-region technique aimed
at solving multiphase multi-component flow and transport problems more efficiently.
The trust region solver is based on the analysis of multi-dimensional tables connected
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to highly nonlinear convection operators parameterized in physical space. These oper-
ators are associated with the governing equations and are built for a newly introduced
Operator-Based Linearization approach.

In chapter 5 we introduce the proxy model and explore the application of deep neu-
ral network for multiphase compositional transport. We develop a novel training scheme
for a physics-informed neural network (PINNs) that overcomes the limitations of stan-
dard PINNs for capturing a shock. The main concept is to retrain the neural network
to solve the PDE over successive time segments rather than train for the entire time do-
main at once. We observe that sequential training can capture the solution more accu-
rately concerning the standard training method. In the second part of this chapter, we
utilize deep neural networks to approximate operators of a nonlinear partial differential
equation (PDE), within the Operator-Based Linearisation (OBL) simulation framework,
and discover the physical space for a physics-based proxy model with reduced degrees
of freedom.

Finally, chapter 6 concludes the work and defines perspectives for further research.
9/
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2
GOVERNING EQUATIONS FOR

COUPLED WELL AND RESERVOIR

Summary

A detailed description of the governing equations for the thermal multiphase com-
positional formulation of the coupled wellbore and reservoir systems is provided. It
presents a thorough explanation of the wellbore momentum equation in addition to a
full description of the momentum equations within the reservoir. Mass, energy, and mo-
mentum conservation equations are presented in operator form, following the concept
of the OBL approach. Furthermore, a detailed explanation is provided for the solving
strategy employed by the decoupled velocity engine. This approach considers velocity
as an additional degree of freedom, enabling a more accurate simulation of the flow dy-
namics inside the wellbore. By treating velocity as a separate parameter, the decoupled
velocity engine strategy offers enhanced precision in capturing the fluid flow and mo-
mentum equation inside the wellbore. Additionally, the conventional DARTS solution
strategy is also discussed. In addition to the solving strategies, the sparse matrix struc-
ture utilized in both the decoupled velocity engine and the conventional DARTS solution
strategy is explained.

11
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2.1. GOVERNING EQUATIONS FOR FULLY COUPLED APPROACH
For the investigated domain with volume Ω, bounded by surface Γ, the mass and en-
ergy conservation can be expressed in a uniformly integral way along with the proper
momentum equation as shown in the table. 2.1

Description Equation

Conservation of mass and energy
∂

∂t

∫
Ω

M k dΩ+
∫
Γ

F k .ndΓ=
∫
Ω

qk

Mass accumulation M k (ω, vm) =φ
np∑
j=1

xc jρ j s j

Energy accumulation M ke (ω, vm) =φ
np∑
j=1

xc jρ j s jU j − (1−φ)Ur

Mass flux F k (ξ,ω, vm) =
np∑
j=1

xc jρ j v j

Energy flux F ke (ξ,ω, vm) =
np∑
j=1

xc jρ j v j h j +k∇T

Reservoir momentum equation v j =−Kkr j

µ j
(∇pp −ρ j g∇D)

Well momentum equation
∂pw

∂z
= −ρm g − ∂pw

∂t
(ρmVm) − ∂(ρmV 2

m)

∂z
−

ft pρmV 2
m

2di n
−Rm

Table 2.1: Mass, energy, and momentum balance equations

Here, we introduce all terms in the equations as functions of spatial coordinate ξ and
physical stateω :

• φ(ξ,ω)- porosity,

• xc j (ω)- the mole fraction of compo-
nent c in phase j,

• s j (ω) - phase saturations,

• ρ j (ω)- phase molar density,

• v j (ξ,ω)- phase velocity,

• U j (ω) - phase internal energy,

• Ur (ω) - rock internal energy,

• h j (ω) - phase enthalpy,

• k - thermal conduction.

Next, we formulate a one-dimensional momentum balance equation for the entire
fluid in the wellbore. Assuming the coordinate z points along the well, this equation is
given by [49] and [50].

∂pw

∂z
=−ρm g − ∂pw

∂t
(ρmVm)− ∂(ρmV 2

m)

∂z
− ft pρmV 2

m

2di n
−Rm (2.1)

We focus on well momentum equation in table 2.1, where ρm(ω) is the total mixture
density, g is the gravitational acceleration in the z direction, di n is the internal diame-
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ter of the well, where ft p is the friction factor, which is a function of the dimensionless
Reynolds number Re (ratio of inertial forces to viscous forces), d is the diameter of the
segment, and Vm is the velocity of the fluid mixture in the segment.

ft p =


16/Re, Re ≤ 2000 (laminar flow)

1/

(
−3.6log

(
6.9

Re
+ (

ϵ

3.7d
)

10
9

))2

, Re ≥ 4000 (Torbulent flow)

16/2000+k f (Re −2000), 2000 < Re < 4000

(2.2)

The general momentum equation 2.1 can be simplified to the steady state momen-
tum equation as follows

∂pw

∂z
= (

∂p

∂z
)h + (

∂p

∂z
) f + (

∂p

∂z
)a . (2.3)

The equation above simply states the total pressure loss over any control volume (seg-
ment) of the well as the sum of three components’ forces (acceleration, friction, and
hydrostatic).

The momentum equation for the reservoir part is simplified to Darcy’s law, and phase
velocity is computed as:

v j =−Kkr j

µ j
(∇p j −ρ j g∇D). (2.4)

where

• K(ξ) – permeability tensor,

• kr j (ω) – relative permeability,

• µ j (ω) – phase viscosity,

• p j (ω) – vector of pressures in phase j ,

• ρ j (ω) – phase density,

• d (ξ) – vector of depths (positive downwards).

The main source of nonlinearity is related to the use of the Fully Implicit Method
(FIM) for time approximation of the governing equations which requires the flux term
in governing Equation 2.1 to be defined based on of the nonlinear unknowns at a new
timestep (n +1). The closure assumption of instantaneous thermodynamic equilibrium
further increases the nonlinearity. We used the overall molar formulation suggested by
[51]. In this formulation, the following system must be solved at any grid block contain-
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ing a multiphase (np ) multi-component nc mixture:

Fc = zc −
np∑
j=1

v j xc j = 0, (2.5)

Fc+nc = fc1(p,T, x1)− fc j (p,T, x j ) = 0, (2.6)

F j+nc∗np =
nc∑

c=1
(xc1 −xc j ) = 0, (2.7)

Fnp+nc∗np =
np∑
j=1

v j −1 = 0. (2.8)

Here zc = Σxc jρ j s j /ρ j s j is overall composition and fc j (p,T, xc j ) is the fugacity of com-
ponent c in phase j . The solution of this system is called a multiphase flash [52] and
needs to be applied at every nonlinear iteration [13]. The solution provides molar frac-
tions for each component xc j and phase fraction v j .

2.2. OBL FORMULATION
Unlike the conventional DARTS formulation, in which the problem’s primary unknowns
were written on the cell centers and velocity was not one of them, the decoupled ve-
locity formulation considers velocity as an additional nonlinear unknown (state) of the
problem written at each interface between two nodes. On each node, the following in-
dependent variables are defined:

• ω = [ pi , hi , zi ] which corresponds to pressure, enthalpy, and the vector of overall
molar fractions respectively.

Note that the above variables are all defined at the center of the node. On each connec-
tion, we define total velocity:

• vm , Total velocity

2.2.1. GOVERNING EQUATIONS FOR FULLY COUPLED APPROACH
After discretizing governing Equations 2.1, using the finite volume scheme and back-
ward Euler approximation in time, we transform the mass and energy residuals into an
operator form as follows:

Rnm(ω, v) = Vnφ
(
αc (ω)−αc (ωn)

)
+∆t

∑
l
βl

c (ω)v l
m(ξ,ω) = 0. (2.9)

In Eq.2.9, operators read as:

βc (ω) = ∑
j

xc j f jρ j , (2.10)

αc (ω) = (
1+ cr (p −pr e f )

)∑
j

xc jρ j s j , (2.11)

(2.12)
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The discretized energy conservation equation in operator form can be written as:

Rne (ω, v) = Vnφ
(
α f (ω)−α f (ωn)

)
+ (1−φ)VnUr

(
αer (ω)−αer (ωn)

)
+ ∆t

∑
l
βl

e (ω)v l
m(ξ,ω)

+ ∆t
∑

l
Γl (Ti −T j )

(
φ0γe f (ω)+ (1−φ0)krαer (ω)

)
= 0. (2.13)

βe (ω) = ∑
j

xc j f jρ j h j , (2.14)

α f (ω) =
(
1+ cr (p −pr e f )

)∑
j

xc jρ j s jUp , (2.15)

αer (ω) = 1

1+ cr (p −pr e f )
, (2.16)

γe f =
(
1+ cr (p −pr e f )

)∑
j

s j k j , (2.17)

The momentum equations are defined at the interface (connections of two nodes).
For each connection between node block i and j, we write a discrete momentum equa-
tion in residual form as follows depending on the connection whether it is between wells
or reservoir blocks.

Rc =
vmi x +Tcλ(ω)(Pi −P j ), reservoir connection,

Pi −P j − (∆Ph +∆P f +∆Ph), well connection.
(2.18)

In the Darcy velocity equation 2.18, Tc is the transmissibility and λ(ω) is the total
mobility operator of the upwind grid block. For the momentum equation in a wellbore,
∆P w is the pressure drop between two nodes, and ∆P w

h , ∆P w
f and ∆P w

a are the hydro-

static, frictional and acceleration components of the pressure drop, respectively. For
simplicity, we only take into account the friction losses. The frictional pressure differ-
ence between two nodes is defined as

∆P w
f = (

2 ft pρ
seg V 2

m

d
)∆xi , (2.19)

where ft p is the friction factor which is a function of the dimensionless Reynolds number
Re (ratio of inertial forces to viscous forces) explained previously, d is the diameter of the
segment, and Vm is the velocity of the fluid mixture in the segment connection.

The hydrostatic pressure difference between two nodes is:

∆P w
h = ρt g∆H , (2.20)

Acceleration pressure losses are given by the following formula:

∆P w
a = 2mi nVm

A
, (2.21)
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where mi n = ∑
p ρp (ω)Qp is the mass flow rate of the mixture entering the segment de-

fined as

mi n =
N per f∑

i

(
W I (pw

u −pper f )λ(ω)ρtot (ω)
)

i
, (2.22)

where ∆H is the height difference between two nodes and ρt is the total mass density.
pw

u is the pressure of the upwind node for connection c between two well segments and
PPer f is the pressure in the perforated reservoir block.

2.2.2. INTERPOLATION

The combination of different physical properties into a single nonlinear operator allows
us to simplify the complicated nonlinear physics and implementation of the generic lin-
earization approach. Instead of performing complex evaluations of properties and their
derivatives with respect to nonlinear unknowns during the simulation, we can param-
eterize operators in the physical space at the pre-processing stage or adaptively with a
limited number of supporting points [14]. The parameter space depends on the physi-
cal problem. For strongly nonlinear functions (e.g., capillary pressure), it is necessary to
select a reasonable OBL resolution to characterize the physical space. A coarse OBL res-
olution may cause a larger deviation in the solutions [14, 24]. The governing equations
are written in the form of state-dependent operators by following the OBL approach. The
state-dependent operators can be parameterized (Fig. 2.1) with respect to nonlinear un-
knowns in multi-dimension tables under different resolutions. The values and deriva-
tives of the operators in the parameter space can be interpolated and evaluated based
on supporting points (Fig. 2.2). For the adaptive parameterization technique [14], the
supporting points are calculated ‘on the fly’ and stored for later re-usage, which can save
time for parameterization in high-dimension parameter space (i.e. in multi-component
compositional simulations). At the same time, the Jacobian assembly becomes flexible
with the OBL approach, even for very complex physical problems.

Figure 2.1: Parameterization of the arbitrary operator f based on pressure P and composition Z in 2D space
with predefined OBL resolution.
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Figure 2.2: Schematic of interpolation process for β operator

2.3. SOLUTION OF EQUATIONS

2.3.1. DECOUPLED VELOCITY ENGINE
The fully coupled method is a commonly used method to solve coupled problems im-
plicitly. In this method, equations for all the subproblems are solved simultaneously. We
assemble our global Jacobian matrix based on the variables defined on each node and
connection RN (ωn+1,vn+1

t ) = 0, Node equations;

RC (ωn+1,vn+1
t ) = 0, Connection equations. 2.18

(2.23)

Newton’s method is applied to the entire system and the Newton update can be ob-
tained by solving a single linear system:JN N JNC

JC N JCC

δω
δvt

=−
RN

RC

 , (2.24)

The coupled system will be solved until reaching the global convergence criteria:||RN (ωn+1,un+1
t )|| < ϵn , Node equations;

||RC (ωn+1,un+1
t )|| < ϵc , Connection equations.

(2.25)

We subdivide the node equations and connection equations of the reservoir into the
node or well parts and define the specific tolerance for each subdomain as follows

||RN R (ωn+1,un+1
t )|| < ϵnr , Node equations for reservoir blocks

||RNW (ωn+1,un+1
t )|| < ϵnw , Node equations for well blocks

||RC R (ωn+1,un+1
t )|| < ϵcr , Connection equations for reservoir interfaces

||RCW (ωn+1,un+1
t )|| < ϵcw , Connection equations for well interfaces

(2.26)
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Figure 2.3: Location of the unknowns on general unstructured domain in decoupled velocity framework

Figure 2.4: Decoupled velocity Jacobian matrix for 3-D reservoir, zooming into momentum equation part

Figure 2.3 shows the grid domain and the location of the primary unknowns.
The global Jacobian matrix for a decoupled velocity engine is shown in 2.4. The

global Jacobian matrix has a multilevel matrix structure. It can be divided into two parts
at the first level. The upper row is related to the derivatives of the node variables, while
the lower row is related to the derivatives of the connection variables. Each part in the
second level can be further subdivided into the reservoir part and the well parts. Fig-
ure 2.4 shows how the matrix can be further subdivided into connection equations with
respect to the reservoir and well parts by zooming in on the momentum parts.

2.3.2. CONVENTIONAL ENGINE
In this section, we describe different types of linearization using the general algebraic
form of a governing equation.

To solve nonlinear equations 2.1, we need to linearize them. The conventional ap-
proach in reservoir simulation is based on the application of the Newton-Raphson method.
In each iteration of this method, we need to solve a linear system of equations of the fol-
lowing form:

J(ωk )(ωk+1 −ωk ) =−r(ωk), (2.27)
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where J is the Jacobian defined at nonlinear iteration step k. Note that in a conventional
engine, velocity is not an additional degree of freedom and all the unknowns ω are de-
fined at the cell center.

2.3.3. MATRIX STORAGE IN DARTS
COMPRESSED SPARSE ROW (CSR)
DARTS offers support for different matrix formats, including Block Compressed Sparse
Row BCSR and COMPRESSED SPARSE ROW (CSR). To gain a comprehension of the BCSR
format, let’s first delve into the CSR format. The CSR format is widely utilized due to its
ability to represent sparse matrices of various types [53]. In decoupled velocity infor-
mation, due to the fact that unknowns are defined are not all define in different zone,
we cannot exploit from the block structure of the matix so it makes us to store it in CSR
format. CSR is extensively employed in a wide range of simulation applications. Numer-
ous algorithms have been devised specifically for the CSR format, showcasing its signifi-
cant benefits. In decoupled velocity formulation, because the unknowns are distributed
across various parts of the domain (with velocity information at the interface and the
remaining components at the nodes), we are unable to take advantage of the matrix’s
block structure. As a result, we are compelled to store it in the Compressed Sparse Row
(CSR) format.

Let’s commence by providing an overview of the CSR format. To exemplify the CSR
format, a 5x5 sparse matrix with 11 non-zero elements (referenced as 2.28) is utilized.
In the CSR format, three arrays are employed, as presented in Table 2.2 and 2.3. These
arrays are defined as follows for a matrix with dimensions of nrow x ncol and nnz non-
zero elements, considering a 0-based indexing and labeling scheme.

5 8 0 0 0

5 0 6 0 0

0 0 12 22 9

0 0 11 0.1 0

99 0 0 0 0.5


, (2.28)

Label 0 1 2 3 4 5

row_ptr 0 2 4 7 9 11

Table 2.2: Row pointer array of the CRS format

• The "value array" contains all the non-zero elements in the matrix, arranged row
by row. Its length is always equal to the number of non-zero elements (nnz).

• The row pointer (row ptr) is a 0-based index array that marks the starting position
of the first non-zero value in each row. It has a length of nrow + 1, starting with 0
and ending with nnz.
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Label 0 1 2 3 4 5 6 7 8 9 10

Col_idx 0 1 0 1 2 3 4 2 3 0 4

value 5 8 5 6 12 22 9 11 0.1 99 0,5

Table 2.3: Column index and value arrays of the CRS format

• The column index (col ind) is a 0-based index array of the same length as the "value
array." It stores the column index for each non-zero value.

To locate a non-zero element, the "row pointer array" and the "column index array"
are utilized. The "value array" stores the non-zero element found at that specific loca-
tion.

Constructing a CSR matrix involves two steps. Firstly, the pointer arrays for column
indices (column-idx) and row pointers (row-ptr) are created by scanning the equations
and identifying the positions of the non-zero elements. Secondly, the value array of the
CSR matrix is populated. The elements appear in different orders, requiring complex
indexing operations to insert them. These two steps are collectively referred to as the
Jacobian matrix assembly process.

