

Delft University of Technology

WebDSL
Linguistic Abstractions for Web Programming
Groenewegen, D.M.

DOI
10.4233/uuid:fb0cc4b7-a67b-474b-9570-96eb054a39ec
Publication date
2023
Document Version
Final published version
Citation (APA)
Groenewegen, D. M. (2023). WebDSL: Linguistic Abstractions for Web Programming. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:fb0cc4b7-a67b-474b-9570-
96eb054a39ec

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:fb0cc4b7-a67b-474b-9570-96eb054a39ec
https://doi.org/10.4233/uuid:fb0cc4b7-a67b-474b-9570-96eb054a39ec
https://doi.org/10.4233/uuid:fb0cc4b7-a67b-474b-9570-96eb054a39ec

WebDSL:
Linguistic Abstractions
for Web Programming

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board of Doctorates

to be defended publicly on
Friday 10 November 2023 at 12:30 o’clock

by

Danny Maria GROENEWEGEN

Master of Science in Computer Science,
Delft University of Technology, the Netherlands

born in Nootdorp, the Netherlands

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof.dr. A. van Deursen Delft University of Technology, promotor
Prof.dr. S.T. Erdweg Johannes Gutenberg University Mainz, promotor

Independent members:

Prof.dr.ir. A. Bozzon Delft University of Technology
Prof.dr. J. Cheney University of Edinburgh
Prof.dr. J. Vinju Eindhoven University of Technology
Prof.dr. R. Lämmel University of Koblenz-Landau
Dr. M.T.J. Spaan Delft University of Technology
Prof.dr. M.M. de Weerdt Delft University of Technology, reserve member

Prof.dr. E. Visser (Delft University of Technology) was the original promotor
and supervisor of this research until his untimely passing on April 5th, 2022.

The work in this dissertation has been carried out at the Delft University
of Technology under the auspices of the research school IPA (Institute for
Programming research and Algorithmics).

Copyright © 2023 Danny M. Groenewegen

Cover: Kijkduin beach - Photo © 2017 Danny M. Groenewegen

IPA Dissertation Series: 2023-11

Printed and bound by: Gildeprint - https://www.gildeprint.nl/

ISBN: 978-94-6419-976-5

https://www.gildeprint.nl/

Summary

Information systems store and organize data, and manage business processes
concerned with that data. Information systems aim to support operations,
management and decision-making in organizations. Web applications are ideal
for implementing information systems. Although existing web frameworks
provide abstractions for creating web applications, there are three major issues
with current web frameworks. Insufficient or leaky abstraction: web program-
ming concerns are not sufficiently covered or abstractions contain accidental
complexity. Lack of static verification: application faults are not removed
during development. Security flaws: web application security issues are not
sufficiently addressed in the framework, web programmers are exposed to
many possible security faults.

How can the benefits of web frameworks be provided for web programming
while avoiding the major issues of abstraction, static verification, and security?
We propose a domain-specific language (DSL) solution. The challenge is to
design a language that provides abstractions for all kinds of web programming
tasks with the web framework issues in mind. We designed multiple sublan-
guages to address web programming concerns, and integrated them to form
the WebDSL web programming language. WebDSL incorporates better abstrac-
tion for web programming concepts, has static checks on the application code
with accurate error reporting, and automatically addresses security concerns
in the code generation and runtime.

The primary concerns in web programming are user interfaces and data
handling. Which features do we need from a user interface language? These
features include both the rendering of data persisted in the database, as well as
providing input-handling components to enter new data and update existing
data. Additionally, data invariants need to be enforced by the system. How
can a DSL provide these features in an integrated way? These are language-
design challenges that are investigated in this dissertation. The user interface
sublanguage of WebDSL contains several unique improvements compared to
existing approaches: form submits that are safe from hidden data tampering;
prevention of input identifier mismatch in action handlers; safe composition
of input templates; automatic enforcement of Cross-Site Request Forgery
protection; expressive data validation; and partial page updates without explicit
JavaScript or DOM manipulation.

Access control is essential for the security and integrity of interactive web
applications. Existing solutions for access control often consist of libraries
or generic implementations of fixed policies. These rarely have clear inter-
facing capabilities, and they require manual extension and integration with
the application code, which is error-prone. WebDSL provides a declarative
access control sublanguage, which is entirely integrated with other language
components and automatically weaves checks into the application code. Errors

iii

related to inconsistent application of access control checks are avoided. The ac-
cess control language shows that various policies can be expressed with simple
constraints, allowing concise and transparent mechanisms to be constructed.

Our work on abstractions for web programming resulted in several scientific
and software contributions: The design and implementation of a linguistically
integrated domain-specific language for web programming that combines
abstractions for web programming concerns covering transparent persistence,
user interfaces, data validation, access control, and internal site search. Sub-
languages for the various concerns are integrated through static verification
to prevent inconsistencies, with immediate feedback in the integrated devel-
opment environment (IDE) and error messages in terms of domain concepts.
WebDSL is the largest programming language created with the Stratego pro-
gram transformation language and the Spoofax language workbench, in which
the DSL compiler and IDE have been iteratively developed. This iterative devel-
opment is a recurring pattern of discovering new abstractions, domain-specific
language abstraction, and reimplementation using new core abstractions tai-
lored to the language. To validate WebDSL, we have created several real-world
applications in the domain of research and education for external clients.

In our research we aim to create solutions for problems in web engineering
and language engineering by developing concepts, methods, techniques, and
tools. We aim to create more than just prototypes by continuing maintenance
and development beyond the proof of concept. For over 10 years, we have
developed WebDSL, and created and operated practical applications for ex-
ternal clients. For example, EvaTool is a course evaluation application that
supports processes for analyzing student feedback by lecturers and other staff.
WebLab is an online learning management system with a focus on program-
ming education (students complete programming assignments in the browser),
with support for lab work and digital exams, used in dozens of courses at
TU Delft. Conf Researchr is a domain-specific content management system
for creating and hosting integrated websites for conferences with multiple
co-located events, used by all ACM SIGPLAN and SIGSOFT conferences. My-
StudyPlanning is an application for composition of individual study plans by
students and verification of those plans by the exam board, used by multiple
faculties at TU Delft.

iv

Samenvatting

Informatiesystemen bewaren en organiseren data, en beheren bedrijfsprocessen
die over deze data gaan. Informatiesystemen hebben als doel het ondersteunen
van activiteiten, management, en besluitvorming in organisaties. Web appli-
caties zijn ideaal voor het implementeren van informatiesystemen. Hoewel
bestaande web frameworks abstracties leveren voor het maken van web appli-
caties, zijn er drie grote problemen met huidige web frameworks. Onvoldoende
of lekkende abstractie: web programmeerbelangen zijn onvoldoende gedekt, of
abstracties bevatten accidentele complexiteit. Gebrek aan statische verificatie:
applicatie fouten worden niet opgelost tijdens ontwikkeling. Beveiligings-
fouten: web applicatie beveiligingsproblemen worden onvoldoende verholpen
in het framework, web programmeurs worden blootgesteld aan te veel moge-
lijke beveiligingsfouten.

Hoe kunnen de voordelen van web frameworks gebruikt worden voor web
programmeren terwijl de problemen met abstractie, statische verificatie, en
beveiliging worden voorkomen? Wij stellen een domein-specifieke taal (DSL)
oplossing voor. De uitdaging is om een taal te ontwerpen die abstracties geeft
voor allerlei web programmeertaken met de problemen van web frameworks in
gedachten. We hebben meerdere subtalen ontworpen voor web programmeer-
belangen, en hebben deze geïntegreerd in de WebDSL web programmeertaal.
WebDSL integreert betere abstractie voor web programmeerconcepten, heeft
statische controles op de applicatie code met precieze foutmeldingen, en neemt
automatisch beveiligingsbelangen mee in de code generatie en runtime.

De voornaamste belangen in web programmeren zijn user interfaces en
behandeling van data. Welke features hebben we nodig voor een user interface
taal? Deze features omvatten het tonen van data die opgeslagen is in de data-
base, maar ook invoercomponenten voor de mogelijkheid om nieuwe data in
te voeren of bestaande data aan te passen. Daarnaast moeten data invarianten
beschermd worden door het systeem. Hoe kan een DSL deze features geven op
een geïntegreerde manier? Dit zijn taalontwerp uitdagingen die in deze disser-
tatie worden verkend. De user interface subtaal van WebDSL bevat meerdere
unieke verbeteringen ten opzichte van bestaande aanpakken: formulier invoer
die beveiligd is tegen manipulatie van verborgen data; voorkomen van invoer
identificatie problemen in actie afhandeling; veilige compositie van invoer tem-
plates; automatische handhaving van Cross-Site Request Forgery beveiliging;
expressieve data validatie; en gedeeltelijke pagina updates zonder expliciete
JavaScript of DOM manipulatie.

Access control is essentieel voor de beveiliging en integriteit van interactieve
web applicaties. Bestaande oplossingen voor access control bestaan vaak uit
libraries of generieke implementaties van rigide policies. Deze hebben zelden
duidelijke functionaliteit voor koppelingen, en vereisen manuele uitbreiding
en integratie met de applicatie code, wat foutgevoelig is. WebDSL biedt een

v

declaratieve access control subtaal, die volledig geïntegreerd is met andere
taalcomponenten en automatisch de checks in de applicatie code weeft. Fouten
gerelateerd aan inconsistente toepassing van access control checks worden voor-
komen. De access control taal laat zien dat verscheidene policies uitgedrukt
kunnen worden met simpele constraints, die het mogelijk maken beknopte en
transparante mechanismen te construeren.

Ons werk aan abstracties voor web programmeren heeft verschillende weten-
schappelijke en software bijdragen geleverd: Ontwerp en ontwikkeling van een
linguïstische geïntegreerde domein-specifieke taal voor web programmeren die
de belangen combineert voor transparante persistentie, user interfaces, data
validatie, access control, en interne zoekfuncties. Subtalen voor de verschil-
lende belangen zijn geïntegreerd door statische verificatie om inconsistenties te
voorkomen, met directe feedback in de ontwikkelomgeving en rapportage van
problemen in termen van domeinconcepten. WebDSL is de grootste program-
meertaal die ontwikkeld is met de Stratego programma transformatie taal en
de Spoofax language workbench, waarin de DSL compiler en ontwikkelomge-
ving iteratief ontwikkeld zijn. Deze iteratieve ontwikkeling is een terugkerend
patroon van ontdekken van nieuwe abstracties, domein-specifieke taal abstrac-
tie, en herimplementatie via nieuwe kern abstracties op maat gemaakt voor de
taal. Om WebDSL te valideren, hebben we verschillende realistische applicaties
gemaakt in het domein van onderzoek en onderwijs voor externe klanten.

In ons onderzoek hebben we als doel om oplossingen te creëeren voor proble-
men in web applicatie ontwikkeling en programmeertaal ontwikkeling door het
maken van concepten, methoden, technieken, en tools. We proberen meer dan
alleen prototypes te maken door onderhoud en ontwikkeling verder door te
zetten na een proof of concept. Al ruim 10 jaar hebben we WebDSL ontwikkeld
en praktische applicaties voor externe klanten gemaakt en beheert. EvaTool
is bijvoorbeeld een vakevaluatie applicatie die processen ondersteunt voor
het analyzeren van studentfeedback door docenten en andere medewerkers.
WebLab is een online leeromgeving met een focus op programmeeronderwijs
(studenten maken programmeeropgaven in de browser), met ondersteuning
voor practica en digitale tentamens, dat gebruikt wordt bij tientallen vakken
van TU Delft. Conf Researchr is een domein-specifiek informatiebeheersysteem
voor het maken en hosten van geïntegreerde websites voor conferenties met
meerdere co-located evenementen, in gebruik door alle SIGPLAN en SIGSOFT
conferenties. MyStudyPlanning is een applicatie voor het samenstellen van
individuele studeertrajecten door studenten, en controle van deze plannen
door de examencommissie, in gebruik bij meerdere faculteiten van TU Delft.

vi

Preface

What is this WebDSL thing, how did I get here, and why did it take so long?
While I did not learn programming at a young age, I grew up playing games
on the NES and SNES game consoles. When I went to high school in 1996, we
finally got our first PC at home, with a dial-up connection to the Internet. Since
I used this PC mostly for playing games, I tried online games for the first time.
They were pretty unplayable because of way too much lag, and most players
were cheating anyway. Investigating how they cheated was my first exposure
to computer program internals. I found some website explaining how to edit
game files with a hex editor to gain additional capabilities. Upon further
investigation, I discovered memory editing tools, which enabled searching
and changing values in the memory of the running process, which involved
learning a little bit about data structures and their memory layout. I found it
intriguing how game state was managed on both my own PC and the game
server, and fun to discover what happens when they are not synchronized.

At TU Delft I received an introduction to programming with Java, and in
my free time I learned PHP and tried to recreate a persistent browser-based
game our group of friends liked playing. This was my first experience with
web application programming. When it was time to do our BSc end project
in 2005, Joost Heijkoop, my lab partner for all the university assignments,
knew a small refurbishment company that needed to upgrade their inventory
management system. We thought this project would be doable in the 3 months
allocated for it. Since we wanted to avoid installation hassle and did not
mind learning another programming language, we decided to implement this
system in C++, which seemed the best technology choice at the time given our
limited experience. Although it looked like a basic administrative application
on paper, we went a few months overtime to work out all details and finish
the implementation. In particular, choosing a Graphical User Interface (GUI)
framework was hard, as there were many options with varying levels of
maturity and tool support. In the end, we built a tiny executable that did
not require any installation and ran on every Windows machine, connecting
directly to a MySQL server on the local network. The application is still in use
at the company today, although a different technology stack would probably
have been better for maintenance.

My observation from various projects at this point was that many web
applications had usability and security issues, whether it was leaking infor-
mation through direct URL access, view state leaking between tabs, or short
server-side session timeouts with insufficient detection at the client (which is
still the case in 2023 for the TU Delft webmail client which redirected me back
to login and dropped my email’s text when I pressed send). I also experienced
that building information systems is tedious, regardless of the programming
language used. You would either end up using the minimum number of

vii

libraries (writing data model classes to generate queries and wasting time on
deciding what primary key to use for representing relations between objects in
the database), or you would choose a persistence library, and end up digging
through documentation because you wanted to do something slightly different
than the library authors expected, and get confusing errors. Similarly, for
the user interface you would pick a GUI framework or web framework, and
as soon as it did not do exactly what you needed, you had to dive into the
implementation, learn the implementation patterns and figure out how to
patch them to do what you wanted (wishing you had just done it from scratch).

I met Eelco Visser in 2006. I was looking for a MSc thesis project and visited
several professors to discuss potential projects. Eelco, just having started
at TU Delft, immediately stood out, because he seemed mostly interested
in taking pictures of the sunset above Delft, from the view of his office in
the high-rise EEMCS building. It soon became clear to me that he had a
long history of research projects behind him already, which he continued
to build upon. He showed me the first fragments of WebDSL, an improved
programming language for web applications, which he had started working
on. I appreciated how SDF enabled you to specify syntax freely without
immediately having to think about algorithm details like left recursion conflicts.
Stratego expressed abstract syntax tree node transformation and construction
very cleanly, using pattern matching and concrete object syntax, which enabled
describing transformation rules based on readable WebDSL and Java code.
This was a big contrast to the Compiler Construction course I followed earlier
in the MSc curriculum, which was focused on low-level aspects and more of
an exercise in C programming, which prevented me from understanding the
concepts well. The WebDSL language idea also appealed to me, as it seemed
to address many of the frustrations I had experienced building information
systems and web applications.

Eelco was inspired by discussions with fellow researcher William Cook to
look into modeling access control. My MSc thesis project became an inves-
tigation of what kind of access control policies are out there, how they are
implemented in applications, and how we can make the WebDSL language
support this in a novel way. Eelco encouraged me to write a paper together
about this work, which was accepted at the ICWE’08 conference held in New
York, and won the best paper award. This was both my first time attending
a conference and my first time flying. I trusted Eelco’s traveling experience,
and he selected the perfect seats. These turned out to be the worst seats of the
plane, next to the toilet, with no leg space from a protruding emergency exit,
and right next to airconditioning. We joked about it afterwards, and I never
trusted his seat-picking skills again. Over dinner we talked about continuing
working together, and the topic of my PhD project became: to extend the
WebDSL language and reimplement the runtime to make it more efficient and
reliable.

At the start of my PhD, the WebDSL runtime was hardly practically applica-
ble, as requesting simple pages took a full second and sometimes gave errors,
it would write gigabytes of log files per hour without having any actual users,

viii

and the servlet container would crash often after a day. I started working
on an entirely new runtime, replacing all the existing web framework code.
During my PhD time I continued working on the new runtime as well as
adding new language features, and supervising MSc students that worked on
various aspects of WebDSL (see Section 1.11 for more details on the supervised
projects). Eventually, I was maintaining all parts of the WebDSL system, such
as the build files, front-end static analysis, and IDE. I also took over server
management from the NixOS team when their Buildfarm project funding
ended. I felt that I needed to master all aspects of WebDSL and application
deployment to be able to diagnose any problem that came up affecting the
reliability of the applications.

Around 2011, Eelco and I were considering starting a company to develop
WebDSL applications. Through a colleague I explored creating software for
the healthcare domain in Sudan. Although it was quite an experience going
there, and somehow I was able to demonstrate the application on a severely
outdated computer and download the required software through embargo
blockages, I also realized that this was never going to work due to our lack of
domain knowledge and the distance we had to the clients. Discussing this with
Eelco, we came to the conclusion that we would be more effective in domains
we already knew: education and academia. Our focus shifted to developing
the tools discussed in Chapter 7 of this dissertation: WebLab, Conf Researchr,
MyStudyPlanning, and EvaTool.

The best stress tests for WebDSL were the exams in the WebLab online
learning environment with hundreds of students simultaneously doing pro-
gramming assignments. I remember a few exams in the first years of WebLab
that did not go smoothly, where either the web application stalled due to
being overloaded or some bug in the runtime or application code, or a guest
program going rogue in the back-end code runner without getting detected
correctly. Elmer van Chastelet and I would be constantly monitoring the server
and intervening where necessary during those initial exams. Besides issues in
our own software, there were other issues we had less control over, such as
university networking issues or software package installations on the lab com-
puters. Eventually, we addressed the major problems and the exams started
going more smoothly.

Eelco stated in his own PhD dissertation: “one of the great contributors to
this thesis is the deadline” [Visser 1997]. One of the great contributors to the
delay of mine was the lack of a deadline. By continuing my work on extending
and maintaining WebDSL and its applications, it never felt done. Whenever I
made some progress on the dissertation draft, I identified some limitation in
WebDSL and thought to myself: “I can write about this limitation or just fix
it”. Additionally, deciding on an evaluation strategy for the dissertation was
hard. Examples that fit in a paper do not really say much about the practical
usage of the language for creating real-world applications. As we gained
more application users over time, at some point it became hard to even find
time to work on WebDSL itself. WebDSL was stable enough and application
features and support always seemed more urgent. Daniël Pelsmaeker and

Preface ix

Max de Krieger joined our team and took on some of our workload. During
the COVID-19 pandemic lockdown we initially spent some time adjusting our
applications to cope with the new reality. We improved WebLab to run online
exams from home, with plagiarism scanning, randomized question variants,
and timed questions. We extended the Conf Researchr conference management
application with support for virtual conferences with mirrored sessions, such
that virtual attendees in other timezones can still catch a talk at an acceptable
time. The number of support requests for our applications reduced during this
period as well, because study program and course managers avoided making
large changes. I taught a course on Web Programming Languages for the first
time in 2021, which was taking up quite some time. At the end of 2021, during
the next lockdown, I finally started working on completing the dissertation
draft.

In March 2022 I handed in my dissertation draft to Eelco. We had our last
Zoom session two weeks before his untimely passing. We talked about the
dissertation and looked forward to celebrating the defense together. He also
had another application idea that he wanted to explore, and an hour later we
were in a conference call with potential academic workflow clients in the US.
Later that year, Arie van Deursen and Sebastian Erdweg kindly took over the
task of being my promotors, provided detailed feedback on the dissertation
draft, and assisted with the remaining steps towards the defense.

Acknowledgements

The WebDSL project, our academic workflow applications, and this dissertation
would not have existed without Eelco Visser. Eelco’s vision and strong drive
inspired me to work hard and get impactful results. Without him, I probably
would not have thought about doing a PhD, and missed out on expanding my
view of the world through traveling and getting to know a diverse group of
colleagues. When he passed away, I lost not only my mentor, but also a friend
who looked out for me and had my back.

My current promotors Arie van Deursen and Sebastian Erdweg helped me
get to the finish line. Arie invited Eelco to come to his research group in Delft
in 2006, and introduced me to Eelco when I was searching for MSc projects.
Although Arie has been head of my department for a long time, I had not
worked directly with him before. I appreciate his ability to pinpoint the strong
and weak points in the dissertation draft with great clarity, based on many
years of supervision experience. Sebastian Erdweg worked in our research
group as an assistant professor from 2016 to 2019. After I started developing
MyStudyPlanning in 2016, he was the first MSc coordinator to test and use the
system for approving individual study programs. Besides this collaboration,
we had many interesting discussions during coffee and lunch breaks, and we
often went for last-minute dinners and joined board game evenings.

The committee members took the time to review my dissertation which is
not of the typical ‘papers stapled together’ form: Alessandro Bozzon, James
Cheney, Jurgen Vinju, Ralf Lämmel, Matthijs Spaan, and Mathijs de Weerdt.

x

The members of my Academic Workflow Engineering (AWE) team have
made the real-world impact possible: Elmer van Chastelet, Daniël Pelsmaeker,
and Max de Krieger. We work together on designing and implementing the
applications, assisting WebLab exams, and handling all the support issues that
come along. Elmer is the most prolific WebDSL application programmer in
the world. He is the primary developer of our largest applications, the Conf
Researchr and WebLab systems. Daniël focuses on WebLab and maintains
the Docker-based backend, which has been instrumental in getting WebLab
adopted by more course creators. Max develops features for all our applica-
tions, and takes care of many support requests. I value their work and our
friendships greatly.

During my initial PhD study years, I enjoyed working together and hanging
out with Zef Hemel, Lennart Kats, Sander Vermolen, Maartje de Jonge, Sander
van der Burg, Eelco Dolstra, Rob Vermaas, and with visiting researchers Karl
Trygve Kalleberg and Nicolas Pierron. Back then, IRC channels were used
heavily for work discussions, jokes, and coffee break calls. I shared an office
with Zef and learned a lot from him about programming and writing. I try to
keep in contact with them occasionally online, and I met Lennart and Maartje
several times in person over the years.

In 2012, our research group attended a summer school in Romania. Vlad
Vergu invited Gabriël Konat, Guido Wachsmuth, and me for a week-long road
trip in the Carpathian Mountains. He showed us some beautiful sceneries and
villages. I will never forget his efficient driving style, which even ambulances
could not keep up with.

I had many interesting conversations with Luís Eduardo de Souza Amorim
(Eduardo) about cultural differences and relationships. We also experienced
several late nights going out for drinks in the weekend.

I shared an office with Daco Harkes for a while, where we collaborated on
applying the IceDust language to WebDSL applications. Over coffee we had
many good discussions about work-life balance, and career options for MSc
and PhD graduates in academia and industry.

There are many past and current colleagues in the Programming Languages
group that I haven’t mentioned yet, who have made working there an enjoyable
experience: Jeff Smits, Casper Bach Poulsen, Jesper Cockx, Sven Keidel, Jasper
Denkers, Arjen Rouvoet, Hendrik van Antwerpen, Peter Mosses, Robbert
Krebbers, Benedikt Ahrens, Alexander Chichigin, Bohdan Liesnikov, Aron
Zwaan, Cas van der Rest, Dennis Sprokholt, Lucas Escot, Luka Miljak, Arjan
Mooij, Soham Chakraborty, Xulei Liu, Jaro Reinders, Kobe Wullaert, Michael
Steindorfer, Jules Jacobs, Paolo Giarrusso, Augusto Passalaqua, and Pierre
Néron. Additionally, I want to mention some of the MSc students that I
supervised or had nice interactions with: Michel Weststrate, Chris Gersen,
Nathan Bruning, Chris Melman, Jesse Tilro, Sverre Rabbelier, Martijn Dwars,
Nick ten Veen, Jonathan Dönszelmann, Maarten Sijm, Taico Aerts, Chiel
Bruin, Bram Crielaard, Olaf Maas, Wiebe van Geest, Oskar van Rest, Ivo
Wilms, André Vieira, Ricky Lindeman, Ruben Verhaaf, Jippe Holwerda, and
Wouter Mouw. Since 2022, our AWE team joined forces with the Computer

Preface xi

Science & Engineering Teaching Team, which had been using WebLab for
many years in course labs and exams: Andy Zaidman, Christoph Lofi, Otto
Visser, Stefan Hugtenburg, Taico Aerts, Thomas Overklift, Frank Mulder, Bart
Gerritsen, Amira Elnouty, Ivo van Kreveld, Ruben Backx, Mathijs Molenaar,
Elena Congeduti, Chivany van der Werff, Azqa Nadeem, Christos Koutras,
and Ivar de Bruin. Our secretaries, Roniet Sharabi, Marsha Ginsberg, and
Shelly Dawn Stok have been very kind and helpful. In particular they have
helped our AWE team in dealing with everything related to invoicing for our
applications.

Since my first year of university in 2002, I have played Magic the Gathering
regularly with a group of fellow students: Ruben Wieman, Boaz Pat-El, Joost
Heijkoop, Daniël van Gelderen, Michel Deconinck, Reinier Zwitserloot, and
Martijn Bleeker. At various points in time this grew into other fun activities like
computer games, board games, building a pinball machine from scratch (Ruben
is a pinball fanatic), and cinema nights. I have often invited and brought along
colleagues and students to our game evenings. I still play weekly with Ruben,
Gabriël Konat, Daniël Pelsmaeker, and Jeff Smits.

Ronald van der Kraan has been my best friend ever since elementary school.
We frequently have long chats in which we exchange life updates and talk
about progress or frustrations at work. He is an intelligent self-taught self-
employed programmer who keeps up with interesting technical discussions
and provides invaluable feedback. Discussions with him helped me put things
into perspective and get clearer views.

My sister Ramona has provided me with support over many years. She
has been looking forward to the defense day, and is excited to be one of my
paranymphs.

My parents always encouraged me to stay in school as long as possible.
My father was young when he took over his father’s agricultural land and
started working. He would have been proud to experience the defense, just
like my mother is now. In our summer holidays, we would go on fishing
trips on the North Sea. Sometimes we went several consecutive days, and
each day he would invite different friends to come along. Spending hours
floating on a small boat with no coast in sight was sometimes very quiet and
relaxing, and other times led to interesting conversations about the things that
really mattered to people. After he passed, I continued this ritual my father
established for a while. I invited friends to come along on several occasions:
Vlad, Elmer, Reinier, Daniël and Eduardo, and Sven and Nick. This activity
inspired the cover choice for this dissertation.

Meeting my partner Mozhan in 2017 had a huge impact on my my life and
made it more enjoyable and meaningful. Although she comes from a different
part of the world, our values and goals in life align perfectly. She encouraged
and supported me to finally finish this dissertation. Thank you for being the
love of my life.