BLOCK COMPRESSED SPARSE ROW (BCSR)
BCSR format extends the capabilities of the CSR format. In this scheme, the input matrix
of size M x M is divided into blocks of P x Q elements. Each non-empty block is stored
similarly to the CSR method, as depicted in Fig. 2.5a and 2.5c. Each block row consists
of several non-empty blocks, and each block contains a certain number of non-zero el-
ements. It’s important to note that zero elements within a block are explicitly stored. In
the BCSR format, the column index is stored for each block, while for each block row, its
length and the pointer to the first block in that row are indicated, as illustrated in Fig.
2.5c. Storing the values of a block consecutively in memory allows for reduced cache
misses [54] when utilized on CPUs, and it enhances the efficiency of memory transac-
tions on GPUs. The block-compressed row matrix format, known as BCSR, offers com-
putational efficiency. The positioning of pointers in the pointer matrix is determined by
cell-based and connection-based numbering. Most algorithms that can utilize the stan-
dard CSR matrix format can be adapted for the block CSR matrix format with minimal
modifications. The key requirement is to replace arithmetic operations with small ma-
trix operations [55]. In conventional DARTS engine since all the unknowns are written
at the center of each node, the jacobian matrix have block structures. Therefore, we can
exploit from its block entities and store the matrix in BSCR format.

Due to the structure and sparsity of the matrix, we construct our Jacobian matrix
in the CSR format within the decoupled velocity formulation. In the case of the con-
ventional engine, (BCSR) format is employed due to the block structure of the Jacobian
matrix.



2.3. SOLUTION OF EQUATIONS

2

21

Figure 2.5: Compressed Sparse Row (CSR) and Block Compressed Sparse Row (BCSR) storage schemes [56]





3
COUPLED RESERVOIR AND

WELLBORE

Summary

Well, borehole operations play an important role in all these applications. In order to
operate wells intelligently, there must be a robust simulation technology that captures
physics and the expected production scenario. In this study, we design a numerical
framework for predictive simulation and monitoring of injection and production wells
based on the general multi-segment well model. In our simulation model, wells are seg-
mented into connected control volumes similar to the finite-volume discretization of the
reservoir. Total velocity serves as an additional nonlinear unknown and it is constrained
by the momentum equation. Moreover, transforming nonlinear governing equations for
both reservoir and well into linearized equations benefits from operator-based lineariza-
tion (OBL) techniques and reduce further the computational cost of simulation. This
framework has been tested for several complex physical kernels including thermal com-
positional multiphase reactive flow and transport which covers a large range of energy
transition applications including geothermal energy production and CO2 sequestration.
The proposed model is validated using a comparison with analytic and numerical re-
sults.

The material presented in this chapter has been published in Geoenergy Science and Engineering 2023, [57].
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3.1. INTRODUCTION
Borehole operations are a key component for the management of any energy-related
subsurface activities such as energy storage, geothermal energy production, CO2 seques-
tration, oil and gas production, wastewater disposal, and thermal recovery processes.
Recently, intelligent wells such as long deviated multi-lateral wells with sophisticated
inflow control valves have been used to maximize both the economy of the field and the
reliability of the operation. Besides, various wellbore designs are used for the efficient
production of heat from the subsurface in advanced geothermal approaches. The de-
sign, prediction, and optimization of all the processes of interest in energy production
require accurate fully-coupled models for thermal multi-phase flow in both the reservoir
and the boreholes.

There are multiple challenges with the adequate modeling of such wells. Firstly, cap-
turing accurately the physics (thermal, multiphase flow, multi-component) in the well-
bore is complex. Moreover, chemical interactions between the wellbore and flowing flu-
ids cannot be ignored in energy transition applications. The coupling between the well-
bore and the reservoir introduces additional complications. The complexity stems from
the fact that the flow through the wellbore does not follow Darcy’s law. This means that
the momentum equation must be solved considering pressure losses due to friction, ac-
celeration, and gravitational forces acting in the fluid. Moreover, the model should be re-
liable enough to honor more sophisticated intelligent well topology such as multi-lateral
deviated wellbore.

Several coupled reservoir and well models were proposed to simulate the complex
physics present in the wellbore. The most common approach for modeling a well in
reservoir simulation is the standard well model that considers the well as a point source
or sink term in the perforated reservoir block [58]. However, the standard well model is
blind to the actual physics of the wellbore. Moreover, it cannot capture the complex well
network topology which may include chokes, valves, and various surface facilities. To
overcome the above drawback, the multisegmented well (ms-well) model was proposed
[59–61]. In the ms-well model, the borehole is discretized into several segments with
the fluid velocity, node pressure, and other properties simulated along with the wellbore
geometry. The benefits of the general ms-well model are its flexible approximation of
the actual geometry of each wellbore and its handling of the complex well topology and
controls in the pipeline network. Moreover, introducing velocity as an additional degree
of freedom allows us to account for various pressure losses by solving the momentum
equation.

Multiple solution strategies for coupled reservoir and well models were proposed in
the literature. Livescu et al. [62] proposed a semianalytical thermal multiphase wellbore-
flow model for general-purpose simulation. Pan and Oldenburg [63] proposed the hy-
brid implicit (semi-explicit) solution for the transient momentum equation in the geother-
mal wellbore. In addition, a few fully coupled numerical models with different strate-
gies for thermal wellbore flow have been suggested [59, 61, 64]. All these models oper-
ate at various simplifying assumptions for wellbore physics and wellbore coupling with
the reservoir. There are different formulations for geothermal wellbore simulation ex-
ist. Multiple solution strategies for stand-alone geothermal wellbore simulation that ne-
glect wellbore coupling have been recommended. [65] makes an in-depth review of the
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geothermal wellbore simulation. The analytical solution for coaxial wellbore simulation
was suggested by [66]. Besides a limitation in the coupling, most existing strategies ex-
clude chemical interactions.

In this study, we are interested in a fully implicit coupling of the complex Thermal-
Hydraulic-Chemical flow model in the wellbore and reservoir due to unconditional sta-
bility. In the fully implicit approach, we use Newton’s method to linearize and solve a
set of nonlinear equations. Linearization of discrete mass and energy governing equa-
tions of multiphase, multicomponent flow, and transport is a challenging task due to the
highly nonlinear coupling and complex thermodynamic phase behavior that needs to
resolve multiphase partitioning of different components at each nonlinear iteration to
accurately evaluate the fluid/rock properties [12, 13].

The linearization stage for such problems is always a demanding task due to the com-
plexity of Jacobian assembly in the presence of fully coupled physical-chemical interac-
tions. A new approach for the linearization of governing equations called operator-based
linearization (OBL), was proposed by [14] following ideas from tie-simplex parametriza-
tion [15, 16]. In this approach, the exact physics kernels of the governing partial dif-
ferential equations were approximated using abstract algebraic operators. Later this
technique was extended and implemented in the open-source Delft Advanced Research
Terra Simulator [17]. DARTS is a scalable parallel modeling framework that aims to ac-
celerate the simulation performance while capturing multi-physics geo-application pro-
cesses such as hydrocarbon production[18, 19], geothermal energy extraction [20, 21]
and CO2 sequestration [22–24].

In this work, we develop a new computational framework in DARTS applying the
general decoupled velocity formulation and extend OBL to couple well and reservoir
model. Well and reservoir are both discretized similarly into nodes and connections fol-
lowing the general unstructured grid framework [connection list approach, e.g., 48] us-
ing the finite volume method. Total velocity serves as an additional nonlinear unknown
written at each interface (connection) on the total computational domain and bounded
by a suitable momentum equation. Similar to the staggered gridding method, this frame-
work adopts a simultaneous approach by coupling the mass and energy balance equa-
tions at the center of each cell with the momentum balance equations at the cell inter-
faces. Moreover, transforming both reservoir and well nonlinear governing equations
into an operator form benefits from OBL techniques and reduce further the computa-
tional cost related to linearization.

The chapter is organized as follows. First, the governing equations describing ther-
mal, multiphase multi-component flow in the wellbore and the reservoir are presented
in detail. Next, we present our decoupled velocity design and OBL solution strategies for
solving coupled wellbore and reservoir equations. We first test the accuracy and consis-
tency of the method through a set of benchmark tests. Next, more complex numerical
experiments are conducted to take into account a more realistic wellbore coupled with
a field model.

3.2. WELL MODELLING

In this section, we describe two types of well model used in reservoir simulation.
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3.2.1. STANDARD WELL MODEL
In reservoir simulation, the standard model treats a well as a source, or sink term that
is added to the grid blocks penetrated by the well [67]. At best, the well is treated as
a boundary condition in a manner that ignores the details of fluid flow in the wellbore
itself. The standard well (StdWell) model has been widely used in reservoir simulation.
The standard model had been extended to handle a single lateral well, which can be
vertical, tilted, or horizontal. In the StdWell model, density variations along the wellbore
length are accounted for approximately. Some extended standard well models can deal
with friction using simplified treatments of frictional losses [68] . We are interested in
efficient and accurate representation of the flow in complex wells; however, a detailed
understanding of the standard well model is a necessary prerequisite for such models.

The standard well model represents the most basic approach, employing numerous
assumptions and approximations to simplify the depiction of physics within the well-
bore. Based on the preceding discussion, it is important to acknowledge the following
limitations associated with the standard well model:

• The standard well model solely accounts for hydrostatic pressure changes within
the wellbore.

• It approximates the treatment of fluid density by employing a one-iteration lag,
which is not an accurate representation.

• Transient effects in the wellbore and the consideration of phase holdup are entirely
neglected in the standard well model.

3.2.2. GENERAL MULTISEGMENTED WELLBORE MODEL
We developed the general Ms-well model as a solution to the limitations encountered in
the standard well model. Ms-well is discretized into nodes and connections in a similar
fashion to a reservoir using a finite-volume scheme. Any well segment can be connected
with an arbitrary number of reservoir control volumes, representing well perforations.
We write the control equation either as a pressure control also known as BHP control for
the ghost cell (Fig. 3.1) or we write it as rate control and solve it for the first connection
as follows: 

R seg
1 =ωseg

1 −ωt ar g et , BHP control

Rconn
1 = v

s, j
j

ρsc
j

.(
∑

c
∑

p ρpQp xx,p )−Q t ar g et
j , Rate control

(3.1)

As shown in figure 3.1, each well segment can have zero, one, or multiple perforations.
Each segment of the ms-well wellbore is a separate object that can have different geo-
metrical properties from other segments. Currently, in DARTS, two types of tube and
annulus segments are available as shown in Fig. 3.2.

This model offers a range of advanced features, including:

• The model supports general branching, enabling the connection of any well node
to multiple other nodes. This feature offers great flexibility, allowing for the def-
inition of facility models with intricate geometries. As a result, a more accurate
approximation of the physical reality can be achieved.
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Figure 3.1: ms-well-reservoir network schematic

(a) Tube pipe (b) Annulus pipe

Figure 3.2: Well segment type

• The model incorporates loops with arbitrary flow directions, wherein the flow di-
rection is dynamically determined during the Newton iteration process. The ac-
tual flow direction is indicated by the sign of the mixture flow rate assigned to
each connection. If the flow rate is positive, it aligns with the initially assumed
direction, while a negative flow rate indicates that the actual direction is opposite
to the assumed direction.

• The model includes special segments with diverse functionalities, such as separa-
tors and valves. In a general multi-segment (MS) well, any segment has the poten-
tial to be designated as a special segment, allowing for distinct property calcula-
tions compared to ordinary segments. The accumulation terms within the mass
conservation equations and the local constraints can be customized to suit the
specific functionality of each segment.

3.3. NUMERICAL RESULTS

We test the proposed implementation by comparing it with analytical solutions or nu-
merical results using conventional simulation techniques.
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3.3.1. VERIFICATION OF HEAT LOSS MODEL
In this test, we validate our numerical model with the analytical heat loss model in which
the overall resistance of the well is calculated with an analogy to the resistance circuits
as follows [69]

Rtot al =
1

2πL

( 1

h f ri
+ 1

λp
ln(

ro

ri
)+ 1

hp ro
+ 1

λi ns
ln(

ri ns

ro
)+ 1

hr c ri ns

)
. (3.2)

q = (∆T )tot al

Rtot al
, (3.3)

Here h f is the heat transfer coefficient of heat transfer between the fluid inside the pipe
and the wall, hpi is the coefficient of heat transfer across any deposits of scale and dirt at
the inside wall of the pipe and insulation, ri is the inner radius of the pipe, r0 is the outer
radius of the pipe and essentially the inner radius of the insulation, ri ns is the external
radius of the insulation, and λp and λi ns are the thermal conductivities of the pipe and
insulation, q is the overall heat loss.

Figure 3.3: (a) wellbore-reservoir heat losses schematic and (b) comparison of analytical model[70] vs numer-
ical solutions

In figure. 3.3 we mimic the wellbore connection to the reservoir with different resis-
tance materials. This test case considers a 1000m in length 1D homogeneous reservoir
with constant permeability and porosity of K = 10 mD and φ = 0.25 and two ms-well
under bhp control in the left and right parts of the domain. We ran the simulation for
1000 days. In figure 3.3.b we compare the numerical solution vs analytical solution of
the temperature profile due to the heat losses. It can be seen that both solutions match
closely.

3.3.2. SIMPLE 3D RESERVOIR WITH MS-WELL
In this test case, the reservoir dimension is 3× 10× 10 [taking from SPE1 benchmark,
see 71] with lateral permeabilities of Kx = 100, and Ky 500 mD, while the vertical per-
meability was set as K z = Kx /100. We inject water in pressure 405 bar and produce oil.
the reservoir is initially in 400 pressure bar and we produce at 395 bar for the producing
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well. Two vertical multi-segmented wells with three segments each are placed at the op-
posite corners of the model. Each segment is connected to the corresponding layer with
different well indices 10, 20, and 30.

Figure 3.4: Coupled Reservoir-ms-well model

Initially, the reservoir is saturated with oil at 400 bar. We inject water in the injection
ms-well at 405 pressure and produce at 395 bar at the production ms-well. We run the
simulation for 4000 days. The comparison between DARTS and The Automatic Differen-
tiation General Purpose Research Simulator (AD-GPRS) with the ms-well model is shown
in figure 3.5. From this graph, we can observe that there is a perfect match between both
DARTS and ADGPRS for this model. You can see that the breakthrough happens quite
quickly in the model following the most permeable layer and gradually increasing while
oil production is following a backward trend. Due to the changing mobility, the injection
rate is growing non-monotonically. Notice that the production rate is shown in negative
volume when the injection rate is shown in positive.

Figure 3.6 compares the snapshot of the overall molar fraction of water profile at time
80 days in the production well segments. Here again, we compare solutions produced by
ADGPRS and DARTS. Except for a small difference in segment 2, all results are matching
quite close. Finally, in figure 3.7 we compare the performance of DARTS vs ADGPRS. In
both simulators, a nonlinear tolerance of 10−3 is set for mass and momentum conserva-
tion. For this test case, the nonlinear solver using Newton’s method and the local chop
of overall fractions with a maximum allowable update of 0.1 is selected for both ADGPRS
and DARTS. In DARTS, the direct SUPERLU solver is used to obtain the linear solution
for decoupled velocity formulations. In order to make a fair comparison, a similar setting
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was employed in ADGPRS.

We can see that the number of Newton iterations and CPU time are lower in DARTS
which can be explained by the utilization of molar nonlinear formulation and the OBL
approach.

The nonlinear convergence for simulation problems involving complex physical phe-
nomena, such as gravity, capillarity, and chemical reactions, still remains a challenging
problem. Recently, several advanced nonlinear formulations were developed to success-
fully address these complex problems [72, 73]. However, most of the advanced nonlin-
ear solvers for general-purpose simulation have been developed for natural formulation
[74] with explicit correction of saturation. An advanced simulation strategy for the molar
formulation is still required to improve the convergence of the nonlinear solutions, es-
pecially in the presence of complex physics. The proposed OBL approach for the molar
formulation provides a unique tool for an efficient representation of the complex non-
linear physics of the simulation problem.

3.3.3. HETEROGENEOUS LOW-ENTHALPY GEOTHERMAL MODEL

In this test case, we show the capabilities of the decoupled velocity engine for the sim-
ulation of a geothermal reservoir with heterogeneous properties. A single-layer model
extracted from a synthetic geological setting of the West Netherlands Basin [21] is cho-
sen here. The model has dimensions of 60 × 40 × 1 and a grid size of 30m × 30m × 1m.
Two horizontal multi-segmented wells with 10 segments each are placed at the left and
right center of the model. Figure 3.8 illustrates the permeability and porosity distribu-
tion as well as well locations of the model. The initial pressure of the reservoir is 200 bar,
with a temperature of 348 K. We inject water at 308 K with a constant pressure of 250 bars
and produce with BHP control at 125 bars.

Figure 3.9(a) shows the pressure and enthalpy distribution after 3650 days and com-
pares it with the conventional DARTS engine without considering velocity as an addi-
tional nonlinear unknown following approach suggested in [75]. In this approach, the
wellbore is discretized and modeled using Darcy’s law. As we can see, a good match is ob-
tained using this approach conventional DARTS engine with an error of less than 0.05%.
Figure 3.9(b) compares the well temperature profile along the wellbore comparing the
solution using ms-well with the solution using a simplified well model. It is clear that
for conventional (near steady-state) geothermal simulation, the pseudo-porous medium
approach is accurate enough and can be used instead of the more expensive ms-well ap-
proach with a decoupled momentum equation.

In Table 3.1, we compare the performance of decoupled velocity formulation with
ms-well vs conventional DARTS formulation using a pseudo-porous medium approach.
We can see that the number of nonlinear iterations and CPU time are lower in the case
of the conventional approach. The primary reason for this is that the decoupled velocity
approach involves an additional degree of freedom with respect to velocity, increasing
each iteration’s computational cost. Furthermore, the conventional approach typically
requires fewer nonlinear iterations because of the simplified momentum equation.
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DARTS formulation nonlinear iteration CPU time[sec]

Pseudo-porous medium 73 8.44

Decoupled velocity 160 21.4

Table 3.1: Comparison between decoupled velocity and conventional DARTS formulation with pseudo porous
media assumptions

3.3.4. REACTIVE TRANSPORT TEST CASE
One of the major issues in geothermal systems is related to reactive transport. Precipita-
tion inside the geothermal well can influence heavily the production results. Moreover,
dissolution in the near-wellbore area due to acidification can, on the contrary, increase
productivity. All these processes involve the chemical alternation of fluid and solid com-
ponents near or inside the wellbore. Currently, the implemented ms-well technology is
only tested with the dissolution model in DARTS and in this test, we demonstrate this
capability.

Here we use the decoupled velocity with an unstructured mesh and demonstrate
how it can capture the near-wellbore dissolution in carbonates. For this test case, we
analyze the dissolution of calcite which can be written as a simple kinetic equation:

C aCO3 ↔C a2++CO2−
3 , (3.4)

We treat this reaction as an equilibrium one. The equilibrium relations are defined by
the law of mass action and are given as

Q −Kq =
C∏

c=1
α

ccq
c −Kq = 0 (3.5)

Here, αc is the activity of component c, Qq is the reaction quotient and Kq is the equilib-
rium reaction quotient or equilibrium solubility limit in the case of dissolution/precipitation
of minerals. The rigorous description of reactive transport modeling in DARTS is de-
scribed in [22]. The injection well is perforating the left boundary and the production
well is located on the right boundary of the reservoir.

The model has a dimension of 100 by 100 meters. A constant permeability of 1mD is
used with random noise of 5%. Figure 3.10(a) shows both the permeability of the reser-
voir and the locations of the wells and figure 3.10 (b) shows the unstructured grid domain
of the model. The proposed model aims to simulate the phenomenon of unstable worm-
hole formation that occurs due to minor permeability perturbations near the injector
wellbore. The reservoir features an injector well on one side that is perforated across its
entire thickness, and a producer well on the other side, spanning the entire thickness of
the reservoir. This example model has dimensions of 100 meters by 100 meters. Table 3.2
specifies the simulation parameter for this test case. Figure 3.11 illustrates the solution
of solid overall molar fraction C aCO3 at 3 three different times: 0.13 td , 0.25 td , and at td

where td is the dimensionless time.
It is clear that chemical interactions can be incorporated into the developed ms-well

extension of the DARTS framework. In future work, we are going to implement precipita-
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tion of minerals in the wellbore and near-well reservoir to accurately capture injectivity
decline in the geothermal wells.

Parameter Value

Initial porosity φ0 [-] 0.26

Initial pressure, p0 [bar] 95

Initial overall fraction [H2O,C a2++CO−2
3 ,C aCO3] [0.09,0.01,0.8901]

Injection overall fraction [H2O,C a2++CO−2
3 ,C aCO3] [0.8,0.01,0.18]

Solubility constant, Ksp [-] 55

Simulation time, t [days] 1.8e5

Injection pressure, B HPi n j [bar] 135

Production pressure, B HPpr od [bar] 65

Table 3.2: Simulation parameters for reactive transport test case

3.3.5. CLOSED-LOOP WELLBORE MODEL
In this example, we will test the developed framework for modeling advanced geother-
mal setups. Figure 3.12 schematically illustrates a single closed-loop also known as coax-
ial wellbore setup. In order to, model such wells, the wellbore is discretized into nodes
and connected to the reservoir using a finite-volume scheme. Any well segment can be
connected with an arbitrary number of reservoir control volumes, representing conduc-
tive heat flux. There are currently two types of tube and annulus segments available in
DARTS that allow us to model coaxial wellbores. In order to model such well, we need
to create a special connection list. Figure 3.13 schematically illustrates the discretized
wellbore and corresponding connection list for such wells.

We made two different scenarios for two different flow directions and investigate the
effect of the heat conduction (different resistance) between the annulus and the reser-
voir part. In this test case, the reservoir dimensions are 1 × 1 × 100 with a grid of size
0.30 × 30 × 6.96 m with impermeable layers. The ms-well with 100 segments for annulus
and the inner tube is fully (conductively) connected to the 100 reservoir blocks. We ran
the test case for 2.4 hours while taking into account various conductive heat transfer co-
efficients, td between the annulus and the reservoir. In this test case, we also assume a
perfect insulation between the annulus and the inner tube (ti = 0).

In Figure 3.14 we can see the temperature profile along the annulus and the inner
tube while we inject from the annulus and produce from the inner tube. We can see
that by increasing the td the temperature profile goes slightly upward, meaning lower
resistance between the annulus and the reservoir and thus more heat conduction. Fig-
ure 3.15 corresponds to the reverse flow direction in which we inject from the inner tube
and produce from the annulus. As we can see there is no effect of the td on the injection
well as there is no contact between the inner tube and the reservoir. On the other hand,
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the temperature profile along the annulus is nonlinear and temperature increases by in-
creasing the conductivity between the annulus and the reservoir. The obtained solution
qualitatively follows the results reported in [76] for a similar coaxial setup.

3.4. DISCUSSION AND CONCLUSION
We have developped a novel computational framework capable of simulating the com-
plex Thermal-Hydraulic-Chemical (THC) multiphase multi-component fully-coupled flow
within both the wellbore and the reservoir. This framework is built upon the operator-
based linearization (OBL) method employed in the Delft Advanced Research Terra Sim-
ulator (DARTS). The OBL approach involves expressing the governing equations in op-
erator form, greatly simplifying the solution of highly nonlinear equations with intricate
physical properties.

In our proposed framework, we extend the OBL technique to encompass both the
governing equations of the reservoir and the wellbore. During the simulation, we utilize
multilinear interpolation to efficiently compute the corresponding values and deriva-
tives of operators, reducing the computational load associated with linearization. Our
simulation model is constructed on a general unstructured grid framework, where the
wellbore is divided into segments following a similar approach to the finite-volume dis-
cretization used for the reservoir. Additionally, the total velocity is introduced as an ad-
ditional nonlinear variable, constrained by the momentum equation, allowing for the
formulation of a suitable momentum equation for the wellbore.

Initially, we validate the ms-well model’s accuracy by comparing its thermal, two-
phase immiscible physics solution to the Automatic Differentiation General Purpose
Research Simulator (ADGPRS). The comparison aligns with the ms-well model’s perfor-
mance in both simulation frameworks. Furthermore, we examine DARTS and ADGPRS
simulations, highlighting DARTS’ advantages in terms of reduced CPU time and non-
linear iterations due to distinct nonlinear formulations and the OBL approach. We also
extend testing to more intricate thermal physics, assessing the engine’s performance for
geothermal scenarios involving a heterogeneous reservoir, comparing it to a pseudo-
porous medium approach. In cases without transient effects, the pseudo-porous medium
approach provides comparable solutions at a lower computational cost.Additionally, we
assess the framework’s ability to model calcite dissolution near the wellbore on an un-
structured mesh, successfully capturing the dissolution effect. Precise wellbore discretiza-
tion enables the modeling of advanced well technologies, like co-axial wellbores. We
conduct a test case for a single closed-loop wellbore, performing multiple numerical ex-
periments and sensitivity analyses regarding factors affecting heat extraction.

Our study has highlighted potential areas for future research. One direction involves
converting the drift-flux model for wellbore multiphase flow into operator form and in-
corporating complex chemical interactions in the wellbore and reservoir. Another area
of interest is exploring iterative linear solvers for decoupled velocity engines on both
CPU and GPU platforms. The nonlinear nature of coupled wellbore and reservoir simu-
lations can impede convergence, making the development of a nonlinear solver crucial.

Expanding the Trust-region method, integrated into the operator-based linearization
framework, to encompass coupled wellbore and reservoir simulations holds promise.
Moreover, the decoupled velocity formulation separates the momentum equation, mass,
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and energy, allowing for a local nonlinear solver that can address convergence issues. We
also aim to extend the model to encompass advanced well-network topologies, consid-
ering surface capabilities, chokes, and valves.
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(a)

(b)

(c)

Figure 3.5: Benchmark testcase with ADGPRS for SPE1 reservoir
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Figure 3.6: Water overall molar fraction inside the wellbore after 80 days

Figure 3.7: Performance comparison between DARTS and AGPRS
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Figure 3.8: permeability (right figure) and porosity distribution with well locations (left figure)

(a) (b)

Figure 3.9: (a) Comparison 2-D heterogeneous pressure and low enthalpy solution obtained with the decou-
pled velocity and the pseudo-porous medium approach (b) Temperature profile along the wellbore for both
approaches.

(a) (b)

Figure 3.10: (a) Reservoir permeability map with specified well locations and (b) discretization mesh
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Figure 3.11: Calcium Carbonate dissolution of the wormhole model at three different time snapshots

Figure 3.12: (a) Cross section of a pipe-in-pipe single closed-loop wellbore (b) schematic diagram of a single-
well closed loop for different flow direction

Figure 3.13: Connection list of the coaxial wellbore network
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Figure 3.14: Comparison of water temperature profile under different thermal conductivity between annulus
and reservoir while injecting from annulus pipe

Figure 3.15: Comparison of water temperature profile under different thermal conductivity between annulus
and reservoir while injecting from inner pipe





4
NONLINEAR SOLVER BASED ON

TRUST REGION APPROXIMATION

Summary

Reservoir simulation of CO2 utilization and storage (CCUS) in subsurface reservoirs with
complex heterogeneous structures requires a model that captures multiphase composi-
tional flow and transport. Accurate simulation of these processes necessitates the use
of stable numerical methods that are based on an implicit treatment of the flux term in
the conservation equation. Due to the complicated thermodynamic phase behavior, in-
cluding the appearance and disappearance of multiple phases, the discrete approxima-
tion of the governing equations is highly nonlinear. Consequently, robust and efficient
techniques are needed to solve the resulting nonlinear system of algebraic equations. In
this study, we present a powerful nonlinear solver based on a generalization of the trust-
region technique for compositional multiphase flows. The approach is designed to em-
bed a newly introduced Operator-Based Linearization technique and is grounded on the
analysis of multi-dimensional tables related to parameterized convection operators. We
split the parameter space of the nonlinear problem into a set of trust regions where the
convection operators preserve the second-order behavior (i.e., they remain positive or
negative definite). We approximate these trust regions in the solution process by detect-
ing the boundary of convex regions via analysis of the directional derivative. We tested
the performance of the proposed nonlinear solver for various scenarios.

The material presented in this chapter has been published in Geoenergy Science and Engineering 2023, [24].
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4.1. INTRODUCTION
Carbon emissions reduction has become a high priority as the world strives to mitigate
global warming. Carbon dioxide capture, utilization, and storage (CCUS) is one of the
promising technologies to minimize the amount of greenhouse gases entering the at-
mosphere. CCUS includes the capture of carbon dioxide and its associated compounds
from producing sources, compression, transportation, and use of the captured CO2 for
operations such as permanent storage in deep underground geological formations and
increased hydrocarbon recovery in existing oil fields. A model that captures multiphase
compositional flow and transport is required to simulate CO2 use and storage (CCUS) in
subsurface reservoirs with complicated heterogeneous structures.

Compositional simulation is based on the solution of the discretized governing equa-
tions describing the mass, energy and momentum transfer in the reservoir. Explicit
schemes have severe timestep size restrictions and are impractical for large-scale de-
tailed reservoir models with Courant-Friedrichs-Lewy (CFL) numbers that vary by sev-
eral orders of magnitude across the domain. As a result, in practice, the fully-implicit
method (FIM) is preferred.

After the discretization of the governing Partial Differential Equations is complete, a
nonlinear system needs to be linearized. The most frequently used sets of variables for
linearization are based on natural [77] and molar formulations [51, 78] which include
phase-dependent or mass-dependent variables respectively. Typically, linearization is
done using a version of the Newton-based method, which demands the assembly of the
Jacobian and the residual for the combined system of equations. A previous timestep so-
lution is used as an initial guess for the nonlinear solver. Due to the nonlinear nature of
the equations and dependency on the initial guess, Newton’s method is not guaranteed
to converge for larger timesteps [79]. Once the solution of the linearized system is ob-
tained, the nonlinear unknowns are updated and nonlinear iterations are repeated until
convergence is achieved.

Heuristic strategies are utilized to select timesteps in reservoir simulation practice
[10]. The use of such heuristics often yields to timesteps that are either too conserva-
tive (i.e., small) or too large which in turn leads to wasted nonlinear iterations [25]. The
limitation of timestep selection can be overcome by applying an advanced nonlinear so-
lution strategy.

There are several nonlinear solvers described in the literature for the compositional
formulation. One of the promising ideas is the continuation method proposed by [25]
that introduces a continuous parameter changing between 0 to 1 through the timestep.
This approach controls the residual through continuous integration along the nonlinear
trajectory in parameter space. Recently, [26] introduced a Dissipation-Based Nonlinear
Solver for compositional transport. By using numerical dissipation, the approach creates
a homotopy of the discrete governing equations. A continuation parameter is included
to limit dissipation and ensure that the converged solution’s accuracy is not harmed.

Another approach is the flux-based trust region (TR) method for the natural formula-
tion, proposed initially by [27] for two-phase immiscible flow with the S-shape fractional
flow curves. Their work demonstrates that unconditional convergence is possible by lim-
iting saturation updates based on the inflection point of the flux function. Later, [28, 29]
extended the flux-based trust region for two-phase immiscible flow and transport where
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buoyancy, capillary, and viscous forces are present. More recently, [30] extended this
work for black oil three-phase physics with a non-smooth flux function.

Even though different trust region nonlinear solvers were developed for the natural
formulation, there is a lack of such strategies for the molar formulation. [31] demon-
strated a compositional flow simulation employing tie-lines to parametrize the compo-
sitional space. A version of trust-region correction has been developed for molar formu-
lation along the key tie-lines [80] but was not robust enough in comparison with tech-
niques proposed for the natural formulation. [32] designed a nonlinear solver that de-
tects phase boundaries. They focused their research on chopping at phase boundaries,
ignoring the inflection line within the two-phase zone. They highlighted that detecting
the inflection line for compositional problems required a second-order derivative and
the Hessian analysis, which is more expensive and challenging to compute.

Recently, a new approach for the linearization of governing equations, called operator-
based linearization (OBL), was proposed by [81]. In this approach, the exact physics of
the simulation model was approximated using abstract algebraic operators. Later this
technique was extended and implemented in the open-source Delft Advanced Research
Terra Simulator (DARTS). In the OBL approach, the parameterization is performed de-
pending on the conventional molar unknowns (pressure and overall composition). Us-
ing the OBL approach, the nonlinearity of the residual is translated into the operators.
Consequently, by analyzing the nonlinearity of the operators, one can understand the
major source of nonlinearity in the discrete residual equations. This greatly facilitates
the design of a nonlinear solver for this framework.

In this work, we present an advanced nonlinear solver based on a generalization of
the trust-region technique for compositional multiphase transport applied for CCUS.
First, we investigate the nonlinearity of convective operators written in fractional flow
form and detect boundaries of the trust region for the hyperbolic operator by assem-
bling the directional approximation of the Hessian matrix. Next, we design the nonlinear
solver in which we track the nonlinear trajectory for binary and ternary kernel in OBL pa-
rameter space and approximate these trust regions in the solution process via directional
analysis of the derivative. By drawing some trial Newton trajectories on OBL parameter
space, we observe that our directional analysis of derivatives predicts the boundaries
of these trust regions correctly. Furthermore, it is less computationally expensive than
computing the full Hessian matrix. Finally, we test the performance of the new nonlinear
solver for several complex examples.

4.2. NONLINEAR ANALYSIS OF CONVECTIVE (FLUX) OPERATOR
For simplicity, we assume in the following derivations that the system is incompress-
ible, which limits the analysis to the convection operators (Flux operator) βc only as the
main source of nonlinearity in the residual equation. 2.9 written in total velocity formu-
lation. As we can see in Fig. 4.1, for a binary compositional kernel, we have two kinks
in addition to the inflection point of the fractional curve. These two points correspond
to bubble and dew points compositions where the phase transition occurs. Kinks have
different properties than inflection points and usually have a negative impact on non-
linear convergence [82]. There is a discontinuity in derivative at the point of kinks and
thus there is an abrupt change in concavity and residual.
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Figure 4.1: Binary incompressible compositional kernel

Kinks and inflection points in parameter space dictate the boundaries of trust re-
gions. For general multicomponent systems, we estimate the inflection point(s) based
on the analysis of the Hessian of the convective operator. The Hessian matrix is a way of
organizing all the second partial derivative information of a multivariable function. The
general Hessian matrix for a convection operator can be written as:

H(ω) = J
(∇[βc (ω)]

)=


∂2β1

∂ω2
1

∂2β1
∂ω1∂ω2

. . . ∂2β1
∂ω1∂ωc

∂2β1
∂ω2∂ω1

∂2β1

∂ω2
2

. . . ∂2β1
∂ω2ω1

...
...

. . .
...

∂2β1
∂ωc∂ω1

∂2β1
∂ωc∂ω2

. . . ∂2β1

∂ω2
c


. (4.1)

In this work, we focus on the analysis of binary and ternary compositional problems
and evaluate the Hessian matrix with respect to hyperbolic variables zc using the finite
difference method.

In our analysis of the ternary system, we are interested in the variation of convective
operators with respect to z1 and z2. Accordingly, we construct the Hessian matrix for the
fixed pressure as follows:

H =

 ∂2β

∂z2
1

∂2β
∂z1∂z2

∂2β
∂z2∂z1

∂2β

∂z2
2

 . (4.2)

For ternary systems, we uniformly discretize the parameter space and compute the Hes-
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sian numerically as follows(
∂2β

∂z2
1

)
i , j

=
( ∂β∂z1

)i+1, j − ( ∂β∂z1
)i , j

∆z
, (4.3)

(
∂2β

∂z2
2

)
i , j

=
( ∂β∂z2

)i , j+1 − ( ∂β∂z2
)i , j

∆z
, (4.4)

(
∂2β

∂z2∂z1

)
i , j

=
(
∂2β

∂z1∂z2

)
i , j

=
 ( ∂β∂z1

)i , j+1 − ( ∂β∂z1
)i , j

∆z

 , (4.5)

where i and j corresponds to the coordinates of the hypercube centers for axes z1 and
z2 respectively. Next, for each point in the centers at the interface of parameterized hy-
percubes, we define a quadratic form

Q = d zHd z ′. (4.6)

After calculating Q for all points in the parameter space, we identify trust regions. If
Q changes the sign from positive to negative, it indicates that our operator goes from
positive definite to negative definite and changes its convex condition.