Danny Groenewegen
October 23, 2023

The Hague

xii

Contents

Summary iii

Samenvatting v

Preface vii

1 Introduction 1
1.1 Web Information Systems . 1

1.2 Problems in Web Programming 2

1.3 Insufficient or Leaky Abstraction 3

1.3.1 Design Coverage . 3

1.3.2 Design Fragmentation . 4

1.3.3 Forced MVC structure . 6

1.4 Lack of Static Verification . 6

1.4.1 Linguistic Separation . 6

1.4.2 Typical Verification Problems 6

1.4.3 Error Reporting Quality 7

1.4.4 Statically and Dynamically Typed Languages 8

1.4.5 Verification Related Work 8

1.5 Security Flaws . 8

1.5.1 Web Application Security Vulnerabilities 9

1.5.2 SQL Injection . 10

1.5.3 Cross-Site Scripting . 12

1.5.4 Cross-Site Request Forgeries 13

1.5.5 Reflection and Run-Time Code Manipulation 13

1.6 Thesis . 14

1.7 WebDSL Design Principles . 16

1.8 Research Methodology . 17

1.9 Contributions . 19

1.10 Structure of this Dissertation . 21

1.11 Origin of Chapters . 23

2 The WebDSL Web Programming Language 27
2.1 Introduction . 27

2.2 Language Concepts . 28

2.3 Example Application . 29

2.3.1 Data Model . 30

2.3.2 Web Interface . 30

2.4 Transparent Data Persistence . 32

2.4.1 Memory and Storage . 32

2.4.2 Entity Objects . 34

xiii

2.4.3 Associations . 36

2.4.4 Object Identity . 37

2.4.5 Inheritance and Polymorphism 38

2.4.6 Invariants . 39

2.4.7 Discussion Data Persistence 39

2.5 Expressions and Functions . 41

2.5.1 Functions . 43

2.5.2 Safe Query Embedding 45

2.5.3 Java Interoperability . 46

2.5.4 Discussion Functions . 46

2.6 Pages and Templates . 49

2.6.1 Pages and Navigation . 50

2.6.2 Templates . 50

2.6.3 Template Calls . 54

2.6.4 Template Content . 56

2.7 User Interface Input . 57

2.7.1 Forms and Input . 60

2.8 User Management and Access Control 60

2.9 Search . 63

2.10 Discussion . 64

2.11 Conclusion . 66

3 User Interface Templates 67
3.1 Introduction . 67

3.2 Design Goals . 68

3.3 Request Lifecycle . 69

3.4 User Input . 71

3.4.1 Multi-phase Evaluation 72

3.5 Language Primitives for Input Implementation 72

3.5.1 Phase Function Code . 72

3.5.2 Ref Types . 74

3.5.3 Tempate Identifier Generation 76

3.6 Data Validation . 77

3.6.1 Value Well-Formedness 78

3.6.2 Data Invariants . 79

3.6.3 Form Input Validation . 81

3.6.4 Function Assertions . 81

3.6.5 Messages . 82

3.6.6 Validation Phase in Request Lifecycle 83

3.6.7 Library Input With Validation 83

3.7 Partial Page Updates . 85

3.7.1 Nested Page . 87

3.7.2 Inline Refresh . 90

3.7.3 Inputs with Immediate Validation 91

3.8 Conclusion . 93

xiv

4 Access Control 95
4.1 Introduction . 95

4.2 Access Control . 97

4.2.1 Authentication . 98

4.2.2 Restricting Access . 100

4.2.3 Administration . 102

4.3 Access Control Policies . 105

4.3.1 Mandatory Access Control 106

4.3.2 Discretionary Access Control 107

4.3.3 Role-Based Access Control 109

4.4 Transformational Semantics . 111

4.4.1 Policy Normalization . 111

4.4.2 Rule Weaving . 112

4.5 Related Work . 114

4.5.1 Language Design . 114

4.5.2 Policy Languages . 115

4.5.3 Frameworks . 116

4.6 Discussion . 117

4.6.1 Future Work . 118

4.7 Conclusion . 119

5 The WebDSL Language Evolution Pattern 121
5.1 Introduction . 121

5.2 A Generic Language Evolution Pattern 124

5.2.1 Evolution of User Interface Templates 126

5.2.2 Evolution of Persisted Data Models 129

5.2.3 Evolution of Static Code Template Expansion 130

5.3 Evolving Compiler Extensions 132

5.3.1 Evolution of Email Notifications 134

5.3.2 Evolution of Files and Images 134

5.3.3 Evolution of Internal Site Search 136

5.4 Discussion . 137

5.5 Conclusion . 139

6 The WebDSL Compiler, IDE, and Runtime 141
6.1 Introduction . 141

6.2 Compiler Pipeline . 142

6.3 Front-End Analysis . 143

6.4 Front-End Transformations . 147

6.5 IDE support . 148

6.5.1 IDE Caching . 151

6.6 Back-End . 152

6.6.1 Code Generation . 152

6.6.2 WebDSL Request Lifecycle 154

6.6.3 Runtime System . 156

6.7 Compiler Caching Strategies . 156

Contents xv

6.7.1 Code Generation Cache 159

6.7.2 Compile Unit Cache . 159

6.8 Application Deployment . 160

6.9 Discussion . 160

6.10 Conclusion . 162

7 WebDSL in Practice 163
7.1 Introduction . 163

7.2 EvaTool . 164

7.3 WebLab . 167

7.4 Conf Researchr . 170

7.5 MyStudyPlanning . 173

7.6 Robustness Engineering Experiences 175

7.7 Performance Engineering Experiences 177

7.8 Security Engineering Experiences 178

7.9 Reflections on Experiences . 180

7.10 Threats to Validity . 186

7.11 Conclusion . 187

8 Related Work 189
8.1 Introduction . 189

8.2 Conventional Full-Stack Web Frameworks 189

8.2.1 Django . 190

8.3 Multi-tier Web Programming Languages 195

8.3.1 Ur/Web . 196

8.3.2 Links . 201

8.3.3 Hop.js . 205

8.4 Modeling and Low-Code Tools 206

8.4.1 WebML . 207

8.5 Conclusion . 207

9 Conclusion 209
9.1 Thesis Revisited . 209

9.2 Design Principles Revisited . 210

9.3 Directions for Future Work . 214

Bibliography 217

Curriculum Vitae 229

List of Publications 231

Titles in the IPA Dissertation Series since 2020 233

xvi

1
Introduction

My thesis: New web programming abstractions integrated in a domain-
specific language improve web programming by avoiding boilerplate code,
providing timely and accurate feedback on problems in application source
code, and ensuring reliability (robustness, performance, scalability, and
security) of applications. The design and implementation of such a language
is feasible and has practical applicability.

1.1 Web Information Systems

Information systems store and organize data, and manage business processes
concerned with that data. Information systems aim to support operations, man-
agement and decision-making in organizations. For example, in a university
context, information systems are used to track student progress, store grades,
manage individual study program selection, and create overviews for univer-
sity staff. The study program and course selection workflow we encountered at
our university grew organically. Initially, students handed in paper forms with
physical signatures, which the university staff transferred into spreadsheets
saved in a shared drive. This process was very error-prone, forms could get
lost, duplicate entries could be made in the spreadsheets, errors occurred in
the data due to bad handwriting. Additionally, it took a long time because
of print-sign-scan loops, it costs a lot due to the staff work involved, and it is
bad for the environment because of printing. It makes sense to convert such
workflows into a digital system. However, implementing tailormade software
for information system workflows is not trivial. It is easy to underestimate
the amount of work required for getting close to a user-friendly, intuitive, and
secure system, which is as error-free as can be. And when it starts getting
used, it requires continuous maintenance of the code and deployment to keep
running and handle new requirements.

Web applications are ideal for implementing information systems. Web
applications organize and persist all data in a database, protect data by only
allowing specific operations, do not require installation on client computers,
work on all operating systems and devices, and can be upgraded without
interruption. Unfortunately, web application development is complex due
to its heterogeneous nature. It involves multiple programming languages
with their own programming models (e.g. DOM updates with client-side
JavaScript, server-side Java code to execute operations, SQL database queries),
and separate software systems in a network (browser, proxy server, application
server, database server) that all need to work together. Additionally, there are
non-functional requirements inherent to the web platform such as protecting
against request tampering and injection attacks.

1

1.2 Problems in Web Programming

The abundance of web frameworks in existence (e.g. Spring [2023] framework
for Java, Django [2023] framework for Python, Ruby on Rails [2023], Laravel
[2023] for PHP, Sails [2023] for Node.js) indicates a need for abstraction when
programming web applications. There are many duplicated features in web
applications, such as rendering data, data persistence, authentication, access
control, and styling. Web frameworks assist programmers in organizing
the complexity of web programming by enforcing standard patterns. The
frameworks provide facilities for commonly used features that would otherwise
be duplicated. Common design patterns are captured in the semantics of a
framework, allowing application writers to focus on the specifics of their
application.

Although existing web frameworks provide abstractions for creating web ap-
plications, there are several problems that remain. Among these problems are
having to write boilerplate code to glue together components, late integration
checks between framework components, and weak IDE support for frame-
work concepts [Hemel et al. 2011; Hemel 2012]. The problems are partially
caused by the lack of collaboration between the programming language design
and the framework design. Frameworks are written in general-purpose pro-
gramming languages like Java, C#, Python, and JavaScript. General-purpose
programming languages can have features that are not necessary for typical
web application code. These features can actually introduce abstraction prob-
lems and vulnerabilities when the language is used for the purpose of web
applications. For example, where a typical framework provides convenient
ways to escape values in queries, query injection attacks can be prevented in
a safer way if the programming language is made aware of queries, because
the developer can forget about the problem entirely (see Section 1.5.2). The
problems we identify in web programming frameworks are:

1. Insufficient or Leaky Abstraction When abstraction is too narrow, web pro-
gramming concerns require encoding into low-level commands, leading
to error-prone boilerplate code. When abstractions are leaky, underlying
complexity shimmers through the abstraction.

2. Lack of Static Verification Application faults are not discovered during
development. Problems become clear at a later point when deploying
or running the application, which means they can be missed entirely or
solving them becomes more costly than if they were discovered while
writing the code.

3. Security Flaws Web application security issues are not sufficiently ad-
dressed in the abstractions, web programmers are exposed to many
possible security faults.

2

1.3 Insufficient or Leaky Abstraction

There are several problems that can be classified as either insufficient or leaky
abstraction. Insufficient abstraction means that application concerns require a
lot of work to implement in the programming language. It requires encoding
a concern into low-level commands, leading to error-prone boilerplate code. A
leaky abstraction is an abstraction that contains a detail where the underlying
complexity is exposed. Whether an abstraction is leaky or not is not an
absolute measure. The law of leaky abstractions as coined by Joel Spolsky
[2002] states “All non-trivial abstractions, to some degree, are leaky”. Although
web programming abstractions are also non-trivial and leaky to some degree,
we can identify unnecessary leaks and fix them.

1.3.1 Design Coverage

Web frameworks provide abstractions for common technical concerns in web
programming. However, the provided abstractions are often insufficient to
conveniently describe higher-level application concerns, such as access control
policies and data validation requirements. These end up scattered throughout
the source code, with custom code or third-party libraries. The framework
is insufficiently aware of these concerns, other features are unaware of the
intended meaning and there is no support with static analysis to avoid consis-
tency problems. We can identify several web programming concerns for which
web frameworks provide insufficient abstraction:

Access Control Access control governs access to the components of an ap-
plication based on the user’s access rights. Access control is essential for the
security and integrity of interactive web applications. It should be possible to
express various access control policies clearly and concisely. An access control
policy often ends up being woven manually into the application source code.
Because of its crosscutting nature, access control code gets scattered across the
codebase. If one check is accidentally omitted when making changes to the
access control policy, the application has a security problem. It also becomes
hard to inspect and verify the implemented access control policy, because it
requires searching the codebase for all occurrences.

Data Validation Data validation prevents incorrect or inconsistent data from
entering the system. Data validation should cover multiple aspects like data
wellformedness, data model invariants, form validation, and general error
message handling. Each of these is usually implemented as separate features
in a framework, introducing unnecessary complexity.

User Interface Templates Template languages abstract from details related to
user interface specification. However, their design is typically not integrated
with the underlying general-purpose language. For example, a template lan-
guage has poor encapsulation when it does simple file includes and relies on
global variables to pass arguments. Template languages can have different con-
trol flow constructs than the general-purpose language, such as for branching

Chapter 1. Introduction 3

and conditionals. Expressions inside templates can have different syntax and
semantics, as can be seen with the Expression Language in JSP and JSF [JavaEE
2023]. These small and subtle differences are accidental complexity in web
programming.

Object-Relational Mapping Object-relational mapping solutions abstract from
code related to persistence and database querying, however, they have many
abstraction leaks. For example, the programmer has to configure table and
column mappings. The Hibernate ORM [2023] framework for Java requires
annotations on simple Java classes to determine mapping strategies. This
requires an understanding of framework internals, such as master and slave
columns for inverse properties.

Client-Server Partitioning Web applications can run partly on the client and
partly on the server. Running code on the client is never secure from tampering,
as the client has complete control over the execution environment. Although
client code cannot be trusted, running harmless code such as user interface
updates on the client can reduce load for the server. Specific features such as
animations and real-time updating games actually need to run in the client,
as the latency for server requests would be too large. The separation between
running code on client and server is typically strict, because the client-side code
is written in JavaScript, and the server code in any general-purpose language.
Even in the case of Node.js [Node.js 2023], a server-side runtime environment
based on JavaScript, the available APIs and programming patterns required are
different between server-side and client-side components. Besides having to
learn multiple languages, APIs, and programming patterns, the communication
between these components is error-prone, requiring low-level marshalling
of data of one format into the other. Several web programming languages
have been proposed that abstract over client- and server-side code, including
UR/Web [Chlipala 2010], Links [Cooper et al. 2006], and Hop [Serrano 2007].
These systems provide the web programmer with one language that can be
compiled to transparently run on the client or on the server. For security-
critical code, these solutions require an annotation or other marker to force
code to be run on the server.

1.3.2 Design Fragmentation

Design fragmentation refers to general-purpose languages and web program-
ming frameworks being separately designed. General-purpose languages have
different design goals than web programming frameworks, favoring flexibility
and extensibility over other concerns. Due to building on top of an existing
general-purpose language, the user of a web framework has to deal with
accidental complexity inherited from the underlying programming language
and tooling.

For example, consider the mismatch between database identity and object
identity. With database persisted data, identity of an object means the primary
key field in the database. However, equality operators in general-purpose lan-

4

guages will compare references, or fields, or require a custom implementation
for each object. For web programming it would be more convenient if there
is a default that compares primary keys. Some languages even have different
equality operators to add to the possible confusion, e.g. == in PHP will do
type conversions before comparison, while === is comparison without conver-
sion. Although PHP was initially designed for web programming, it does not
provide reusable abstractions for current web programming concerns such as
persistence, user interfaces, form handling and databinding, access control,
and data validation. Consequently, PHP has more in common with general-
purpose languages, serving as base language for many web programming
frameworks.

The Hibernate ORM [2023] framework for Java uses proxies to provide lazy
loading of objects. When an initial object is loaded from the database, fields
that are references to other objects get instantiated with a generated proxy
class. This proxy class is a subclass of the declared type of the field, and all its
fields are null. If any of the proxy class methods are invoked, the actual object
is loaded from the database. The proxy delegates method invocations to the
actual object. The goal of these proxies is to provide transparent persistence,
the application code does not have to be concerned about when to load an
object. Because Hibernate is developed separately from the Java language, it
has to resort to complex methods to achieve this transparency. Unfortunately,
the implemented abstraction is leaky. Accessing fields directly on a proxy
object, instead of the getter method, will return a null-value. Querying the type
of a proxy with instanceof will report a generated subclass of the declared
field type. However, the type of the actual object might be a subclass of
that field type due to polymorphism. This information will not be available
anymore, leading to possible application faults. The broken property access
and inheritance checks are additional examples of leaky abstractions in ORM.

In a web setting with world-wide reach and internationalization concerns,
string values should be in the UTF8 character set, while many tools in the chain
will default to ISO-8859-1 or Latin-1. PHP’s built-in string operations will
not work with UTF8, and require the programmer to invoke string operations
from the mbstring extension. MySQL’s default character set is Latin-1 and
requires configuration options when creating tables to get the UTF8 character
set for text values. Additionally, HTML pages need charset options to make
the browser work correctly with UTF8 values. Since web applications deal with
many string values, pitfalls like these cause unnecessary debugging overhead
and distract from implementing the actual features.

Project structures become complex due to boilerplate code for integration of
framework and libraries. Many web applications use a similar set of libraries,
however, setting up a project often requires using a project template or scaf-
folding. The code and libraries of such a template cannot be differentiated
from custom implemented code and thus adds to the complexity of the project.

These are examples of low-level friction between a web framework abstrac-
tion and the framework’s host language. Such issues are often not easy to
address in a framework setting. Backwards compatibility is a major concern for

Chapter 1. Introduction 5

these languages, and invasive changes can cause separation in the community.

1.3.3 Forced MVC structure

The Model-View-Controller [Reenskaug 2003] pattern is adopted heavily in
web programming frameworks. Model contains data and business logic, view
generates the user interface, and controller receives events from the user
interface to interact with the model. Also the top-level code hierarchy in many
web frameworks is forced to model, view, and controller separation. The
problem is that this model is too simple for current web application concerns.
Persistent data, functions, user interface templates can be clearly separated, but
where do access control, data validation, internal site search and other concerns
go? A project could be better off being structured according to the semantics
of the application rather than the technical components. The model, view, and
controller subdivision does not give any useful information to understand a
specific application. The common Ruby on Rails advice to have “fat models,
skinny controllers” [Buck 2006] also indicates a problem with the role of the
controller. A thin controller is often tightly integrated with a view and is
mostly boilerplate code.

1.4 Lack of Static Verification

Lack of static verification is typically an undesirable consequence of linguistic
separation. This means that web programming uses multiple languages that
each have separate compilers and analysis tools. Inter-language consistency is
a common source of faults, e.g. checking that data properties exist when they
are referred to from a user interface template. The quality and timeliness of
reported errors also depends on the completeness of analysis.

1.4.1 Linguistic Separation

Web application platforms consist of many languages. There are common base
languages in web applications, such as HTML5, CSS, and SQL. The languages
are linguistically separated because the compiler and analysis tools for one
language are not aware of the other languages. An application spread over
multiple languages can have consistency faults which can lead to failures at
run-time. While it is conceptually appealing to have different languages that
address specific technical concerns, the lack of integration results in poor static
verification.

1.4.2 Typical Verification Problems

In web programming, the technical solution components are specific to appli-
cation concerns. For example, a template language handles the user interface,
and an ORM takes care of data persistence. There can be faults inside an
application concern, such as a data model property with an unknown type, or

6

a navigation link that refers to a non-existing page. There can also be faults
in the links between application concerns. The user interface renders a view
based on the persisted data. If this view contains a form, that form connects
through its input identifiers to a controller that handles the form request. If
the connection between components is inconsistent, the application will not
work correctly.

To get an overview of static verification opportunities in web programming,
we list common intra- and inter-aspect faults:

• Invalid data model references in user interface templates, application logic, data
validation checks, and access control rules, e.g. referring to a non-existing
property, or a property with an unexpected type.

• Properties of non-existing types, the data model uses types that are not
defined.

• Invalid template references, the use of tags and controls that do not exist.

• Invalid HTML element nesting, incorrectly nesting tags and controls, e.g.
list items outside a list, or rows outside a table.

• Broken page links, links to non-existing application pages, or links that
provide the wrong type of parameters.

• Broken action links, actions to be triggered, e.g. when clicking a submit
button, do not exist or are invoked incorrectly.

• Invalid redirect from actions, the user is redirected to pages within the
application that do not exist.

• Form parameter mismatch, values in a form submit are ignored due to a
mismatch between rendered parameter names, and expected parameter
names in the form submit action.

Early in the WebDSL development we performed a case study which ana-
lyzed the quality of verification in web programming [Hemel et al. 2011]. We
used fault seeding to discover when and how web programming frameworks
manifested failures. We observed that while certain frameworks report some
application inconsistencies at compile-time, many are only discovered later, at
deployment or run-time. Additionally, the reported error messages were often
confusing and not in terms of domain concepts, e.g. generic type errors in Java
or Scala to indicate several different types of consistency problems.

1.4.3 Error Reporting Quality

Verification errors are more useful if they are immediately visible, without
the developer having to switch context from the IDE to the browser. Static
analysis will report application faults as early as possible. An IDE can mark
erroneous fragments while the programmer is writing the application code.

Chapter 1. Introduction 7

Error messages should not be leaky, it should make sense at the level of
abstraction in which the programmer is developing. For example, a broken
navigation link should report the problem using domain terminology such as
“page” and “link” rather than “constant” or “method”.

1.4.4 Statically and Dynamically Typed Languages

Both statically and dynamically typed languages suffer from lacking static
verification. In dynamically typed programming languages such as Python
and Ruby, type errors and framework usage failures occur at run-time. Faults
will not be caught unless the code is run. While this is not a problem during
initial development, subsequent maintenance changes requires that all the code
is run again to find regressions. Without a test suite with sufficient coverage,
faults can easily go undetected.

In a statically typed language, guarantees the typechecker gives do not
provide guarantees at the level of the framework. For example, the JavaServer
Faces [Burns and Kitain 2006] components for building web interfaces with
Java include an expression language that is similar, but not equivalent to
expressions in Java. The Java compiler does not check definitions in this
expression language for type correctness or consistency with other defined
components.

1.4.5 Verification Related Work

Various solutions have been proposed in the literature to address the lack of
static verification in web programming practice. Halfond et al. [Halfond and
Orso 2008] describe static analysis to identify the implicit interfaces in web
application components implemented in a conventional web framework, and
statically verify the correctness of these invocations. Braband et al. [Brabrand,
Møller, and Schwartzbach 2001] describe a dataflow analysis to determine
whether an application always generates correct HTML, e.g. ensures that list
items are enclosed in a list. Chlipala [Chlipala 2010] introduces a language with
static consistency checks between form view components and form handlers.

Static analysis removes faults from applications that are not prevented
through better abstractions. Static analysis becomes simpler when the abstrac-
tions are better, because fewer faults have to be prevented. They are both
essential to improving reliability in web programming.

1.5 Security Flaws

Security is related to every other aspect of web programming. Improving
abstraction and static analysis both improve security. A fault can easily result
in a security flaw and become a vulnerability. Besides the general complex-
ity of building full-stack web applications, security in web programming is
complex due to inherent accessibility and multi-user aspects. Online web ap-
plications are accessible to anyone with an internet connection, which includes

8

potential hackers. Web applications need to handle multiple users simultane-
ously, and correctly identify the user and provide the intended capabilities.
Web application security is a broad concept. Security can mean designing
authentication checks and an access control policy, modeling data validation,
as well as preventing request tampering and injection attacks. Access control
and data validation are specific to an application and thus require explicit
specification in the application implementation. Functional security features
like access control are problematic when there is insufficient abstraction in the
web programming language, as discussed in Section 1.3.

The other type of security is a non-functional requirement. An application
should be protected from malicious hackers. While this goes beyond just
application security, as gaining access to the server can be attempted in many
ways, the application itself is the most vulnerable component. For example,
common vulnerabilities such as SQL injection, Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF), and request tampering are all attacks on
the application itself.

The risks of security flaws in web applications are severe, an attacker could
potentially:

• execute arbitrary code;

• steal identity of another user;

• cause denial of service;

• access or destroy privileged data;

• deform sites;

• and redirect users to malicious phishing sites.

This section provides an overview of common web programming secu-
rity vulnerabilities, in order to understand the complexity involved in web
programming and the challenges for web programming solutions.

1.5.1 Web Application Security Vulnerabilities

The Open Web Application Security Project (OWASP) maintains a list of the
top ten security risks in web applications based on analyses of thousands of
applications [Open Web Application Security Project 2017]. We can group
these risks into the following main categories:

• Tier and Language separation: Code is shipped between tiers and blindly
interpreted. When user input is part of this code, there is a potential
for abuse. The most prominent examples are (SQL) Injection, Cross-
Site Scripting (XSS), and also XML External Entities (XXE) and Insecure
Deserialization fall into this category.

Chapter 1. Introduction 9

• Authentication: Because HTTP is a stateless protocol, state is encoded in
URL and form parameters, and cookies sent with each request. The most
important use of a cookie is to identify an authenticated user. There are
many possible cases of Broken Authentication. Parameters and cookies
can be tampered with by a malicous user to attempt to gain more access.
Cookies that are used to decide on access can be stolen by monitoring an
unsafe network channel. Passwords that are too simple can be brute force
guessed. Passwords that are insufficiently encrypted could get stolen
through other security flaws like XSS. A forged request in a separate
browser tab can attempt to use a cookie temporarily to execute a request
on behalf of a different user, which is Cross-Site Request Forgery (CSRF)
(in the top 10 of the 2013 version of the OWASP list).

• Access Control: The problem of Broken Access Control refers to issues where
the access control policy is incorrectly enforced in the code. This can
easily happen when access control has to be encoded in generic code
instead of being identified as an implementation concept in the source
language. Besides having to deal with accidental implementation errors,
it can be challenging to design the correct access control policy for a
specific application. Application developers can make errors in the logic
for determining access, e.g. by not considering all possible cases.

• Maintenance and Operations: An existing application can become insecure
by incorrect configuration of the server or by additional exploits getting
discovered in the technology stack. Security flaws in existing frameworks
and platforms get discovered (zero-day vulnerabilities) and are made
public with a security update. Existing applications then need to be
updated in a timely manner or the vulnerability can easily be exploited.
Security standards rise as computers get more powerful, and so do the
requirements for encryption. It requires an active role to keep the server
configuration up-to-date, and correctly configuring proxy servers that
handle outside requests. The security risks in this category are Sensitive
Data Exposure, Security Misconfiguration, Using Components with Known
Vulnerabilities, and Insufficient Logging & Monitoring.

Web applications are hard to make secure, and non-functional security
features require development effort by the framework or application developer.
Ideally, all such non-functional security features are taken care of automatically
by the web programming framework or platform, because they are not specific
to an application. In the following section we show examples of the security
risks SQL injection, XSS, CSRF, and Insecure Deserialization.

1.5.2 SQL Injection

Injection flaws can occur when untrusted user data is sent to an interpreter as
part of a command or query. The most common type is SQL injection, which,
if successful, enables a malicious user to read and write potentially all the data
controlled by the application. Halfond et al. [Halfond, Viegas, and Orso 2006]

10

analyzed different types of SQL query injection attacks, and categorized them
in tautologies, illegal/logically incorrect queries, union query, piggy-backed
queries, stored procedures, inference, and alternate encodings.

To give an example, a tautology-based attack injects code in a SQL where-
clause so that it always evaluates to true. An unsafe login query might be
implemented as checking whether the following returns any result:

query = "select * from users where username='" + username + "' and pass='" + password + "';"

A malicious hacker could enter the following username:
' or 1=1 --

Then, the executed query becomes:
select * from users where username='' or 1=1 --' and pass=''

Because 1=1 is always true and anything after -- is considered a comment,
this would return all the users. The login would succeed if the condition is
that the query yields results, without knowing any valid credentials. There are
several solutions for the problem of SQL injection.

• Escaping functions Consistent use of escaping functions for unsafe input
going from user data to a query. Escaping functions filter the user data to
escape special query syntax. This is not a safe solution because escaping
calls can easily be forgotten by the application programmer and cause
an injection flaw. For example, when researchers implemented static
analysis to search for code patterns of typical escaping bugs [Livshits
and Lam 2005], they discovered SQL injection vulnerabilities in several
open-source applications and libraries.

• Use API to build queries An API on top of prepared statements helps the
programmer avoid injection issues. However, blindly trusting the API is
dangerous, as it can still be used incorrectly.

For example, a safe Hibernate Query Language fragment:
session.createQuery(
 "FROM User WHERE username=:name and password=:pass;")
 .setParameter("name", request.getParameter("name"))
 .setParameter("pass", request.getParameter("pass"))
 .list();

becomes unsafe when used in the following way:
session.createQuery(
 "FROM User WHERE username = "
 + request.getParameter("name")
 + " and password = "
 + request.getParameter("pass")
 + ";")
 .list();

This second variant would still work, however, it also introduces an
injection vulnerability because the parameter will not be escaped.

• Integrate SQL into Language Integrating SQL into the syntax of a language
provides a way to automatically enforce correct construction of SQL
queries with parameters. This way there is no risk of accidentally omitting

Chapter 1. Introduction 11

an escaping function or using the API in the wrong way. This solution
was proposed in the Stringborg [Bravenboer, Dolstra, and Visser 2010]
approach.

1.5.3 Cross-Site Scripting

Cross-Site Scripting (XSS, as not to be confused with Cascading Style Sheets)
is the situation where page content crafted by a malicious user is shown to
victim users without proper escaping. The content will be seen as coming
from the web application itself and assumed valid. It might contain JavaScript
that executes a request to the malicious user’s web server and pass the cookie
data along. This means the hacker can assume the identity of the victim on the
web application. It could also replace the content of the application and show
different information or completely deform the site.

There are several variants of XSS, it can be divided in server- and client-side,
and both can be either stored or reflected. Server-side means the malicious
content went through the server application code, while client-side means it
never left the browser. Stored XSS is when the content is stored in a database
such as MySQL on the server or HTML5 storage on the client. Each request that
uses the server data without escaping to generate a page will be vulnerable.
Reflected means that the content is not stored but passed along with the
request, e.g. with a specially crafted URL that sets request parameters.

Without HTML escaping on the values of a request parameter, it can easily
insert page content and JavaScript code. An example of a server-side reflected
XSS vulnerability in PHP is the following:

<?php
 $user = $_GET['user'];
 echo "Username: $user";
?>

The server accepts any user argument and inserts it into the page without
escaping. The following request would steal the session cookie of the logged
in user by sending it to the hackers own website:

index.php?name=
 <script>new Image().src="http://example.com/store?c="+encodeURI(document.cookie);</script>

An XSS worm plagued Twitter on September 21, 2010. A crafted tweet
would simply show a blacked out box, with an active mouseover JavaScript
trigger. The JavaScript would use the logged in session of the viewer to tweet
the same message and spread the worm. Another variant made the size of the
box as big as the page, so the user would not even have to mouse over the
blacked out text. This reflected server-side XSS bug was caused by insufficient
escaping in the output, anything after an @ symbol in the URL was not escaped:

http://t.co/@"style="font-size:999999999999px;"onmouseover="$.getScript('http:\u002f ...

The $.getScript is a JQuery JavaScript function that retrieves JavaScript code
and executes it, in this case the JavaScript code would simulate the user creating
a tweet with the malicious URL in there to spread the worm.

12

1.5.4 Cross-Site Request Forgeries

Cross-Site Request Forgery (CSRF) [OWASP 2022] is an attack that attempts
to execute unwanted actions on a web application where the victim is authen-
ticated. The hacker attempts to trick the victim into loading a page, while
the browser will automatically send along cookie data such as the currently
authenticated session. The harmful request URL can be inserted in an IMG
or IFRAME tag so that navigating to a crafted web page of the hacker will
automatically execute commands on the victim’s behalf on the targeted web
application. In particular, web applications in which a users stays logged in
often and keeps a tab open in the browser are vulnerable.

A simple example is an image tag with a source url that would execute a
delete action:

If the user is logged in at example.com and receives an email and opens
a link to this page, it will execute the delete action even if the user did
not trigger it themselves. Because the browser will include cookie data of
https://example.com in the request, the actions is allowed as if the user
would have executed it.

The remedy is to make sure that action request URLs and parameter names
are not guessable and unique for each user. A common way to do CSRF
protection in frameworks like Django [2023] is to rely on adding an additional
CSRF token to all the forms. The token is a random secret value associated
with a user session that needs to be submitted with the request parameters
to perform the action. Although it makes protection convenient, it is still
something that a developer can forget to include, or cause confusion if it is
used incorrectly and blocks a submit unintentionally.

1.5.5 Reflection and Run-Time Code Manipulation

An interesting class of vulnerabilities that occurs in web programming is
related to reflection and run-time code manipulation. The abstraction and
safety provided by a framework is weakened by flexibility of the underlying
general-purpose language.

Ruby on Rails is a web framework that is built on top of the Ruby language.
Ruby features such as eval, evaluating an arbitrary String value as code, and
monkey patching, replacing code at run-time without altering the original
source code, can easily lead to security flaws. Handling data in such a dynamic
way also happens in the framework itself. The mass assignment function
provides a convenient way for loading all inputs into an entity object directly
from the request parameters. However, it is also a security leak since ‘POST’-
data tampering allows setting any property in the entity. To work around this
issue, a property can be shielded from mass assignment in the data model
definition, something which is easily neglected and can break other action
handlers that rely on this feature.

Chapter 1. Introduction 13

In January 2013, a major vulnerability in Ruby on Rails was discovered [Na-
tional Vulnerability Database 2013]. The YAML [2023] format has a docu-
mented feature to deserialize into arbitrary objects, much like the mass assign-
ment function. The default YAML.load() function does not prevent untrusted
data from creating arbitrary objects. This unsafe loading was used in many
places in Rails, e.g. to parse incoming JSON arguments. This enables remote
attackers to perform object-injection attacks and execute arbitrary code.

The challenge is to provide web programmers mechanisms for all kinds
of web programming tasks while avoiding security flaws. The programmer
should not be burdened with remembering to include all the required safety
mechanisms, such as CSRF tokens in forms, or escaping values that are inserted
in SQL or in HTML. The easy way to handle a certain task should also be
the correct and safe way. An example of this is database querying where
concatenating strings to build a query is convenient to use but unsafe, using an
API is inconvenient but safe, and providing query support in the programming
language is both easy to use and safe.

1.6 Thesis

In the previous sections we have identified 3 main categories of problems in
web application programming:

Insufficient or Leaky Abstraction Common web application concerns are insuf-
ficiently supported by abstractions provided in web frameworks. Boilerplate
code is required for setting up ORM mapping persistence to map objects with
fields to tables and columns in the database. User interface components encode
input names that need to be processed in separate action handler definitions,
consistency between these names is not enforced. Cross-cutting concerns such
as access control policies are not easily specified in abstraction features prov-
ided by most general-purpose programming languages. Data validation is
not well integrated with the user interface, requiring synchronization between
error checking and rendering errors at the right locations.

Web frameworks are designed within the constraints of a general-purpose
programming language. Design choices in the programming language can
cause notational overhead and potential confusion when used in a web pro-
gramming context. For example, equivalence between objects has a different
meaning when they are backed by database persistence. Strings are handled
in various ways internally in programming languages, which causes friction
when working with strings coming from HTML form inputs and being placed
in output HTML. To work within the constraints of the programming language,
boilerplate code to set up the framework and glue components together be-
comes part of each application codebase. Many web frameworks enforce a
coarse-grained Model View Controller file layout, which prevents organizing
web applications according to their logical structure or dividing the source
code based on application features.

14

Lack of Static Verification An application spread over multiple languages
can have consistency faults which can lead to failures at run-time. There
can be faults contained in a specific web application concern, such as a data
model property with an unknown type, and faults can be in the links between
application concerns. Some typical intra- and inter-aspect faults that can
occur in web programming are: broken navigation links, broken submit action
links, incorrect data access in rendering, and form parameter mismatch in
controllers. Error reporting is limited by the type system of the programming
language. Typically, not all constraints can be expressed, and error messages
can be confusing when they are based on technical programming language
concepts instead of concerns related to web programming. Dynamically typed
languages increase complexity of code maintenance, by not assisting the
programmer to ensure consistency when changing the program, and trusting
the programmer’s testing practices. Sound and complete verification becomes
hard in a language that has too much flexibility, in this case abstractions that
are closer to application concepts can simplify verification.

Security Flaws General-purpose programming languages are not designed
with web security concerns in mind, even simple features like string interpo-
lation can encourage wrong programming patterns that introduce injection
vulnerabilities. Vulnerabilities such as SQL injection, Cross-Site Scripting,
and Cross-Site Request Forgeries should be avoided without having to rely
on rigorous programming practice by application developers. Programming
languages providing reflection and run-time code manipulation, e.g. Ruby and
PHP, are not ideal when it comes to security in a web environment. Features in
the programming language that interpret text as code are especially vulnerable
to invasive attacks.

Based on the problems we identify the following goals for improving web
programming:

1. We need to improve web programming by designing better abstractions
to cover web application concerns. These abstractions should as much
as possible avoid boilerplate code, avoid opportunities for mistakes, and
remove potential for accidental security faults.

2. The solution should provide timely and accurate feedback across web
application programming concerns. Analysis of application code should
be fast so that the feedback can be provided to the programmer in an
IDE without separate verification steps or delays. Feedback should point
directly to the inconsistency or mistake, and describe the problem in
understandable terms. Resulting applications should not have remaining
broken links or combine incompatible features.

3. We want to use this solution in practice, it should be feasible to build
the designed solution, and use it in practice. Developed web applica-
tions should not crash, respond fast enough, scale to a large number of
concurrent users, and avoid security problems.

Chapter 1. Introduction 15

Our solution for the problems of abstraction, static verification, and secu-
rity in web programming is a language-based approach. We designed and
implemented the WebDSL web programming language, a domain-specific lan-
guage (DSL) for the development of full-stack web applications that integrates
sub-languages for web programming concerns such as data persistence, user
interfaces, access control, data validation, and full text search. The abstractions
provided by the language are designed to only express essential complexity,
and avoid accidental complexity by generating required boilerplate code. The
sub-languages are linguistically integrated to provide cross-language consis-
tency checking and ensure that a web application is created without broken
links or incompatible features. Static analysis is provided live in an IDE during
programming, and error messages are described in domain concepts, to pro-
vide timely and accurate feedback. Abstractions are designed to avoid security
problems, and the runtime automatically enforces common exploit counter-
measures. We evaluated this language over 10 years by developing, operating,
and maintaining multiple real-world web applications used by thousands of
users.

The identified problems and goals in web programming, language-based
solution, and evaluation in practice form the basis for my thesis: New
web programming abstractions integrated in a domain-specific language
improve web programming by avoiding boilerplate code, providing timely
and accurate feedback on problems in application source code, and ensuring
reliability (robustness, performance, scalability, and security) of applications.
The design and implementation of such a language is feasible and has
practical applicability.

1.7 WebDSL Design Principles

Based on the problems we observed in web programming languages, and our
experiences in designing and developing the WebDSL language and applica-
tions, we identify 5 core design principles for WebDSL:

1. Linguistic abstractions should enable direct expression of intent. Boiler-
plate code is generated or hidden in the runtime. Accidental complexity
is removed, only essential complexity is expressed. Design language
concepts with the right flexibility required to express the essential com-
plexity.

2. Linguistic abstractions should ensure reliability and security. Applica-
tions should keep working when deployed in a real setting. This means
the runtime should ensure robustness, performance, scalability, and also
security, protecting against malicious web technology exploits (e.g. Cross-
Site Scripting or remote code evaluation). Exploit countermeasures are
enforced in the runtime without adding complexity to application code.

3. Static checking should present errors in terms of the domain. Design
from the ground up with static analysis and cross-language consistency

16

checking in mind. The IDE and compiler can analyze the code and
immediately report errors. Use explicit syntactic constructs for language
concepts, so that semantic errors can be precise and messages in terms of
the domain concepts.

4. Extensibility should be explicit. Avoid abstractions from becoming
leaky, in cases where knowledge of the generated code is required to
complete the application. Extension with external components is done
through explicit foreign function interfaces in the language, such as for
invoking server-side Java or client-side JavaScript libraries.

5. Lessons learned should be consolidated in the language. Language and
applications should co-evolve, reflecting experiences from requirements
engineering and application development in the language design. Gen-
eral problems found and fixed in applications should become language
or library improvements, so that other applications automatically reap
the benefits.

1.8 Research Methodology

In our research we aim to create solutions for problems in web engineering
and language engineering by developing concepts, methods, techniques, and
tools. We aim to create more than just prototypes by continuing maintenance
and development beyond the proof of concept. Our tools are free and open
source, which enables outside contributions as well as encourages adoption
and building a community. The larger application case studies we perform (see
Chapter 7) are not all open source software. The reason for this is that funding
is acquired for developing these applications, which requires protecting the
value that these applications provide and prohibit sharing it freely. The funding
for these applications also sustains maintenance and further development of
WebDSL itself.

The WebDSL project has contributed valuable insights into DSL development
in general, and provides a platform to develop sizeable web applications. This
is a longitudinal study that involves applying it in practice, as well as using
it for further research and education. This dissertation does not contain a
detailed formalization of the WebDSL language with proofs of correctness,
typically found in Programming Languages research. Although we have made
an initial attempt to model the dynamic semantics of WebDSL, making such
a model complete and finding the right properties to prove is considered
future work. Our focus has been on practical application of the language on
real-world applications, the validation method used for our work on WebDSL
is Technical Action Research.

Wieringa and Moralı [2012] propose Technical Action Research (TAR) as a
validation method in information systems design science. In TAR the starting
point is artifact design. The researcher initially designs the artifact for use in a
class of situations, as they are imagined by the researcher. The artifact is first
tested on toy problems in idealized circumstances. The artifact is iteratively

Chapter 1. Introduction 17

improved and the tests are scaled up to solve more realistic problems, until it
is scaled up enough to be tested in real-world conditions that occur in concrete
client organizations to solve concrete problems. This allows the researcher to
develop knowledge about the behavior of artifacts in practice, with the goal of
increasing relevance without sacrificing rigor.

WebDSL (the artifact) was initially applied to create small web applications
for internal use, where various requirements such as usability, performance
and scalability were relaxed (idealized circumstances). Additionally, many
automated compiler tests were created to test specific features of the language
in isolation. As confidence in the artifact increased, we started looking for par-
ticular client problems to solve using the artifact. These problems were found
in the international academic community, where the costly (researchers wasting
time to build websites) creation and maintenance of conference websites was a
problem. We also found particular problems in the university organization, in
the workflows around educuation quality control and the approval of individ-
ual study programs. Finally, we found problems in programming education,
where the setup of programming environments formed unnecessary time sinks
for students, and the examination of programming courses was done on paper
without testing performance of the actual skill. Our validation of WebDSL is
based on applying it to design and implement web information systems in
the academic domain. This gave us the opportunity to learn lessons from the
practical application of WebDSL.

TAR consists of two engineering cycles to solve improvement problems. In
the first engineering cycle a researcher aims at improving a class of problems
(develop a useful artifact), in the second improving a particular problem (help
a client). The third cycle is an empirical cycle, where knowledge problems are
investigated about the artifact under study, which connects the two engineering
cycles. In a TAR project, these cycles become three roles that must be kept
separate, in our case these are: (1) Technique developer: develop WebDSL to
improve creation of web information systems. Chapters 2-6 of this dissertation
describes the design and implementation of WebDSL, and focus on the role of
technique developer. (2) Client helper: use WebDSL for applications to help
real clients, in particular the Researchr conference system, WebLab, MyStudy-
Planning, and EvaTool. Chapter 7 contains description and usage analysis of
the applications developed for clients. (3) Empirical researcher: draw lessons
learned from this use, to discover the practical applicability of WebDSL in a
real setting. Chapter 7 describes the lessons learned from solving real client
problems.

The set of units of study make up a population. It is difficult to state exactly
what the population is for the design of WebDSL. Continued research may
be required to provide a more precise delimitation of the population. In our
case, the explored population involves academic workflow applications. The
application sizes in number of users are hundreds in high-intensity workloads
(e.g. 500 students taking a WebLab exam at exactly the same time), and thou-
sands in low-intensity workloads (e.g. 2000 conference visitors browsing the
program occasionally spread over many days). The TAR technique recom-

18

mends choosing a client company which clearly falls inside the imperfectly
known population. In our case we expected WebDSL to scale up sufficiently
for the number of users found in these academic workflow situations. In terms
of complexity we did not expect problems for building academic workflow
applications, although in the case of WebLab there is additional complexity
in the LabBack code evaluator, which is separately developed from the web
application.

A major threat to validity is that the researcher, who developed the artifact,
is able to use it in a way that no one else can. To mitigate this threat, others
have been taught WebDSL and have contributed to building the client web
applications. For example, the initial version of EvaTool was developed by a
student that was introduced to WebDSL in a course on model-driven software
development. The first version of WebLab was created in collaboration with a
student, who was investigating safe execution of guest code as part of a MSc
thesis. Most members of our academic workflow engineering team joined in
later phases of the project, and were not involved in the entire artifact design
and implementation process. More recently, we successfully taught WebDSL
in a course on Web Programming Languages. In this course, students with
different backgrounds, some having done no web programming at all, were
able to construct varied web applications. The applications included several
web programming concerns such as user management and access control.
The applications were free from typical web security vulnerabilities like SQL
injection, XSS, CSRF, and broken access control. Some of these students are
now contributing to the development of client applications as freelancers.

1.9 Contributions

Our work on abstractions for web programming resulted in several scientific
and software contributions:

1. Design and implementation of a linguistically integrated domain-specific
language for web programming that combines abstractions for web
programming concerns covering transparent persistence, user interfaces,
data validation, access control, and internal site search. Sublanguages
for the various concerns are integrated through static verification to
prevent inconsistencies, with immediate feedback in the IDE and error
messages in terms of domain concepts. The abstractions in WebDSL are
designed to avoid boilerplate code as much as possible, only essential
complexity of web application concerns is expressed. The design of the
main abstractions is explained in Chapter 2.

2. Design and implementation of a web application user interface sublan-
guage that integrates automatic data binding, provides safety from data
tampering, prevents input identifier mismatch in action handlers, enables
safe composition of input templates, automatically enforces Cross-Site Re-
quest Forgery protection, allows expressive data validation, and supports
partial page updates without explicit JavaScript or DOM manipulation.

Chapter 1. Introduction 19

The user interface sublanguage covered in Chapter 3 is the most impor-
tant abstraction in the WebDSL language, it is typically the largest part
of a web application codebase.

3. Design and implementation of an access control sublanguage in which
various policies can be expressed with simple constraints, allowing con-
cise and transparent mechanisms to be constructed. Enforcement of
access control is automatic through weaving checks into the application
code. The explicit declaration of access control though language elements,
allow assumptions to be made about the related parts in the applica-
tion, such as hiding inaccessible navigation links. The access control
sublanguage of WebDSL is the subject of Chapter 4.

4. WebDSL is the largest programming language created with the Stratego
program transformation language and the Spoofax language workbench,
in which the DSL compiler and IDE have been iteratively developed. This
iterative development is a recurring pattern of discovering new abstrac-
tions, domain-specific language integration, and reimplementation using
new core abstractions tailored to the language. The generic evolution
pattern for the iterative design of the WebDSL language is explained in
Chapter 5.

5. The WebDSL compiler front-end combines program transformation with
static analysis in a modular way. The implementation of static analy-
sis is shared between compiler and IDE. The back-end code generator
and runtime library avoid unsafe client-side operations, and employs
countermeasures for security vulnerabilities. The IDE provides syntax
highlighting, immediate error feedback, reference resolving, content com-
pletion, and automatic deployment of development builds. The design
and implementation of the WebDSL compiler and IDE is discussed in
Chapter 6.

6. To evaluate applicability and reliability of WebDSL, we have created real-
world applications in the domain of research and education for external
clients. The practical applicability of WebDSL depends on the reliability
of these applications, how robust, performant, scalable, and secure they
are. Chapter 7 reflects on the development of the applications, and in
particular the experiences in engineering reliability. The applications are:

• EvaTool [2012]: a course evaluation application that supports pro-
cesses for analyzing student feedback by lecturers and other staff.

• WebLab [2012]: an online learning management system with a
focus on programming eduction (students complete programming
assignments in the browser), with support for lab work and digital
exams, used in multiple courses at TU Delft.

• Conf Researchr [2014]: a domain-specific content management
system for creating and hosting integrated websites for conferences

20

with multiple co-located events, used by all ACM SIGPLAN and
SIGSOFT conferences.

• MyStudyPlanning [2016]: an application for composition of indi-
vidual study plans by students and verification of those plans by
the exam board, used by multiple faculties at TU Delft.

1.10 Structure of this Dissertation

This dissertation is structured as follows:

• We start with an introduction of the WebDSL language in Chapter 2.
The WebDSL language consists of several new abstractions that work
together in the specification of a complete web application. The three
core language concepts in WebDSL are data model entities with automatic
persistence to the database, user interface templates with safe HTML output
and data binding in forms, and functions to implement operations on data.
Using an example application, this chapter also introduces language
concepts for access control, partial page updates, and search. These
features are revisited in later chapters. This chapter concludes with
a reflection on important design decisions in the core concepts and
how these abstractions reduce boilerplate code when programming web
applications.

• User interfaces are the most important language concept in WebDSL.
Providing user interfaces is typically the largest part of a web application
codebase, and many of the problems found in web programming relate
to abstraction and security when creating user interfaces. Therefore,
Chapter 3 covers the core language concept of user interface templates
in WebDSL. At the core of the user interface templates is the request
processing lifecycle. User interface code is processed in multiple phases
to handle form inputs and validation. Data validation is supported in
various forms, specific to certain user interface elements or generic for all
entity data instances. The standard library provides default definitions
for input templates of each data type. WebDSL’s features for partial page
updates provide opportunities to improve the user experience without
sacrificing convenience for the developer.

• A real-world application has many users with different roles and capa-
bilities, tied to specific data in the system. WebDSL provides built-in
authentication features and an access control policy modeling sublan-
guage, which is explained in Chapter 4. The access control sublanguage
enables expressing a wide range of access control policies concisely and
transparently as a separate concern. The sublanguage is realized by
means of a transformational semantics that reduces separately defined
aspects into an integrated implementation.

• The WebDSL language design went through several iterations. In partic-
ular, the user interface language improved significantly from the initial

Chapter 1. Introduction 21

implementation with rigid input components defined in the code genera-
tor. The current implementation provides customizable library-defined
components for input and output templates using a small set of language
primitives. The generic evolution pattern that has been applied in the
development of WebDSL language features is described in Chapter 5.
Several examples of the pattern applied to evolution of language features
are covered, including persistence, static code templates, email genera-
tion, files, and internal site search. This chapter concludes the discussion
of WebDSL language features.

• A large programming language with several sublanguages is complex to
create. The implementation of such a language benefits from reusable
patterns for language analysis and code generation. The design and im-
plementation of the WebDSL compiler explores the interaction between
analysis and transformations, in a high-level transformation language
based on the paradigm of rewrite rules with programmable strategies
(Stratego). Chapter 6 provides an overview of the WebDSL compiler,
IDE, and language runtime. The compiler pipeline consists of analysis,
transformations, and code generation. The analysis of WebDSL is divided
into the following steps: parsing and imports, declare global definitions,
name resolution, and check constraints and report errors. Analysis is
reused for compiler and IDE. Using caching of analysis results, the IDE
provides timely and accurate feedback on application faults. Transfor-
mations provide reuse in the WebDSL language semantics by encoding
language features into other language features. The WebDSL compiler
generates Java code that together with a runtime library forms the de-
ployed web application. Code generation benefits from several caching
strategies to improve rebuild times. The discussed implementation strate-
gies provide insight into the implementation effort and the feasibility of
our language-based approach to improving web programming.

• We have used WebDSL to design and implement several real-world ap-
plications with thousands of users. Chapter 7 evaluates applicability and
reliability of WebDSL, by analyzing four applications and reporting on
practical experiences. These applications are: EvaTool, WebLab, Conf
Researchr, and MyStudyPlanning. We evaluate reliability of WebDSL
by covering robustness, performance, and security experiences. Further-
more, we evaluate practical applicability of WebDSL by reflecting on our
experiences of the whole design and implementation process of these
applications: requirements gathering, prototyping, testing, deployment,
version migrations, bug fixing, and feature additions.

• There are many technical solutions available for web programming. In
Chapter 8, we compare WebDSL against conventional full-stack web pro-
gramming, and language-based solutions proposed by other researchers.
In particular, a detailed code comparison showing UI and persistence is
made with the Django Python framework, the Ur/Web programming
language, and the Links programming language.

22

• Chapter 9 concludes this dissertation by revisiting the thesis and design
principles, and discussing future work opportunities.

1.11 Origin of Chapters

This dissertation contains content from peer-reviewed publications as well as
new material to create a complete coverage of WebDSL research. Content from
published papers has been adapted and extended to create a monograph.

• The 2013 Software and Systems Modeling journal paper Integration of Data
Validation and User Interface Concerns in a DSL for Web Applications [Groe-
newegen and Visser 2013] and its predecessor, a Software Language
Engineering (SLE) 2009 short paper [Groenewegen and Visser 2009a]
contain information about the request lifecycle of user interfaces and
data validation. This is included as a part of Chapter 3.

• The International Conference on Web Engineering (ICWE) 2008 best pa-
per Declarative Access Control for WebDSL: Combining Language Integration
and Separation of Concerns [Groenewegen and Visser 2008] is included in
the discussion of access control in Chapter 4. This paper was based on
my own MSc thesis project Declarative Access Control for WebDSL [Groe-
newegen 2008].

• The International Workshop on Programming Technology for the Future
Web (Proweb) 2020 paper Evolution of the WebDSL runtime: reliability
engineering of the WebDSL web programming language [Groenewegen, Van
Chastelet, and Visser 2020] is the basis for the experience report in
Chapter 7.

• The 2023 Eelco Visser Commemorative Symposium papers Eating Your
Own Dog Food: WebDSL Case Studies to Improve Academic Workflows [Groe-
newegen et al. 2023a] and Conf Researchr: A Domain-Specific Content
Management System for Managing Large Conference Websites [Groenewegen
et al. 2023b] are reflections on our activities working with Eelco as Aca-
demic Workflow Engineers and designing, developing, and operating
our WebDSL applications. The EvaTool, MyStudyPlanning, WebLab, and
Conf Researchr applications are also discussed in Chapter 7.

During my own WebDSL journey, I collaborated closely with other PhD stu-
dents, as well as supervising MSc students on their thesis projects. This work
informed several of the observations and conclusions drawn in this PhD dis-
sertation. After the student projects finished, I continued further maintenance
and development of these areas of the WebDSL project.

• The IEEE Software 2010 article Separation of Concerns and Linguistic In-
tergration in WebDSL [Groenewegen, Hemel, and Visser 2010] and the
co-authored Journal of Symbolic Computation 2011 paper Static Con-
sistency Checking of Web Applications with WebDSL [Hemel et al. 2011]

Chapter 1. Introduction 23

contain motivation and development guidelines that are addressed in
the WebDSL work as a whole. An analysis of static analysis problems
in web frameworks, and implementation techniques for implementing
static analysis and compiler transformations are part of Zef Hemel’s PhD
dissertation titled Methods and Techniques for the Design and Implementation
of Domain-Specific Languages [Hemel 2012]. WebDSL is the largest pro-
gramming language created with Stratego and Spoofax. The design and
implementation of the Spoofax language workbench are part of Lennart
Kats’ PhD dissertation titled Building Blocks for Language Workbenches [Kats
2011]. An early case study of WebDSL, the YellowGrass issue tracker,
was part of research into coupled evolution in Sander Vermolen’s PhD
dissertation titled Software Language Evolution [Vermolen 2012].

• Chapter 6 contains ideas from the co-authored journal publication in
Software and System Modeling Code generation by model transformation:
a case study in transformation modularity [Hemel et al. 2010], as well as
insights into the further development and application of those ideas.

• The co-authored Software Language Engineering (SLE) 2013 paper A
Language Independent Task Engine for Incremental Name and Type Analy-
sis [Wachsmuth et al. 2013] is motivated by insights and experiences
from implementing and using the WebDSL IDE. That paper explores
a different implementation approach for the static analysis of the Web-
DSL language. The original and current implementation approach is
described in Chapter 6.

• The OOPSLA Workshop on Domain Specific Modelling (DSM) 2008

paper When Frameworks Let You Down: Platform-Imposed Constraints on
the Design and Evolution of Domain-Specific Languages [Groenewegen et al.
2008b] marks the evolution from generating code for a framework to
a custom back-end tailored to our needs. Chapter 5 provides a more
detailed analysis of the evolution stages of the WebDSL project.

• The co-authored ECOOP 2016 paper IceDust: Incremental and Eventual
Computation of Derived Values in Persistent Object Graphs [Harkes, Groe-
newegen, and Visser 2016] describes a language for derived value com-
putations, and different implementation strategies in persistent object
graphs. The IceDust compiler can generate WebDSL code, which was
used to run performance benchmarks for different calculation strategies
in persisted object graphs. This was a collaboration with Daco Harkes
who designed and implemented IceDust as part of his PhD dissertation
titled Declarative Specification of Information System Data Models and Busi-
ness Logic [Harkes 2019]. A case study of IceDust was performed on the
WebLab application [Harkes, Van Chastelet, and Visser 2018]. Chapter 7

provides more details about WebLab. In a more recent project, MSc thesis
Comparing Static Semantics Specifications for the IceDust DSL: A Case Study
of Statix by Jesse Tilro [Tilro 2023], we examined the migration of the

24

static semantics implementation of IceDust from NaBL2 [Van Antwerpen
et al. 2016] to Statix [Van Antwerpen et al. 2018].

• MSc thesis Abstractions for Asynchronous User Interfaces in Web Applica-
tions by Michel Weststrate [Weststrate 2009]: the initial implementation
for partial page updates in WebDSL, this is a core component of cur-
rent WebDSL and has been further expanded to improve integration
with other language features, increase reliability, and cover additional
use cases. Partial page updates using Asynchronous JavaScript And
XML (AJAX) are described in Section 3.7. Michel is the author of the
popular open-source JavaScript projects MobX [Weststrate 2023b] and
Immer [Weststrate 2023a], and several other open-source packages.

• MSc thesis A Domain-Specific Language for Internal Site Search by Elmer
van Chastelet [Van Chastelet 2013]: the search language in WebDSL,
also in active use in several real-world applications. Elmer joined me
in the WebDSL project, developing applications, providing support for
applications, maintaining the language, and managing server operations.
A discussion of our largest applications is provided in Chapter 7.

• MSc thesis ORM Optimization through Automatic Prefetching in WebDSL by
Chris Gersen [Gersen 2013]: optimization of the runtime by automatically
deriving prefetching instructions based on program structure. This
project was inspired by the work on query extraction from Java programs
in Wiedermann, Ibrahim, and Cook [2008]. Part of this work also involved
adding support for manual prefetch statements, which is something used
in current applications as well to address performance issues when they
arise. Experiences regarding application performance and improvements
made in this area are discussed in Chapter 7.

• MSc thesis Separate Compilation as a Separate Concern: A Framework for
Language-Independent Selective Recompilation by Nathan Bruning [Bruning
2013]: this work is the basis for several compiler caching strategies, in
particular the Java code generation cache and IDE analysis cache. These
were a major improvement to the usability of the compiler and editor of
WebDSL. Compiler caching strategies are described in Section 6.7.

• MSc thesis A Generative Approach for Data Synchronization between Web
and Mobile Applications by Chris Melman [Melman 2013]: this project
was about generating services to integrate WebDSL with a client-side
Mobl [Hemel and Visser 2011] application. It provided a useful case
study to explore service features of WebDSL and automatic generation
of web APIs. Support for creating web services in WebDSL still has a
lot of room for improvement. The requirements have also changed since
our initial exploration. Web service components now play a more crucial
role as a back-end for client-side user interfaces. This is an area of future
work (see Section 9.3).

Chapter 1. Introduction 25

• MSc thesis Modernizing the WebDSL Front-End: A Case Study in SDF3
and Statix by Max de Krieger [De Krieger 2022]: this work explores
migration of WebDSL, the largest language implemented in Spoofax, to
new technologies in the Spoofax ecosystem. The syntax definition is
migrated from SDF2 to SDF3, tackling issues where features in the SDF
language where changed or dropped. Using the syntax specification in
SDF3, the static analysis previously specified in Stratego code is migrated
to a declarative style in Statix. Chapter 6 provides an overview of the
WebDSL compiler and IDE pipeline, explains the static analysis approach,
and outlines the structure of the generated application code, however,
it does not go into details of SDF and Stratego implementation code.
Max started as a part-time student assistant working with us on our
applications, and is now a full-time member of our WebDSL team.

26

2
The WebDSL Web Programming Language

2.1 Introduction

In this chapter we provide an overview of WebDSL, covering the language
and implementation considerations. WebDSL was originally proposed in
2007 [Visser 2007]. Since then, it has been in constant use in various production
applications (see Chapter 7), and under constant development. This chapter
provides an integral overview of the version of WebDSL as it is at the time of
writing.

This chapter contains small comparisons to existing web programming
solutions that motivate specific design decisions. A more detailed related
work comparison of the WebDSL language to other solutions is postponed
to Chapter 8. In that chapter, we compare features for persistence, user
interface definitions, and functions, by taking examples from other solutions
and explaining the differences with a WebDSL equivalent.

Section 2.2 provides an overview of the sublanguages in WebDSL, starting
with the core concepts of data models, user interface templates, and functions.
Section 2.3 introduces the example application that will be used in the rest of
the chapter to give examples for various application components. Section 2.4
first explains the conceptual model for handling persistence. Then, entity
definitions and property types are introduced. Several design considerations
related to persistence are explained in more detail, namely bidirectional associ-
ations, object identity and equality checking, performance in Object-Relational
Mapping, and database management. Section 2.5 introduces the sublanguage
for specifying functions to handle operations on data. This section reflects
on the approach of introducing an entirely custom language for expressions,
and covers specific topics such as safe query embedding, Java interoperability,
dispatch mechanisms, null values and runtime errors, and alternate back-ends.
Section 2.6 presents the user interface language containing pages with nav-
igation, template definitions and template calls, and templates elements for
output of data. Section 2.7 continues the introduction of the user interface
language with forms and input templates for updating data. Forms with data
input and the request processing workflow in WebDSL will be covered in
more detail in Chapter 3, because it constitutes an important part of the novel
web programming features in the WebDSL language. Section 2.8 provides a
first glance of user authentication and access control, which is the topic of
Chapter 4. Section 2.9 provides an example of search definitions and partial
page updates. Section 2.10 contains a general discussion of WebDSL, reflect-
ing on questions about domain coverage, practical applicability, and security.
Section 2.11 concludes this chapter.