Figure 4.2 shows the Hessian diagram for all three convection operators ( β1, β2, β3

) and the phase diagram corresponding to that ternary kernel. In the phase diagram,
the red color corresponds to the two-phase region and the blue color corresponds to the
single-phase region. In the Hessian diagram, each color corresponds to different convex
conditions of the flux operators. Comparing the Hessian diagram to the phase diagram,
it is clear that there is an abrupt change in concavity (kink) on the boundaries between
single-phase and two-phase regions. Moreover, there is an inflection line in the two-
phase region for each component that segments the two-phase zone into a concave and
a convex part.

Figure 4.2: Hessian for three convective operators and phase diagram for incompressible ternary kernel

All computations of special features in the phase diagram depend on the OBL res-
olution. Since all properties including convective operator βi are defined based on in-
terpolation among supporting points in the OBL mesh, any changes in convexity can be
detected based on the numerical approximation of second derivatives. It is clear that
these calculations as well as the performance of the nonlinear solver are dependent on
the OBL resolution. In Appendix C, we show the sensitivity of inflection point definition
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and nonlinear convergence based on OBL resolution. More sensitivity analysis of the
nonlinear convergence can be found in [81] and [83]

It is computationally expensive and time-consuming to compute the Hessian at each
point in the parameter space. Checking the convexity condition only for the interfaces
through which Newton’s trajectory passes excludes the need to study the entire parame-
ter space. However, the quadratic form of the operator must be evaluated using equation
4.6, which requires the computation of the full Hessian matrix. The size of the Hessian
matrix is nc ×nc , where nc is the number of components. As a result, n2

c evaluations of
first derivatives are required for hessian matrix assembly. To avoid calculating the entire
Hessian matrix, in the directional analysis of the second derivative, we only need to eval-
uate derivatives in the direction of the given interface that the nonlinear solver passes.
As an example, given the simple Newton trajectory in figure 4.3 that passes interface L
in the direction of Z1, the second order directional second derivative is calculated as fol-
lows:

∂2
Z1
β(ω) =

( ∂β∂z1
)i+1 − ( ∂β∂z1

)i

∆z1
, ω= [Z1, ..., Znc ]. (4.7)

Figure 4.3: Newton trajectory passing interface L between two cells in the parameter space

The advantage of using equation 4.7 is that we only need to evaluate derivatives once
to calculate the second-order directional derivative regardless of the dimension of the
operator’s space nc .

4.3. NONLINEAR SOLVER FOR OBL FRAMEWORK
Before we present our Trust Region (TR) nonlinear Newton solver in detail, we provide an
overview of the state-of-the-art damping strategies for Newton’s solver. Newton update
can be written at every nonlinear iteration in the general form as follows:

∆ω=−ΦJ−1r, (4.8)
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where J and r are the Jacobian and and the residual. HereΦ is the diagonal matrix:

Φ= diag(φ1,φ2, ...,φn),φi ∈ [0,1]. (4.9)

Global and local nonlinear solvers can be seen as different methods to damp the
Newton updates [84] by specifying the diagonal matrixΦ:

• STD The standard Newton’s solver where the updated matrix is the identity matrix.

• Global chop In the global-chop nonlinear strategy, all entries of the diagonal are
identical, implying that the Newton direction is simply scaled by a constant factor.

• Local chop In the local-chop nonlinear solver, the diagonal scaling entries depend
on a cell-by-cell basis to limit the local compositional update.

The benefit of global chop is that the nonlinear update direction is not changing.
However, it could be quite restrictive due to a significant number of resulting nonlinear
iterations. Local chop on the other hand is more effective due to the local adjustment
of the update. However, it may lead to inconsistency in the nonlinear update due to the
restrictions of the hyperbolic transport solution. Next, we will present a Trust Region
(TR) solver which yields a consistent nonlinear update.

4.3.1. TRUST REGION SOLVER FOR OBL FRAMEWORK

In previous sections, the sources of nonlinear convergence failure, such as kinks and
inflection lines encoded in the convective operator, were discussed. All of these features
can be discovered by applying the Hessian analysis of the convective operator. With
these kinks and inflection lines, the nonlinear space is divided by multiple subregions,
which are referred to as trust regions (TR). The key idea is that any nonlinear update
(in terms of composition) is not allowed to cross the boundary of any trust region too
far. If an intersection is found, the nonlinear update’s size is reduced until the updated
composition barely crosses the boundary.

The full Hessian evaluation in the trust-region identification is a time-consuming
procedure. To detect the trust regions more efficiently, we apply a directional analysis of
the second derivative while tracking the nonlinear update and passing each interface in
the OBL parametrization. The procedure is as follows:

1. detect OBL interfaces along the nonlinear update trajectory in the parameter space
(see Appendix 1 for detailed algorithm detecting OBL interfaces based on tracking
of nonlinear trajectory in parameter space),

2. computes directional second derivative for each convection operator at each cross-
ing interface of OBL space with finite difference method,

3. detects inflection point(s) and kinks based on the second derivative information,

4. limits the local nonlinear update by the location inside the trust region.
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Next, we illustrate our approach with examples and compare a calculation of special
points detected by two types of analysis: reference results based on the construction of
the full Hessian matrix for binary and ternary systems and directional analysis based
on the second derivative only. In Fig. 4.4, we detect an inflection line position in the
parameter space based on the convex condition approximated by the quadratic form
of the Hessian matrix and compare it to the inflection point detected during tracking
the nonlinear update. In this example, we use a two-phase immiscible physical kernel
with viscosity dependent on pressure, which results in a pressure-dependent inflection
line. Note that the exact location of the detection points can be lightly shifted from the
line position due to the discrete approximation of the directional derivative. Another
observation is that the pressure impact can be taken into consideration when detecting
the inflection point using the directional derivative.

Figure 4.4: Adaptive detection of inflection point versus the rigorous inflection line calculated by the full Hes-
sian assembly for several random trajectories in parameter space

Similarly, for a ternary compositional kernel, we show in Fig. 4.5(a) that special points
can be detected correctly using directional derivatives along the nonlinear update. How-
ever, some numerical artefacts and noise are usually present in the computation of nu-
merical derivatives in directional analysis. To overcome this problem, we use the mov-
ing average algorithm [85] to smooth second-order directional derivatives as shown in
Fig. 4.5(b).

4.4. PERFORMANCE OF NONLINEAR SOLVER
In this section, the performance of the proposed nonlinear solver is demonstrated for
several simplified and realistic modeling setups.

4.4.1. SINGLE CELL ANALYSIS
We can derive some essential conclusions for simulation problems by investigating the
nonlinear behavior of a single-cell compositional transport problem. Here our goal is
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(a) Trial trajectories on HCO2 (b) Directional derivatives of the random tra-
jectories.

Figure 4.5: Full and directional evaluations of second order behavior for ternary compositional kernel

to find the solution zn+1 from the initial guess zn+1,0 for a given boundary condition on
the left and right sides of the cell, defined as βci L and PR , respectively. The imposed
flux is from left to right. Here we inject pure gas mixture with the composition of (CO2,
C10) = (1, 0) into the reservoir initialized with the composition of (0, 1) with the K-values
equivalent to K = {2.5,0.3} and the viscosity ratio of 10 between the oil and gas phase.

Figure 4.6: Single-cell setup with left and right boundary condition. Flow is from left to right with fixed total
velocity Vt and fixed total flux βci L .

We investigate the convergence map of the pure Newton’s solver and trust region
solver for binary compositional kernels. In this setup, we fixed the right boundary con-
ditions as zr = 1 and study the convergence of the solution using different nonlinear
solvers for all possible starting points (zn+1,0, zl ) ∈ (0,1)×(0,1). The maximum nonlinear
iteration for all these test cases is equal to 50. We perform our analysis for two differ-
ent dimensionless timesteps expressed as C= Vt dt

dx , with t in days and x in meters and Vt

velocity in meters per seconds.
As seen in Fig. 4.7, once the solution is in the two-phase area, pure Newton’s update

struggles to converge in a maximum number of iterations. The color indicates the num-
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(a) Convergence map for pure newton (b) Convergence map for TR algorithm

Figure 4.7: Convergence map for compositional binary problem with C= Vt dt
dx = 10

ber of Newton iterations. A maximum number of iterations is set at 50. Another point
to note is that once the solution is in the single-phase zone (linear fractional flow), New-
ton’s approach guarantees nonlinear convergence. The proposed nonlinear solver, on
the other hand, always has a limited number of nonlinear iterations.

(a) Convergence map for pure newton (b) Convergence map for TR algorithm

Figure 4.8: Convergence map for compositional binary problem with C= Vt dt
dx = 100

As we increase the timestep, we can observe that for pure Newton’s update, the yellow
region (corresponding to the non-convergence zone) increases again in the two-phase
region. However, once the solution is in the single-phase region pure Newton is able to
find the solution. And again, the proposed Trust Region solver is globally convergent for
all initial guesses.
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4.4.2. FRONT PROPAGATION IN A SINGLE FRACTURE
In fractured reservoirs, the speed of transport front propagation between matrix and
fracture is significantly different due to the large contrast in permeabilities. Here we im-
itate this process for a one-dimensional reservoir by running the simulation with small
timesteps to develop a resolved displacement solution at a particular time. Next, we
restart the simulation from this distribution for one control timestep only and account
for the number of nonlinear iterations required to converge the solution. We repeat
this procedure by gradually increasing the size of the control timestep and detecting the
change in the number of nonlinear iterations. Fig. 4.9 illustrates CO2 front propagation
test case. This test case considers a 1000m in length 1D homogeneous reservoir with
constant permeability and porosity of K = 10 mD and φ = 0.3.

Figure 4.9: CO2 front propagation for different timesteps. The blue curve represents the resolved displacement
solution, and the red curves represent the progressive control timestep solutions.

Next, we use multiple physical kernels of increasing complexity to test the perfor-
mance of a nonlinear solver based on directional analysis in the suggested numerical
setup. We also compare our trust-region nonlinear method against global and local chop
with ∆z = 0.1 as the highest tolerable ∆z.

For binary systems, we test the performance of nonlinear solvers for the flow of two-
phase immiscible fluids and miscible fluids with phase behavior controlled by constant
K-values with K = {2.5,0.3}. Initially, the 1D domain is fully saturated by the non-wetting
phase and we inject a wetting phase at the left boundary. We ran the simulation with
a small timestep for 1000 days. Next, we restart by enlarging the timesteps. Figure 4.10
shows the fracture test results comparing different nonlinear solvers for binary kernels.
We set the maximum number of nonlinear iterations to 50 for all test cases.

It is clear that the trust region solver performs better (provides fewer nonlinear it-
erations) for both immiscible and miscible kernels. Here global and local chops only
provide a convergence strategy for timesteps corresponding to ∆t = 500 days and fail to
converge for larger timesteps.

Furthermore, we run front propagation in a single fracture test case for ternary and
quaternary kernels. We inject at 135 bar using bottom hole pressure control and ini-
tial reservoir pressure of 95 atm. For the ternary kernel, we inject the gas stream of
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(a) Immiscible kernel (b) Miscible kernel

Figure 4.10: Comparison of different nonlinear solvers for binary kernel

{CO2, NC4, C10} with the composition of zi n j = {0.98,0.01,0.01} into the reservoir ini-
tialized with zi ni = {0.1,0.2,0.7}. Simillarly, in 4-component system we inject gas stream
of {CO2, NC4, C10, C2} with the composition of zi n j = {0.98,0.001,0.001,0.01} into the
reservoir initialized with zi ni = {0.1,0.2,0.2,0.5}. Figure 4.11 illustrates the performance
of different nonlinear solvers for a single fracture test case. In both the ternary and four-
component test cases, the TR solver converges with fewer nonlinear iterations.

(a) Ternary kernel (b) 4 components

Figure 4.11: Comparison of different nonlinear solvers for ternary and quaternary kernel

4.4.3. FULL COMPOSITIONAL SIMULATION
In this test case, we run the simulation study for multiple timesteps until reaching the
final time. We start the simulation with a small timestep (∆t = 1 day), if nonlinear itera-
tion converges, we double the timestep for the next timestep and if it does not converge
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we cut the timestep to half. The maximum Newton iteration is again N = 50. In this test
case, we compare four different nonlinear solvers: STD,TR, Global and local chop with a
damping factor of 0.1.

1D HOMOGENEOUS MODEL

This is the ternary 1D full simulation test case. The domain is discretized into 1000 grid
cells with a homogeneous permeability and porosity of K = 10 mD and φ = 0.3. Compo-
nents are {CO2, NC4, C10}. We inject a gas mixture of composition (0.98, 0.01, 0.01) into
the (0.1, 0.25, 0.65) under BHP control (constant pressure 405 bar) at the left boundary
and produce it under constant pressure 395 bar at the right boundary.

Figure 4.12 illustrates the cumulative number of nonlinear iterations for different fi-
nal times and compares different nonlinear solver’s performances. It is clear that the TR
solver has superior performance with respect to other solvers. Figure 4.13 compares the
composition front for different nonlinear solvers. As we can see, the STD solver can cap-
ture the shock accurately. On the other hand, the TR solver smears out the shock since
it is capable of converging for a more aggressive timestep and consequently larger time-
truncation error is present in the solution. The smearing effect of time truncation is most
noticeable at the shock. Because the other solvers cannot converge for larger time steps,
they reduce timesteps, resulting in less truncation error and better composition front
evolution. While time truncation error analysis is beyond the scope of this paper, hav-
ing a robust nonlinear solver allows us to choose timestep from practical considerations
rather than the necessity to perform a simulation with smaller timesteps.

Figure 4.12: Comparison of cumulative Newton iterations for different nonlinear solver for ternary kernel
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Figure 4.13: Comparison of solution for different nonlinear solvers for ternary kernel

4.4.4. 3D HETEROGENOUS MODEL

In this test case, we compared the performance of nonlinear solvers for a heterogeneous
reservoir. We used a channelized Egg model described in [86]. The dimension of the
model is 60 × 60 × 7 = 25200 grid cells of which 18553 cells are active, with a grid size of
8m × 8m × 4m. The porosity is constant (φ= 0.2). Figure 4.14 illustrates the permeability
and well locations. The injection well is located in the left upper part and the production
well is at the right bottom of the domain. The initial pressure of the reservoir is 400
bar. We inject a gas mixture of composition (0.98, 0.01, 0.01) into the (0.1, 0.25, 0.65) at
constant pressure 405 bar and produce at 395 bar. We run the simulation for different
nonlinear solvers several times.

Figure 4.15 summarizes the nonlinear iterations for different nonlinear solvers. The
TR solver takes a lower number of nonlinear iterations to converge compared to the
other solvers. In this test case, the STD solver takes the highest number of Newton it-
erations since it relies on a pure Newton update. Local chop performs slightly better
than global chop in this setting but still worse than TR. We take the solution of STD as
a reference solution for the time-truncation error analysis of the solution for the single
top layer of the model. From the figure 4.16 we can see that the error is mainly local-
ized around the trailing and leading shocks. Similar to the 1D homogeneous model test
case, the time truncation error affects the accuracy of the solution since the TR solver
can converge for more aggressive timesteps. You can see that the difference in the 2D
heterogeneous solution is less pronounced than the one detected in homogeneous 1D.

4.5. NONLINEAR PRECONDITIONING
The proposed trust-region nonlinear solver guarantees to converge for arbitrary timesteps.
However, its application may become time prohibitive due to an excessive number of
nonlinear iterations for large timesteps. To overcome this issue, we proposed the non-
linear preconditioning strategy described in this section. In the OBL framework, we look
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Figure 4.14: Permeability Kx map of egg model

Figure 4.15: Comparison of cumulative Newton iteration for different nonlinear solver for egg-model at differ-
ent time

into the sequential update on nonlinear iterations where changes in transport unknowns
in the downstream block depend on the derivatives of the convective operator at the cur-
rent block. If composition in the block is defined at the residual values (when convection
for the phase is absent), the update in the downstream block is zero, and the transport
wave cannot propagate on this iteration. As a result, the nonlinear solver needs as many
iterations as many blocks at residual compositions it needs to propagate.

This problem is especially pronounced in fractured reservoirs, where the transport
front has to propagate for a large number of grid-blocks once it reaches fracture. Here,
we perform the analysis for the propagation of the nonlinear wave in the OBL approach
which is a further extension of the analysis performed in [87]. To simplify derivations,
we assume that the model is limited by a 1D reservoir with Cauchy boundary conditions
on the left and right sides. This reduces the spatial discretization, which yields the fol-
lowing equation in vector form (the length of the vector corresponds to the number of
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Figure 4.16: Comparison of CO2 saturation maps at the time of T = 100 days (1st row). The second row shows
the delta of gas saturation between each model and the STD case

components nc ) for the block i :

ri (ωi−1,ωi ,ωi+1,ωn
i ) = (α(ωi )−α(ωn

i ))ai −β(ωi )bi+ (ωi ,ωi+1)+β(ωi−1)bi− (ωi ,ωi−1),
(4.10)

where
ai =φ0Vi , (4.11)

bi+ (ωi ,ωi+1) =∆tTi ,i+1(pi+1 −pi )Λ(ωi ), (4.12)

bi− (ωi ,ωi−1) =∆tTi−1,i (pi −pi−1)Λ(ωi−1). (4.13)

For simplicity, we assume a homogeneous reservoir with V , φ0 and T constants.
Equation 4.10 can be written for an internal reservoir block as

ri = (αi −αn
i )+γ(βi bi++βi−1bi− ). (4.14)

Here

αi =α(ωi ), βi =β(ωi ), γ=∆t
T ab

φ0V
, (4.15)

and
bi+ = (pi −pi+1)Λ(ωi ), bi− = (pi −pi−1)Λ(ωi −1). (4.16)

Now the internal Jacobian row of the equation can be written as:


γBi−1bi− +γβi−1 ×b

′
i−,i−1

Ai +γ(Bi bi++βi ×b
′
i+,i +βi−1 ×b′

i−,i )

γβi ×b′
i+,i+1


T

, (4.17)
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where

Ai =
[
∂αi

∂ωi

]
=

[
∂αc

∂pi

∂αc

∂zi ,1
...

∂αc

∂zi ,nc−1

]
,c = 1, ...,nc , (4.18)

Bi =
[
∂βi

∂ωi

]
=

[
∂βc

∂pi

∂βc

∂zi ,1
...

∂βc

∂zi ,nc−1

]
,c = 1, ...,nc , (4.19)

b′
i−,i−1 =

[
∂bi−
∂ωi−1

]T

= (pi −pi−1)
∂Λi−1

∂ωi−1
−



Λi−1

0
...

0

 , (4.20)

b′
i−1,i =

[
∂bi−
∂ωi

]T

=



Λi−1

0
...

0

 , (4.21)

b′
i+,i =

[
∂(−b(i+1)− )

∂ω(i+1)−1

]
=−b′

(i+1)−,(i+1)−1, (4.22)

b′
i+,i+1 =

[
∂(−b(i+1)− )

∂ω(i+1)

]
=−b′

(i+1)−,(i+1). (4.23)

For binary systems, under the assumption of an incompressible fluid, αc and βc

are equivalent to overall composition zc and the compositional fractional flow curve
(Fc ) respectively. When the residual saturation is zero at the initial conditions, the β-
operator becomes zero since the compositional fractional flow is zero at residual satu-
ration equals to zero. Therefore, the internal Jacobian for the nonlinear iteration can be
written as: [

γBi−1bi− 1+γ(Bi bi+) 0
]

, (4.24)

In Eq. 4.24, if B becomes zero at the end point of fractional flow for the component,
the internal Jacobian matrix becomes the identity matrix that does not allow the compo-
sition to propagate downstream. Therefore, to maximize the propagation for the com-
position front downstream in a single iteration, we need to maximize the B term.

From Fig. 4.17 for the incompressible version of dead-oil kernel (Check Appendix A.4
for fluid description) without the dependency of viscosity on pressure, it is clear that the
B is maximum at the inflection point. Therefore, to maximize the composition propa-
gation in more than one gridblock in one iteration, we introduced the inflection point
of the β-operator for each gridblock as an initial guess. Fig. 4.18 compares our nonlin-
ear solver performance with and without preconditioning for both dead-oil with pres-
sure variation and binary compositional kernel. We can see that by applying the pre-
conditioning strategy, the number of iterations for increasing timestep grows slower for
the preconditioned system. In Appendix A.3, you can find the preconditioning perfor-
mance’s sensitivity to the transport function parameters.
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(a) (b)

Figure 4.17: (a) The derivative of the β-operator with respect to z for dead-oil system (b) Fractional flow for
dead-oil system

(a) Dead-oil kernel (b) Compositional kernel

Figure 4.18: TR nonlinear solver with/without preconditioning

4.6. DISCUSSION AND CONCLUSION
For simulation of CO2 use and storage (CCUS) in subsurface reservoirs with complicated
heterogeneous structures, a model that includes multiphase compositional flow and
transport is needed. The discretized governing equations are highly nonlinear, and New-
ton’s technique is frequently used to solve them. Newton’s solution technique does not
ensure convergence and is extremely dependent on the timestep choice. In this work,
we investigate the nature of nonlinearities in CCUS simulations and suggest solutions to
a general compositional problem.

Operator based linearization Facilitates the nonlinear analysis of the discrete resid-
ual since the nonlinearty is lumped in the operators and one can understand the non-
linearity by analysing a nonlineairty of the operator. We started by analyzing the non-
linearity of the convective flux operator for binary and ternary kernels. Two significant
attributes of the flux term result in challenges when it comes to achieving nonlinear con-
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vergence with the Newton solver:

• Kinks line

Kinks manifest themselves when there are discontinuities in the first-order deriva-
tives of a function. They coincide with sudden changes in the curvature of the flux
function and represent a significant contributor to Newton oscillations. Compar-
ing the phase diagram and hessian diagram clearly illustrates that The occurrence
of kinks arises mainly due to the the crossing of phase boundaries.

• Inlflection line For the scalar function, the inflection point is the point where the
function changes its concavity conditions. for multi-variable functions, the con-
vexity of the function depends on the quadratic forms of the Hessian matrix. Our
analysis of the hessian illustrates that each component has its own unique inflec-
tion line in the parameter space. in a general case inflection line depends on pres-
sure and temperature.

Detecting inflection and kink lines and requires rigorous hessian assembly which is
computationally expensive and cumbersome. We proposed the directional derivative al-
gorithm to estimate the trust-region boundaries instead of full hessian analysis to over-
come the computational cost.

We present an advanced nonlinear solver based on a trust-region technique aimed to
solve multiphase multi-component transport problems. The trust region solver is based
on the analysis of multi-dimensional tables connected to parameterized highly nonlin-
ear convection operators. These operators are associated with the governing equations
and are built for a newly introduced Operator-Based Linearization approach. The inflec-
tion line and kinks in the parameter space determine the delineation of the trust-region
zones. According to our nonlinear study of convective operators for binary and ternary
systems, each component has its inflection line within the two-phase region. In addi-
tion, kink lines appear when phase boundaries are crossed. These boundaries could
change in the parameter space of the problems based on the direction of the Newton
trajectory.

We track the nonlinear trajectory and segment the parameter space of the problem
into a set of trust regions where the hyperbolic operators keep their second-order be-
havior (i.e., they remain either convex or concave). We approximate these trust regions
in the solution process by detecting the boundary of convex regions via analysis of the
directional derivative. By drawing multiple trial trajectories on binary and ternary dia-
grams we observe that our algorithm can detect these boundaries correctly. Moreover,
it is less computationally expensive since we do not compute the entire hessian in our
technique and instead compute the directional derivative while tracking the nonlinear
update. After detecting all the boundaries along the nonlinear trajectory, the proposed
nonlinear solver locally constrains the update of the overall compositions across the
boundaries of these regions. We tested our nonlinear solver for several reservoir models
starting from the single cell to a fully 3D heterogeneous model. Our numerical results
show that the trust-region solver avoids overshoots in the nonlinear update which lead
to superior convergence in comparison to conventional nonlinear solvers.
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A promising future research direction could be to reduce the computational over-
head related to locating the trust-region boundaries and carrying out the chopping. While
we showed that directional derivative is cheaper than full Hessian assembly, there is still
additional overhead since detection of special points (kinks and inflection) are happen-
ing on the fly during simulation. The major cause of the overhead is due to the tracking
the Newton trajectory in nonlinear operator space. One possibility is that once the spe-
cial points have been identified, we save the value to avoid recalculation for the next
iteration. Another possible future project would be to combine the TR solver with an-
other type of solver. Based on our single cell analysis, we can see that once the solution
is in a single-phase region, conventional Newton solvers work, so we can switch between
different solvers adaptively if we observe Newton solver is struggling.
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Summary

CO2 utilization and storage (CCUS) simulation in subsurface reservoirs with complex
heterogeneous structures necessitates a model that can capture multiphase composi-
tional flow and transport. The governing equations are highly nonlinear due to the
complex thermodynamic behavior which involves the appearance and disappearance
of multiple phases. Accurate simulation of these processes requires the use of stable nu-
merical methods. While Machine Learning (ML) approaches have been used to solve a
variety of nonlinear computational problems, a new approach based on physics-informed
neural networks (PINNs) has been proposed for solving partial differential equations.
Unlike typical ML algorithms that require a large dataset for training, PINNs can train
the network with unlabelled data. The applicability of this method has been explored
for multiphase flow and transport in porous media. However, for nonlinear hyperbolic
transport equations, the solution degrades significantly. In this work, we propose se-
quential training PINNs to simulate two-phase transport in porous media. The main
concept is to retrain the neural network to solve the PDE over successive time segments
rather than train for the entire time domain simultaneously.

In the second section, we explore the application of neural networks for training the
operator space of the PDE. We start with training with labeled data for the classic S-shape
fractional flow operator. Next, we extend the training for a reduced-order proxy model
for multi-dimensional highly heterogeneous reservoirs.

Part of The material presented in this chapter has been submitted to the Journal of Machine Learning for
Modeling and Computing and the second part has been published in SPE Reservoir Simulation Conference
2023
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5.1. APPLICATION OF PHYSICS-INFORMED NEURAL NETWORKS

FOR MULTIPHASE FLOW

5.1.1. INTRODUCTION

The global attempt to mitigate the effects of climate change has increased due to the
urgency of lowering carbon emissions. Carbon dioxide capture, utilization, and stor-
age (CCUS) is one of the existing technologies that has substantial potential for lower-
ing greenhouse gas emissions. The capture of carbon dioxide from industrial sources,
compression, transportation, and subsequent utilization for operations such as perma-
nent storage in deep underground geological formations and increased oil recovery in
depleted areas are all part of CCUS. However, proper modeling of multiphase composi-
tional flow and transport in underground reservoirs with complex heterogeneous struc-
tures is required to simulate effectively CO2 use and storage (CCUS).

Compositional simulation deals with the modeling of the flow of multiple phases in
a porous medium. The interactions between the hydrocarbon phases take place at the
interplay of phase behavior, flow, and transport. Compositional simulation continues
to be a challenging problem. Complexities are mainly due to nonlinear couplings be-
tween multi-phase multi-component flow in porous media with thermodynamic phase
behavior [13, 88]. Conventional compositional simulation is based on the solution of the
discretized governing equations describing the mass, energy, and momentum transfer in
the reservoir either implicitly or explicitly. The fully-implicit method (FIM) is preferred in
practice, with the nonlinear system solved by a Newton method due to the fewer restric-
tions on timestep size. In practical applications, the highly nonlinear nature of problems
involving kinks and inflection points poses a significant challenge for Newton’s method
to achieve convergence, particularly when large timesteps are utilized. Consequently, to
overcome this limitation, alternative nonlinear solvers have been proposed [24, 26, 27]
or smaller timesteps are selected for simulations.

Machine learning (ML) techniques, particularly deep learning [33], are gaining promi-
nence in the computer science and engineering fields. Notably, physics-informed neu-
ral networks (PINNs) are being utilized to solve problems where there is knowledge of
engineering conservation equations and constitutive closure relationships, but without
labeled data [34]. By constructing neural networks with several hidden layers, coupled
with nonlinear activation functions, complex nonlinear solutions can be approximated.
As a result, PINNs have been employed to tackle diverse applications governed by dif-
ferential equations, such as the Euler equation [35, 36], gas dynamics [37, 38], water
dynamics [39] and chemical kinetics [40, 41]. PINNs have demonstrated their versatil-
ity in several applications, including data assimilation and numerical models, parame-
ter identification (i.e., solving inverse problems) [34, 42], and uncertainty quantification
[43, 44].

The application of PINNs has been widely explored in subsurface flow and trans-
port. Two-phase immiscible transport in porous media is typically described by a non-
linear first-order hyperbolic PDE, also known as the Buckley-Leverett equation. Stan-
dard physics-informed neural networks (PINNs) have been utilized to model this phe-
nomenon [45]. The authors demonstrated that PINNs cannot find the solution in the
case of the steep saturation front with the nonconvex flux function [45]. Only after an
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artificial diffusion term was added to the original conservation equation, the neural net-
works solution managed to approximate the true solution [45]. There were multiple at-
tempts to solve this problem by modifying the loss function. Rodriguez-Torrado et al.
[46] author proposed a new neural network architecture known as physics-informed
attention-based neural networks (PIANNs), which is a blending of recurrent neural net-
works and attention mechanisms. Fraces and Tchelepi [47] introduced yet another so-
lution to the B-L problem. Their method entails embedding the entropy and velocity
constraints into the neural network residual.

Recently, a sequential training scheme has been proposed for PINNs [89, 90]. In this
approach, unlike training for the entire spatiotemporal domain, we discretize the time
domain and march in time to reach the end time. Mattey and Ghosh [89] demonstrates
the effectiveness of the sequential training approach for Allen Cahn and Cahn Hilliard
equations. Krishnapriyan et al. [90] demonstrated the method’s effectiveness in solving
a one-dimensional reaction-diffusion problem. The present study aims to investigate
the efficacy of sequential training in the context of hyperbolic transport equations in
porous media. This approach is inspired by the conventional practice of using New-
ton’s method to solve partial differential equations in reservoir simulation, while also
taking into consideration the fact that reducing the timestep can help improve the ef-
fectiveness of Newton’s method. Our work suggests a sequential training scheme with a
dynamic timestep that reduces the number of timesteps required for training, instead of
uniformly marching in time.

Through the analysis of a single timestep residual, our findings demonstrate that
the nonlinearity of the flux becomes increasingly dominant as the timestep increases.
This nonlinearity can be translated into the residual of the loss function. As a result,
the final value of the loss function is higher for larger timesteps. Next, we extend the
sequential training approach to compositional problems, in which nonlinearity is more
pronounced due to complex phase transitions. In compositional problem, the presence
of discontinuous points that coincide with the phase transition zone can severely hin-
der the convergence of the loss function for neural networks. To mitigate this issue,
we utilize a continuous sigmoid approximation of the fractional flow. Finally, we test
the performance of the sequential training approach on pure hyperbolic transport in
porous media in the 1D domain, ranging from the classic Buckley-Leverett problem to
both immiscible and miscible compositional transport. Our findings demonstrate that
the sequential training method outperforms the standard training approach in terms of
accuracy, for both immiscible and miscible transport scenarios.

5.1.2. GOVERNING EQUATIONS
We consider the general form of the transport equations for an isothermal multiphase
compositional problem with np phases and nc components that can be written as:

∂

∂t
(φ

np∑
j=1

xc jρ j S j )+di v
np∑
j=1

xc jρ j v j +
np∑
j=1

xc jρ j q̃ j = 0, c = 1, . . . ,nc . (5.1)

Here, φ is porosity, xc j is the mole fraction of component c in phase j, S j is the phase
saturation of phase j , ρ j is phase molar density, v j is phase velocity and q̃ j is phase rate
per unit volume. Darcy’s law is applied to describe how each phase flows:
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v j =−K
krj

µj
(∇pj −ρj∇d), (5.2)

where

• K – permeability tensor,

• kr j – relative permeability,

• µ j – phase viscosity,

• pj – vector of pressures in phase j ,

• ρ j – phase density,

• d – vector of depths (positive downwards).

The closure assumption of instantaneous thermodynamic equilibrium further in-
creases the nonlinearity. We used the overall molar formulation suggested by [51]. In
this formulation, the following system must be solved at any grid block containing a
multiphase (np ) multi-component nc mixture:

rc = Zc −
np∑
j=1

v j xc j = 0, (5.3)

rc+nc = fc1(p,T, x1)− fc j (p,T, x j ) = 0, (5.4)

r j+nc∗np =
nc∑

c=1
(xc1 −xc j ) = 0, (5.5)

rnp+nc∗np =
np∑
j=1

v j −1 = 0. (5.6)

Here Zc = ∑
xc jρ j s j /

∑
ρ j s j is overall composition and fc j (p,T, xc j ) is the fugacity of

component c in phase j . The solution of this system is called a multiphase flash [52]
and needs to be applied at every nonlinear iteration [13]. The solution provides molar
fractions for each component xc j and phase fraction v j . The above system of equations
provides a complete mathematical statement for multi-phase multi-component trans-
port. Here we concentrate on two-phase, two-component incompressible transport for
miscible and immiscible cases.

φ∂Zc

∂t
+ vt

∂Fc

∂x
= qc , x ∈Ω, c ∈ {H2O,CO2} (5.7)

where Zc is the overall composition of component c, vt is the total velocity. qc is the
source, sink term. Fc is the fractional flow of the component c which is defined as:

{
F = xc (1− f (s))+ yc f (s), Two-phase zone

F = Z , Single-phase zone
(5.8)
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fα = λα

λCO2 +λw ater
, α= {H2O,CO2} (5.9)

where xc and yc are molar fractions of component c in the liquid and gas phases,
respectively. λα = (kkrα)/µα stands for the phase mobility, µα is the viscosity of the
phase, krα(Sα) is the relative phase permeability. For the immiscible two-phase Buckley-
Leverett transport test case, the fractional flow Fc is equivalent to fα. The initial and
boundary conditions are:{

Zc (x, t ) = 0, ∀x & t = 0; Initial condition

Zc (x, t ) = 1, x = 0 & t > 0 Boundary condition
(5.10)

5.1.3. STD-PINNS SOLUTION
[34] proposed that the solution of the partial differential equation (PDE) could be ap-
proximated by a deep neural network through the loss function of the neural network.
In a standard PINNs solution, a neural network is trained for the entire spatial-temporal
domain. Let’s examine the standard format of a PDE

Z t
c +N (Zc ) = 0, (5.11)

where Z(x,t) denotes the latent (hidden) solution (overall composition), superscript (•)t

is a time derivative. N [.] is a nonlinear differential operator. By adopting the method-
ology of [34], the solution Z(t, x) to the PDE is estimated using a deep neural network
that relies on a group of parameters denoted as θ. In simpler terms, the PDE solution is
expressed as a sequence of function compositions.