27

Table 2.1 WebDSL Language concepts and their interactions

Concept Functionality
data model data entity objects with database persistence

primitive, reference, and collection types
load/save functionality for objects

ui templates pages connected by navigation links
render HTML tags and data model values
forms with databind update data model objects

functions general-purpose object oriented language
actions triggered from ui templates
update data model objects with assignments

queries query data model objects in functions
email email templates, based on ui templates

send email trigger in functions
data validation validation phase after databind in ui templates

data model invariants, functions assertions
render messages in ui templates

access control rule-based sublanguage to create security policy
declare principal data model object
rule checks can use expressions from functions
rule needs to refer to existing ui templates

native classes declare interface of Java code in data model
create objects and invoke methods in functions

services ui templates page request to generate JSON
read incoming JSON request data in functions

search search field mapping in data model
search queries in functions

JS CSS embed embed JS and CSS fragments in ui templates
AJAX updates update subset of ui templates inside page

2.2 Language Concepts

The WebDSL language consists of several concepts or sublanguages that work
together in the specification of a complete web application. The three core
language concepts in WebDSL, listed at the top of Table 2.1, are data model
entities with automatic persistence to the database, user interface templates with
safe HTML output and data binding in forms, and functions to implement
operations on data. The rest of the table lists extensions to the core concepts
and provides insight into the interactions between concepts. These interactions
determine the static consistency checking the compiler and IDE perform and
how error messages about failed consistency checks are phrased. For example,
user interface templates require well-typed access to the data model; access
control rules refer to defined user interface components for weaving in checks;
the principal entity declaration needs to refer to entities and properties that
have been declared elsewhere. Access control rules define the accessibility to

28

Comment

text : String

Issue

title : String
content : WikiText
closed : Bool

Project

name : String
private : Bool
url : URL

User

email : Email
username : String
password : Secret

author 1

comments *

author 1

issues *

members *

projects *

project 1

issues *

comments *

issue 1

Figure 2.1 Example application data model.

pages and templates. If a page does not have an associated access control rule,
a warning is given to notify the developer that the page is inaccessible. In
addition to static consistency checking, the links between language concepts
also influence the runtime of the language. For example, email rendering reuses
template rendering, but stores rendered content in an email queue instead of
returning it in a response to the browser. The number of sublanguages that can
be added to WebDSL is open-ended. If multiple applications have a specific
pattern or idiom, it is often worth investigating whether it can be captured in
a library component or new sublanguage.

2.3 Example Application

To get a better understanding of WebDSL, we will use a simple project issue
tracker as running example in this chapter. The application organizes issues
under projects, and allows users to create and manage projects and issues. The
Bootstrap [2023] CSS library is used for styling. This section introduces the
data model and explains the usage scenarios.

Chapter 2. The WebDSL Web Programming Language 29

2.3.1 Data Model

The data model is shown in Figure 2.1. It consists of Issue, Project, User, and
Comment entities. They store primitive data such as the text value Issue.title,
and the boolean value Project.private. Entities also have relations or as-
sociations to other entities, shown in rounded boxes. In this example all the
relations are bidirectional, meaning that both sides can access and edit the
relation. This allows easy navigation through the object graph, simplifying
lookup of data. The relation name and multiplicity closest to the entity is how
that entity refers to it. For example, Issue has a single project and Project

has multiple issues.

2.3.2 Web Interface

In this section we will step through the various pages of the issue tracker
example application using screenshots and descriptions of the web interface.

The frontpage shows the list of
managed projects. The naviga-
tion bar contains links to Sign

In, Create Project, and Create

Account pages. The large button
also links to the Create Project

page. The list of projects is shown
in a table with alternating white
and grey background.

This is the Create Project page.
The application validates input
data and displays errors in the
page. In this example the Create

Project button was pressed while
there was no name specified yet.

30

The project view page shows its
reported issues, these link to the
issue view page. Additional nav-
igation links are provided that go
to the Create Issue and Search

Issues pages.

On the Create Issue page, issues
can be created for projects by sup-
plying a title and description. The
description can use Markdown, a
preview is shown below the issue
content entry text box. This pre-
view updates automatically when-
ever a change is made.

The issue view page shows the is-
sue title and description. The com-
ments are listed below the issue de-
tails. Buttons are provided to add
a comment or close the issue.

Chapter 2. The WebDSL Web Programming Language 31

User accounts can be created on the
Sign Up page. Usernames must be
unique. The password value has a
minimal length of 12 characters.

The Sign In page is the page for
logging into the system. Access to
private projects and its issues and
comments is only allowed to mem-
bers.

Issues can be searched on the
Search Issues page. Search is
scoped to a project. Word com-
pletions based on the indexed is-
sues are provided. The completions
and results update automatically
when typing a search query. The
results are links to their correspond-
ing issue view page.

This concludes the overview of features in the running example. In the
following sections the core language concepts of WebDSL are introduced,
illustrated with source code snippets of the example application.

2.4 Transparent Data Persistence

Data persistence is a common concern in web programming. In this section
we look at the conceptual model for data persistence and its implementation
in WebDSL based on entity definitions.

2.4.1 Memory and Storage

There are several ways to look at persisting data from an application developers
point of view. Ideally, the persistence is handled completely transparently and

32

the model for the developer is working directly with persisted memory. The
application tier contains the data and there is no separate instance for storage:

persistent
memory

application
code

request

response

There are two main issues with this simplified model. Firstly, there is no
notion of concurrency, which, for applications with little or no possibility of
conflicting user writes, can be sufficient to be able to develop the application.
However, for applications with more interaction between users the simplified
model is insufficient. Secondly, a typical implementation does consist of a
separate application and storage system, where transferring data in between
systems means overhead, resulting in friction in the simple model when it
comes to performance. Transferring a large amount of data from a DBMS to
the application server can cause an undesirable delay. Optimizations can be
performed in the mapping to an actual implementation, but a naive application
can still request excessive amounts of data.

A refinement of the model is to introduce the notion of an in-memory
session that keeps track of data retrieved from the shared storage. Data that
is requested is pulled from the storage, in order to be presented to the user.
Modifications made in the session are flushed back to the shared storage. This
model makes the concurrency aspect more explicit by differentiating between
shared and local data:

local
session

shared
storage

application
code

request

response

Another refinement can be made by seeing the session as the transaction of a
single user interacting with the web application, and the flush to the storage
as the transaction commit. A rollback would be equivalent to throwing away
the session data instead of pushing it back to storage:

transaction shared
storage

application
code

commit

rollback

request

response

Looking at a typical implementation platform in the form of an application
server with DBMS, sessions and transactions are mapped to both the applica-
tion and database system. The DBMS handles transactions and concurrency,

Chapter 2. The WebDSL Web Programming Language 33

and the application server handles each request in a new session and con-
trols the transaction. Possibly this involves pulling in more data and flushing
changes to the transaction managed in the DBMS, and eventually either com-
mitting or rolling back the transaction:

transaction shared
storage

application
code

commit

rollback

application server database management server

request

response

Transactions in WebDSL are implicit, each server request is a single transaction.
In this transaction, objects are loaded from the database (often starting from
the page arguments), edited in-memory, changes flushed back to the database,
and finally the transaction is committed. The goal is to provide the developer a
familiar object-oriented data model abstraction with simple saving and loading,
without requiring knowledge of the underlying database or ORM intricacies.

2.4.2 Entity Objects

Entity definitions declare objects with persistence. They implicitly define a
database schema for storage. Entity definitions contain properties, which
describe the data contained in the entity. The Issue entity from our example
project has six properties. Properties can have primitive types (title, closed,
and text), entity references (project and author), and set or list collections
(comments). The complete data model for the example application is shown
in Figure 2.2. This section will further discuss entities, types, and property
annotations. Section 2.5 explains WebDSL expressions and functions.

Primitive Types The primitive types are String, Int, Bool, Float, the
date types Date, Time, DateTime, and the String-like types Text, WikiText,
Secret, Email, and URL. The String-like types have all the String functions
and the same runtime type. They differ in default input and output widget,
additional functions, and validation rules that restrict the possible values.
The date types Date, Time, DateTime are also related in this manner. Con-
version between such equivalent types is implicit when doing assignment of
values to variables or entity properties. These types support overloading, for
example, there are specific template implementations for input(WikiText),
output(WikiText), input(Secret), and output(Secret).

Entity Types Entity types are types that refer to defined entities. The default
value of entity type properties is null. The default input of an entity property
is a drop-down list input (select tag in HTML) which shows the names of
the selectable entities.

34

 1 entity Issue {
 2 project : Project (inverse = issues)
 3 title : String
 4 comments : {Comment} (inverse = issue)
 5 closed : Bool
 6 author : User (inverse = issues)
 7 content : WikiText
 8 }
 9 entity Project {
10 name : String (id
11 , iderror = "Project name already exists."
12 , idemptyerror = "Please enter a project name.")
13 issues : {Issue}
14 url : URL
15 members : {User}
16 private : Bool
17 }
18 entity User {
19 username : String (id, name)
20 password : Secret (validate(password.length() > 12, "Password too short"))
21 email : Email
22 comments : {Comment}
23 issues : {Issue}
24 projects : {Project}
25 }
26 entity Comment {
27 text : String
28 author : User
29 issue : Issue
30 }

Figure 2.2 Example application entity definitions.

Collection Types WebDSL has two collection types: {Set} and [List]. These
collections are homogeneous, and parameterized with the type of elements
they contain. Collection properties are initialized to an empty collection. The
default input of a collection property uses checkboxes for selection of the
options. Alternatives are also provided in the standard library, such as a drop-
down list input that allows multiple selections (based on the select HTML
tag with multiple attribute enabled). Because the for iteration construct
supports sorting, filtering and mapping, the Set collection can be used most
of the time. A Set avoids having to store ordering information in the database,
which the List does store. Automatic entity persistence and query integration
in WebDSL provide applications with an advanced “collection type”, in the
form of the database. This means that in practice there is less need for more
complex collection types besides the simple built-in Set and List. However,
additional collection types could be added to WebDSL for convenience. This
would involve implementing the application logic for implicit persistence of
such collections in the WebDSL compiler.

Default Values Default values for primitive types are "" for String-like types,
0 for number types, and false for Bool. The date types are initialized with no
value, they are set to null. The default annotation can be used to change the
default value for a property in a newly instantiated entity. This overrides the
implicit default values for types.

Chapter 2. The WebDSL Web Programming Language 35

Implicit Properties There are a few properties that are implicitly defined for
each entity, either for convenience or because they are required for mapping
to database tables. The implicit id property, which is used as primary key
in database tables, is explained in Section 2.4.4. Other automatic properties
are created, modified, and version, which describe when and how often
an entity has been updated. The name property is used to describe the entity
instance when displayed on a page. It is used in many input templates to
display entities, e.g. as the label of radio buttons. The default name property
is read-only and shows the value of the id. This default property can be
customized, and made writable, by declaring an explicit name property or
name annotation. The name annotation changes the value of the implicit name
property to the value of the annotated property.

2.4.3 Associations

Entities can have relations to other entities. In WebDSL such assocations can be
created with properties having entity or collection types. An entity definition
does not require any additional form of annotation or configuration to handle
persistence of associations. While this seems trivial, it avoids accidental com-
plexity that occurs in current web programming solutions when implementing
associations.

In Ruby on Rails [2023] Active Record persistence, associations require
specifying the relation type such as belongs_to, has_one, and has_many.
Additionally, since Ruby does not have types declared, the developer must use
the correct name for a relation. An example from the online manual [Rails
Guides 2022]:

class Customer < ActiveRecord::Base
has_many :orders

end

class Order < ActiveRecord::Base
belongs_to :customer

end

Using any other name than customer for the Customer entity will make
the association incorrect. This results in a generic error message “uninitialized
constant Order::Customers”, because of the conventions for name pluralization.
These design decisions are basically encoding types, however, without the
benefit of static checks.

In a Java Hibernate ORM [2023] project, a developer must annotate the
properties in domain objects with annotations such as @ManyToMany and
@ManyToOne. This repeats part of the information of the property type, e.g. a
reference to a single property will never need @ManyToMany.

Bidirectional Associations Configuration is even more intricate for bidirectional
associations. These require matching column names in two domain entity
objects, as well as deciding on the master and slave sides. The Master-side is
the property that Hibernate uses to update database rows. Debugging such

36

mapping annotations typically means running the application and manually
inspecting the generated tables. In-memory data for bidirectional associations
has to be updated by the application developer. For example, a bidirectional
association between two collection properties requires the developer to correctly
implement that both collections are updated when an item is added or removed
on one side. Only after committing the data, Hibernate will correctly load both
collections with the same data automatically.

The inverse annotation links properties of entities and automatically keeps
them synchronized. Inverses can be created for several kinds of bidirectional
associations: one-to-one (both entity references), one-to-many (entity reference
and collection), or many-to-many (both collections). The project manager
example has three inverse relations. Setting the project field of Issue auto-
matically updates the issues property of Project and vice versa. Similarly,
the author property of Issue and issues property of User are linked. The
annotation is only needed on one side, and can be placed on either side. The
distinction between a master and a slave side for persistence is part of the
abstraction and not exposed to the web programmer. The in-memory objects
are automatically updated on both sides.

2.4.4 Object Identity

Object identity and equality checking is a common source of confusion in
many programming languages due to complex and overlapping mechanics.
In Java == compares object references, i.e. pointers to object data in memory,
while .equals invokes the object’s .equals method. Primitive values can
be compared using == without problems. Strings are a special case where
compiler-constant strings can be compared with == while in general .equals
should be used. The default implementation for an object equality is the
same as doing ==, which is typically not what is required. Objects, and in
particular data objects, require the developer to overwrite the equals operator
to perform a meaningful comparison of significant property values [Bloch
2008]. Additionally, the hashCode method used for generating deterministic
hash values must be defined in tandem, to support the requirement that
hashCode must generate equal values for equal objects. In PHP there is both a
type-coercing == comparison and a stricter === comparison operator.

Besides equality checking issues, developers also have to choose what
value to use as primary key for rows in the database. Usually this is just an
autoincrementing number provided by the database. However, when using
ORM abstractions this can cause problems. In a Java Hibernate application, a
non-persisted entity can be used as value in a HQL query. The primary key is
then requested with an additional query first, as the database has the control
over identifiers. Besides some overhead and unnecessarily incrementing the
id values, it is problematic when the unstable id value is used for equality
checking and hashcodes. The point at which the id changes is determined
implicitly by the Hibernate runtime. If a transient object is stored in a HashSet,
the automatic loading of an id value can cause the entity to no longer be

Chapter 2. The WebDSL Web Programming Language 37

retrievable from the set.
In WebDSL entities, the implicit id property is a unique identifier for an

entity instance. A new value for the id is randomly generated when an entity
is created. This value is used internally as primary key in the database. The
type is a universally unique identifier (UUID). UUIDs are 128 bit numbers that
can be created without querying a centralized authority. This is typically the
database, as would be the case with autoincrement identifiers. This approach
also simplifies running multiple instances of the application for load balancing.
While in theory a duplicate could be generated, in practice, it is sufficiently
improbable. A major benefit is that all entity instances can be given an
identifier, even those that are not persisted to the database. Equality can
thus be determined based on matching identifiers. Also, because each entity
instance has a unique identifier value, the implementation can safely use
hashed collections, using the identifier as hash value. No equals or hashCode
methods have to be defined by the web application developer to support
equality checking or hashed collections.

Entity URL Name What URLs look like is an important aspect for usability.
Besides easy bookmarking, being able to see what information a link is likely
to display helps the user decide whether to follow that link. Representing
an entity as a URL component requires a uniquely identifying value for the
entity. While the UUID id is a safe default, it does not look nice in the
browser address bar. The id annotation provides a solution for this problem.
id annotated properties are used to automatically create readable URLs for
pages. Such a property is used as uniquely identifying value of the entity
instance. The id annotation also adds validation for checking whether the
values are defined and unique. The messages for these validation rules can
be customized with iderror and idemptyerror annotations. The Project

entity in the example project has a name property with id annotation. For
example, the page page project(p:Project) for the Project entity with id

’c70efffc-2069-4d0e-8f60-5be18822c99a’ is without specifying an id associated
with the url:

https://example.com/project/c70efffc-2069-4d0e-8f60-5be18822c99a

This URL is stable and bookmarkable, however, it does not look very nice, it
is hard to remember, and web search engines will index meaningless text. By
specyifying the name property as id the URL becomes:

https://example.com/project/Spoofax

2.4.5 Inheritance and Polymorphism

Entities support inheritance: they can be declared as a subtype of another entity,
incorporating properties and functions of its supertype. Subclass entities can

38

be assigned when their super type is expected (polymorphism). There is only
single inheritance: one super entity can be declared per entity. Checking the
dynamic type of an entity is performed using is a and casting is performed
using as. In an overriding method definition the overridden method can
be called with super. Using these object-oriented programming features in
WebDSL is optional. There is no fixed framework structure that needs to be
subclassed, which is often the case in Java web frameworks. Reuse of properties
and functions is often better achieved through composition of entities.

2.4.6 Invariants

A high-level web programming solution should provide a uniform and declar-
ative data validation model that integrates with the other application concerns.
In addition to ensuring data consistency by enforcing data validation, the
integration of data validation in a web application requires a mechanism for
reporting constraint violations to the user. It should indicate the origin of the
violation in the user interface with a sensible error message and consistent
styling.

Data invariants are constraints on entity properties, checked both as input
validation in a form, as well as at the end of an action that updated or created
an entity. A simple invariant found in the example application is the password

length check. Additionally, the id annotation implicitly adds invariants for
non-empty and unique values. Invariants can be arbitrary WebDSL expressions,
however, they are implicitly executed multiple times, so typically they should
not have side effects. Data validation and invariants, and their handling in
user interface templates is further examined in Section 3.6. Section 2.5 will
continue with explaining expressions and functions in WebDSL.

2.4.7 Discussion Data Persistence

Object-Relational Mapping Performance is a major concern in the mapping
of an object-oriented model to the relational model. WebDSL uses Hibernate
for ORM, and out of the box the queries that get generated are not efficient
in most cases. There are many options for tweaking this behavior, e.g. by
specifying custom joins or prefetching paths to combine queries. However, in
the setting of WebDSL a generic solution is needed in order for all applications
to benefit. As described in Section 2.4.1, the model of a local session and
transaction abstracts over the actual implementation in application server and
DBMS. When code can run entirely in the DBMS using a single query, but
instead all the data is loaded into the application server, processed there, and
sent back, the performance suffers. We have seen this especially with collection
types, where loading a big collection from the database into memory could
be avoided in cases where the operations is a simple addition or removal. A
similar situation occurs when a for loop iterates over a filtered collection, where
the filtering could have been done in the database to avoid sending unnecessary
entities to application server memory. We have investigated several of these

Chapter 2. The WebDSL Web Programming Language 39

issues and implemented query optimization based on static analysis of the
application to alleviate these problems [Gersen 2013]. Our findings were that
the default query behavior generated many simple queries, however, these
queries remained fast. In some cases these remained faster than an “optimized”
version with fewer queries. Reliable measurements are hard to get due to
many different caching and indexing schemes implemented in databases. A
more dynamic optimization scheme that takes the data at runtime into account
could be a solution for handling the complex performance characteristics of
the database.

Besides issues with inefficient execution of queries, another concern is
applications that retrieve unwieldy amounts of data. How many entities and
properties become unwieldy depends on many factors. There is overhead in the
data loaded from the database which is related to the automatic management
of persistence. Also, some servers simply have less memory available. A
possible solution for such a case could be monitoring the running application
for request handling threads that consume too much memory and report by
displaying a warning or take action by stopping the thread.

Another issue with the ORM abstraction lies in mismatch of operators and
constraints in the application server object model with those in the database
relational model. Whether two strings are equal in a database depends on the
collation setting of the database table or the query itself, while Java has its
own collation settings (typically the default binary collation is used). This is
especially important when there is a uniqueness constraint in the database,
where a difference in equality can lead to unexpected commit failures. A
related issue is that in many database management systems, e.g. MySQL,
uniqueness is checked in a running transaction already, where nothing is final
yet. This means the transaction is aborted abruptly when such a uniqueness
violation occurs. In most situations checking uniqueness or other constraints
with a query gives the most reliable result, because in that case the decision is
deferred to the database, which also makes the final decision.

Referential integrity in a relational database prevents deletion of rows that
are referenced by foreign keys. In the object model this means persisted entities
that are referred to by other entities cannot be deleted, however, all the entities
that are relevant for this kind of check are typically not loaded into memory,
so deleting an entity can fail at the final point of commit. This deletion issue,
combined with the choice for archiving data instead of permanently deleting
it, has resulted in most applications rarely deleting entities, unless the entity
is explicitly used as a temporary data structure (in which case there are no
references by design). A better solution for deletion would involve taking
into account referential integrity and removing references to deleted entities.
This would require some input by the application developer to determine how
much related data should get deleted.

Database Management There are many technology options for filling the
database storage role. In the case of WebDSL, we have mainly used MySQL
in production environments, and the light-weight H2 [H2 Database Engine
2023] database engine for testing. Because of the choice for Hibernate in the

40

implementation, which abstracts over the differences between DBMS systems,
switching to other databases requires minimal effort.

A database provides default indexing for primary keys, meaning that a
lookup of a referenced entity is fast. Some queries do not benefit from the
default indexes, because they use a combination of fields, or sort the result set
based on a property value. Custom indexes can provide increased performance
for queries that get executed many times. Creating and working with such
indexes is very specific to the chosen DBMS. Also the type of index can
influence this performance. For index choices and configuration WebDSL
applications rely on the tools that come with the database. The Google App
Engine platform provides a better integrated approach where performance of
pages can be reviewed and indexes created from a web interface.

Backing up the database is also accomplished with the tools provided by
the DBMS. MySQL has command-line utilities for dumping and loading the
contents of a database using a text file with SQL statements. These backups
can be automated with simple shell scripts and cron jobs.

Migrating the database schema is handled in Hibernate for simple cases.
Adding tables and columns is done fully automatic. Changing existing data
and migrating from old tables or columns to new cannot be done fully au-
tomatic. There are many possible situations for migrating existing data to
a new schema. There has been research on the coupled evolution of data
in the database with new versions of an application, applied to a WebDSL
application [Vermolen 2012]. This work resulted in a prototype tool which
can handle complex migrations. In our production applications we have done
manual migrations, using update queries to set values, or handling migration
in the application by including both old and new models, and migration code
(which then becomes a live and incremental migration).

In general, with database operations like index creation, backing up, and
migration, incrementalizing and being able to run in the background without
noticable interference is essential for usability. The level of maturity for these
features can vary a lot between DBMS technologies.

2.5 Expressions and Functions

In most web frameworks, functions are specified in the host language of
the framework. This host language has no specific knowledge of the web
framework, preventing static consistency checking to assist the developer. For
example, action parameters are often passed to the action in a generic Map
structure instead of typed arguments. Another issue that arises is that hooks
into the web framework require knowledge of its internal structure, such as
the libraries used. For example, if a query needs to be described, this can
be regular SQL or some SQL-like language such as HQL (Hibernate Query
Language). Since such queries are encoded in a String there are no checks to
support developers in creating the right type of query.

Handling application operations and modifying data in WebDSL is done
with an object-oriented sublanguage. The WebDSL programming language

Chapter 2. The WebDSL Web Programming Language 41

defines its own expressions, statements, and functions. The syntax and se-
mantics should be familiar for programmers that know other object-oriented
programming languages such as Java and C#. The object-oriented sublanguage
is statically typed and can refer to other WebDSL elements defined in the ap-
plication, such as entity types, local and global variables. The expressions are
used in several WebDSL contexts, e.g., boolean conditions describe conditions
in if templates and access control rules, and the arguments in user interface
template calls are expressions just like the arguments in function calls. Static
typing and integration of languages enables instant editor feedback of errors
and possible completions, and makes an application robust when editing and
refactoring.

Defining a completely customized language for handling function code in
web programming has several advantages:

• Better static analysis The integration of the complete function language in
the compiler enables consistency checking with respect to other defini-
tions like entities. Language features that break static guarantees can be
excluded entirely.

• Non-functional security features in generator Boilerplate code to avoid secu-
rity issues, such as using a query API and prepared statements to prevent
SQL injections, can be generated and automatically enforced.

• Avoid pitfalls and accidental complexity of general-purpose languages By being
less tied to an existing language, it becomes possible to address some
of their problems, such as those related to object identity and equality
checking.

• Portability By having a complete definition of the function language, the
code generator could be retargeted to a different language and runtime
environment.

Disadvantages are:

• Introducing another new language to learn Especially when it comes to
features already found in general-purpose languages, learning a new
language can be a hurdle for web programmers.

• An off the shelf general-purpose language is likely to provide more features
Providing a complete language replacement is more work than creating
a framework. Integration with existing libraries is not automatic.

This section first explains WebDSL functions in more detail. Then the issue of
safe queries is examined. The disadvantage of making it harder to integrate
with existing libraries is important, how this is addressed in WebDSL is covered
in Section 2.5.3.

42

 1 extend entity Issue {
 2 function addComment(t: Text, a: User){
 3 var c := Comment{ text := t author := a };
 4 comments.add(c);
 5 }
 6 predicate isAccessAllowedTo(u: User){
 7 ! project.private || u in project.members
 8 }
 9 }
10 extend entity Project {
11 predicate isAccessAllowedTo(u: User){
12 ! private || u in members
13 }
14 function getRecentIssueTitles: [String] {
15 return [i.title | i : Issue in issues
16 where i.created.after(now().addMonths(-1))
17 order by i.created desc]; }
18 }
19 init {
20 Project{ name := "WebDSL" url := "http://webdsl.org"}.save();
21 Project{ name := "Spoofax" url := "http://spoofax.org"}.save();
22 Project{ name := "Researchr" url := "http://researchr.org"}.save();
23 Project{ name := "Yellowgrass" url := "http://yellowgrass.org"}.save();
24 }
25 function allprojects: [Project] {
26 return from Project as p order by p.name asc;
27 }

Figure 2.3 Functions in example application.

2.5.1 Functions

Functions in WebDSL can be defined globally and as entity methods. A
function definition has a list of formal arguments, an optional return type, and
a body of statements. Function calls are expressions that contain the name of
the function followed by a list of expressions that are the actual arguments.
All functions defined in the example application are shown in Figure 2.3.
Entity methods can use this to refer to the entity itself, and the properties
can be accessed as variables directly. The return statement exits the function
and returns the value. The predicate is a syntactic variant of function that
only contains a boolean expression and returns its result. The extend entity

feature allows specifying an entity in multiple fragments and files, which are
merged by the WebDSL compiler.

Literals Each primitive type has a literal to construct it from a constant
value. Lists can be created with square brackets, and sets with curly brackets.
Figure 2.4 shows examples of literals and collections of primitives values.

Entity Creation The expression for instantiating new entity objects allows
setting initial values for its properties. The syntax is the entity name followed
by an optional list of property assignments between curly brackets. An example
is shown in Figure 2.5.

Variables A variable declaration consists of a name, a type, and an expression
for the initial value. Either the type or the initial value can be omitted. If
the type is not explicit, the variable will receive the type resulting from the

Chapter 2. The WebDSL Web Programming Language 43

String: "This is a string"
Int: 42
Float: 1.2
Bool: true
 false
List: [1,2,3]
Set: {1,2,3}
Null: null

Figure 2.4 Example showing literals.

Project {
 name := "WebDSL"
 url := "http://webdsl.org"
}

Figure 2.5 Example showing entity creation.

expression (local type inference). Figure 2.6 shows examples of variable
declarations and variable references.

function testFunction {
 var number := 0;
 var user := User{};
 user.name := "WebDSL";
 var users := [user];
 var webdsl := users[number];
 log(webdsl.name);
}

Figure 2.6 Example showing variable declarations and variable references.

Global application variables are defined at the top level together with enti-
ties, templates, and functions. They always have an expression for initialization.
These variables are added to the database once when the application is de-
ployed. At that point the database is checked to see whether all global variables
have been created already and, if not, they are added. The global variable
reference itself is immutable. It is designed to be the same entity instance, with
mutable properties, at all times. Typical use cases are application configuration
settings and entities that describe enumeration options.

String interpolation Variable content can be spliced into strings using string
interpolation. This is performed with the ∼ operator. Simple expressions such
as a variable reference or property access do not require any additional markers,
complex expressions (or disambiguation if necessary) can be performed with
parentheses. Figure 2.7 shows examples of string interpolation expressions.

"content of x: ~x"
"~u.show() calls an entity function"
"global function result: ~getResult()"
"~(select count(*) from User) is the query result"
"disambiguation: ~(x)cm"

Figure 2.7 Example showing string interpolation.

44

Function Overloading WebDSL functions can be overloaded, i.e., functions can
have the same name, but different number of arguments or different argument
types. The most specific matching function signature is statically determined,
taking into account subclassing in entities.

Method Overriding Entity methods allow overriding in subclasses. Calling
an entity method performs single dispatch, the runtime type of the entity
on which the method is called determines which override of the method
implementation is invoked.

Extend Function Extend function enables the extension of functions with
extra statements. These function extensions cannot have a return value and
the order in which they are combined is undefined (as in there should be no
dependencies between them). This feature enables crosscutting concerns to be
expressed in a single location, similar to extend entity.

List Comprehension List comprehension expressions allow the construction of
new lists by applying transformations to another list. This transformation can
involve filtering on a certain property, reordering the old list, or mapping func-
tions over the elements. The expression at lines 15-17 in Figure 2.3 returns all
issue titles i.title from issues where the time created i.created is greater
than a certain date one month back, ordered by i.created in descending
order.

Save and Load Saving an entity is done through an explicit save method call,
or through save cascading. Save cascading happens when persisted entities,
either loaded from the database or newly persisted with a call to save, refer
to transient entities. Those transient entities will automatically be persisted
as well. This happens transitively, so any transient entity reachable from a
persisted entity will be saved.

Loading entities is done using loadX global functions that accept an id

value of UUID type and retrieve the object of entity type X corresponding to
the id. Typically this happens automatically by using entity types as page
arguments. In these cases the WebDSL runtime will expect an id for a specific
type, and tries to load that object before handling the rest of the request.

2.5.2 Safe Query Embedding

WebDSL applications typically load entities starting from the page arguments,
and traversing its properties recursively to load other related entities. Another
way to load entities is by writing database queries. The queries are part of the
syntax, so it does not allow queries represented by an arbitrary String, which
would enable SQL injection vulnerabilities. Any value that is used in a query
is automatically escaped to prevent SQL injection attacks.