Deep neural networks are composed of nl series of functions

Zθ(X) = znl (znl−1 (...(z2(z1(X))))) (5.12)

zi (X) =σ(WiX+bi) i = 1, ...,nl . (5.13)

where each hidden layer consists of a stack of artificial neurons that process input fea-
ture matrix X as the weighted sum of weights Wi and biases bi before passing through
activation function σ (t anh in our study), θ is the ensemble of all the model parameters
based on weight and biases:

θ = {W1,W2, ..,Wnl ,b1,b2, ...,bnl }. (5.14)

To provide the neural network with the physics specified by the PDE, we define the
residual of the PDE as the left-hand side of Equation 5.11 and replace Zc with Z̃c .

Rθ(x, t ) := (Z̃c )t +N (Z̃ ) = 0, (5.15)

Here, Z̃c (x, t ) is the PDE solution which is approximated by a neural network. The loss
function of the neural network is made of three error conditions:

Ltot = Li +Li i +Li i i , (5.16)
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Each error is: 

Li =
∑Ni

K Z̃ (xi
k ,0)−Z i

k
Ni

, MSE of the initial condition,

xi
k ∈Ω ,

Li i =
∑Nb

K Z̃ (xb
k ,t )−Z (xb

k ,tk )
Nb

, MSE of the boundary condition,

( xb
k, t b

k ) ∈ Γ × (0,T ] ,

Li i i =
∑Ni

K (R(x t
k ,t k

k ))
N , MSE of the residual of the PDE.

( xr
k, t b

k ) ∈ Γ × (0,T ],

(5.17)

Here we introduce Ni , Nb and Nr which are the number of initial, boundary, and resid-
ual collocation points, where Γ is the boundary of Ω, Z i

k is the given initial condition

at (xi
k ,0). The superscript (•)b , (•)i , (•)r stands for a boundary, initial and residual con-

ditions of the PDE. In our study, we focus on the 1-D equation 5.7 with the initial and
boundary conditions given in equation 5.10.

Figure 5.1 shows schematically the fully connected neural network architecture.

Figure 5.1: Standard PINNs architecture

5.1.4. SEQUENTIAL TRAINING WITH DYNAMIC TIME STEPPING

Unlike standard PINNs training, we train for the entire domain at once and discretize
the time domain into several segments. Note that this strategy is similar to the nu-
merical methods used in scientific computing, where space-time problems are typically
harder to solve than time-marching methods. Figure 5.2 illustrates the sequential train-
ing scheme versus the standard training scheme.

In a dynamic time-stepping scheme, the first-time step, [0,T1] is solved with a similar
loss function as std-PINNs in Equation.5.16.

For all the subsequent time segments, we utilize the following loss function:

L∆Tn
tot = Li +Li i +Li i i +Li v , (5.18)
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Figure 5.2: Training scheme (a) dynamic sequential time-stepping scheme (b) standard training scheme

Each element of the loss function is the mean squared error (MSE) of different terms as:

Li =
∑Ni

K Z̃ (xi
k ,Tn−1)−Z i

k
Ni

, MSE of the initial condition,

xi
k ∈Ω ,

Li i =
∑Nb

K Z̃ (xb
k ,t )−Z (xb

k ,tk )
Nb

, MSE of the boundary condition,

( xb
k, t b

k ) ∈ Γ × (Tn−1,Tn],

Li i i =
∑Ni

K (R(x t
k ,t k

k ))
N , MSE of the residual of the PDE,

( xr
k, t r

k ) ∈ Γ × (Tn−1,Tn],

Li v = Z̃ (x, t )− Z̃ (x, t ), MSE of solution of previous time.

( xs
k, t s

k ) ∈Ω × (0,Tn−1] ,

(5.19)

Here (xi
k ,Tn−1) is used to denote the collection of points where the calculation of the

error on the initial condition is evaluated. (xb
k, t b

k ) is the set of points where the error
on the boundary conditions is calculated during the specified time interval (Tn−1,Tn].
The points on grid (xs

k, t s
k ) store the solution obtained during the n-th segment on the

interval (0,Tn−1], for its usage in the (n)th segment. By incorporating Li v terms into the
loss functions, the neural network can ensure backward compatibility [89], meaning that
the single neural network can replicate the solution from all the previous time segments
while solving the PDE for a specific time segment.

Next, we introduce a dynamic time-stepping scheme that instead of marching in
time uniformly for training, we will make dynamic sequential training. Dynamic time-
stepping allows us to train for a larger timestep and consequently smaller training time.
The algorithm is as follows:
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• We start with the small timestep,

• If the loss function decreases as a predefined tolerance, we multiply the next timestep
to the fixed ratio β

• If it fails to reach the tolerance, we divide the next timestep by the same constant
β

• If the maximum timestep ∆tmax is reached, we keep it for further training until
reaching the final time of the simulation.

Figure 5.3 shows the neural network of the sequential training with backward-compatibility
and dynamic time-stepping scheme over the interval [tn−1, tn].

Figure 5.3: Sequential PINNs architecture with backward compatibility and dynamic time-stepping scheme

5.1.5. RESULTS

SINGLE TIMESTEP TRAINING

To motivate our sequential approach, we consider the following transport equation with
a fixed left boundary:

RCO2 = SCO2 +
∆t

∆x

(
Fr (SCO2 )−Fl

)
, (5.20)

We investigated the nonlinearity of the residual over four progressive time steps and
analyzed the relationship between timestep size and nonlinearity. Figure 5.4 shows that
as the timestep size increases, the nonlinearity of the residual also increases. This is due
to the nonlinearity of the flux function, which plays a crucial role in determining the
nonlinearity of the residual. The figure further demonstrates that the residual becomes
more significant and more closely aligned with the flux function as the timestep size
increases.
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(a)

(b)

Figure 5.4: (a) Residual for multiple timesteps, (b) Flux function

Here, we make a test case in which we train for a single progressive timestep and
observe the behavior of loss function for the Buckley–Leverett problem. From figure 5.5,
we can observe that the final value of the loss function evolves with the training for the
larger timesteps. We used fully connected neural networks with 8 layers and each layer
has 20 neurons. We use the L-BFGS-B optimizer. The training data points of the neural
network are recorded in table 5.1.

FULL 1-D SIMULATION BUCKLEY-LEVERETT TEST CASE

Here we compare the solution of seqPINN with dynamic timstepping and stdPINN for
the two-phase immiscible Buckley–Leverett problem. Initially, the 1D domain is fully
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Figure 5.5: Evolution of loss function for different timesteps

Variable Description Number

Ni Initial condition points 300

Nb Boundary condition points 300

Nr Collocation points 10000×∆t

Table 5.1: Description of training data

saturated by the non-wetting phase and we inject a wetting phase at the left boundary.
We used fully connected neural networks with 8 layers and each layer has 20 neurons.
We use the L-BFGS-B optimizer. The activation is represented by the hyperbolic tangent
function (tanh)..

The tolerance for the dynamic sequential time-stepping is set as 3.5e-3 in this test
case. Figure 5.6 compares the precise analytical solution to the solution predicted by
the standard PINNs at time intervals t = 0.1, 0.3, and 0.7. As we can see, the standard
PINNs cannot find the solution of the front accurately. Figure 5.7 compares the analytical
solution to the solution of the PINNs with dynamic sequential training. As we can see,
sequential training is capable of predicting the solution more accurately with respect to
the standard training scheme. As we can see sequential training can capture the front
accurately. Figure 5.8 shows the full solution in spatiotemporal for the Buckley-Leverett
problem.
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Figure 5.6: Solution of the PINNs with standard training scheme

Figure 5.7: Solution of the PINNs with sequential training scheme

FULL 1-D SIMULATION COMPOSITIONAL TEST CASE

In the compositional test case, we see two non-differentiable points related to phase
changes in fractional flow formulations of compositional transport. In the two-phase
region, the fractional flow has an S-shaped curve, whereas it is linear in single-phase
conditions. The discontinuous derivatives in the flow function can largely degrade the
convergence of the loss function for the neural networks. To overcome this issue, we
propose the smooth formulation of the fractional flow using the sigmoid step function:

Fsmooth = H ×F + (1−H)×Z , (5.21)

H = Si g moi d (S)−Si g moi d ((S −1)) , (5.22)

Si g moi d = 1

1+e−αS
, (5.23)

(5.24)

where F is the non-smooth fractional flow given by equation 5.8. The accuracy of the
smooth approximation highly depends on the parameter α which indicates how steep
the sigmoid and step function could be. From figure 5.9 we can observe that, the higher
the α, the better the approximation.
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Figure 5.8: Solution in spatiotemporal space

NEAR-MISCIBLE TEST CASE

Here we test the sequential PINNs training on miscible fluids with phase behavior con-
trolled by constant K-values with K = {2.5,0.3}. Initially, the 1D domain is fully saturated
by the non-wetting phase and we inject a wetting phase at the left boundary. We use
α = 20 for the sigmoid approximation of the fractional flow as a trade-off between loss
and accuracy. In this particular test case, the tolerance value for the dynamic sequen-
tial time-stepping is set to 7e-3. Figure 5.11 and 5.10 show the solution of the sequential
training versus standard training respectively. We can observe that the sequential train-
ing scheme can predict the solution better than the standard training scheme.

IMMISCIBLE TEST CASE

We test sequential PINNs training on quasi-immiscible compositional transport with
phase behavior regulated by constant K-values of 2 and 0.002. The non-wetting phase
first completely saturated the 1D domain, and we injected a wetting phase at the left
border. For the sigmoid approximation, we use α = 20. In this particular test case, the
tolerance value for the dynamic sequential time-stepping is set to 7e-3. Figures 5.13, 5.12
illustrate and compare the PINNs solution trained sequentially and standard versus the
analytical solution for three different times t = 0.1, 0.3, and 0.7. We can observe that the
sequential training scheme can capture the shock more accurately with respect to the
standard training scheme. However, there is still a small difference between the analytic
solution and the PINNs solution with the sequential training scheme.
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Figure 5.9: Standard fractional flow versus smooth approximation of fractional flow using a sigmoid function
with different alpha coefficient

Figure 5.10: Solution of the PINNs with standard training scheme and dynamic time-stepping

5.2. APPLICATION OF DEEP NEURAL NETWORKS FOR PHYSICS-
BASED PROXY MODELLING

5.2.1. INTRODUCTION

In this section, we will discover another utilization of neural networks for proxy model-
ing in compositional simulation. A reduced number of components increases the effi-
ciency of compositional simulation by reducing the number of equations that need to be
solved. In the lumping technique, the problem is reformulated by presenting the formu-
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Figure 5.11: Solution of the PINNs with sequential training scheme and dynamic time-stepping

Figure 5.12: Solution of the PINNs for compositional immiscible test case with standard training scheme and
dynamic time-stepping

Figure 5.13: Solution of the PINNs for a compositional immiscible test case with sequential training scheme
and dynamic time-stepping

a

lation with a limited number of equivalent components and delumping the components
at the production stream [91, 92]. Further techniques rely on a numerical representa-
tion of the method of characteristics. Tang and Zick [93] propose a limited composi-
tional reservoir simulator that solves a four-component problem by solving an equiv-
alent pseudo-ternary problem. Ganapathy and Voskov [94] proposes a physics-based
method for proxy modeling, termed multi-scale reconstruction in physics. In their method,
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a pseudo-binary proxy model is used to solve any transport problem with an arbitrary
number of components. Their model is applied to four and eight-component systems
with either the equation of state or constant K-value thermodynamics. It accurately lo-
cates the major features of the compositional displacement profile [95].

In this work, the neural network is used to train the operator space of the physics-
based proxy of Ganapathy and Voskov [94] and improve performance for a compressible,
gas-injection problem at isothermal conditions. Our approach embeds neural networks
in the nonlinear operator of the proxy model to improve the performance of the proxy
model. Our method is implemented in TensorFlow and utilizes automatic differenti-
ation and operator-based linearization approaches. Transfer training is employed for
increased computational efficiency and solution accuracy.

5.2.2. OPERATOR TRAINING FOR OBL APPROACH

In contrast to PINNs, our approach involves employing a neural network as a solver to
estimate the solution of the partial differential equation (PDE). In this particular section,
we employed a neural network to train the PDE operators, which were then integrated
into the DARTS framework. By utilizing a fully implicit finite volume solver, we obtained
the solution of the PDE. Figure 5.16 illustrates the neural network architecture for train-
ing the fractional flow operator. Figure 5.15 compares the analytical fractional flow ver-
sus the neural network prediction of the fractional flow.

Figure 5.14: Neural network architecture for operator training

We start with simple training with the S-shape fractional flow for two-phase immis-
cible fluid and extend the training for more complicated operator space corresponding
to the reduced order modeling of the compositional transport.

5.2.3. 1-D TRAINING

BUCKLEY-LEVERETT WITH NEURAL NETWORK IN JACOBIAN ASSEMBLY

In this particular test case, our objective is to train a neural network to approximate both
the nonlinear operator of the partial differential equation (PDE) and its derivative. In-
stead of employing multi-linear interpolation in the operator space, we utilize the neural
network to obtain the operator’s value as well as its derivative. Figure 5.15 compares the
neural network prediction of fractional flow versus the analytical solution.
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(a) Fractional flow (b) Derivative of the Fractional flow

Figure 5.15: Comparison of neural network prediction of fractional flow versus analytical solution

Figure 5.16: The solution of Buckley-Leverett is being compared to an assembly-embedded neural network.

Table 5.2 compares the total number of Newton iterations between interpolation
during the Jacobian and assembling and assessing using the neural network. We can
clearly see that the number of Newton iterations is higher if we call the neural network.
Moreover, for higher dimension operator space while there are more components, train-
ing for all the partial derivatives is computationally costly. As a result, in the following
part, we solely train neural networks for evaluating the supporting points of operator
space, and we use multi-linear interpolation to obtain the values along with their deriva-
tive throughout the assembly.

5.2.4. TWO-STAGE TRAINING
A supervised learning strategy is used in our study to adjust the operator space of the
aforementioned proxy model and increase its prediction performance. This is accom-
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Operator evaluation nonlinear iteration

Interpolation 323

NN 380

Table 5.2: Comparison of the number of Newton iterations during interpolation versus neural network evalu-
ation

plished by embedding neural networks into the PDE’s nonlinear operator and applying
the forward solution in a loss function regularization term. Our method combines the
distance between the proxy model’s leading and trailing shocks with respect to the ref-
erence model and penalizes the loss function so that the neural network learns the op-
erator space with the least shock misfit. This can be effectively achieved by using the
Lebesgue integration instead of the Riemann integral in the loss function.

A neural network, fθ is applied to theβ andΛ operators of the PDE. A two-step trans-
fer learning approach is used for training. First, neural networks are trained using la-
beled data, which consists of a No ×No OBL mesh of data points with an input matrix
X that corresponds to state variables pressure and composition. In the first step, the
loss function is the mean squared error of the proxy model operator space’s analytical
approximation, f (ω), and the neural network’s predictions, fθ(ω):

L1 = 1

N 2
o

N 2
o∑

i=1
( f i (ω)− f i

θ (ω))2. (5.25)

The model weights are copied/transferred to a new neural network in the second step,
and a fully implicit solver is included in the loss function. The solver use the anticipated
operator space to find the pseudo-composition zr . The quality of the resultant solution
is then evaluated by computing the Lebesgue integral between zr (x) and zr e f (x) over Nt

time steps and adding it to the loss.

L2 = 1

Nt N f

Nt∑
t=1

Nz∑
z=1

√
(x t

z −x t
zr )2. (5.26)

This factor in the loss function penalizes the neural network if the distance between the
shocks of the reference and proxy models is high because ∆x must approach zero for
every given time-step.

∆x =−λ
(∫

∂Fθ
∂zr

∂t −
∫

∂F

∂zr e f
∂t

)
(5.27)

The new loss function combines both parts: L = L1 +L2.
After addressing the proxy and computing the loss function, TensorFlow utilizes reverse-

mode automatic differentiation to facilitate back-propagation and update the ensemble
of weights and biases, denoted as θ in the literature (TF). This process effectively incor-
porates the analytical approximation of the operator space into the neural network. The
training phase consists of 600 iterations, employing the Adam stochastic optimizer with
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a fixed learning rate of 0.001. The training specifically focuses on a one-dimensional ho-
mogeneous reservoir with a constant permeability. Additionally, the training procedure
is described in terms of the neural network architecture, optimizer, and activation func-
tion. The architecture mirrors that of [96] and [97]., comprising 8 hidden layers, each
containing 20 neurons. The optimizer employs standard gradient descent with a con-
sistent learning rate of 0.0001. The choice of a small learning rate is intentional as it
is crucial for the operator space to preserve the characteristics of shocks in compliance
with the velocity constraint of the method of characteristics. The neural network weights
are initialized randomly using the Xavier/Glorot initialization technique. The activation
function, denoted as σ, is represented by the hyperbolic tangent function (tanh), which
introduces nonlinearity to the system.

PSEUDO-BINARY MODEL

In the study by Ganapathy and Voskov [94], the four-component gas vaporization prob-
lem is tackled using the multi-scale reconstruction of physics (MSRP) method. This ap-
proach is applied to handle the specific scenario involving injection gas and initial oil
compositions, which are outlined in table 5.3. The reference solution to this problem
is shown in figure 5.17. The injection gas consists of 97% of methane while the ini-
tial oil composition consists of a mixture of all four components. In the compositional
space, a tie-line represents a line where the liquid and gas phases achieve thermody-
namic equilibrium at a specific pressure and temperature. This equilibrium condition is
determined by the equality of fugacities ( f ) for each component in both phases, serving
as a stability criterion.

In a quaternary displacement, the solution is defined according to three key tie-lines,
namely the initial, injection and cross-over tie-lines. A tie-line is a line in the composi-
tional space where the liquid and gas phases are in thermodynamic equilibrium for a
given pressure and temperature and is expressed by the stability condition by imposing
that the fugacities f of each component in both phases must be equal.