WebDSL follows the Stringborg [Bravenboer, Dolstra, and Visser 2010]
approach of embedding query syntax in the language. This method has both
the benefits of natural looking queries as with String concatenation, but also
safety by generating code that invokes a query API. This method ensures safe
queries by construction. In the Java back-end of WebDSL, queries translate to

Chapter 2. The WebDSL Web Programming Language 45

calls to the Hibernate Query Language (HQL) API. Line 26 in Figure 2.3 shows
a query where all Project entities are retrieved ordered by name.

2.5.3 Java Interoperability

Integration with existing libraries is not automatic when defining a new lan-
guage to handle function code. A particular web application can call into
some existing library that is not specifically related to web applications, e.g.
invoking a compiler for an online IDE. To enable such unanticipated library
usages, WebDSL can invoke Java classes and libraries. The typechecker of
WebDSL needs to be informed of the interface that is available. Native class
declarations declare new types, with constructors, (static) properties and (static)
methods, by referring to their fully qualified Java classname and specifiying
the name to be used in WebDSL. The interface has to use the Java equivalent
of primitive types in WebDSL, meaning Java’s primitive int or Integer object
for WebDSL’s Int, boolean or Boolean for Bool, float or Float for Float,
String for String. Autoboxing and unboxing in Java takes care of conversion
between primitive and object types. Additionally, the List and Set collection
interfaces can be used with WebDSL. The invoked methods should not have
checked exceptions. If the library does not conform to these requirements, Java
code can be added in the project to wrap the library and make the interface
accessible to WebDSL. The downside of using Java escapes is that this part
of the application does not have the benefits of a custom defined function
language, namely analyzability, security, portability, and avoiding common
pitfalls in the general-purpose language.

2.5.4 Discussion Functions

Dispatch Function overloading, having functions with the same name but
different type signatures, is statically resolved at compile-time. Function
overriding, a subclass entity can override the function of its superclass entity,
is dynamically resolved at runtime. For function or method calls on entities,
WebDSL inherits single dispatch from the Java target. The most specific
override of the function is based on the runtime subtype of the entity on which
the call is invoked. For applications that heavily use inheritance and function
overriding, multiple dispatch could avoid writing custom dispatching code.
In multiple dispatch all the argument runtime types to the function would be
considered for determining the closest matching signature. For readability of
the code and static analysis, having binding resolved at runtime is problematic.
When reading the code, a large number of definitions need to be taken into
account, and similarly it becomes more difficult to create an exact static analysis
of the code that will be executed.

Currently, WebDSL does not support dispatch for template calls in a user
interface definition. In some of our applications that used entity subclassing,
this required boilerplate code switches with checks (x is a Foo), and casts
(x as Foo). To reduce this boilerplate code, and preserve static analyzability,

46

we introduced a typecase construct. The example in Figure 2.8 illustrates this
construct. The alias x in the example has the specific subtype that the block
is specified for, which also enables accurate reference resolving in the IDE to
improve readability of the code again. This fragment makes immediately clear
to the reader that control flow based on the dynamic type happens at this
point in the code, instead of dispatch behavior that is implicitly defined by the
structure of classes and method overrides.

entity Super {
 superprop : String
}
entity Sub : Super {
 subprop : Int
}
template show(arg: Super){
 typecase(arg as x){
 Sub { ~x.subprop } // x has type Sub in this block, calls output(Int)
 Super { ~x.superprop } // x has type Super in this block, calls output(String)
 }
}

Figure 2.8 Typecase in template example.

Since WebDSL provides a web framework built into the language, it is
often not necessary to use inheritance at all. Entities are used for data, where
code reuse is more often required than polymorphic behavior. In these cases
composition can be used instead of inheritance, i.e. capture the common
functionality in another entity and include a reference to it whenever the
functionality is needed. In object-oriented programming, this design principle
is called composition over inheritance [Gamma et al. 1995].

Null Values All types currently can have null as a value. Although this
immediately raises The Billion Dollar Mistake [Hoare 2009] question, and this
part of WebDSL could be improved, there are some mitigating factors. Primitive
values in variables and entity properties are by default initialized to default
values (0 for Int, false for Bool, "" for String). Set and List collections
are by default initialized to empty collections. When dereferencing a null
value in the context of templates (the majority of WebDSL application code
is in user interface templates), the specific template element will be skipped
without interfering with other template elements, and produce a warning in
the log. Any action that triggers a null-pointer exception is considered failed
and aborted, there is no risk of accidental incomplete database updates.

A null-value is currently used to represent the value of an invalid input
field. In the case of a String-like type having an empty input is not an issue,
the value simply becomes the empty string. However, in the case of an Int or
Date type no sane value can be constructed from an empty input. Using the
default value here would be ambiguous, since there is a difference between a
user entering 0 for an Int field, or entering nothing.

One convenience introduced in other programming languages for derefer-
encing potential null values is a safe dereference operator, e.g. the expression
variable?.field in Groovy results in the value null if the variable is null.

Chapter 2. The WebDSL Web Programming Language 47

A more thorough solution is a wrapper type that can represent either a value
or nothing. Such a wrapper type can be enforced by static analysis, and warn
the developer when a potential missing value case is not handled. Examples
of this are the Option type in Scala, which can be Some(value) or None, and
the Maybe type in Haskell, which can be Just value or Nothing. Different
types can be used to explicitly denote a type as nullable (can have value null)
or non-nullable. For example, C# provides both regular and nullable variants
of types, e.g. int for non-nullable, and int? for nullable. A downside of
introducing more strict empty value handling is that the code becomes larger
when potential missing values always need to be handled explicitly, as opposed
to the current skip template element behavior. Connecting with Java libraries
would require more boilerplate code if WebDSL introduces a specific variant
of empty value handling, instead of null values.

Runtime Errors The back-end of WebDSL translates an application to the Java
platform. A running Java application can fail with errors that might not be
clear to the WebDSL application developer. An error can occur in the generated
code of the application, while not being reported by static analysis. Some
errors are not caught at compile-time because they depend on dynamic types
or values. Properly handling such errors in a way that makes sense at the
WebDSL abstraction level will improve the effectiveness of the language.

An infinite recursion of function calls causes a stackoverflow. These and
other exceptions that occur in the code can be hard to trace back to the
application code, because they will point to the generated Java code. Tracing
these problems back to the original application code requires keeping track of
the WebDSL stack in the run-time.

The JVM has a setting for the maximum heap memory size. In older JVM
and Tomcat versions, when the application reached this hard limit, it could get
stuck trying to access additional heap space and garbage collect. This issue
was quite hard to resolve, without killing the JVM process. In the past, it has
been the cause of a crashing Tomcat server for our production applications
several times. This situation is handled better in current JVM and Tomcat
versions.

Alternate Back-ends In addition to the Java back-end, we have experimented
with an alternate Python back-end targeting the Google App platform (which
at that point only supported Python). A major issue that came up was the
diverging semantics of the Java and Python back-ends, especially in the storage
behavior, where the Google App platform did not allow variations besides
its own NoSQL store. Reflecting on the problem of diverging semantics and
considering our limited resources, we decided to focus on maintaining one
reference back-end. To the user of a web application it does not matter what
platform the server-side application is running on, as long as it is available and
fast enough.

Tight integration with Java using direct class references (Section 2.5.3) make
development of the WebDSL language more incremental. Language features
can be developed as a library for WebDSL applications before fully integrating

48

a feature in the compiler with syntax and static checks. This approach was used
in implementing advanced search (discussed in Section 5.3.3). The downside is
that direct class references bind the language to this particular platform. Such
a language feature makes the migration to other platforms harder. Direct class
references should primarily be used for calling into external Java libraries, or
for internal functions that call into the WebDSL runtime framework. A typical
application should not have to implement application logic using such escapes.
An example of when we needed Java code is the back-end of WebLab (see
Section 7.3), a component that runs Scala, C, and JavaScript guest code in a
locked down environment. Another example is the checkout and data import
of subversion and git repositories in Codefinder, a source code repository
search engine.

2.6 Pages and Templates

A typical web application is divided into several pages. These pages can relate
to specific parts of data or functionality, such as managing users or content.
They can also be tied to the tasks that a specific user has to perform, such as an
administrator or moderator. The mapping of application features to pages is at
the liberty of the designer of the application. Navigation is performed through
clicking on links in pages, which triggers the browser to move to a new page.
Pages are also directly accessible by entering the URL address. This means that
pages are bookmarkable, users can store the locations of their favorite pages,
or refer others to a specific page by sending just the URL. If an application
has separated functionality over many pages, these pages can usually be quite
static and simple, i.e. only having a few forms or buttons to invoke actions. On
the other hand, web pages can also be very dynamic, a whole web application
can even be contained in a single page. In that case, transitioning to other
areas of the application is done using the browser’s JavaScript engine to send
requests to the server, and based on the response the engine inserts, replaces,
or removes parts of the current web page.

Most of the complexity in web application development lies in creating user
interfaces. The user experience is determined by the choices made in user inter-
face design, where functionality is intertwined with aesthetics. These choices
are somewhat limited by having the browser as client application, which is
tied to specific user interface technology. HTML is used for page structure
and content, CSS for layout and styling, and JavaScript for dynamic behavior.
The application server generates the user interface for web applications in the
form of HTML, CSS, and JavaScript. Generating these files can be done in any
programming language that runs on the server, which is very unrestrictive
compared to the client-side situation.

This section introduces user interface template definitions in WebDSL. Forms
with data input and the request processing workflow in WebDSL will be
covered in more detail in Chapter 3, because it constitutes an important part
of the novel web programming features in the WebDSL language.

Chapter 2. The WebDSL Web Programming Language 49

2.6.1 Pages and Navigation

Web applications consist of one or more pages with links between them. The
example in Figure 2.9 shows three pages from the example application with
their navigation links. The corresponding WebDSL code is shown in Figure 2.10.
The home page in the middle contains most links, it can point to both the
createproject page on the left, and the view project page on the right.
The rounded boxes at the top indicate that a browser can directly request
each page, e.g. if the user types the URL in the address bar. Some pages
require arguments. In the example, the project page requires the identity
of the project to be shown. In the corresponding WebDSL example fragment
the pages only contain their navigation links. The root page is special in
WebDSL, it indicates what page to show when the application root url is
accessed without a page name or arguments. Each application requires one
root page.

Page links in HTML are a textual reference to a page and its arguments.
Because such links are a textual representation of a reference, it is possible
to create broken links. An abstraction is required to check the validity of
navigation links, and generate the textual representation. Page navigation links
in WebDSL are checked in the static analysis of the compiler and IDE, and
their textual representation is generated.

WebDSL pages are an entry point to the application server, while tem-
plates are only accessible through pages and other templates. This distinction
between page and template is especially important for security and access
control. Before responding to a page request, the server needs to verify cor-
rectness of the arguments and decide whether access is allowed based on the
authentication data in the request.

A navigation link becomes part of the page HTML and needs to have
an encoding of the arguments, suitable for sending to the client. In the
case of primitive value types, like Int or String, this is simply the value
itself converted to a String. For entity references the id property is used in
arguments. Handling a page request is done by the WebDSL runtime, which
decodes the page arguments from their client representation. In the case of
an entity, the entity is loaded from the database using the id that is passed as
parameter. That also means a navigation link is only valid with entity instances
that are persisted. Otherwise the entity with that id would not exist anymore
when clicking the link to request the page. If an entity was deleted, trying to
retrieve the page with that entity as argument results in a 404 error.

2.6.2 Templates

Template definitions are reusable parameterized fragments of page content
in a WebDSL application. Templates can be divided in smaller templates to
improve modularity, readability, and reusability. By simplifying templates and
reducing their responsibilities, it becomes easier to abstract over subtemplates
and understand everything that is happening on a page. They are syntactically

50

http://[domain]/http://[domain]/
createproject

http://[domain]/
project/[project]

View WebDSL Project

View Spoofax Project

project=WebDSL

project=Spoofax

Home

Home

project=....

Create Project

Home

Figure 2.9 Example pages with navigation. This diagram shows the application
root page, the create project page, and the view project page, together with their
interconnecting page links.

 1 page root {
 2 navigate root { "home" }
 3 navigate createproject { "Create Project" }
 4 for(p: Project){
 5 navigate project(p){ ~p.name }
 6 }
 7 }
 8 page createproject {
 9 navigate root { "home" }
10 }
11 page project(p: Project){
12 navigate root { "home" }
13 }

Figure 2.10 Corresponding WebDSL code for page navigation example.

and semantically checked for consistency with the rest of the application.
For example, template formal arguments use the same WebDSL types as the
expression language, and the actual arguments in template calls consist of the
same WebDSL expressions that are available to regular functions. The main
responsibility of these templates is rendering information to the HTML format.
Most CSS and JavaScript content is generic for all generated HTML. Besides
rendering, some templates also process information and invoke commands
from form submits. Input templates and their additional request handling
phases are discussed in Section 2.7.

An example of the project view page composed of templates is shown in
Figure 2.11. On the left the page is shown with its concrete instantiations of
templates. The page argument is the Spoofax project, which is loaded from
the database. The showIssues template retrieves the three issues of the project

Chapter 2. The WebDSL Web Programming Language 51

Request
http://[domain]/project/Spoofax

template showIssues(p : Project)

Project Issues:

template output(i : Issue)

Home

page project(project :
Project)

project = load project
"Spoofax" from db

Project Issues:

Update icon for Spoofax
editor

Application Data

Project{
 name := "Spoofax" (id)
 issues := {
 Issue { title := "Update icon for Spoofax editor" }
 Issue { title := "SDF3 operator precedence redundancy" }
 Issue { title := "Analysis not cancelled in ctree mode" }
 }
}

 SDF3 operator precedence
redundancy

for(i : Issue in p.issues)

 Analysis not cancelled in
ctree mode

Page: project Parameter: "Spoofax"

p = project

issue(i)
issue(i)

issue(i)

Figure 2.11 Example template composition.

 1 page project(project: Project){
 2 navigate root { "home" }
 3 showIssues(project)
 4 }
 5 template showIssues(p: Project){
 6 "Project Issues: "
 7 for(i in p.issues){
 8 issue(i)
 9 }
10 }
11 template issue(i: Issue){
12 output(i.title)
13 }

Figure 2.12 Corresponding WebDSL code for template composition example.

52

 1 page root {
 2 main {
 3 jumbotron {
 4 h1 { "Freely manage all your projects!" }
 5 lead { "Project issue management with tagging, commenting and search." }
 6 par { navigate createproject { "Start your project today" } }
 7 }
 8 gridrow { gridcolMiddleThird { projects } }
 9 }
10 }
11 template projects {
12 pageHeader { "Projects" }
13 tablestriped {
14 for(pr in allprojects()){
15 row {
16 column { navigate project(pr){ ~pr.name } }
17 column { ~pr.url }
18 }
19 }
20 }
21 }
22 template main {
23 head {
24 title { "Project Manager" }
25 includeJS("bootstrap.min.js")
26 includeCSS("bootstrap.min.css")
27 }
28 div[class = "container"]{
29 masthead {
30 navigate root {
31 image("/images/logo-pm.jpg")[class = "logonav"]
32 }
33 navbarRight {
34 navigate signin { "Sign In" }
35 navigate createproject { "Create Project" }
36 navigate signup { "Create Account" }
37 }
38 }
39 messages
40 elements
41 }
42 }
43 htmlwrapper {
44 container div[class = "container"]
45 masthead div[class = "masthead"]
46 lead par[class = "lead"]
47 gridrow div[class = "row"]
48 jumbotron div[class = "jumbotron"]
49 navbarRight div[class = "btn-group pull-right"]
50 gridcolMiddleThird div[class = "col-lg-4 col-lg-offset-4"]
51 }

Figure 2.13 Pages and templates for main layout in example application.

Chapter 2. The WebDSL Web Programming Language 53

and invokes the issue template for each of them. The corresponding WebDSL
code is shown in Figure 2.12.

2.6.3 Template Calls

Templates are composed with template calls. Templates are parameterized with
typed arguments, these parameters are instantiated in the call. The example
application page and template code for the main layout of the application is
shown in Figure 2.13.

Elements Template calls pass on an implicit template elements part, which
is the defined block enclosed in curly brackets {} after the call. This part
is scoped within its definition context and is passed on as a closure. A
template definition can call elements to include these template elements.
There are some variations of template call syntax. If there are no arguments
the parentheses can be omitted, similarly, if there is no template elements block
the curly brackets are optional.

Attributes Besides the regular arguments and template elements, templates
can be passed extra attributes. These can contain e.g. custom class attributes
for one of the HTML tags. Template call attributes are enclosed in square
brackets. An element can insert these elements into an HTML tag using all

attributes as shown in Figure 2.14.

template gridrow {
 div[class = "row"]{ elements }
}
template div {
 <div all attributes> elements </div>
}
htmlwrapper {
 div div
 myblock div[class = "my-block"]
}

Figure 2.14 All attributes example.

There are some accessor variants to provide more fine-grained control over this
inclusion of attribute. For example, all attributes except "class" selects
all attributes except the one for "class", and an attribute("class") function
call only retrieves the value of the "class" attribute. The definition of a simple
wrapper template that only wraps an HTML tag with some attributes is so
common that a shorthand is provided with htmlwrapper. It specifies a list of
entries with template name, the HTML tag to wrap, and the added attributes.
The example div template and div htmlwrapper entry in Figure 2.14 are
equivalent.

Overloading While pages must have unique names, templates can be over-
loaded. The overloading is resolved compile-time, based on the static types
of the arguments. A typical overloaded template is the output template. For
primitive values, it renders the HTML-escaped value. For entities it shows the

54

name value, which can be changed by defining a custom output for an entity
type as shown in Figure 2.15.

template output(i: Issue){
 navigate issue(i){ ~i.title } // ~i.title is shorthand for output(i.title)
}

Figure 2.15 Template overloading example.

Global Overriding Template and page definitions can be globally overridden
using the override modifier, e.g. how to override a built-in page such as
pagenotfound is shown in Figure 2.16.

override page pagenotfound {
 "Unknown project or issue, return to " navigate root { "homepage" }
}

Figure 2.16 Global override example.

Local Overriding Template definitions can be redefined locally in a page
or template, to change their meaning in that specific context. All uses are
transitively replaced in templates called from the redefining template.

Multiple Elements Arguments If multiple template elements arguments
are required, they can be added in the list of regular arguments using the
TemplateElements type. Additionally, an argument list containing a tuple of
connected arguments can be declared for passing a variable number of related
arguments, including template elements. A typical use case is a template that
provides an abstraction for tabbed content, as shown in Figure 2.17.

template showStudentCohorts(cohorts: [Cohort]){
 tabs([// call tabs template with application-specific content
 ("home", true, "Home", { panel("Home"){ instructions } })
 , for(sc in cohorts){ // this for loop is flattened into the argument list
 (sc.key, false, sc.label, { panel(sc.label){ showCohort(sc) } })
 }
])
}
// generic template definition for tabbed content
template tabs(elems: [key: String, active: Bool, label: String, content: TemplateElements]){
 tabHead {
 for(e in elems){
 tabLink(e.key, e.active, e.label)
 }
 }
 tabBody {
 for(e in elems){
 tabContent(e.key, e.active){ e.content }
 }
 }
}

Figure 2.17 Variable number of connected arguments example.

Chapter 2. The WebDSL Web Programming Language 55

2.6.4 Template Content

Output template The output template is defined in the library for every type,
and is the default way to insert data values in the page. The text in such static
fragments is HTML-escaped, which means replacing <, >, ", and & with <,
>, ", and & respectively. Because output is the most commonly
used template name, a shorthand is available. The notation ∼expr is equivalent
to calling output(expr). Output template definitions are typically overloaded
for specific entity types to provide a convenient way to print the entity property
data.

Static text and string interpolation Static text can be inserted in template
definitions using double quotes. These fragments are HTML-escaped. The ∼

can be used for string interpolation, e.g. "name:∼ref", "text:∼ref.prop",
"∼call(expr) is the result", or "Result:∼(any-expr).".

HTML tags HTML tags with attributes are specified with tag literals. At-
tributes can be added, e.g., to set a class value for the tag. The attribute values
can be any expression that produces a string. Attributes can also be added
conditionally with an if construct.

Choice Choice is represented with an if template element, the else part
is optional. When there are multiple options based on the value of a specific
expression, the case template element can be used instead of nesting multiple
if elements.

Loops for loops iterate over a collection of entities or primitives. The
for template element allows optional filtering of elements and an optional
separator. See example in Figure 2.18.

for(pr in allprojects()){
 row {
 column { navigate project(pr){ ~pr.name } }
 column { ~pr.url }
 }
}

Figure 2.18 For loop example.

HTML Escaping Escaping HTML tags and markup is necessary to prevent
HTML and JavaScript injection attacks. When user content is not HTML-
escaped before displaying it on a page, all the tags that are in the content are
processed as regular HTML. First of all this can cause page rendering to break,
because of tags in the content transforming the page into an incorrect HTML
document. A broken page is the least of your worries though. A malicious user
can inject JavaScript code into an unescaped value, meaning that whenever
another user navigates to a page with that output, some JavaScript code is
executed which is crafted by the malicious user. This JavaScript code can do
many things like hijack the session cookie to gain access to the account of
another user, or invoke application actions directly on behalf of the other user.

56

To further mitigate the risk of session hijacking, the HttpOnly flag can be used
for cookies, which disallows the JavaScript engine access to cookie data.

In some cases, the HTML should not be escaped, e.g. when entities are used
to cache actual page content. This should only be allowed if the users with
access to such features are trusted (e.g. an admin) or the feature is used by
the application internally. The rawoutput templatecall renders its argument
without escaping. Using rawoutput with anything else than a String literal is
marked with a warning to make developers cautious when using this feature.

Styling Templates main and logo in the example are part of a standard
template that is used for all pages in this application. The elements call in
main is where the template elements passed to main are inserted. navigate
template elements construct a page url from a page call. Templates shown
in Figure 2.19 such as jumbotron, header, lead, gridrow, gridcolthird,
container, masthead, justifiednav, and navitem are small templates that
construct an HTML div or span tag with specific class attributes for Bootstrap
CSS styling rules.

htmlwrapper {
 container div[class = "container"]
 masthead div[class = "masthead"]
 lead par[class = "lead"]
 gridrow div[class = "row"]
}

Figure 2.19 Defining templates to assist styling.

2.7 User Interface Input

The template elements discussed until now cover rendering of static and dy-
namic page content. Template compositions provide flexibility in constructing
application pages. They are no less expressive than regular function calls, but
also automatically take into account escaping of values inserted into the page.
This section covers another core aspect of templates in WebDSL, which is user
input and action invocation.

In order to handle user input in a web application, pages must render forms
with input tags. The name attribute of these tags is used to pass the entered
values in a request to the application as name-value pairs. The application
must analyze these name-value pairs and decide on an appropriate function to
execute. The main problem here is the correct reconstruction of the arguments.
The server must look for the right names in the submitted data. If the matching
is implemented by the application developer, there is an opportunity for faults.
In many frameworks that force an MVC separation of view and controller,
the developer must correctly match names for inputs in view and controller.
Besides being error-prone, it is also adds to the amount of code required to
get a functional form. In Ruby on Rails, this can be addressed by having
form helper functions (e.g. form_for and fields_for) that automatically put
submitted data back into model objects (input names need to match object

Chapter 2. The WebDSL Web Programming Language 57

property names). Unfortunately, because controllers have no direct relation
to views, they will accept any argument as long as it matches some property
of the model object. This means that it is easy for a client to make a fake
action request that sets additional data that was not available for entering as
input. To address this problem an extra step is needed in the controller for
whitelisting parameters, which they named strong parameters. The solution to
avoid defining input names is in this case causing accidental complexity of its
own.

Existing solutions to avoid input name matching, such as form helper
functions, have another downside. They make it harder to reuse template code
related to forms. By having a direct relation between form inputs and model
objects in the input names, they cannot be easily combined. For example,
if part of a form is repeated for each object in a collection, each name will
need to receive a unique identifier in addition to its model property name.
The controller also becomes more complex because it will receive different
name parameters and needs to reconstruct the collection from it. Helper
functions for collection properties exist in Ruby on Rails (collection_select,
collection_check_boxes, collection_radio_buttons), but these only edit
the collection itself and not properties of the objects in the collection. It is not
possible to reuse a form component for editing a single object as a repeated
form component for objects in a collection, because input names are generated
in each helper function separately. Each iteration will use the same input
names. A new helper function would need to be constructed that is aware of
the other input names, potentially for each combination of inputs in a form.

Another problem is that readable and consistent input names are a security
vulnerability. XSS and CSRF attacks can abuse the guessable nature of input
names to construct fake action requests. The delivery of fake action requests is
different between these attacks. XSS abuses unescaped display of user-inputted
values. By inserting JavaScript commands, a victim user visiting the page
would run this JavaScript code in the browser. This could make a request to
some malicious server to steal the login cookie or other user data, but can also
make a request to the application itself. A CSRF attack abuses the browser
behavior of automatically including the session cookie with any request to the
application. If a crafted url with action parameters is inserted in a malicious
web page, just visiting that page would trigger the action request with the
credentials of the currently logged in user. To limit the danger of both types
of attacks it is important that input names are not guessable. That means no
meaningful names and different for each user. Having such uniqueness in
input names is an improvement, although for XSS it does not provide complete
protection as such a vulnerability is much more dangerous than CSRF. For
CSRF protection a single unique form input or authentication token can also
be used. With XSS just having unique input names is not enough to prevent
the attack, as JavaScript code could also scan the page for input names.

58

 1 page newproject {
 2 var p := Project{}
 3 mainMiddleRow {
 4 h2 { "Add Your Project" }
 5 form {
 6 formgroup {
 7 label("Project name"){
 8 input(p.name)[placeholder = "Enter project name"]
 9 }
10 }
11 formgroup {
12 label("Project website"){
13 input(p.url)[placeholder = "Enter project website URL"]
14 }
15 }
16 formgroup {
17 label(""){ input(p.private) " private project" }
18 }
19 submit action {
20 p.members.add(principal);
21 p.save();
22 message("Your project has been created!");
23 return project(p);
24 }{ "Add project" }
25 }
26 }
27 }
28 page newissue(p: Project){
29 request var i := Issue{}
30 mainMiddleRow {
31 h2 { "Report issue for project ~p.name" }
32 form[role = "form"]{
33 formgroup {
34 label("Title"){ input(i.title)[placeholder = "Enter issue title"] }
35 }
36 formgroup {
37 label("Description"){
38 input(i.content)[placeholder = "Enter issue description"
39 , oninput = replace(preview)]
40 }
41 }
42 formgroup {
43 label("Description Preview"){
44 placeholder preview {
45 ~i.content
46 }
47 }
48 }
49 submit action {
50 i.project := p;
51 i.save();
52 message("Your issue has been reported!");
53 return issue(i);
54 }{ "Report issue" }
55 }
56 }
57 }

Figure 2.20 Example application create project and create issue pages.

Chapter 2. The WebDSL Web Programming Language 59

2.7.1 Forms and Input

Form template elements handle user input. Figure 2.20 shows the create

project and create issue pages for the example application. The form

element acts as a scope to group input elements together. input template
elements create user input fields, text areas, checkboxes, radio buttons, drop-
downs and other HTML input widgets. The type of widget is influenced by
the type of the argument, using overloading of the input template definition.
Inputs handle the rendering of the widget, displaying the current persisted
value, and binding the data back to the data model in a form submit. Val-
idation rules are also enforced for input elements. submit and submitlink

elements render a submit button which can trigger a form submit and finalize
the changes with a function. Input and submit names are generated auto-
matically, so that they are unique, deterministic, and hard to guess for CSRF
attacks. The submit action code can perform additional operations, pass along
messages to be shown on the next page, and set the redirect page for when the
request is completed. Submit action code can also be defined separately inside
a template using an action declaration, and called from the submit element.
If no additional actions are necessary besides form data binding and updating
input values, the action code part can be omitted from the submit.

Input Templates Input templates perform data binding. When rendering the
input, the current persisted value is shown. Before invoking an action, the
entered values are inserted into the data model in the transaction. After the
data binding phase, the action is invoked, for which the submit was triggered.

The input templates create input form elements appropriate for each Web-
DSL type. The default widgets are text field for String and Int, text area for
Text, checkbox for Bool, dropdown select for entities, checkbox selection for
sets of entities, a list editor for lists of entities (allows adding and removing
items, and reordering), and a date/time picker for date types. These templates
can be overridden, or a variant can be defined, to customize the input widget
used for databinding of a value. Some of the mentioned inputs map directly
to a single HTML input tags, while others need some additional template
elements to handle an input. For example, date/time pickers for date types
consist of several HTML elements and some JavaScript for creating a popup
when the input field is clicked.

Template Variables Template definitions can contain variable declarations.
These template variables are used to create a new entity instance or store
temporary template data. They can be used as the argument to input templates
enabling users to edit the values through data binding.

2.8 User Management and Access Control

Access control policies determine whether a specific user has access to a
specific resource. The current user is represented by a principal entity in the

60

system. An entity can be marked as principal entity through the principal

is declaration.

principal is User with credentials username, password

Figure 2.21 Principal declaration, enables access control, marks user-identifying
entity and authentication properties.

A default authentication form is generated for the indicated properties of that
entity. For example, the principal entity in this application is User, and the
fields used for authentication are username and password. This generates
an authenticate function that takes care of password hash comparison for
properties of type Password. It also generates authentication, login, and
logout templates to quickly prototype an application.