In the context of gas injection processes, the compositional path traverses the two-
phase zone by extending the initial and injection tie-lines, resulting in discontinuities in
both the compositional and saturation profiles, commonly known as shocks. As a result,
the compositional profile can be divided into three distinct zones based on their phase
states: the single-phase vapor zone, the single-phase liquid zone, and the two-phase
zone. These zones are delineated by the leading and trailing shocks. Downstream of the
leading shock, the mixture exhibits a liquid phase with the initial composition condi-
tions, whereas upstream of the trailing shock, the composition consists solely of com-
ponent C1. Consequently, the region between these two shocks contains both phases si-
multaneously. Within the two-phase zone, the compositional profile comprises tie-line
and non-tie-line rarefactions that connect the tie-lines and follow a specific composi-
tional path.

Since the solution of the compositional problem is characterized by the leading and
trailing shocks, a reduced-order proxy model by [94] is used to partially construct part of
the solution. This method is able to reduce a compositional problem with an arbitrary
number of components to a pseudo-binary problem where the number of components
is reduced to two and thus the number of equations is reduced to 2×nb . Their analytic
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Table 5.3: Vaporizing gas drive

Component C1 CO2 nC4 nC10

Initial 0.10 0.18 0.37 0.35

Injection 0.97 0.01 0.01 0.01

K-value 2.5 1.5 0.5 0.05

Figure 5.17: Composition (mole fraction) profile for a four-component vaporizing gas drive. The profile is char-
acterized by the leading shock and trailing shock located at approximately xd = 0.9 and xd = 0.12. From left to
right, they delineate three zones where single-phase vapor, both phases and single-phase liquid is present.

approach relies on the fact that the displacement path can be constructed according to
key tie-lines of the system as the leading- and trailing shocks can only enter and leave the
two-phase zone along tie-line extensions [98]. The first stage of the MSRP reconstruction
is able to accurately reconstruct a part of the conservative solution as it manages to lo-
cate the leading and trailing shocks in space and time for an incompressible transport
problem. Here their model is adapted to include flow as well as transport and used for
an isothermal compressible gas vaporization problem. The location of the shocks for the
injection component C1 is reconstructed.

The pseudo-operator space for a given component is parameterized according to
pseudo-composition zr and pressure p. The lever rule is applied with fixed partitioning
coefficients computed at initial and injection compositions and the resulting gas fraction
and saturation are used to define the operator space for the initial and injection tie-lines
βi ni /i n j .

zr = zi (5.28)

v = zr −xi

yi −xi
(5.29)

Subsequently, the pseudo-operator space βr (ω) is established by constructing the
convex hull from the combination of all key tie-lines (eq. 5.30). Within this resulting
operator space, the transition from the initial to the injection tie-lines occurs at the in-
tersection point in the nonlinear, two-phase zone.

βr (ω) = conv(βi ni
i ∪βi n j

i ) (5.30)
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Similarly, αr (ω) is defined as the product of the total density and pseudo-composition
zr .

ρtot ,r = conv(ρi ni
tot ∪ρi n j

tot ) (5.31)

αr (ω) = ρtot ,r zr (5.32)

The analytical construction is illustrated for the flux operator in one dimension (incom-
pressible) in figure 5.20 and in two dimensions (compressible) in figure 5.18(a). The
pseudo-operator αr (ω) is shown in figure 5.18(b).

(a) Accumulation operator (b) Flux operator.

Figure 5.18: Operator space of the binary proxy model.

(a) Collected data points from the reference simu-
lation.

(b) Resulting interpolated operator space. In ex-
tremum, the total mobility is equal to 2 and 10 in
the single-phase liquid and vapor zones.

Figure 5.19: Total mobility operatorΛr (ω).

The total mobility operator is constructed by tabulating values from the reference
solution based on the state variables. To ensure comprehensive coverage of the entire
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parameter space, the reference simulation is conducted with varying bottom-hole pres-
sure controls. Subsequently, the scattered data points are utilized to generate a struc-
tured OBL mesh through the application of a linear interpolant. Figure 5.19 illustrates
both the collected data points and the resulting interpolation for the total mobility op-
erator. The operator space of the total mobility operatorΛ(ω) and the flux operator β(ω)

Figure 5.20: The convex hull of the union of the initial and injection tie-lines is taken to define the pseudo-
operator space.

is adapted with our transfer training approach.
In the first step, the neural network is exclusively trained to approximate the OBL

mesh with labeled data from the analytical construction. At this stage, it is found that
the neural network has a smoothing effect on the operator space which can be seen in
figure 5.21. This figure compares the operator space at base ML training with the labels.
Additionally, due to the structured nature of the training data, it is found that the neural
network is able to accurately approximate OBL grids of different densities.

(a) Total mobility operator. (b) Flux operator.

Figure 5.21: Comparison of the operator space before (base ML) and after transfer training (transfer ML) to the
labels (p = 180bar ).

In the second step, the estimated operator space is used within a fully implicit solver
embedded in the loss function of the neural network as described previously. The solver
utilizes the OBL approach as it interpolates required values from the vertices of the OBL
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(a) Total mobility operator. (b) Flux operator.

Figure 5.22: Difference of the operator space after training. The greatest changes in the operator space are
concentrated in the area relevant to the trailing shock.

mesh. Training is carried out for a one-dimensional homogeneous reservoir containing
200 grid blocks where the permeability is equal to 100mD and the length of the reservoir
is 200m. During the training period, the bottom-hole pressures are fixed at the limits
of the OBL mesh, namely 1bar and 300bar . The Lebesgue integral of the leading and
trailing shocks is computed at 10 discrete time steps ranging from t = 1d ay to 10d ay s.
The range at which the Lebesgue integral of misfit is calculated lies between zr = 0.90
and 0.96 for the trailing shock and between zr = 0.11 and 0.30 for the leading shock.

Figure 5.23: Forward solution of the binary model
versus the reference solution, before transfer training
(base ML).

Figure 5.24: Forward solution of the binary model
versus the reference solution, after transfer training
(transfer ML).

Figure 5.25 presents the plot depicting the evolution of the loss function during the
second step. Additionally, figure 5.26 illustrates the progression of the misfit for the trail-
ing and leading shocks at each time step (t s) and training iteration. Notably, a global
minimum is attained at training step 7, beyond which further improvements become
marginal. The misfit of both the leading and trailing shocks decreases, indicating an en-
hancement in the accuracy of the proxy model compared to the conservative reference
solution for nc components. Particularly, the estimation of the trailing shocks exhibits
significant improvement, as evident in figure 5.24, while the position of the leading shock
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undergoes modest changes. Consequently, changes in the operator space, encompass-
ing both the total mobility and flux operators, are most pronounced in the region per-
tinent to the trailing shock, characterized by high pressure and overall composition. A
visual representation of the changes in the operator space before and after training can
be observed in figure 5.22.

Figure 5.25: Evolution of the loss function.

Figure 5.26: Evolution of the Lebesgue integral of the trailing and leading shocks that make up the L2-term of
the loss function.
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5.2.5. HORIZONTAL LAYERS OF SPE10
The SPE10 geological model employs a trained model on two-dimensional heteroge-
neous layers. These models consist of (220×60) cells and represent the Tarbert formation
(top 35 layers) and the Upper Ness formation (bottom 50 layers), depicting prograding
near shore and fluvial environments [99]. The cell sizes are ∆x = 3m, ∆y = 6m, and
∆z = 0.6m. A 5-spot well pattern is utilized, with an injection well situated in the middle
and fixed bottom hole pressure of 300 bars injecting 97 % methane. Additionally, there
are 4 production wells located at the corners, operating at 1 bar. The breakthrough times
of initial and final breakthroughs are recorded for each model. These breakthroughs
align with the leading and trailing shock breakthroughs at any of the four wells. Further-
more, the accuracy of predicting the shocks’ positions in space and time is assessed by
analyzing the phase state of each grid cell.

To assess the performance of each model, the error in phase-state classification of the
generated compositional profile is quantified. The phase-state maps distinguish three
distinct zones within the reservoir, representing single- and two-phase areas where gas
(2), oil and gas (1), or oil (0) are present. The classification of each cell’s state is based on
the tie-line end points of the injection and initial tie-lines. The model’s error is then mea-
sured as the ratio of misclassified grid blocks compared to the reference model, divided
by the total number of grid blocks.

T (Sr (x, y, t )−Sr e f (x, y, t )) = 1 f or Sr −Sr e f ̸= 0 (5.33)

Er r or (t ) =
∑nb

i T (Sr,i −Sr e f ,i )

nb
(5.34)

Figures 5.32(a) and 5.32(b) illustrate the distribution of the phases and the error of
the proxy model before and after training for layer 7 of the SPE10 model. The bound-
ary between the zones delineates the location of the leading and trailing shock within
the reservoir and thus the error gives an approximation of how well the location of the
shock is approximated in space and time. From the error maps, it is observed that the
estimation of the location of the trailing shock is visibly improved for the trained model
whereas the estimation of the leading shock remains the same or is slightly better. The
evolution of the error as the function of time is reported in figure 5.27(b) and the perme-
ability of layer 7 is shown in figure 5.27(a). The error increases as the displacement front
grows and the region of displacement increases.

The performance before and after training of the proxy model is compared for the top
15 layers of the SPE10 model. The breakthrough times of the leading and trailing shocks
are reported per layer in figures 5.28(a) and 5.28(b) together with the corresponding er-
ror of the phase-state classification. It is found that the trained model consistently out-
performs the model trained at the first stage in terms of error and breakthrough time
of the trailing shock while the breakthrough time of the leading shock effectively re-
mains the same as the base ML model already makes a good estimation. The error of
the trained model at breakthrough remains below 7.5%. The average difference in break-
through time for the trained and untrained models with respect to the reference model
is 293d ay s versus 570d ay s for the trailing shocks and 15d ay s versus 16d ay s for the
leading shock.
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(a) Log 10 of the permeability distribution of layer 7
of the SPE10 model.

(b) Error of the base ML and transfer ML models.

Figure 5.27: Evolution of the error for layer 7 of the SPE10 model before (base ML) and after transfer training
(transfer ML).

Figures 5.30 and 5.31 present the reported first and last breakthrough times per layer
for the bottom 15 layers of the SPE10 model. The analysis reveals that the estimation
of the leading shock remains largely unchanged, whereas there is a consistent improve-
ment in estimating the trailing shock. It is important to note that when production wells
are situated outside sand channels, the breakthrough time for both the trailing and lead-
ing shocks becomes significantly delayed. As a result, breakthrough times are reported
in logarithmic form to better capture the variations.

(a) Error of the phase-state classification at the
breakthrough of the leading shock.

(b) Breakthrough times of the trailing shock at one
of the wells.

Figure 5.28: The breakthrough time of the leading shock at one of the wells and the corresponding error of the
phase-state maps is assessed for the top 15 layers of the SPE10 model.
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(a) Error of the phase-state classification at the
breakthrough of the trailing shock.

(b) Breakthrough times of the trailing shock at one
of the wells.

Figure 5.29: The breakthrough time of the trailing shock at one of the wells and the corresponding error of the
phase-state maps is assessed for the bottom 15 layers of the SPE10 model.

(a) Error of the phase-state classification at the
breakthrough of the trailing shock.

(b) Breakthrough times of the trailing shock at one
of the wells.

Figure 5.30: The breakthrough time of the trailing shock at one of the wells and the corresponding error of the
phase-state maps is assessed for the bottom 15 layers of the SPE10 model.

5.3. DISCUSSION AND CONCLUSION
In this chapter, We explore deep learning for the simulation of CCUS. In the first part
of the chapter, we investigated the application of a Physics-informed neural network
(PINNs) for two-phase fluid in porous media. A Physics-Informed Neural Network (PINN)
is a machine learning approach that combines neural networks with physical laws to
solve complex scientific and engineering problems, ensuring predictions adhere to the
governing physics. It minimizes a loss function that includes data fitting from the bound-
ary and initial conditions and PDE constraint terms during training. Standard PINNs
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(a) Error of the phase-state classification at the
breakthrough of the trailing shock.

(b) Breakthrough times of the trailing shock at one
of the wells.

Figure 5.31: The breakthrough time of the trailing shock at one of the wells and the corresponding error of the
phase-state maps is assessed for the bottom 15 layers of the SPE10 model.

(a) Base ML proxy model. (b) Transfer ML proxy model.

Figure 5.32: Distribution of the phase-states and the corresponding error at t = 150 days for layer 7 of the SPE10
model. The phase-states correspond to single- and two-phase zones where gas (2), oil and gas (1), or oil (0)
occupy the grid block. The transfer ML model indicates a marked improvement in the estimation of the trailing
shock.

has limitation in capturing the transport problem with hyperbolic characters in porous
media. In our single timestep analysis, we can clearly see as a proof of concept that
when training for bigger timesteps, the loss function increases. That motivates us to
use a sequential training scheme with backward compatibility as an alternative to stan-
dard training to overcome the standard training limitation. We proposed dynamic time-
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stepping instead of uniform time-stepping for training. Our training method starts with
a small step. If the loss goes below a certain point, we make the next step bigger by a
factor of β. If not, we make the step smaller by dividing it by β. This adaptive approach
helps us find the right answer faster while saving computing time and costs. Additionally,
we applied the sequential training approach to the challenging miscible binary compo-
sitional test case, which includes complex kink points that appear due to the phase tran-
sition. Kink points pose a greater challenge for the optimizer since these points are not
differentiable. To overcome this, we introduced a sigmoid function to continuously ap-
proximate the fractional flow function. Our findings indicate that the seqPINNs method
performs better than the conventional approach in terms of accurately capturing solu-
tions.

In the second part of this chapter, we explored the capability of the neural network
for training operators. In this chapter instead of using PINNs to solve directly the PDE,
we use neural network to obtain the supporting points for OBL. Next, we run DARTS
to get the full solution to the problem. The advantage of this approach is that we gain
benefits from robust and fast DARTS simulation instead of using PINNs as a solver. We
started with training a convective flux operator in the form of fractional flow for two-
phase immiscible transport. We also made a test case that we trained the derivatives
and we evaluated the derivatives and operators based on the neural network instead of
interpolation. The result indicated that using a neural network instead of interpolation
increases a Newton iteration. Afterward, we focused only on obtaining supporting points
by neural network and used the classic OBL approach (interpolation) to get the values
of the operator and its derivatives in Jacobian assembly. We further explored the neu-
ral network for training more sophisticated operator of a proxy model for compositional
problem based on Multiscale Reconstruction in Physics. We employ a physics-based
deep learning strategy in which we apply neural networks to the operator space of the
proxy model and integrate the Lebesgue integration of the forward solution into the loss
function. This results in enhanced breakthrough time estimations, benefiting both 1-D
scenarios and the complex fifteen-layer SPE10 model. This approach can be expanded
to create a versatile physical proxy model with reduced degrees of freedom, trained us-
ing data points generated by a high-fidelity physical model or derived from real-world
observations.



6
RECAPITULATION AND

CONCLUDING REMARKS

6.1. COUPLED WELLBORE-RESERVOIR MODELLING
Wellbore operations play a pivotal role in the management of diverse subsurface geo-
energy applications, including energy storage, geothermal energy production, CO2 se-
questration, oil and gas extraction, wastewater disposal, and thermal recovery tech-
niques. In recent times, advanced well technologies, like multi-lateral wells equipped
with sophisticated inflow control valves, have been employed to enhance both the eco-
nomic efficiency of field operations and operational reliability. Furthermore, different
wellbore designs (such as co-axial wellbore) are utilized to optimize the extraction of
subsurface heat in cutting-edge geothermal applications. To successfully design, pre-
dict, and optimize the various processes essential for energy production, precise fully-
coupled models for thermal multi-phase flow within both the reservoir and boreholes
are imperative

We have developed a new computational framework that can simulate Thermal-
Hydraulic-Chemical (THC) multiphase multi-component fully-coupled flow in the well-
bore and the reservoir. The implementation is based on an operator-based linearization
(OBL) method used in the Delft Advanced Research Terra Simulator (DARTS). In the OBL
approach, the governing equations are represented in operator form which significantly
simplifies the solution of highly nonlinear governing equations with complex physics.
In the proposed framework, the OBL technique is extended to both the governing equa-
tions of the reservoir and the wellbore. During the simulation, multilinear interpolation
is used to interpolate the corresponding values and derivatives of operators, which re-
duces the computational cost related to linearization. Our simulation model is built on
a general unstructured grid framework, in which the wellbore is divided into segments
that follow a similar scheme as the finite-volume discretization used for the reservoir.
The total velocity serves as an additional nonlinear unknown that is constrained by the
momentum equation, allowing for writing a suitable momentum equation for a well-

89
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bore.

First, we verified the accuracy of the ms-well model by comparing a solution for ther-
mal, two-phase immiscible physics with the Automatic Differentiation General Purpose
Research Simulator (ADGPRS). Our test produces comparable results to an accurate ms-
well model in both simulation frameworks. The performance comparison of DARTS and
ADGPRS simulation shows that DARTS allows for less CPU time and nonlinear iterations
due to the different nonlinear formulations and OBL approach. We further tested the
framework for more complex physics considering thermal effects. We assess the engine’s
performance for geothermal physics using a heterogeneous reservoir and compare the
results to the conventional method with a pseudo-porous medium approach. For cases
when transient effects can be ignored, a pseudo-porous medium approach produces a
solution comparable to the accurate well model with a lower computational cost. Be-
sides, we test the developed framework in modeling the calcite dissolution in the near-
well region on unstructured mesh and the results show that the framework could capture
the dissolution effect near the wellbore. Accurate discretization of the wellbore allows us
to model sophisticated well technologies such as co-axial wellbores. We made a test case
for a single closed loop wellbore and ran multiple numerical experiments and sensitivity
analyses on various factors that affect heat extraction from the co-axial wellbore.

6.2. TRUST-REGION NONLINEAR SOLVER EMBEDDED IN OBL
FRAMEWORK

Reducing carbon emissions has become a top global priority in the effort to combat cli-
mate change. Carbon dioxide capture, utilization, and storage (CCUS) stands out as a
promising approach to limit the release of greenhouse gases into the atmosphere. CCUS
encompasses the entire process of capturing carbon dioxide and its related compounds
from emission sources, compressing it, transporting it, and utilizing it for various pur-
poses. These uses include permanent storage in deep underground geological forma-
tions and enhancing the recovery of hydrocarbons in existing oil fields. To effectively
model CCUS in subsurface reservoirs with complex, non-uniform structures, it is essen-
tial to employ a comprehensive model that accounts for multiphase compositional flow
and transport.

The discretized governing equations are highly nonlinear, and Newton’s technique
is frequently used to solve them. Newton’s solution technique does not ensure conver-
gence and is extremely dependent on the timestep choice. In this work, we investigate
the nature of nonlinearities in CCUS simulations and suggest solutions to a general com-
positional problem. We present an advanced nonlinear solver based on a trust-region
technique aimed to solve multiphase multi-component transport problems. The trust
region solver is based on the analysis of multi-dimensional tables connected to param-
eterized highly nonlinear convection operators. These operators are associated with the
governing equations and are built for a newly introduced Operator-Based Linearization
approach. The inflection line and kinks in the parameter space determine the delin-
eation of the trust-region zones. According to our nonlinear study of convective oper-
ators for binary and ternary systems, each component has its inflection line within the
two-phase region. In addition, kink lines appear when phase boundaries are crossed.
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These boundaries could change in the parameter space of the problems based on the
direction of the Newton trajectory.

We track the nonlinear trajectory and segment the parameter space of the problem
into a set of trust regions where the hyperbolic operators keep their second-order be-
havior (i.e., they remain either convex or concave). We approximate these trust regions
in the solution process by detecting the boundary of convex regions via analysis of the
directional derivative. By drawing multiple trial trajectories on binary and ternary dia-
grams we observe that our algorithm can detect these boundaries correctly. Moreover,
it is less computationally expensive since we do not compute the entire hessian in our
technique and instead compute the directional derivative while tracking the nonlinear
update. After detecting all the boundaries along the nonlinear trajectory, the proposed
nonlinear solver locally constrains the update of the overall compositions across the
boundaries of these regions. We tested our nonlinear solver for several reservoir models
starting from the single cell to a fully 3D heterogeneous model. Our numerical results
show that the trust-region solver avoids overshoots in the nonlinear update which lead
to superior convergence in comparison to conventional nonlinear solvers.

6.3. PHYSICS-INFORMED NEURAL NETWORKS FOR CCUS
Machine learning techniques, particularly deep learning, are gaining prominence in the
fields of computer science and engineering. Notably, physics-informed neural networks
(PINNs) are being employed to address problems where knowledge of engineering con-
servation equations and constitutive closure relationships is available, even in the ab-
sence of labeled data. By constructing neural networks with multiple hidden layers and
nonlinear activation functions, complex nonlinear solutions can be effectively approxi-
mated. Consequently, PINNs have found utility in a wide range of applications governed
by differential equations, including the Euler equation, gas dynamics, water dynamics,
and chemical kinetics. PINNs have showcased their versatility in various applications,
encompassing data assimilation, parameter identification (solving inverse problems),
and uncertainty quantification.

The application of PINNs has been extensively explored in the domain of subsur-
face flow and transport. For instance, two-phase immiscible transport in porous media,
typically described by the nonlinear first-order hyperbolic PDE known as the Buckley-
Leverett equation, has been modeled using standard PINNs [45]. However, it was ob-
served that PINNs struggle to find a solution in cases involving steep saturation fronts
with nonconvex flux functions. A potential remedy involved the introduction of an arti-
ficial diffusion term into the original conservation equation, enabling neural networks to
approximate the true solution. Further innovative solutions have been proposed, such
as physics-informed attention-based neural networks (PIANNs) [46], which blend recur-
rent neural networks and attention mechanisms, and methods that embed entropy and
velocity constraints into the neural network residual [47].

We investigated the application of a Physics-informed neural network (PINNs) for
two-phase fluid in porous media. While standard PINNs have difficulties solving hyper-
bolic PDEs with non-convex flux functions, we suggested a sequential training scheme
as an alternative. We can overcome this obstacle by training for shorter time intervals
and marching in time dynamically. The sequential training scheme begins with a small
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time step, and if the loss function decreases to a predefined tolerance, we multiply the
next time step by a constant parameter, denoted as β. However, if the loss function fails
to decrease to the tolerance within the given number of epochs, we divide the time in-
terval by β. This adaptive approach allows for efficient convergence to an accurate so-
lution while avoiding unnecessary computations and minimizing computational costs.
Furthermore, we extended the sequential training strategy to the miscible binary com-
positional test case, where there are kink points that made it even more difficult for the
optimizer to find the solution. To address this, we proposed a sigmoid function to con-
tinuously approximate the fractional flow function.

Within our study, we conducted several numerical experiments to evaluate the ef-
fectiveness of our proposed sequential training scheme for simulating CO2 utilization
and storage in subsurface reservoirs with complex heterogeneous structures. Firstly, we
designed a single-time step numerical test case to demonstrate that increasing the time
step leads to an increase in the final loss function. This observation is attributed to the
heightened non-linearity of the residual as the time step is increased, resulting in a more
challenging optimization problem that negatively impacts the performance of the opti-
mizer. Subsequently, we conducted a 1D full simulation test case to compare the stan-
dard and sequential training schemes for both immiscible and miscible test cases. Our
results show that the proposed seq-PINNs approach outperforms the standard approach
in terms of solution capture accuracy.

Furthermore, we implemented the sequential training method on more challenging
miscible binary compositional test cases characterized by intricate kink points arising
from phase transitions in the flux function. Kink points present a heightened challenge
for optimization as they lack differentiability. To address this issue, we introduced a sig-
moid function to provide a continuous approximation of the fractional flow function.
Our results demonstrate that the seq-PINNs approach outperforms the conventional
method in accurately representing solutions.

6.4. APPLICATION OF DEEP NEURAL NETWORKS FOR PHYSICS-
BASED PROXY MODELLING

We delved into the potential of neural networks for training operators. Instead of using
Physics-Informed Neural Networks (PINNs) to directly tackle Partial Differential Equa-
tions (PDEs), we harnessed neural networks to procure key support points for Operator-
Based Learning (OBL). Subsequently, we used (DARTS) to obtain the solution. This ap-
proach has an advantage because it uses the fast and robust DARTS simulation instead
of PINNs as solvers. We started by training a convective flux operator, adopting the form
of fractional flow, particularly relevant for two-phase immiscible transport. A notewor-
thy test case involved training derivatives and subsequently evaluating these derivatives
and operators based on the neural network, eliminating the need for interpolation. The
results illustrated that replacing interpolation with a neural network led to an increased
number of Newton iterations. We then concentrated solely on obtaining support points
through the neural network, utilizing the conventional OBL approach (interpolation) to
acquire operator values and their derivatives during Jacobian assembly.

Compositional challenges emerge from the interactions of various components, de-
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manding a set of equations that matches the number of components for every grid cell.
This can lead to significant computational expenses, especially when dealing with a fine-
scale high-fidelity model. To address this, we have employed a proxy model constructed
using multiscale techniques in physics, and we trained the operator within this frame-
work. This strategy incorporates physics-based deep learning, applying neural networks
to the operator space of the proxy model and integrating the Lebesgue integration of the
forward solution into the loss function. The outcome was more accurate breakthrough
time estimations, benefiting both 1-D scenarios and the intricate fifteen-layer SPE10
model. The applicability of this approach extends to the creation of a versatile physi-
cal proxy model with reduced degrees of freedom, trained using data points generated
by a high-fidelity physical model or derived from real-world observations.

6.5. FUTURE PERSPECTIVES

6.5.1. COUPLED-WELLBORE AND RESERVOIR

Our study has identified several promising areas for future research. One potential di-
rection is to extend the drift-flux model for multiphase flow in the wellbore into an op-
erator form and integrate more complex chemical interactions in both the wellbore and
reservoir. Another promising area is to investigate the development of an iterative linear
solver for a decoupled velocity engine on both CPU and GPU platforms.

The nonlinear nature of coupled wellbore and reservoir simulations with complex
physical models can cause the nonlinear solver to struggle and slow down the conver-
gence process. Therefore, developing a nonlinear solver for this framework is an im-
portant future direction of our research. Extending the Trust-region method, which is
integrated into the operator-based linearization framework, to include both the coupled
wellbore and reservoir simulations would be a promising direction to pursue.

Furthermore, decoupled velocity formulation separates the momentum equation
from mass and energy, as well as the well and reservoir regions, providing a promising
solution for developing a local nonlinear solver that can identify areas with convergence
issues and resolve them. Additionally, we aim to extend the model to include more ad-
vanced well-network topologies, taking into account surface capabilities, chokes, and
valves.

6.5.2. ADAPTIVE NONLINEAR SOLVER IN DARTS
A promising future research direction could be to reduce the computational overhead
related to locating the trust-region boundaries and carrying out the chopping. While we
showed that directional derivative is cheaper than full Hessian assembly, there is still ad-
ditional overhead since the detection of special points (kinks and inflection) are happen-
ing on the fly during simulation. The major cause of the overhead is due to the tracking
of the nonlinear trajectory in nonlinear operator space.

One possibility is that once the special points have been identified, we save the value
to avoid recalculation for the next iteration. Another possible future project would be
to combine the TR solver with another type of solver. Based on our single-cell analy-
sis, we can see that once the solution is in a single-phase region, conventional Newton
solvers work, so we can switch between different solvers adaptively if we observe non-
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linear solvers struggling.

6.5.3. EXTENSION OF PINNS TO MORE COMPONENT SYSTEMS
Our study identifies several promising directions for future research. Firstly, an impor-
tant avenue for further exploration would be to extend the neural network to an arbitrary
number of components, thereby enhancing the model’s capacity to simulate complex
multiphase compositional flows. Secondly, another possible future project would be to
extend the model to higher dimensions and predict the solution in 2D and 3D space with
heterogeneous reservoir structures.
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Physical Symbols

M accumulation term for mass

F flux term for mass

q source/sink term for mass

ρp phase density

np number of fluid phases

nc number of components

ni exponent for phase relative permeability

zc component overall molar fraction

xc j molar fraction of component c in phase p

s j phase saturation

Sg r residual gas saturation

Sor residual oil saturation

Swc connate water saturation

φ effective rock porosity

φ0 initial rock porosity

cr rock compressibility

pr e f reference pressure

u j phase velocity

vt total velocity

K full permeability tensor

kr j phase relative permeability

kr o oil relative permeability

kr w water relative permeability

µ j phase viscosity

p j phase pressure

pc capillary pressure

pd capillary entry pressure

pn pressure for non-wetting phase

pw pressure for wetting phase

γp phase specific weight

D vertical depth vector (up-down oriented)

Dc j diffusive coefficient

ρt total fluid density

r j rate for kinetic reaction

Ur rock internal energy

Up phase internal energy

T Temperature

vc j stoichiometric coefficient associated with kinetic reaction j for the component c



6

98 NOMENCLATURE

σca water/gas surface tension

ψc fugacity coefficient of the gas phase

hc Henry’s constant

κc activity coefficient

Kc phase-equilibrium constant of component

Linearization Operators

α(ω) mass accumulation operator

αe f (ω) phase energy accumulation operator

αer (ω) rock energy accumulation operator

β(ω) mass flux operator

βe (ω) energy flux operator

γ(ω) mass diffusion operator

δ(ω) reaction operator

δe f (ω) phase thermal conduction operator

χ(ω) mass gradient operator

ζvol
p (ω) volumetric well rate operator

ζvol
p (ω) mass well rate operator

δp (ω) phase density operator

ξ(ω) capillarity operator

Other Symbols

Γl fluid transmissibility

ΓT rock thermal transmissibility

Φp,i j potential difference of phase p between block i and j
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A
APPENDIX

A.1. ALGORITHM TO TRACK NEWTON’S TRAJECTORY IN AN AR-
BITRARY DIMENSION OF OBL SPACE

Newton’s trajectory passes several cells or hyper cells in a higher dimension of parameter
space. In order to detect those cells or hypercells, we implement the iterative algorithm
1. The algorithm is incrementing to the next cell iteratively by finding the minimum
distance between the initial point with respect to interfaces and moving on in a gradient
direction to find the next point until reaching the last hypercubes. Here’s the explanation
of the following algorithm steps:

1. COMPUTESIGMA: This function calculates σ which is the minimum distance be-
tween the initial points and all the interfaces of the OBL cube/ hypercube.

2. NEXTPOINT : This function increments to the next hypercubes by moving along
the Newton trajectory gradient.

3. NEWBOX : This function detects the new vertices of the new cubes/hypercubes.

These steps are repeated until reaching the last points of the OBL and all the inter-
faces detected. Figure A.1 illustrates in 2-d space the Newton trajectory tracking. The
algorithm for tracking is independent of the degree of freedom of the system and is able
to track Newton trajectories for an arbitrary number of dimensions.
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Figure A.1: (a) Newton trajectory passing several OBL cells (b) Zoomed-in view of detecting the point inside
the next cell of parameter space

Algorithm 1 Iterative tracking

procedure ITERATIVE TRACKING(i ni t poi nt , l astbox)
Input:
i ni t poi nt ← (pi , z1i , z2i ...)
end poi nt ← (pe , z1e , z2e ...)
C ← i ni t poi nt −end poi nt
while box != lastbox do

Si g ma ←ComputeSi g ma(i ni t poi nt ,box,C )
i ni t poi nt ← nextPoi nt (i ni tPoi nt ,C ,Si g ma)
box ← newbox(i ni t poi nt , zvec , pvec ) ▷ pvec , zvec are uniformly mesh in

parameter space
end while
return box

end procedure

function COMPUTESIGMA(i ni t poi nt ,box,C )
for i ← 1, NC do ▷NC = Number of components

Λi ← max( r i g htbound ar y−i ni t poi nt (i )
C (i ) , le f tbound ar y−i ni t poi nt (i )

C (i ) )
end for
σ← mi n(Λ)
return σ

end function

function NEXTPOINT(i ni t poi nt ,Si g ma,C )
for i ← 1, NC do ▷NC = Number of components

nextPoi nt (i ) ← i ni t poi nt (i )+ (σ+ϵ)C (i ) ▷ + ϵ to make sure passing the
interface

end for
return nextPoi nt

end function
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function NEWBOX(i ni t poi nt , zvec , pvec )
for i ← 1, NC do ▷NC = Number of components

if i == 1 then
newbox(i ) ← [

i ni t poi nt (i )−pvec(1)
pvec(2)−pvec(1)

] ▷ [] Rounding to upper integer

else
newbox(i ) ← [

i ni t poi nt (i )−zvec(1)
zvec(2)−zvec(1)

]

end if
end for ▷We find one of the new vertices of the new box

end function

A.2. SENSITIVITY ANALYSIS TO THE OBL RESOLUTION
In this section, we investigate the effect of the OBL resolution on the nonlinear solver
performance. Table A.1 summarizes the result of the coarsening of OBL resolution of
the fracture test for the binary kernel on the immiscible test case for the single control
timestep ∆t = 100 days. We observe that by coarsening the resolution, the number of
Newton iterations decreases. In general, decreasing the resolution of OBL relaxes the
nonlinearity of the problem and fewer Newton iterations. Figure A.2 illustrates the so-
lution for different OBL resolutions. Notice that decreasing the resolution of the OBL
significantly can degrade the solution. The rigorous error analysis has been carried out
on the original paper [81].

Resolution Newton iteration Inflection points

4 x 4 5 1e-8

8 x 8 6 0.285

16 x 16 8 0.40

32 x 32 10 0.44

64 x 64 12 0.476

120 x 120 14 0.487

Table A.1: Coarsening of OBL resolution

A.3. SENSITIVITY OF PRECONDITIONING TO TRANSPORT PARAM-
ETERS

Next, we report the performance of the advanced nonlinear solver after running the sim-
ulation with the small timestep (∆t = 0.001) days until (T = 0.3) days and save the solu-
tion. Next, we restart from the solution for one large timestep equals to 0.2 days with
different preconditioning strategies. Considering the initial guess the inflection point
and initial guess equals to the initial condition and initial guess the solution of the sat-
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Figure A.2: Solution of front propagation for different OBL resolutions

uration after running the simulation until T = 0.3d . We test the transport problems for
four types of relative permeability curves.

Kr w = Snw ;Kr o = (1−S)no , (A.1)
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Table A.2: Different preconditioning strategy

Kr p M
Initial guess from

without preconditioning new timestep inflection point

0.5 60 13 9

no = np =2 1 56 14 9

10 1 4 10

0.5 142 22 11

no = np = 3 1 149 25 10

10 111 5 10

0.5 198 27 10

no = np = 10 1 204 27 12

10 229 30 11

0.5 142 20 11

no = 2, np = 10 1 149 21 10

10 111 22 10

It is noticed that:

(i) With a preconditioning strategy, we accelerate the convergence for all the cases.
As expected, choosing the inflection point as an initial guess always works better since
the derivative B is maximized which maximizes the propagation of the compositional
front downstream.

(ii) By increasing the mobility ratio, the number of iteration generally increase for the
same time step and the same exponents. It can be explained by the fractional flow theory
when by increasing the M (unfavorable displacement), the shock speed increases. The
preconditioning strategy helps in all cases.
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A.4. DEAD-OIL PROPERTIES

Table A.3: Rock-Fluid parameters

Parameter Value Description

Cr 1.00E-09 Rock compressibility

Spr 0.01 Phase residual saturation

Sor 0.01 Oil residual saturation

no 2 Oil exponents

Table A.4: Dead oil properties

Parameter Oil Description

ρ 1000 Surface density

µ 1-5 cp Viscosity range

Bo 1 Formation Volume Factor

Parameter Water Description

ρ 1000 kg/cm3̂ surface density

cp 10−9 Compressibility

µ 1cp Viscosity
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