Access control rules specify the policy for pages and templates. When
access control is enabled (by specifying the principal), pages are by default not
accessible without a rule. The reason is that they have direct URLs associated
with them, which could easily become security leaks if access was allowed by
default. Templates can only be included in pages and other templates, these
are accessible by default. Allowing access to templates by default is done for
convenience, because applications typically have many small templates. A
page rule determines whether access is allowed, possibly based on the page
arguments. A template rule will exclude templates from pages when the rule
evaluates to false. Any form input or submit action on a page is only accessible
if the page or template itself is accessible, because databinding and action
handling are handled while traversing the page and template control flow. The
server decides whether these parameters that change data and invoke submits
are actually available to the current user. For this reason access control rules for
pages are enough to cover a complete application. In many web frameworks,
where actions have separate URLs, access control checks would be required
in all form action handlers separately as well. Figure 2.23 shows the example
application Sign Up and Sign In pages, as well as the page access control
rules.

Session Entity A special type of entity is the session entity, used for storing
data in the user session. These are similar to regular entity definitions. How-
ever, they declare a variable as well as an entity type. Most importantly, a
session entity is used to store the currently logged in user. The session entity
that is implicitly defined through the principal declaration in the example app
is shown in Figure 2.22.

session securityContext {
 principal : User
}

Figure 2.22 Implicit session entity that holds the principal entity of the current user.

The session entity name is a globally visible variable in the application code.
The entity object is automatically instantiated and saved, one for each browser

Chapter 2. The WebDSL Web Programming Language 61

 1 page signup {
 2 var u := User{}
 3 mainRowMiddle {
 4 h2 { "Sign up" }
 5 form {
 6 formgroup {
 7 label("Username"){
 8 input(u.username)[placeholder = "Enter your desired username"]
 9 }
10 }
11 formgroup {
12 label("Email"){
13 input(u.email)[placeholder = "Enter your email address"]
14 }
15 }
16 formgroup {
17 label("Password"){
18 input(u.password)[placeholder = "Enter your password"]
19 }
20 }
21 submit action {
22 u.password := u.password.digest();
23 u.save();
24 principal := u;
25 message("Your account has been created! You have been logged in! ");
26 return root();
27 }{ "Create your account" }
28 }
29 }
30 }
31 page signin {
32 main {
33 authentication
34 }
35 }
36 principal is User with credentials username, password
37 access control rules
38 rule page root { true }
39 rule page signin { true }
40 rule page signup { true }
41 rule page projects { true }
42 rule page newproject { true }
43 rule page newissue(p: Project){ p.isAccessAllowedTo(principal) }
44 rule page issue(i: Issue){ i.isAccessAllowedTo(principal) }
45 rule page project(p: Project){ p.isAccessAllowedTo(principal) }

Figure 2.23 Example application access control.

62

session accessing the application. Typically, session data is used for keep-
ing track of authentication state, but it can also be used for temporarily
storing data for anonymous users. For the generated securityContext

session entity specifically, a shorthand principal can be used to refer to
securityContext.principal in application code.

2.9 Search

SQL queries provide a basic facility for searching entities, through specifying an
exact value or subvalue of a text property. This type of search is quite limited,
e.g. it does not find values that differ only slightly because of inflection of
words. Additionally, there is no convenient way to give priority to certain
properties such as the name, when searching in multiple properties at once.
Typical search features such as spell corrections and auto complete suggestions
would have to be build from scratch.

The search user interface minimally requires an input field with onkeyup
event or submit button. Typically there is some usage of partial page updates
to show results and suggestions without unnecessary page reloads for the
user who is entering a search query. The user interface could show search
refinement options through faceting. Faceting is a dynamic way of presenting
navigation and search filter options when browsing a collection of items, e.g.
filtering closed issues, issues from a certain date range, issues with a certain
amount of comments.

To address search application concerns, we designed and implemented
an abstraction for search in WebDSL. Search mappings describe what entity
properties can be searched. They also configure what kind of tokenization
and normalization will be performed on the values, such as stemming and
removing stop words. Entity properties can be analyzed in multiple ways,
e.g. as whole matches, splitting the words, or matching individual n-grams of
letter combinations. Different analyzers can be combined to get search results,
giving higher ranking to results that match on multiple analyzers. Analyzers
get applied on the indexed data, and on the query that searches the data. The
features in the search sublanguage allow for customization based on the search
requirements. For example, we investigated search optimized for source code,
where parentheses and other meaningful characters in code are part of the
search query and indexed data instead of getting filtered out [Van Chastelet
2013]. The live version of this application is a helpful programming tool we
still actively use [Reposearch 2011]. Autocompletion can also be customized
based on specific analyzers, e.g. choosing either to complete words or complete
titles. Namespaces are used to separate search indexes, to be able to have local
search specific to the context that is being viewed. Figure 2.24 shows the search
mappings and issue search page of the example application. In this example,
the project is used as namespace to avoid polluting the completion and results
with issues from other projects.

Chapter 2. The WebDSL Web Programming Language 63

 1 extend entity Issue {
 2 projectname : String := project.name
 3 search mapping {
 4 title using none as originaltitle // exact match (no analyzer)
 5 title (autocomplete) // default analyzer (filtering and split words)
 6 title using ngrams as titleletters // ngrams is custom analyzer defined below
 7 content using ngrams
 8 namespace by projectname // separate search and completion indexes per project
 9 }
10 }
11 analyzer ngrams { // search individual letters and groups of letters
12 tokenizer = StandardTokenizer
13 token filter = LowerCaseFilter
14 token filter = NGramFilter(minGramSize = "1", maxGramSize = "30")
15 }
16 page search(p: Project, query: String){
17 request var s := query;
18 main {
19 form {
20 label("Search query"){
21 input(s)[onkeyup = replace(completions, results); }]
22 }
23 }
24 placeholder completions {
25 for(result in (Issue completions matching title: s in namespace p.name limit 5)){
26 div { navigate search(p, result){ ~result } } // complete on words in title
27 }
28 }
29 label("Results"){
30 placeholder results {
31 for(result in results from search Issue in namespace p.name matching s){
32 div { navigate issue(result){ ~result.title } } // search results
33 }
34 }
35 }
36 }
37 }

Figure 2.24 Example application search page.

Partial Page Updates The WebDSL language integrates a mechanism for up-
dating a page partially through an AJAX request. The placeholder keyword
(lines 24 and 30 in Figure 2.24) marks a page fragment for which the rendering
can be updated without updating the rest of the page. As an action, placehold-
ers can be rerendered through a replace call (line 21). Entering characters
in the search input field triggers a request to update the completion and
result placeholders. The request var on line 17 marks a variable for use in
rendering with transient data, the results will render with the value of s equal
to the search query. This language feature is further discussed in Section 3.7.

2.10 Discussion

This chapter contains an overview of the WebDSL web programming language
that addresses problems encountered in the domain of web programming. This
section discusses concerns that can be raised with the solution and encountered
issues when applying WebDSL in practice.

64

What about other sublanguages? The set of sublanguages is not necessarily
complete or set in stone, since common concepts in web programming evolve
over time. The core WebDSL system can be considered as data models, user
interfaces, and functions. Access control, data validation, and search were
created as extensions originally. Not every application will require all of these
subsystems, as it is perfectly possible to create an application without persisted
state or a service app with only a JSON interface.

Features that are not available in WebDSL are easy to add in. Java classes
and methods can be made accessible from WebDSL to benefit from Java’s
library ecosystem. Client-side JavaScript code can be wrapped in WebDSL
templates to be able to reuse JavaScript libraries and widgets.

Does it work in practice? There are several additional concerns that need to be
taken into account to make this solution practical. In particular the ease of use
to get your program to run, and compiler performance have been important
aspects which require engineering effort. Given that many web programmers
are used to the deployment speed of scripting language interpretation, i.e.
immediately deployed, any time spent waiting for compilation and deployment
is a deterrent for practical use. Chapter 6 discusses implementation aspects
of the WebDSL compiler, and several measures for improving the speed of
compilation. We have successfully used WebDSL for creating several real-world
applications with thousands of users. Chapter 7 shows application statistics
and provides a discussion of our experiences with the practical applicability of
WebDSL.

Are applications written in WebDSL completely secure? While WebDSL avoids
common web programming security problems, application security depends
on every piece of software that is on the production server of the deployed
application. A misconfiguration of the server easily leads to security problems
of the application. Therefore, it is hard to give guarantees about security. Even
libraries that are as widespread as OpenSSL suffer from zero-day vulnerabili-
ties, as became clear again with the Heartbleed [Synopsys 2020] vulnerability
in 2014. On the positive side, because of the high-level specification of web
applications in WebDSL, there is less code to comprehend when trying to grok
an application. Furthermore, security fixes can be applied in the WebDSL com-
piler, while all applications only need a recompile with the patched compiler.
In general, any application used in production requires continuous mainte-
nance when it comes to security. In Section 7.8 we discuss more examples of
security issues we have encountered in practice.

How does it compare to other solutions? In Chapter 1 we have looked at
existing languages and frameworks for web programming and discussed their
problems. The WebDSL design is based on these observations and attempts
to address common problems. In Chapter 8 we compare WebDSL with other
approaches found in literature.

Chapter 2. The WebDSL Web Programming Language 65

2.11 Conclusion

In this chapter we provided an overview of WebDSL, covering the language
and implementation considerations. The WebDSL web programming lan-
guage and system is unique in its focus on linguistic abstractions for web
programming. The language addresses the observed problems in web pro-
gramming (Chapter 1), providing new abstractions for web programming
concerns, static verification for those abstractions to find inconsistencies, and
taking security into account in the design of the language and the resulting gen-
erated code and runtime. In the remaining chapters of this dissertation, we will
cover key elements of WebDSL, and assess its usage in a number of production
applications serving thousands of users (Chapter 7). Chapter 3 dives deeper
into user interface definitions in WebDSL, explaining the request processing
lifecycle with multi-phase evaluation, because it constitutes an important part
of the novel web programming features in the WebDSL language.

66

3
User Interface Templates

3.1 Introduction

Parameterized HTML templates are a common component to encode pages in
web application frameworks, however, templating libraries are often lacking
in flexibility compared to regular functions in a general-purpose language.
Another issue is the lack of integration with the expressions of the host pro-
gramming language. How WebDSL handles the issues related to template
composition and integration with the expression language is explained in
Chapter 2. That chapter covers the output of data with automatic escaping of
HTML tags in the data to prevent Cross-Site Scripting. Input handling is more
complex than just rendering data.

This chapter examines in more detail the design of user input handling
in templates. User interaction occurs in the form of button presses, form
data entry, and other input events such as mouse hover. Data validation is
tightly connected to user input. The user must be notified and the operation
blocked when the entered data is not valid. Furthermore, partial page updates
using AJAX requests increases the possibilities for user input and immediate
feedback.

Section 3.2 provides a general overview of the improvements over other
solutions in the design of the WebDSL user interface language. WebDSL’s ap-
proach for handling user interface templates is unique and not found in other
solutions. Instead of using separate action handler functions with manually
specified input identifiers, WebDSL provides abstraction over the construction
of input names, and links actions to the context of the user interface definition.
This approach avoids any inconsistency issues that can occur with separately
defined action handlers and manually constructed input names, as well as
avoiding inconsistencies in enforcing access control when handling form sub-
mits. The related work for user interface languages is further discussed in
Chapter 8. In that chapter, a detailed analysis of a user interface definition is
made for a small application written in the Django framework in Section 8.2.1,
which is compared to the equivalent WebDSL code. In Section 8.3.1 several
user interface examples from the Ur/Web language are compared to WebDSL,
and in Section 8.3.2 the Links language is discussed in a similar way.

Section 3.3 explains the request processing lifecycle, consisting of databind,
validate, action, and render, which is essential for understanding the semantics
of user interface templates. Section 3.4 provides an example of the multi-
phase evaluation, and how the template elements involved with user input,
namely forms, actions, input templates, and template variables, are handled
in each phase. Section 3.5 explains the language primitives required for
expressing various input templates as reusable and reconfigurable library

67

components. These are phase function hooks, ref types, and template identifier
generation. Section 3.6 covers the abstractions for various forms of data
validation: value well-formedness, data invariants, form input validation, and
function assertions. This section also extends the example of multi-phase
evaluation with data validation, and gives an example of library input code
that manages data validation. Section 3.7 goes over two different modes for
partial page updates, namely nested pages and inline refresh. Additionally, an
example library input with validation using partial page updates is discussed.
Finally, Section 3.8 concludes this chapter on user interface templates.

3.2 Design Goals

WebDSL user interface templates define what information is visible on pages
and how the persisted state can be altered through user input forms. The
semantics of templates is based on multiple phases of execution: databind, vali-
date, execute action, and render. User input is handled through form and input
template elements. Input names used for submitting data are generated by the
WebDSL compiler. The data validation checks can be value well-formedness
checks, data invariants, input assertions, and action assertions. Partial page
updates are supported to create dynamic pages with AJAX updates. The
standard library contains output and input components, with on-submit or
immediate validation feedback.

We set out to achieve the following goals with the WebDSL user interface:

• Form submits that are safe from hidden data tampering Input templates
define exactly what values can be edited on a page. Entities are never
automatically created from blindly accepted input parameters. The
control flow of the page and templates determines what inputs and
submits can be accepted. This avoids problems related to tampering,
where additional values are inserted and accepted because an entity
is automatically filled based on request parameter names. This aspect
is based on a request processing lifecycle (Section 3.3) in which user
interface template code is traversed in multiple phases to handle form
inputs and actions (Section 3.4).

• Prevention of input identifier mismatch in action handlers Application devel-
opers do not have to specify name identifiers for HTML inputs, these
are generated automatically. Input template definitions take care of
matching the identifiers when reading submitted data and performing
data binding to update values in the data model. This prevents faults
related to mismatching identifiers in action handlers entirely. Instead
of separate action handling code, actions are designed to be executed
in the context of a user interface definition, as part of the multi-phase
evaluation (Section 3.4).

• Safe composition of input templates Because input names are generated by
the WebDSL runtime, individual input templates do not have the problem

68

of causing overlapping names in the generated page. Inputs can be safely
repeated in for iterations without any changes. The construction of
unique input names is provided through language primitives, described
in Section 3.5.

• Automatic enforcement of Cross-Site Request Forgery protection Input names
are generated from the specific data they edit, and on the identity of
the logged in user. This aspect avoids guessable input names that could
be used to construct malicious CSRF requests. This aspect is provided
through the primitives for template identifiers (Section 3.5.3).

• Expressive data validation Data validation is expressed in terms of the Web-
DSL models for entities and expressions. Validation rules are specified in
a coherent way, whether they are form input validations, data invariants,
or function assertions. Validation rules can depend on multiple proper-
ties, traverse the entity graph, and request additional information from
the database without restrictions. Rendering error messages is automatic,
and can also be customized. Data validation is integrated in the request
processing lifecycle and multi-phase evaluation of WebDSL (Section 3.6).

• Partial page updates without explicit JavaScript or DOM manipulation Partial
page updates are incorporated in the model for request handling. Page
replacements are specified in terms of placeholders and template ele-
ments. Application developers do not have to write additional JavaScript
code to handle AJAX requests and DOM replacements. The design for
integrating partial page updates is explained in Section 3.7.

• Partial page updates that are safe from hidden data tampering The abstraction
for partial page updates does not send entity data directly to the client,
instead it works with HTML fragments. This means there is no need
for additional server-side validation checks. This would be necessary
if entities are sent as JSON objects to be edited on the client, and then
submitted as a whole without knowing what operations were performed.
The current features for partial page updates handle updates and render-
ing on the server, and through access control rules check whether access
to functions or data is allowed (Section 3.7).

3.3 Request Lifecycle

Handling a page request is performed in several phases. The phases are shown
in Figure 3.1. Data validation failures can stop the processing of a form submit
and continue with the render phase to show error messages.

Convert Request Parameters Users interact with web applications through
the browser. This process consists of request and response strings being
exchanged between the web server and the browser. A form is defined by a
response string, which is interpreted by the browser to produce components
that allow user interaction. A user can fill in data in a text field, and press

Chapter 3. User Interface Templates 69

Update Model
Values Validate Forms Handle Actions Render Page

Input Assertion Errors

Data Invariant or Action Assertion Error

Data Invariant Errors

Convert Request
Parameters

Value Well-formedness Errors

Render Page Or
Redirect

Messages

Figure 3.1 WebDSL request lifecycle.

the submit button. The browser first collects the data from the form input
fields, and constructs a request string to send to the web server, which receives
the request string and parses it. Values from input fields can be accessed
separately but are represented as strings. The web application converts these
strings to actual types to be used in further processing of the request. Since
such conversions are common in web applications, they are typically directly
supported in frameworks. The supported types are the native types available
in the language used to build the framework. WebDSL extends the usual set of
primitive types with domain-specific types such as Email and Secret. Implicit
conversions from and to strings for these types are supported in the language
itself.

Request parameter conversion is not possible if the incoming value is not
well-formed. For example, a value of "3f" cannot be converted to an integer.
Since a failed conversion invalidates any input it is not necessary to update
the model before re-rendering the page with error messages. The Value

Well-formedness Errors arrow indicates this situation. In a page render
resulting from validation errors, input components that were submitted restore
the submitted value instead of the original value. This allows a user to fix the
entered data.

Update Model Values In the previous phase, parameters are decoded from
strings. In the ‘Update Model Values’ phase, these parameters are automatically
inserted in data model entities. WebDSL supports such data binding through
input elements. For example, the input(u.email) element declares that an
input field should be displayed with the current contents of the email property
of variable u of type User. Furthermore, when a user submits the containing
form with a new value in the email field, the new value will be assigned to
u.email. An action finalizing this operation just needs to save the variable u

in order to persist the new email address.

Validate Forms The changes made through data binding have to be validated,
this is performed after data binding for the whole form is completed. When
an entity property is being validated, each validation rule defined on that
property is checked, possibly producing multiple error messages. Besides
entity validations, there can also be validation rules in pages which need to be
enforced. The ‘Validate Forms’ phase traverses the form that is submitted and
checks any validation it encounters. When at least one validation fails during

70

this phase, further processing is disabled and errors are displayed, indicated
by the Data Invariant Errors and Input Assertion Errors arrows.

Handle Actions When all validation checks in previous phases have succeeded,
the selected action is executed. During the execution of an action there can
be action assertions that validate the data in the current execution state of the
action. Moreover, data invariants are still checked during this phase and can
produce validation errors as well. If any validation check fails, the entire action
is cancelled. This means all the changes to the data model are reverted and
rendering is initiated (Data Invariant or Action Assertion Error arrow).
Only one error can be produced at a time since action processing will not
continue when a validation fails.

Render Page or Redirect Validation messages produced in the previous phases
result in a re-render of the same page with error messages inserted. If all
validations succeed, the action results in a redirect to the same or a different
page, possibly sending messages along which describe successful execution of
the action (Messages arrow).

WebDSL Phases In WebDSL, both request parameter conversion and update
model values are performed in the databind phase. These steps do not depend
on the surrounding elements and can be performed in one traversal of the
templates. The four resulting phases that are used in the WebDSL runtime are:

• databind

• validate

• action

• render

3.4 User Input

The main components for user input, as introduced in Chapter 2, are forms,
submit functions, input templates, and template variables.

Forms The form template element enables and scopes user input. It groups
input elements that belong together when a user submits the form. Input
template elements perform automatic data binding upon submit, which means
the values of the entities are updated in-memory with the new values entered
in the form inputs. Also, when rendering the form initially, the old values
are shown. A form submit happens when a submit button or submit link is
clicked.

Actions The submit and submitlink elements represent a submit button or
link connected to an action. Actions perform further processing after handling
databinding and validation of the form. Actions can be anonymous inline
statement blocks or named definitions in the template. Alternatively, a form
submit action can be invoked based on an HTML DOM event such as oninput
or onclick.

Chapter 3. User Interface Templates 71

Input Templates Input templates perform data binding, before invoking an
action, the values entered are inserted into the data model in the transaction.
After the data binding phase, the action is invoked, for which the submit was
triggered.

Template Variables Template definitions can contain variable declarations.
These variables are used to create a new entity instance or store temporary
template data. They can be used as the argument to input templates enabling
users to edit the values through data binding.

3.4.1 Multi-phase Evaluation

Figure 3.2 shows an example of multi-phase evaluation of templates. The
Project entity together with initialization data is shown at the top. The project
entity has two properties, a name and a set of subprojects. The init block
contains application initialization that is run when the application is started
with an empty database. The first request to the editProject page renders a
form that shows the current values of the project names that are subprojects
of the "WebDSL" project. The second request happens when the input values
are edited and the save button is pressed. The request contains a map of the
form input names and their values. In this example, the input name attribute
values are simplified for clarity. On a form submit, databind is the first phase
that gets executed. In this phase the in-memory data model is updated with
the submitted values. Next, the action belonging to the submitted button
is executed. When the action finished successfully, the updated values are
persisted to the database and a redirect is sent to the client. By default a redirect
will be to the same page. The new values will be visible in the rendered form
of the third request.

3.5 Language Primitives for Input Implementation

To be able to define input templates, some additional language features are
required. These are phase function code, ref types, and template identifier
generation.

3.5.1 Phase Function Code

To implement input templates as library components, we need to be able to
execute commands in specific phases of the request lifecycle. WebDSL provides
this hook in the form of blocks inside templates, named databind, validate,
action, and render. Input templates use the databind block to update the
value of the input argument. For example, the input for Int values performs a
databind in which the submitted value is attempted to be parsed as an integer.
This is shown in Figure 3.3.
The utility String.parseInt method returns null when parsing fails. Vari-
able req is initialized when the first phase, databind, is executed. getRequest-

72

entity Project {
 name : String (id)
 apps : {Project}
 validate(name.length > 0,
 "Project name may not be empty")
}

init {
 var yg := Project{ name := "yellowgrass" };
 var wl := Project{ name := "weblab" };
 var cf := Project{ name := "codefinder" };
 var re := Project{ name := "researchr" };
 var webdsl := Project {
 name := "WebDSL"
 apps := {yg, wl, cf, re}
 }
}

page editProject(p:Project){
 form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}
 }
}

<form name="c1" action=".../editProject/WebDSL">
 WebDSL
 <input type="text" name="c2f1" value="yellowgrass"/>
 ...
 <input type="text" name="c2f4" value="researchr"/>
 <input type="submit" name="c3" value="save"/>
</form>

Re
nd

er

 form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}

if(requestparam("c1") == "1"){

 yg.name := requestparam("c2f1")
 ...
 re.name := requestparam("c2f4")Da

ta
bi

nd

 form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}

if(valid && requestparam("c1") == "1"){

 if(requestparam("c3") == "save"){ save(); }

Ac
ti

on

 form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}
 }

<form name="c1" action=".../editProject/WebDSL">
 WebDSL
 <input type="text" name="c2f1" value="Yellowgrass"/>
 ...
 <input type="text" name="c2f4" value="Researchr"/>
 <input type="submit" name="c3" value="save"/>
</form>

Re
nd

er

Request URL 1: editProject/WebDSL

submit arguments:
c1 = "1"
c3 = "save"

c2f1 = "Yellowgrass"
c2f2 = "Weblab"
c2f3 = "Codefinder"
c2f4 = "Researchr"

Request URL 2: editProject/WebDSL

Redirect Request URL 3: editProject/WebDSL

Figure 3.2 Data input with multi-phase evaluation example.

Chapter 3. User Interface Templates 73

 1 template input(i: ref Int){
 2 var req := getRequestParameter(id)
 3 < input
 4 name = id
 5 if(req != null){ value = req } else { value = i }
 6 all attributes
 7 />
 8 databind {
 9 if(req != null){ i := req.parseInt(); }
10 }
11 }

Figure 3.3 Example form input databind.

Parameter(String) returns for its argument name the value of the submitted
parameters in the request. id retrieves the generated unique template identifier
which is further explained in Section 3.5.3.

3.5.2 Ref Types

The ref marker on a type allows primitive types to be passed by reference.
Regular template arguments without ref are not directly assignable. An entity
property access passed as a ref argument, e.g. project.name, contains a
reference to the owning entity. This can be used to inspect annotations and
check validations declared on the property. The compiler checks whether the
call contains an argument that can be a ref type. The value is automatically
boxed at the call site. Assigning to a ref type argument has the effect of
assigning to the actual property in the entity. The developer only has to declare
the ref type in the formal argument of the template, the call site does not
require a special marker. The example in Figure 3.4 shows a simple input
template call and how the input updates the ref type value to assign the
entered name to the u.name argument.

 1 template exampleForm {
 2 var u := User{}
 3 form {
 4 input(u.name)
 5 submit action{ }{ "save" }
 6 }
 7 }
 8 template input(s: ref String){
 9 ...
10 databind { if(req != null){ s := req; } }
11 }

Figure 3.4 Example ref type argument.

Using phase hooks and ref types, a simplified version of the standard
library inputs for primitive types (without validation) can be constructed. This
is shown in Figure 3.5. In Section 3.5.3 we will discuss the generation of
template identifiers, which are accessed through the id keyword.

74

 1 template input(i: ref Int){
 2 var req := getRequestParameter(id)
 3 < input
 4 name = id
 5 if(req != null){ value = req } else { value = i }
 6 all attributes
 7 />
 8 databind { if(req != null){ i := req.parseInt(); } }
 9 }
10 template input(s: ref String){
11 var req := getRequestParameter(id)
12 < input
13 name = id
14 if(attribute("type") == ""){ type = "text" }
15 if(req != null){ value = req } else { value = s }
16 all attributes
17 />
18 databind { if(req != null){ s := req; } }
19 }
20 template input(b: ref Bool){
21 var rnamehidden := id + "_isinput"
22 < input type = "hidden" name = id + "_isinput" />
23 < input type = "checkbox"
24 name = id
25 if(getRequestParameter(rnamehidden) != null
26 && getRequestParameter(id) != null
27 || getRequestParameter(rnamehidden) == null
28 && b){
29 checked = "true"
30 }
31 all attributes
32 />
33 databind {
34 var tmp := getRequestParameter(id);
35 var tmphidden := getRequestParameter(rnamehidden);
36 if(tmphidden != null){
37 if(getRequestParameter(id) != null){ b := true; } else { b := false; }
38 }
39 }
40 }
41 template input(i: ref Float){
42 var req := getRequestParameter(id)
43 < input
44 name = id
45 if(req != null){ value = req } else { value = i }
46 all attributes
47 />
48 databind {
49 if(req != null){
50 i := req.parseFloat();
51 }
52 }
53 }

Figure 3.5 Library input templates for primitive types without validation.

Chapter 3. User Interface Templates 75

3.5.3 Tempate Identifier Generation

A typical problem in existing web programming frameworks is caused by the
composition of input templates into a single HTML structure. This structure
contains identifiers and names that should be unique, however, the template
libraries usually leave this entirely to the developer. The effect is that sub-
tle issues arise when composing templates, e.g. iterating over a datepicker
template multiple times and finding that only the first one is working. These
identifiers are automatically generated in WebDSL. The application developer
is not exposed to the low-level decisions for name parameters of inputs. To
automatically generate identifiers for templates, several requirements need to
be taken into account:

• Deterministic: subsequent requests should look for the parameter names
that were generated during the preceding render.

• Unique: parameter names should be unique for each input element on a
page.

• Protect against parameter tampering: forging requests should not enable
more functionality to the user.

• Protect against Cross-Site Request Forgery (CSRF): the identifiers should be
different depending on the data referred to and the user requesting it, in
order to avoid forged requests from malicious websites.

Any value that is sent to the client is considered user input that needs to be
checked. WebDSL sends only minimal state to the client. Page arguments
show up in the URL and as hidden inputs in the form. Access control rules are
used to specify access based on these arguments. Inside the pages, the only
values that are sent to the client are those inserted in templates. The name of
an input element refers to the input element in the page, but not to the data
model property it binds to. That binding happens on the server. If these input
names are tampered with, the only thing the user can achieve is that it fills
the data of another input on that page. Template identifiers are md5 hashed,
to keep the length of the identifiers consistent. The user session entity id is
included in the hash to provide protection against CSRF. Each user will have
different template identifiers, even if they access the same page.

The template identifiers are based on the template inputs they correspond
to, we divide this information into a static and a dynamic component. The
static component is the position in the source definition, multiple calls in a row
to the same template will have a different identifier. The dynamic component
is relevant when a templatecall is inside a for loop. In that case the for loop
identifier determines which iteration the input belongs to. The influence of
each control flow element on the template identifier is shown in Figure 3.6.
Figure 3.7 shows an example of how the template identifiers are generated for
template elements.

76

for(e in persistent entities)

for(e in transient entities)

for(e in primitive values)

templatecall(args) AST-location

e.id

iteration number

iteration number + e

AST-location

Template Element Template Id Component

Figure 3.6 Template unique identifier generation based on control-flow elements.

WebDSL Generated Template Id

page showMessages(inbox : InBox) {
 output(inbox.user.name)
 for(m in inbox.messages) {
 output(m)
 }
}
template output(m : Message) {
 output(m.contents)
}

tcall1

for1+m1.id+tcall2, for1+m2.id+tcall2, …

tcall3

Figure 3.7 Template unique identifier generation example.

The input name-value pairs that are expected depend on the existing data.
If the data changes between the rendering of the form and the submit, e.g.
through an update of another user, some of the submitted data might be
ignored. For example, a for loop on a collection of entities is rendered. Between
the render and the form submit one of the entities is removed. When the server
handles the submit, the new values for the removed entity will simply be
discarded, because those inputs do not exist anymore. There are several ways
to remedy this. The developer can decide on a more explicit handling of
conflicts by making a personal copy of the entity for the user, and then in
a separate step deciding how to merge the edited entity with the original.
Another way to handle potential conflicts is to detect concurrent changes
asynchronously and report it to the user before the form is submitted. Similar
to how Gmail reports that additional replies have been sent while you are
writing your own reply. A more heavy weight solution is to implement
Operational Transformation [Sun 2010] algorithms for collaborative editing,
which provides immediate feedback on concurrent activity. For example, this
would be required for a live shared code editor input component.

3.6 Data Validation

The core of a data-intensive web application is its data model. The web
application must be organized to preserve the consistency of data with respect

Chapter 3. User Interface Templates 77

 1 entity User {
 2 username : String (id, name)
 3 email : Email
 4 }
 5 entity UserGroup {
 6 name : String (id)
 7 members : {User}
 8 }

 9 page editUser(u: User){
10 form {
11 group("User"){
12 input("Username", u.username)
13 input("Email", u.email)
14 submit save { "Save" }
15 }
16 }
17 action save {
18 return user(u);
19 }
20 }

Figure 3.8 Example value well-formedness validation.

to the data model during updates, deletes, and insertions. The core consistency
properties of a data model are formed by structural constraints. These are
the primitive properties and relations between entities. Some consistency
properties cannot be expressed as structural constraints, e.g. if they depend
on additional information outside the persisted entities. Data validation rules
constitute the constraints that data input and processing must adhere to in
addition to the structural constraints imposed by the data model. WebDSL
integrates declarative data validation rules with user interface models, unifying
syntax, mechanisms for error handling, and semantics of validation checks.
The validation rules cover value well-formedness checks, data invariants, form
input validation, function assertions, and success messages.

3.6.1 Value Well-Formedness

Value well-formedness checks verify that a provided input value conforms to the
value type. In other words, the conversion of the input value from request
parameter to an instance of the actual type must succeed. This type of vali-
dation is usually provided by libraries or frameworks. However, it often has
to be declared explicitly, and possibly at each input of a value of the type. In
WebDSL, value well-formedness rules are checked automatically. WebDSL
supports types specific for the web domain, including Email, URL, WikiText,
and Image. Automatic value well-formedness constraints for all value types
provides decent input validation by default. Note that validation rules are
only used for input checks that require notification to the user. Checks and
filtering to prevent post-data tampering and JavaScript injection are taken care
of by the input and output components of WebDSL, such filtering should not
have to be expressed in an application’s validation rules. For example, in the
case of WikiText, there is only a validation for the maximum length allowed.
The output(WikiText) template already filters HTML elements based on a
restrictive whitelist after processing Markdown.

78

The editUser page in Figure 3.8 consists of a form with labeled inputs
for the User properties. The save action persists the changes to the database,
provided that all validation checks succeed. Since well-formedness validation
checks are automatically applied to properties, the email property is validated
against its well-formedness criteria. The result of entering an invalid email
address is shown in the screenshot. A message is presented to the user and
the action is not executed.

3.6.2 Data Invariants

Data invariants are constraints on the data model, i.e. restrictions on the
properties of data model entities. These validation rules can check any type
of property, such as a single entity reference, a collection, or a primitive
type. By declaring validation in the data model, the validation is reused for
any input or operation on that data. Validation rules in WebDSL are of the
form validate(e,s) and consist of a Boolean expression e to be validated,
and a String expression s to be displayed as error message. Any globally
visible functions or data can be accessed as well as any of the properties and
functions in scope of the validation rule context. In the examples shown in
this chapter, error messages are placed inline for conciseness. In general, error
messages can also be placed inside a function or even be stored as entity
property in the database, depending on the requirements for configuration
and internationalization of the application.

Validation checks on the data model are performed when a property on
which data validation is specified is changed and when the entity is saved or
updated. Validation is connected to properties either by adding the validation
in the property annotation or by referring to a property in the validation
check. The validation mechanism takes care of correctly presenting validation
errors originating from the data model. For form inputs causing data invariant
violations the message is placed at the input being processed. When data
model validation fails during the execution of an action, the error is shown at
the corresponding button.

Figure 3.9 presents a User entity with several invariants and a password

property. The username property has the id annotation, which indicates the
property is unique and can be used to identify this entity type. The password
property is annotated with validation rules that express requirements for a
stronger password. By declaring validation rules in the entity, explicit checks
in the user interface can be avoided.

Figure 3.10 shows more advanced validation rules, which express depen-
dencies between the properties of an entity. The UserGroup entity is extended
with an owner reference, a moderators set, and a memberLimit value. The
editUserGroup page allows the owner to edit some of the UserGroup prop-
erties. The validation rule on the moderators set expresses that the owner
should always be in this set of moderators. Similarly, the owner should always
be a member. The member set is constrained in size based on the memberLimit

value. Validation rules that cover multiple properties, such as the ‘owner

Chapter 3. User Interface Templates 79

 1 entity User {
 2 username : String (id, name)
 3 password : Secret
 4 email : Email
 5 }
 6 extend entity User {
 7 validate(password.length() >= 8, "Password needs to be at least 8 characters")
 8 validate(/[a-z]/.find(password), "Password must contain a lower-case character")
 9 validate(/[A-Z]/.find(password), "Password must contain an upper-case character")
10 validate(/[0-9]/.find(password), "Password must contain a digit")
11 }
12 page editUser(u: User){
13 form {
14 group("User"){
15 input("Username", u.username)
16 input("Email", u.email)
17 input("New Password", u.password)
20 submit save { "Save" }
21 }
22 }
23 action save {
24 return user(u);
25 }
26 }

Figure 3.9 Example data invariants on User entity.

 1 entity UserGroup {
 2 name : String (id)
 3 owner : User
 4 memberLimit : Int
 5 moderators : {User}
 6 members : {User} (validate(membersWithinLimit(), "Exceeds member limit"))
 7 validate(owner in moderators, "Owner must always be a moderator")
 8 validate(owner in members, "Owner must always be a member")
 9 predicate membersWithinLimit { members.length <= memberLimit }
10 }
11 page editUserGroup(ug: UserGroup){
12 form {
13 group("User Group"){
14 input("Name", ug.name)
15 input("Member Limit", ug.memberLimit)
16 input("Moderators", ug.moderators)
17 input("Members", ug.members)
18 submit save { "Save" }
19 }
20 }
21 action save {
22 return userGroup(ug);
23 }
24 }

Figure 3.10 Example data invariants on UserGroup entity.

in moderators’ check, are performed for all input components of properties
the validation is specified on. However, the checks can be added to a single
property as well, in order to specialize the error message. This is illustrated by
the member limit check, which is added to the members properties. Note that
although the check is only attached to the members property, a form and action
that changes only memberLimit would still check invariants for the whole

80

 1 page editUser(u: User){
 2 var p: Secret
 3 form {
 4 group("User"){
 5 input("Username", u.username)
 6 input("Email", u.email)
 7 input("New Password", u.password)
 8 input("Re-enter Password", p){
 9 validate(u.password == p
10 , "Password does not match")
11 }
12 submit action{ }{ "Save" }
13 }
14 }
15 }

Figure 3.11 Example form input validation.

entity before committing changes. Duplication in checks can be avoided by
putting checks in predicates or functions.

3.6.3 Form Input Validation

Form Input Validation are necessary when the validation rule targets an input
that is not directly connected to the persisted data model. These types of
constraints are easy to address in the form environment itself. Validation
checks in WebDSL pages have access to all variables in scope, including page
variables and page arguments. Since databinding inputs happens before these
validation rules are checked, the placement and order of validation rules does
not influence the results of the checks. Visualization of errors resulting from
validation in forms are placed at the location of the validation declaration.
Usually such a validation rule is connected to an input, which can be expressed
by placing the validation rule as a child element of input.

The example in Figure 3.11 shows an extra password input field in which the
user must repeat the entered password. This validation cannot be expressed as
a data invariant, since the extra password field is not part of the User entity.
Therefore, the rule is expressed in the form directly, where it has access to the
page variable p. This variable contains the repeated password whereas the first
password entry is saved in the password field of User entity u. When entering
a different value in the second field the validation error is presented, as can be
seen in the screenshot.

3.6.4 Function Assertions

Function assertions are predicate checks at any point in the execution of functions
for verification during the processing of inputs. If such an assertion fails, the
function processing needs to be aborted, reverting any changes made, and
the validation message has to be presented in the user interface. WebDSL
supports this type of validation transparently using the validate syntax. The
errors resulting from function assertion failures are displayed at the place

Chapter 3. User Interface Templates 81

 1 page createGroup {
 2 var ug := UserGroup{}
 3 form {
 4 group("User Group"){
 5 label("Name"){ input(ug.name) }
 6 label("Owner"){ input(ug.owner) }
 7 submit save() { "Save" }
 8 }
 9 }
10 action save() {
11 validate(ug.owner != null, "A group must have an owner");
12 validate(ug.owner.email != "", "Owner has not provided an email address");
13 ug.save();
14 email newGroupNotify(ug);
15 return userGroup(ug);
16 }
17 }
18 email newGroupNotify(u: UserGroup){
19 from("info@example.com")
20 to(u.owner.email)
21 subject("Usergroup created: ~u.name")
22 "Your usergroup ~u.name has been created."
23 }

Figure 3.12 Example function assertions.

the execution originated, e.g., above the submit button which triggered the
erroneous function.

Figure 3.12 provides an example of a function assertion. The createGroup

page allows creating new UserGroup entities. The constraints expressed in
the save function require that an owner is selected and that the owner has an
email address specified. After validating these requirements, the group can be
created. The newGroupNotify email definition retrieves an email address from
its UserGroup argument, through ug.owner.email, and sends a notification
email to the owner of the new group.

3.6.5 Messages

The discussed data validation features report erroneous behavior in functions.
Related to such function assertions, is a generic messaging mechanism for
giving feedback about the correct execution of a function. This requires a place
to show messages, for instance by adding a default message template at the top
of each page. This is done by calling the messages template. This takes care of
retrieving the messages and displaying them. Display of success messages can
be customized by overriding the templateSuccess template. Furthermore, a
message has to be generated in a function. The message(String) function
takes the success message and passes it along to the next page that will be
rendered. An example of such messaging is shown in Figure 3.13. The save

function of the editUser page passes a message to the page redirected to,
namely user.

82

 1 page editUser(u: User){
 2 //... form ...
 3 action save {
 4 message("User information successfully changed");
 5 return user(u);
 6 }
 7 }
 8 page user(u: User){
 9 group("User"){
10 label("Username"){ output(u.username) }
11 label("Email"){ output(u.email) }
12 navigate editUser(u){ "edit" }
13 }
14 }

Figure 3.13 Example success messages.

3.6.6 Validation Phase in Request Lifecycle

The example in Figure 3.14 shows a multi-phase evaluation that includes the
validation phase. This example illustrates what happens on a validation failure.
The submitted values contain an empty name for one of the projects, which
is not allowed according to the validation rule. After databind, the validate
phase checks these validations for each of the inputs. When validation fails at
this point, the action is not executed, indicated by the check of valid. Instead
of redirecting the client to request a new page, the response returns the current
page with validation errors inserted. The inputs contain the entered values,
that way the user can fix the problem without having to re-enter previously
entered information.

3.6.7 Library Input With Validation

Figure 3.15 shows the input template for Int values together with validation
handling. The validation checks wellformedness of the value, which can fail if
the value cannot be parsed as a number, or it is outside the range of allowed
integers. This check shows the use of language embedded regular expressions.
A regular expression can be included between slashes. This type of expression
has several functions such as find to find an occurence, and match for exact
match. Errors are collected in a request var errors, which is a variable that
does not get reinitialized when validation fails. That is why even after calling
cancel(), the errors can still be rendered. cancel() is a built-in function to
signal validation failure. It will prevent the execution of a submit function,
and signals that a response needs to be rendered instead. It also sets the
database transaction to be aborted after processing completes, to prevent any
entity updates. validationContext(id){ elements } invokes the nested
validate elements of the input template and captures the resulting errors.
These errors are retrieved using the getValidationErrorsForId function.
ref type arguments provide a getValidationErrors method, which invokes
the checking of entity invariants. Validation is implemented in a separate

Chapter 3. User Interface Templates 83

page editProject(p:Project) {
 form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}
 }
}

<form name="c1" action=".../editProject/WebDSL">
 WebDSL
 <input type="text" name="c2f1" value="yellowgrass"/>
 ...
 <input type="text" name="c2f4" value="researchr"/>
 <input type="submit" name="c3" value="save"/>
</form>

Re
nd

er

form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}

if(requestparam("c1") == "1"){

 yg.name := requestparam("c2f1")
 ...
 re.name := requestparam("c2f4")Da

ta
bi

nd

form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}

if(requestparam("c1") == "1"){

 yg.validateName();
 ...
 re.validateName();Va

li
da

te

form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}

if(valid && requestparam("c1") == "1"){

 if(requestparam("c3") == "save"){ save(); }

Ac
ti

on

page editProject(p:Project){
 form{
 output(p.name)
 for(app in p.apps){
 input(app.name)
 }
 submit save() {"save"}
 }
}

<form name="c1" action=".../editProject/WebDSL">
 WebDSL
 <input type="text" name="c2f1" value=""/>
 Project name may not be empty
 <input type="text" name="c2f2" value="Weblab"/>...
 <input type="submit" name="c3" value="save"/>
</form>

Re
nd

er
 V

al
id

at
io

n
Er

ro
rs

Request URL 1: editProject/WebDSL

submit arguments:
c1 = "1"
c3 = "save"

c2f1 = ""
c2f2 = "Weblab"
c2f3 = "Codefinder"
c2f4 = "Researchr"

Request URL 2: editProject/WebDSL

Figure 3.14 Validation in multi-phase evaluation example.

84

template from the actual input component, which means it can be replaced
with other validation mechanisms if required. A variant with AJAX validation
will be discussed in Section 3.7.3.

3.7 Partial Page Updates

Regular page requests retrieve the contents of an entire page. This is not the
only way to update the view of the web application in the browser. From the
JavaScript runtime additional requests can be made that do not have to retrieve
an entire page. Instead these can retrieve a fragment of the displayed page to
update only part of the page. The JavaScript runtime can also request just the
data that is to be displayed, without transferring any additional rendering or
layout information. Because only a fragment of the page is updated, the server
response generation and delivery are faster. Also, the browser can process
such a partial update faster than a full page update, which improves the user
experience.

The technique for partial updates is called AJAX (Asynchronous JavaScript
and XML). The asynchronous part refers to the fact that a page does not
stop responding when an AJAX request is made, as opposed to regular page
requests which block further interaction with the displayed page. A side-effect
of updating page content dynamically is that the browser URL is not updated
automatically. Additionally, the specific page with dynamically updated con-
tent is not bookmarkable by default either. This is typically seen as a downside,
although these features can be reconstructed through updating the URL with
the HTML5 History API after an AJAX update, and making the specific selec-
tion of content possible through the URL. Using XML as data format is not
required, in fact, data is typically transferred in the JSON (JavaScript Object
Notation) format. The JavaScript runtime has built-in support for parsing this
format and converting it to JavaScript objects.

Partial page updates with AJAX enable single-page interfaces. A single-
page interface loads all user interface updates and executes operations through
AJAX requests. This application style avoids having to fully load a page after
every action or navigation click. Navigation links can also be replaced with
tabs or other visual indicators that contribute to the feeling of a single-page
interface.

JavaScript widgets, reusable user interface components, can be created
without having to supply all data in advance. For example, in a search field
you could add autocompletions that are generated by the server based on the
partially entered text. This requires an asynchronous request to retrieve the
possible completions for the currently entered search term.

Implementing partial page updates directly in JavaScript can be done in
many ways, however, it is typically quite low-level. Response handling is
specified in callback functions. JSON data from the server has to be converted
to DOM actions. Form submits have to construct a request string which
contains all the input data. JavaScript libraries like JQuery can remove some
of the boilerplate code, but also require an additional tool which adds to the

Chapter 3. User Interface Templates 85

 1 template input(i: ref Int){
 2 var req := getRequestParameter(id)
 3 request var errors: [String] // request var is not reset when validation fails
 4 if(errors.length > 0){
 5 errorTemplateInput(errors){
 6 inputIntInternal(i, id)[all attributes]
 7 }
 8 }
 9 else {
10 inputIntInternal(i, id)[all attributes]
11 }
12 validationContext(id){ elements }
13 validate {
14 if(req != null){
15 if(/-?\d+/.match(req)){
16 if(req.parseInt() == null){
17 errors.add("Outside of possible number range");
18 }
19 }
20 else {
21 errors.add("Not a valid number");
22 }
23 }
24 if(errors.length == 0){ // no wellformedness errors
25 errors.addAll(i.getValidationErrors()); // check invariants in entity
26 errors.addAll(getValidationErrorsForId(id)); // errors from nested elements
27 }
28 if(errors.length > 0){
29 cancel(); // marks request as validation failed
30 // no submit action is executed and transaction is aborted
31 }
32 }
33 }
34 template inputIntInternal(i: ref Int, tname: String){
35 var req := getRequestParameter(tname)
36 < input
37 name = tname
38 if(req != null){ value = req } else { value = i }
39 all attributes
40 />
41 databind {
42 if(req != null){
43 i := req.parseInt();
44 }
45 }
46 }

Figure 3.15 Input for Int with validation.

86

http://[domain]/
ajax_userInfo/[User]http://[domain]/

http://[domain]/
ajax_groupInfo/
[UserGroup]

info

 1 page root {
 2 sidebar(principal)
 3 }
 4 template sidebar(u: User){
 5 placeholder info { "Placeholder for user or group info" }
 6 submitlink action{ replace(info, userInfo(u)); }{ "Show user info" }
 7 submitlink action{ replace(info, groupInfo(u.group)); }{ "Show group info" }
 8 }
 9 ajaxtemplate userInfo(u: User){
10 output(u)
11 }
12 ajaxtemplate groupInfo(g: UserGroup){
13 output(g)
14 }

userinfo

groupinfo

Figure 3.16 Partial page updates with AJAX templates.

complexity for the definition of the user interface. There is room for abstraction,
since most updates consist of simple replace, add, or remove actions of DOM
elements.

Finding a single abstraction that covers all cases of partial page updates,
while also preserving the safety guarantees against tampering is difficult. In
WebDSL we have implemented and experimented with two different styles
for partial page updates: nested pages and inline refresh. There is room
for improvement, current frameworks like React [2023], Angular [2023], and
Elm [2023] perform client-side rendering where there is complete control over
incremental interface updates.

3.7.1 Nested Page

The first type of partial page update abstraction is updating isolated templates
contained in another page. This can be seen as a nested page inside a page.
They are isolated because they handle subsequent requests separate from the
containing page. The AJAX template is an entry point on the server with its
own URL. The URL of an AJAX template is not meant to be used from the
address bar and thus consists of a generated name. This concept of AJAX
templates enables coarse-grained partial page updates. Part of a page is marked
as a placeholder, which can be filled in with arbitrary AJAX templates. Filling
in a template means that an action is invoked that replaces the placeholder
contents.

The example in Figure 3.16 shows a nested page that outputs information.

Chapter 3. User Interface Templates 87

http://[domain]/
ajax_showEditableTex

t/[User]
http://[domain]/

http://[domain]/
ajax_editEditableTex

t/[UserGroup]

editableText

 1 entity Project {
 2 description : Text
 3 members : {User}
 4 function canUserEdit(u: User): Bool {
 5 return u in members;
 6 }
 7 }
 8 page root {
 9 var p := Project{}
10 placeholder editableText {
11 showEditableText(p)
12 }
13 }
14 ajaxtemplate showEditableText(p: Project){
15 output(p.description)
16 submitlink action{ replace(editableText, editEditableText(p)); }{ "[Edit]" }
17 }
18 ajaxtemplate editEditableText(p: Project){
19 form {
20 input(p.description)
21 submit action{ replace(editableText, showEditableText(p)); }{ "Save" }
22 }
23 }
24 rule ajaxtemplate showEditableText(p: Project){ p.canUserEdit(principal) }
25 rule ajaxtemplate editEditableText(p: Project){ p.canUserEdit(principal) }

output(p.description)

form

Figure 3.17 Forms in AJAX templates.

Through submit links, the shown data can be changed to user or group info.
In Figure 3.17, a partial page with input form is shown. The submit inside
editEditableText will not submit to the page, but uses the ajaxtemplate

entry point. Access control rules are required to verify that the user is allowed
to perform the value update.

The benefit of the nested page method is abstraction over low-level JavaScript
requests and DOM manipulation. AJAX can be described in terms of an
ajaxtemplate being placed or updated in placeholders. The WebDSL compiler
generates the client-side and server-side code to handle these updates. Initially,
we created an API with several commands, such as replace, hide, show, append,
and remove. However, for typical scenarios, usually just the replace command
is sufficient.

There are also limitations with this method. Firstly, because the AJAX
templates are entry points to the server, they have to be included in an access
control specification. This introduces some syntactic overhead when creating
AJAX templates. Secondly, because the fragments are isolated, this type of

88

partial page update cannot be used to create a dynamic form that changes
shape based on input. The AJAX template cannot be nested in a form of
the enclosing page, as the page does not know about the contents of the
placeholder. This indicates a weakness in the solution regarding static analysis.
The content of a placeholder cannot be known in advance, any AJAX template
can be nested in a placeholder.

An AJAX template is rendered differently than a regular template, it behaves
more like a page. Generating template identifiers starts fresh when handling
an AJAX template. The AJAX template cannot be part of a form that is outside
its own definition. It is also a boundary for forms nested inside it. A form
submit inside an AJAX template does not go through the surrounding page.
Also any rerenderings, such as those for data validation errors, happen inside
the placeholder only.

Placeholders consist of the placeholder keyword and an identifier, followed
by a call to an AJAX template with the initial content. Placeholders declare the
placeholder name as a template variable with String-like type Placeholder.
This variable is assigned a name based on the declared name and the unique
template identifier. The assigned placeholder name will be automatically
unique on the page. The replace(Placeholder, ajaxtemplatecall) func-
tion performs the replacements, this can be invoked from a submit function
connected to a button or other input event, such as oninput. The unique
placeholder names enable such templates to be composed without interference
caused by duplicate identifiers. As a low-level fallback, a placeholder name can
be generated from an expression. This expression has to be reproduced when
invoking the replace calls. Using this option requires that the application
designer ensures these identifiers are unique on a page, however, in this case
the placeholder name does not have to be passed around to be able to refer to
it from different templates.

There were some issues we encountered when using the nested page AJAX
templates. One issue is that certain configurations that occur due to dynami-
cally changing the DOM get rejected and implicitly transformed by the browser.
In particular these problems arise with nested forms, and incorrectly nested
table elements. This breaks the abstraction of the isolated page inside a page.
Another issue is that misbehaving JavaScript widgets can cause confusing
errors. For example, a JQuery UI modal dialog widget conceptually fits well
within an AJAX template. However, if the JavaScript code for dialogs leaves old
closed dialogs hidden inside the DOM, these can cause unintended interactions
with a new dialog. Datepickers stop working, because they are finding the
hidden dialog fragment in the DOM instead of the active one. The workaround
that was needed here was to explicitly clean up old hidden dialog elements.

Nested pages based on AJAX templates are problematic for modularization.
When creating a reusable library of these components, access control rules
cannot be included in that library, because these depend on the specific ap-
plication. This means that a library will always need some boilerplate access
control rules to enable AJAX templates.

Functions in WebDSL run on the server, and allow an escape to Java code

Chapter 3. User Interface Templates 89

and invoking libraries. This Java class interoperability feature increases the
coverage of the language, by adding a pragmatic way of doing something the
language has no built-in support for. In the case of partial page updates and
AJAX, escaping means invoking JavaScript code and similarly increases the
coverage of the language. There are two ways to invoke JavaScript code, either
by including a script tag inside a template, or sending JavaScript commands
from the server similar to replacing a placeholder. Script tags embed JavaScript,
with a tilde escape to splice in a String value from WebDSL. The runscript
command sends the supplied JavaScript to the client and invokes it there.

3.7.2 Inline Refresh

The nested page partial page updates approach in the previous section abstracts
over low-level DOM operations and AJAX JavaScript request handling. While
this already provides a major relief from custom AJAX implementations, there
are a couple of downsides. In particular, the difficulty to dynamically alter
forms based on provided input, and the necessity of declaring access control
rules due to the global nature of replacements. Additionally, AJAX requires
extra template definitions that might only be used in one context. These
issues have been addressed in an alternative style of partial page updates
implemented in WebDSL.

The inline refresh method for partial page updates is based on refreshing
placeholder contents, instead of replacing them with a new template call. In
this method the AJAX requests go through the page as they would with normal
templates. This means they inherit the access control rule of the page and are
not a separate entry point on the server. Also, the contents of the placeholder
can be statically analyzed, because all the possible content is explicit in the
definition.

The example in Figure 3.18 illustrates dynamic form behavior with inline
refresh. The input for the first value can trigger the input for the second value
to show up. In the case of simple triggers that show or hide form inputs, such
form visibility could also be encoded client-side with JavaScript. However,
besides breaking the abstraction, that solution does not easily extend to checks
that require the server.

While syntactically a lot more light-weight, at runtime these inline updates
do not get the performance benefit of only accessing the AJAX template. The
page structure is analyzed to determine what components need to be updated.
While being easier to analyze, this method is also more restrictive, because
the nested page approach allowed any AJAX template to be inserted in any
placeholder. In practice we have found use cases for both variants.

Besides inheriting access control specifications, these local placeholder re-
freshes can work in conjunction with form input elements. This is possible
due to the contents of the placeholder being known in the page definition. The
placeholder does not become a boundary of the form. Form elements can be
made optional with a regular WebDSL if condition. The request var can
be used to mark a transient values to not be reset to the persisted state when

90

http://[domain]/

ph

 1 entity Assignment {
 2 type : AssignmentType
 3 lang : Language
 4 }
 5 enum AssignmentType { programming("Programming"), multiplechoice("Multiple Choice") }
 6 enum Language { java("Java"), python("Python") }
 7 page root {
 8 request var a := Assignment{} // request var is not reset when rendering in replace
 9 // call, form input state used to decide 'if' on line 18
10 form {
11 input(a.type)[oninput = replace(ph)] // trigger the inline refresh on change
12 /* replace is a built-in action variant for common pattern:
13 - run action even if form has validation errors that would normally block action
14 - content of placeholder(s) will be replaced with new render based on form data
15 - rollback any changes to persisted data, replace action is meant for UI update
16 */
17 placeholder ph {
18 if(a.type == programming){
19 input(a.lang)
20 }
21 }
22 submitlink action{ a.save(); }{ "Save" }
23 }
24 }

Figure 3.18 Partial update model with inline refresh.

rendering (which is the normal behavior for var). The point at which the
rerender is invoked is explicit here, typically these would be placed in DOM
event actions that trigger when a previous input is changed. The order of the
inputs starts to matter here, an input that influences a conditional fragment
must come before it. The reason for this is that first phase, databind, already
has to pick the right control flow path.

3.7.3 Inputs with Immediate Validation

Figure 3.19 shows the Int template that performs the regular on submit
validation, as well as immediate AJAX validation when entering data. The
validation is performed in the validator function, which is executed whenever
the input changes. It performs the same validation as would happen on a form
submit, but renders its messages by replacing the validateph placeholder.
This is using the nested page abstraction. The messages AJAX template only
displays the messages passed to it, so it is safe to make publicly accessible
with access control rules. The rollback is introduced to be able to use submit

Chapter 3. User Interface Templates 91

 1 template input(i: ref Int){
 2 var req := getRequestParameter(id)
 3 request var errors: [String] // initialized to empty list
 4 inputIntInternal(i, id)[oninput = validator()] // invokes validator on any change
 5 validationContext(id){ elements } // regular nested validation on submit
 6 placeholder validateph {
 7 if(errors != null && errors.length > 0){
 8 showMessages(errors) // regular validation errors on submit
 9 }
10 }
11 validate { // regular form submit validation
12 errors := checkIntWellformedness(req); // shortened, shown in previous fragments
13 if(errors.length == 0){
14 errors.addAll(i.getValidationErrors());
15 errors.addAll(getValidationErrorsForId(id));
16 }
17 if(errors.length > 0){
18 cancel(); // marks request as validation failed
19 // no submit function will be executed and transaction will be aborted
20 }
21 }
22 action ignore-validation validator { // ignore-validation: perform action
23 // even if other validations in form fail
24 errors := checkIntWellformedness(req);
25 if(errors.length == 0){
26 errors := i.getValidationErrors(); // validate entity property invariants
27 validatetemplate(validationContext(id){ elements }); // nested validate checks
28 errors.addAll(getValidationErrorsForId(id)); // in input templatecall
29 }
30 if(errors.length > 0){
31 replace(validateph, showMessages(errors));
32 }
33 else {
34 replace(validateph, noMessages());
35 }
36 rollback(); // complete function normally but abort transaction,
37 // this action is only for generating replace calls to show errors
38 }
39 }
40 template inputIntInternal(i: ref Int, tname: String){
41 var req := getRequestParameter(tname)
42 < input
43 name = tname
44 if(req != null){ value = req } else { value = i }
45 all attributes
46 />
47 databind {
48 if(req != null){
49 i := req.parseInt();
50 }
51 }
52 }

Figure 3.19 Input for Int with AJAX validation.

92

functions for validation only. It completes the function, but will abort the
transaction to prevent any changes to persisted data. The ignore-validation

modifier allows the function to be executed regardless of whether earlier
validation failed. This template definition repeats the validation for the actual
form submit, in order to guarantee that the final submit values are checked
again before completing the form and saving the data.

3.8 Conclusion

WebDSL’s approach for handling user interface templates is unique and not
found in other solutions (see Chapter 8 for a comparison with other solutions).
Instead of using separate action handler functions with manually specified
input identifiers, WebDSL provides abstraction over the construction of in-
put names, and links actions to the context of the user interface definition.
This approach avoids any inconsistency issues that can occur with separately
defined action handlers and manually constructed input names, as well as
avoiding inconsistencies in enforcing access control when handling form sub-
mits. Form submits are safe from hidden data tampering. Input templates
can be safely composed, and input identifier mismatch in action handlers is
prevented through template identifiers provided by the runtime. Furthermore,
these identifiers provide automatic enforcement of Cross-Site Request Forgery
protection. WebDSL enables expressive data validation, which is integrated
into the multi-phase execution semantics of templates. Partial page updates
are supported without explicit JavaScript or DOM manipulation. Data updates
are always performed on the server, and only if the relevant inputs and actions
are available at the time of handling the update request. WebDSL provides
an extensive standard library of input and output components that support
both regular validation and immediate validation feedback with partial page
updates.

This concludes the discussion of WebDSL user interface templates, this topic
will be revisited in Section 5.2.1 where the evolution of this feature is described.
Chapter 4 will cover access control, which is also an essential feature of the
WebDSL language for creating real-world applications.

Chapter 3. User Interface Templates 93

94

4
Access Control

4.1 Introduction

Access control is essential for the security and integrity of interactive web
applications. While a simple ‘all-or-nothing’ access control policy such as
provided by Apache’s .htaccess file is sufficient for many web sites and ap-
plications, other applications such as conference management systems, social
network services, and online auctions require more sophisticated policies to
regulate the access to sensitive data and operations on those data. A simple
access policy can be enforced by means of a generic ‘check at the gate’, ver-
ifying the identity of the user. More advanced policies grant or deny access
based on the identity of the user, but also the particular entry point, the sub-
sequent actions to be invoked, and the data to be viewed or modified. For
example, in a social network service, certain pages may be only accessible to
the members of a group, which requires checking the particular combination
of page, group, group membership, and user identity. Definition of such
policies requires close integration with the web application, tuned to its data
model and operations. Furthermore, validation and verification of a policy
requires a concise high-level specification, separate from the implementation
details of the rest of the application. In practice, existing solutions for access
control for web applications are either separate policy languages, which cannot
be seamlessly integrated, or application frameworks, which do not support
high-level definition of policies.

Access control policy languages such as Ponder and XACML [Damianou
et al. 2001; Moses et al. 2005] are often implemented as an autonomic system
that can be queried for access control decisions. This approach makes it
hard to support flexible access control. All the information needed for a
check has to be explicitly transferred to the policy engine. Furthermore, these
frameworks do not aid in separating checks from the main application; the
actual check invocations are still scattered across the application code. Finally,
the complexity of these policy languages (e.g., the RBAC template for XACML
[Anderson 2004]) decreases their readability, resulting in unclear policies.
Web application frameworks such as Spring/Acegi [Johnson et al. 2005; Alex
2008] and Seam [Yuan and Heute 2007] support an aspect-oriented approach
to access control, separating access control code from application code. These
frameworks supply more or less fixed role-based [Sandhu 1998; Sandhu,
Ferraiolo, and Kuhn 2000] and discretionary [Samarati and di Vimercati 2001;
Sandhu and Samarati 1994] access control configurations. Extending the built-
in policy or creating other types of policies requires manually implementing
these as an extension of the underlying object-oriented framework. Such

95

framework extensions are hard to test and require knowledge of the framework
to be able to understand the policies.

This situation is not unique for the domain of access control. The implemen-
tation of web applications comprises many other technical concerns, including
data representation, querying, and modification, user input, data validation,
user interface design, and navigation. These concerns are often addressed by
separate languages. For example, in (one configuration of) the Java web pro-
gramming platform we find the Java general purpose programming language,
the SQL query language (or some dialect such as HQL), the JavaServer Faces
(JSF) presentation language with the EL expression language for accessing
data, the CSS stylesheet language, and other XML schemas for configuration
such as page flow declarations.

While separation of concerns and ‘choosing the right language for the job’
are conceptually appealing, the amalgam of languages used in a single web
application project are typically poorly integrated, with an adverse effect on
productivity and software quality. For example, while Java is a statically
checked language, the portions of a web application implemented in XML are
outside the control of the Java compiler. Thus, the integration of XML data and
Java classes is not statically verified, requiring run-time debugging and possibly
errors that go undetected into production systems. The encoding of SQL
queries as string literals entails that queries are only checked syntactically and
semantically at run-time, and introduce the risk of injection attacks. Similarly,
the use of dependency injection leads to leaner programs, but also shifts linking
of program components from compile-time to deployment- or even run-time.
Besides the loss of static verification, the languages are often redundant, i.e.
need to address overlapping concerns. For example, the language of EL
expressions in JSF is a poor subset of Java expressions used for accessing
properties and methods of Java objects connected to a JSF page.

Generic aspect languages such as AspectJ [Kiczales et al. 2001] achieve sepa-
ration of concerns while maintaining the benefits of linguistic integration, such
as static analysis and reuse of overlapping functionality (e.g. statements and
expressions). However, generic aspect languages are agnostic about particular
(technical) domains such as access control, and thus require policies to be
encoded programmatically, precluding benefits provided by more declarative
definitions.

WebDSL supports separation of concerns by providing sub-languages cater-
ing for the different technical domains of web engineering. Linguistic inte-
gration of these sub-languages ensures seamless integration of the aspects
comprising the definition of a web application.

In this chapter, we present the extension of WebDSL with abstractions
for declarative definition of access control. The access control policy for an
application is defined separately from the data model and user interface using
declarative rules. While access control rules are defined as a separate concern,
the extension is linguistically integrated. That is, access control rules use the
same expression language, which refers to the same data models that are used
in the rest of an application. Furthermore, access control checks are integrated

96

into the implementation, which allows rules to access the complete object
graph, instead of requiring selected data to be sent to a separate engine. Rather
than catering for a fixed policy, the extension provides the basic mechanisms
for encoding a wide range of access control policies that can be adapted to the
requirements of the application and integrated with its data model. Finally, the
declarative and domain-specific nature of rules allows us not only to restrict
access to pages and actions, but also to adapt the navigation options presented
to users to prevent them from navigating to inaccessible pages.

The main contributions of this chapter are:

• The general approach of designing linguistically integrated domain-
specific languages for different technical domains, realized by means of a
transformational semantics that reduces separately defined aspects into
an integrated implementation.

• The design of an access control sub-language for expressing a wide
range of access control policies concisely and transparently as a separate
concern.

• The use of access control semantics for reducing development effort. The
developer can concentrate on the logical design of navigation, leaving
the modality of navigation to the access control rules.

In Section 4.2 we introduce the access control extension of WebDSL by pro-
viding a group-based access control policy for a small wiki application. In
Section 4.3 we discuss the expressivity of WebDSL access control by encod-
ing standard policies such as mandatory, discretionary, and role-based access
control. In Section 4.4 we present the transformational semantics for weaving
access control rules into an application definition. In Section 4.5 related work
is discussed. Section 4.6 contains an evaluation and possibilities for future
work. Section 4.7 concludes this chapter.

4.2 Access Control

Web applications that give clients creation or modification access to its data,
need to trust those clients to well-behave. Trusting the general public, as
is done in sites such as Wikipedia, requires either faith in human nature or
a large community of moderators checking modifications. Otherwise a site
runs a high risk of corrupted data and/or (scripted) spam attacks. For most
applications the only solution to prevent this, is to impose an access control
policy allowing only known users to access and modify data. Implementing
an access control policy requires checking the permissions of the user to open
a page, to perform an action, or even to see part of a page, implying checks
scattered across the definition of an application. Such embedded checks make
it hard to understand the access control policy they implement. We have
designed and implemented an extension of WebDSL to support separate and
declarative specification of access control for an application. In this section we
illustrate the language features for declarative access control with a small

Chapter 4. Access Control 97

 1 entity Topic {
 2 name : String
 3 authors : {User} (inverse = topics)
 4 content : WikiText
 5 }
 6 entity User {
 7 username : String (id, name)
 8 email : Email
 9 password : Secret
10 topics : {Topic}
11 }

Figure 4.1 Data model for wiki.

wiki example application, by extending it with a variation on discretionary
access control. In the next section we give a more systematic account of the
expressivity of the language for encoding standard access control policies such
as mandatory, discretionary and role-based access control.

WebDSL Running Example Figure 4.1 and 4.2 show a simple wiki application
that will be extended with access control. The simple wiki data model consists
of a Topic entity and a User entity. Each Topic entity represents a wiki page.
The Topic.authors property is a bidirectional association with User.topics.

The topic page views the contents of a Topic entity. The editTopic page
contains a form to input the data of a wiki topic page. Making a change
to a Topic adds the currently logged in user to the list of authors and the
topic to User.topics. Additional features like versioning of topic entities and
discussion pages of topics are not included in this example.

4.2.1 Authentication

The first step of any access control system is to establish the identity of the user
(the principal) by means of an authentication procedure typically requiring the
user to declare a (public) username and (secret) password. When a username
and password combination corresponds to a registered user, that user is logged
in, and his identity stored for the duration of the session.

Thus, the first step in setting up an access control policy is to declare
the principal as a combination of an entity type to represent users, and their
credentials, i.e. the properties of the user entity that play a role in authentication.
Figure 4.3 shows the authentication definitions for the example wiki application.
The User entity is declared as principal with username and password as
credentials. Note that any entity can be used as principal; User is not a built-in
notion. The credentials should consist of one or more properties with type
Secret (passwords) and one or more properties that uniquely identify the user
object.

From this declaration, a session entity securityContext is derived, which
holds session data related to access control, in particular a reference to the prin-
cipal. Session entities are attached to a client session and are accessible from
any page definition. In Figure 4.2 we used the principal reference (shorthand
for securityContext.principal) to obtain the principal and record that user

98

 1 page topic(t: Topic){
 2 main
 3 title { "Topic: ~t.name" }
 4 template menubar { topicMenu(t) signinMenu }
 5 template body {
 6 header { ~t.name }
 7 par { ~t.content }
 8 par {
 9 "Contributions by "
10 for(u in t.authors order by t.name){ "~u " }
11 }
12 }
13 }
14 page editTopic(t: Topic){
15 main
16 title { "Edit topic: ~t.name" }
17 template menubar { topicMenu(t) signinMenu }
18 template body {
19 header { "Edit Topic: ~t.name" }
20 form {
21 par { input(t.name) }
22 par { input(t.content) }
23 par { submit saveTopic { "Save Changes" } }
24 }
25 action saveTopic {
26 t.authors.add(principal);
27 return topic(t);
28 }
29 }
30 }
31 template main {
32 block("page"){
33 block("menu"){ menubar }
34 block("body"){ body }
35 block("footer"){ footer }
36 }
37 }
38 template topicMenu(t: Topic){
39 menu {
40 menuheader { ~t }
41 menuitem { navigate editTopic(t){ "Edit" } }
42 }
43 }
44 template signinMenu {
45 menu { menuheader { navigate signin { "Sign in" } } }
46 }

Figure 4.2 View and edit page for wiki topics with screenshots.

Chapter 4. Access Control 99

 1 principal is User with credentials username, password
 2 // generated from line above
 3 session securityContext { principal : User }
 4 function authenticate(name: String, pw: Secret): Bool {
 5 var users := from User as u where (u.username = ~name);
 6 if(users.length == 1 && users[0].password.check(pw)){
 7 securityContext.principal := users[0];
 8 return true;
 9 }
10 else {
11 return false;
12 }
13 }
14 page signin {
15 main
16 template body {
17 var name: User
18 var pw: Secret
19 form {
20 "username: " input(name)
21 "password: " input(pw)
22 submit signin { "Sign in" }
23 }
24 action signin {
25 if(authenticate(name, pw)){
26 return user(principal);
27 } else {
28 return accessDenied();
29 }
30 }
31 }
32 }

Figure 4.3 Principal, security context, and authentication.

as author of the topic in editTopic. Furthermore, an authentication function
is derived, which checks the credentials against the database (using an embed-
ded query), and upon success initializes the principal. The authentication
function can be used to implement a dialog such as the signin template to
authenticate a user, given his credentials. The signin template and the gener-
ated securityContext session entity and authenticate function are shown
in Figure 4.3. The Secret.check function checks the entered password with
the hashed and salted password stored in the database.

4.2.2 Restricting Access

Given the ability to authenticate a user against a database of known users, a
very first basic access control policy is to distinguish anonymous visitors from
authenticated users. For instance, in the wiki we could allow anyone to view
topic pages, but only allow logged in users to edit the content of a topic. This
policy is expressed by means of the access control rules in Figure 4.4.
The first rule states that the condition for accessing the topic page is true,
thus access is always granted. The second rule states that the editTopic page
can only be accessed if loggedIn() is true; the loggedIn predicate is generated
by default when a principal is declared and consists of a simple principal

100

rule page topic(t: Topic){ true }
rule page editTopic(t: Topic){ loggedIn() }

Figure 4.4 Access control rules for the view and edit pages of the wiki.

!= null check.
In general, an access control rule has the form rule r i(x⃗){e} with r the

type of definition or resource (page, template, function, or action), i the
identifier of the definition, x⃗ its parameters (a list of identifier and type pairs,
just like the parameters of a page definition), and e a Boolean expression over
the parameters of the rule and the session entities of the application. When
the expression evaluates to true, access is granted, when it evaluates to false,
access is denied. We do not use a logic with more than two values to indicate
that a rule is not applicable or that an error occurred in its evaluation. In those
cases a rule should just evaluate to false and access be denied. When access
control is enabled by declaring a principal, and no rule exists for a certain
resource, access to that resource is denied by default.

Representing Access Permissions Most applications require a more sophisti-
cated access control policy than just authenticating the user. Rather, some
combination of the identity of the user and aspects of the state of the ap-
plication are involved to make a decision. As an example, we develop a
policy in which wiki users have view or edit access to topics based on group
membership. Such a policy requires the administration of the access rights
of users. Instead of using a specialized, built-in data type for this adminis-
tration, WebDSL employs the same data models it uses for other data of the
application, ensuring a seamless integration of access control with the rest of
the application.

To model the group membership policy we introduce a UserGroup en-
tity with a name and a set of users as members (Figure 4.5). Next we extend the
declaration of the entity User with a property groups, as the inverse of the
members property (if u in g.members then g in u.groups). Entity extension is
a modularity feature that allows properties to be declared together with the
other definitions for the aspect they pertain to (akin to intertype declarations
in AspectJ [Kiczales et al. 2001]). With this representation of groups, we can
then define the notion of an access control list ACL as an entity with a viewers

and editors property, which both refer to a set of groups, with the intention
that members of these groups have the corresponding permission. Finally,
the Topic entity is extended with an acl property to represent the access
permissions for the object.

Checking Access Permissions Given the encoding of access permissions we
can now define the rules that declare the access to specific pages and actions
(Figure 4.6). The memberOf predicate tests whether the principal is member of
one of a given set of groups gs, by checking if one of the groups of the principal
occurs in gs (which is equivalent, through the inverse relationship between
UserGroup.members and User.groups). This predicate is then used in the

Chapter 4. Access Control 101

 1 entity UserGroup {
 2 name : String (id, name)
 3 members : {User}
 4 }
 5 extend entity User {
 6 groups : {UserGroup} (inverse = members)
 7 }
 8 entity ACL {
 9 viewers : {UserGroup}
10 editors : {UserGroup}
11 }
12 extend entity Topic {
13 acl : ACL
14 }

Figure 4.5 Representing permissions.

 1 access control rules
 2 predicate memberOf(gs: {UserGroup}){
 3 Or[g in gs | g in principal.groups]
 4 }
 5 rule page topic(topic: Topic){
 6 (t.acl.viewers.length == 0) || memberOf(topic.acl.viewers)
 7 }
 8 rule page editTopic(topic: Topic){
 9 memberOf(topic.acl.editors)
10 }

Figure 4.6 Checking permissions.

definition of the access control rules. The rule for the editTopic page requires
that the principal is member of one of the editors groups. The rule for the
topic page requires that the principal is member of one of the viewers groups,
however, when no such group is registered, access is open for anyone.

Restricting Navigation The rules above forbid access to an edit page if the
user is not a member of the editors groups. However, the menu of the view
page for a topic contains a link to the edit page for that topic through the
navigate(editTopic(t)){"Edit"} element in template topicMenu in Fig-
ure 4.2. When a user without the proper permission follows this link, he will
end up in the accessDenied page. Following these ‘dead’ links can be pre-
vented by letting the visibility of the navigate link depend on the same check
as specified for the target of the navigation. Thus, only relevant navigation
options are presented to the user, improving the user experience. This behav-
ior can be inferred because of the declarative (as opposed to programmatic)
formulation of access control rules.

4.2.3 Administration

The administration of access rights also requires a user interface. Since WebDSL
employs the same data models for access rights as for any other application
data, the same user interface modeling can be used to implement a user inter-
face for access administration. For example, an editUserGroup page can be
defined to edit the collection of members of a group and an editPermissions

102

 1 extend entity UserGroup {
 2 moderators : {User}
 3 }
 4 extend entity ACL {
 5 moderators : {UserGroup}
 6 }
 7 page editPermissions(t: Topic){
 8 main
 9 template body {
10 header { "Edit Permissions of ~t" }
11 form {
12 table {
13 row { "Viewers: " input(t.acl.viewers) }
14 row { "Editors: " input(t.acl.editors) }
15 }
16 submit savePermissions { "Save" }
17 }
18 action savePermissions {
19 t.save();
20 return topic(t);
21 }
22 }
23 }
24 access control rules
25 rule page editUserGroup(g: UserGroup){
26 principal in g.moderators
27 }
28 rule page editPermissions(t: Topic){
29 memberOf(t.acl.moderators)
30 }

Figure 4.7 Administration of permissions.

page for editing a Topic’s ACL. Of course, the access to such administration
pages should be controlled as well, lest the access control of regular pages
becomes meaningless. If anyone can add members to a group, the rule for edit
access of a topic has no value. Thus, to control the access to groups and access
control lists themselves, we extend these with a moderators property indicat-
ing who can modify these objects (Figure 4.7). Then access control rules can
be defined to restrict the access to the pages for editing permissions. A group
may only be edited by the users in the moderators collection and an ACL may
only be edited by members of the acl.moderators groups.

Policy Combination Often it is useful to equip an administrator with special
rights, for instance to access any pages and perform all kinds of edits. With

Chapter 4. Access Control 103

 1 access control rules admin
 2 rule page * (*){
 3 isAdministrator()
 4 }
 5 predicate isAdministrator {
 6 adminGroup in principal.groups
 7 }
 8 access control policy
 9 anonymous OR admin

Figure 4.8 Combination of rules.

the rules discussed so far, this would require adding to each rule a disjunct
that checks whether the principal is an administrator, which would hardwire
this policy and pollute many rules. Instead, WebDSL provides the possibility
of combining sets of rules into a policy. For this purpose, a set of rules can be
given a name, which is used to refer to it. Unnamed rule sets are combined
into a single set with the name anonymous. Rule sets can be combined using
the OR and AND operators. For example, to allow an administrator to access
all pages, a generic rule can be used (Figure 4.8). A generic rule can use a
wildcard for the name of the element and/or the parameters of the element.
Such a rule applies to elements to which it matches. Thus a rule with signature
page *(*) applies to all page definitions. Of course, a rule with a wildcard for
the parameters cannot involve information from the parameter objects. Here,
adminGroup is an application-global variable that identifies a particular object
of type UserGroup. The generic rule is placed inside a rule set named admin.
The admin rule set is then combined with all previously defined (anonymous)
rules using the OR operator, which entails one has access to a page when either
of the rules matching the same page or action succeed.

Active Group With the admin policy above, a user who is administrator can
always apply all actions, similar to always being logged in as super user in a
Unix system. Thus, an administrator is not protected against mistakes, nor
does the administrator ever see the application as normal users see it. In
order to enable the privileges of an administrator, or other group membership,
only when needed, the policy can be refined by introducing the notion of
active groups (Figure 4.9). The activeGroups property that is added to the
securityContext represents the subset of the groups of the user in which he is
active at the moment. By changing the memberOf and isAdministrator pred-
icates to take into account only activeGroups instead of principal.groups
this policy is implemented.

User Proxy A more generic solution for partially restricting access as an
administrator, is to mimic login of a regular user. This way any issues that the
user experiences can be easily reproduced, even on a live system. Figure 4.10

shows a Person entity used as principal. An administrator, indicated by the
isAdmin property, can substitute another user by setting the current principal
to that user. The original administrator principal is temporarily stored in
securityContext .realPrincipal. This makes all access control checks
equivalent to what the user would experience. When logging out, if there was

104

 1 extend entity securityContext {
 2 activeGroups : {UserGroup}
 3 }
 4 access control rules
 5 predicate memberOf(gs: {UserGroup}){
 6 Or[g in gs | g in activeGroups]
 7 }
 8 access control rules admin
 9 predicate isAdministrator { adminGroup in activeGroups }

Figure 4.9 Active groups.

 1 principal is Person with credentials username, password
 2 extend session securityContext{ realPrincipal : Person }
 3 entity Person {
 4 username : String
 5 password : Secret
 6 isAdmin : Bool
 7 function proxy {
 8 securityContext.realPrincipal := principal;
 9 principal := this;
10 }
11 }
12 function signoff {
13 if(securityContext.realPrincipal != null){
14 principal := securityContext.realPrincipal;
15 securityContext.realPrincipal := null;
16 } else {
17 principal := null;
18 }
19 }
20 template proxy(person: Person){
21 submitlink action{ person.proxy(); }{ "Proxy" }
22 }
23 access control rules
24 rule template proxy(person: Person){
25 principal.isAdmin && principal != person
26 }

Figure 4.10 User proxying.

a proxy active, the current user becomes the administrator Person entity again.
This is quite similar to running the su and sudo commands on Unix systems

as root user. The su substitute user command changes the current user and
the sudo command executes a single commmand as another user. That way a
root user can give a command a more restricted environment than its own, or
investigate why a command does not work for a particular user.

4.3 Access Control Policies

WebDSL provides high-level, policy neutral mechanisms for defining access
control, that is, without making assumptions about the type of policy to be
enforced. The flexibility of the mechanisms allows the adaptations of standard
policies typically needed in practical settings, and enables the combination
of elements from different policy models. In this section, we discuss the
three major access control paradigms and we show how these policies can be

Chapter 4. Access Control 105

elegantly encoded in WebDSL.

4.3.1 Mandatory Access Control

Mandatory Access Control (MAC) [Sandhu 1993; Samarati and di Vimer-
cati 2001] models are based on assigning labels (e.g. TopSecret, Secret,
Confidential, Unclassified) to subjects and objects for determining ac-
cess permissions. Subjects have a clearance label that indicates what type
of resources the subject can access. Objects have a classification label which
represents their level of protection. The relative importance of labels is deter-
mined by a partial order on labels. In MAC policies the distinction between
the user (human interacting with the system) and the subject (process working
on behalf of the user) is important, because a user can create a subject at any
clearance label dominated by theirs. Domination of a clearance label means
the label itself and all below it in the hierarchy.

MAC policies are mainly aimed at preserving confidentiality of information
contained in objects. Protection of confidentiality deals with information flow,
by preventing unsafe transfer of (the contents of) objects to other security
labels in the system. To protect confidentiality two properties must hold. (1)
The simple security rule, also known as the read-down property, states that a
subject needs to have a security clearance higher than or equal to the security
classification of an object to be able to read it. (2) The liberal *-property, also
known as the write-up property, states that a subject needs to have a security
clearance lower than or equal to the security classification of an object to be
able to write it. This is needed to prevent leaking confidential information to
lower clearance labels. A stricter form can be used to prevent low subjects
to overwrite high data (which is possible with the liberal *-property). This
form only allows writing where the clearance matches the classification, and is
known as the strict *-property.

The policy in Figure 4.11 is an encoding of the MAC policy in WebDSL. The
policy considers reading as accessing the topic view page for a Topic object,
and writing as saving a Topic with the createTopic page, which can only be
used to create a page; editing existing topics is not possible in this example.
The users in the model are simply the User entities. To provide a distinction
between user and subject, the securityContext is extended to represent the
current subject with an active clearance label.

Clearance and classification labels are represented by the entity Label. The
partial order on Labels is represented by the higher and lower properties,
which represent the direct parent and direct child Labels of a Label, respec-
tively. The dominates predicate defines the transitive closure of the relation.
The User and Topic entities are extended with a property representing the
security clearance and classification, respectively. The activeClearance prop-
erty of the securityContext session entity represents the clearance label of
the subject.

The simple security rule is now implemented by the rule for topic, which
states that topics may be viewed by subjects with a clearance label dominating

106

 1 entity Label {
 2 name : String
 3 higher : {Label} (inverse = lower)
 4 lower : {Label} (inverse = higher)
 5 predicate dominates(l: Label) {
 6 l == this || Or[l2.dominates(l) | l2 in this.lower]
 7 }
 8 }
 9 extend entity User {
10 clearance : Label
11 }
12 extend entity Topic {
13 classification : Label
14 }
15 extend session securityContext {
16 activeClearance : Label
17 }
18 access control rules
19 rule page topic(t: Topic){
20 activeClearance.dominates(t.classification)
21 }
22 rule page createTopic {
23 true
24 rule action save(t: Topic){
25 t.classification.dominates(activeClearance)
26 }
27 }
28 rule action activateClearance(c: Label){
29 principal.clearance.dominates(c)
30 }

Figure 4.11 Mandatory access control.

the classification of the topic. The liberal *-property is implemented by the rule
for the save action of the createTopic page: a topic can only be created if its
classification (as indicated in the form of the createTopic page) dominates
the subject’s clearance label. The activation of the subject’s label must also
be protected to complete the implementation; only labels dominated by the
principal’s clearance label can be used as active clearance of the subject.

Note that administration of user-label assignments and editing of labels is
not part of the MAC model and we followed this model by having predefined
user-label assignments and no editing of labels.

4.3.2 Discretionary Access Control

Discretionary Access Control (DAC) models are based on listing permissions
for users and objects [Samarati and di Vimercati 2001; Sandhu and Sama-
rati 1994]. The user’s identity and authorizations determine the permissions
granted for each object. DAC policies are usually closed policies, only specify-
ing the granting authorizations and denying by default. DAC policies often
use the concept of ownership to determine permissions, the user that creates
an object becomes the owner and has all the permissions for it. The owner can
allow other users access to its owned objects (this decision is at the owner’s
discretion). This also puts the administration tasks in the hands of the owner.

Chapter 4. Access Control 107

 1 extend entity Topic {
 2 owner : User
 3 viewers : {User}
 4 editors : {User}
 5 moderators : {User}
 6 }
 7 access control rules
 8 rule page topic(t: Topic){
 9 principal == t.owner || principal in t.viewers
10 }
11 rule page editTopic(t: Topic){
12 principal == t.owner || principal in t.editors
13 }
14 rule page editTopicACL(t: Topic){
15 principal == t.owner || principal in t.moderators
16 }
17 rule page changeTopicModerators(t: Topic){
18 principal == t.owner
19 }

Figure 4.12 Discretionary access control.

These tasks include granting other users access to the object, revoking that
access, allowing others to help with administration (delegation), or simply
deleting the object. Policies vary greatly in administrative capabilities avail-
able, some of the variation possibilities are: allowing ownership transfer; the
granting of administration tasks to others can be limited (for example, only
one person can get these permissions besides the owner); the revocation of the
permissions granted can be linked to the user that specified the permissions.

DAC policies are often described using the Access-Matrix Model [Sandhu
and Samarati 1994], a generic model for describing access control policies.
It is based on the idea that all resources controlled by a computer system
can be represented as objects. By listing all the permissions for these objects,
the entire access control system can be described. To use the access matrix
model, one needs to identify objects, the resources that need to be protected,
subjects, the users or processes created by the user that need to access objects,
and permissions, the operations that apply to an object and which need to be
protected in the system. These concepts are used to describe a policy matrix,
with subjects as indices for rows and objects as indices for columns. The set of
permissions, i.e. the operations a subject s may apply to object o is listed in the
matrix at [s,o]. Since the Access-Matrix is usually sparse, it is rarely stored as
an actual matrix in a system. Instead the matrix is represented by means of an
access control list (ACL), with each object holding a list of the subjects and their
permissions for that object, or as a capabilities list, with each subject holding
a list of the objects and the permissions the subject has for those objects, or
as an authorization table, storing permissions as triples of subject, object, and
permissions.

The discussion of WebDSL access control in Section 4.2 already presented
elements of a DAC policy. The example in Figure 4.12 is a variation using
ownership of objects. The owners determine the configuration of the ACL for
the objects they own, but can also promote other users to be able to configure

108

the ACL, implying a one level granting of administration rights. Ownership is
represented by means of an owner property in the Topic entity. An ACL is
used to hold the access rights, this is added to the object, in this case the Topic

entity. The moderators set of users consists of the users with rights to change
the viewers and editors sets of the corresponding Topic. The view and edit
pages are protected by rules that verify that the principal is either the owner,
or another user that is specifically allowed a certain type of access. The page
for editing the ACL of a topic is accessible only to the owner of the topic or
one of the designated moderators. Finally, the set of moderators of a Topic

can only be changed by the owner (one level granting of administration rights).
This implementation is an alternative (more pure) DAC policy, without the
RBAC elements that are present in the example from Section 4.2.

4.3.3 Role-Based Access Control

Role-Based Access Control (RBAC) [Sandhu and Samarati 1994; Samarati
and di Vimercati 2001; Sandhu 1998; Sandhu, Ferraiolo, and Kuhn 2000;
Ferraiolo, Kuhn, and Chandramouli 2003] models have been the basis for
access control research in the last decade and they are also widely applied in
application frameworks. The observation leading to RBAC is that individual
users are usually not that important in deciding on permissions (besides
auditing purposes), rather it is the task they need to perform that determines
the necessary permissions. A role corresponds to a group of activities needed
to perform a job or a task. These activities form the permissions that are linked
with the role. When users are assigned to roles, they gain the permissions
assigned to those roles. This better reflects organizational structures, which
make common operations easy. For instance, a change of function inside an
organization only requires a change of role assignment in the access control
system. This action would have been a lot more complicated in a DAC policy
where the permissions are directly linked to the user.

The main benefits of RBAC are: Access control administration: user/role
assignment and role/permission assignment are separated. The administra-
tor is mostly concerned with user/role assignment, so the role/permission
assignment can be hidden in an application. Hierarchical roles: many applica-
tions consist of a natural hierarchy of roles, where some roles subsume the
permissions of others. Least privilege: a user can activate the minimal role able
to perform a task, this can protect the user from malicious code or inadvertent
errors (similar to MAC policies). Separation of duties: no user should have
enough permissions to abuse the system on their own, this can be enforced by
separating the steps in critical actions among roles. For example, a user should
not be able to create fake payments and also accept them. Constraint enforce-
ment: the roles can be extended with constraints on activation or assignments,
this allows more specialized access control policies.

The formalisation of RBAC in [Sandhu 1998; Sandhu, Ferraiolo, and Kuhn
2000] proposes a family of models for RBAC. RBAC0 is the basic model, which
consists of users, roles, permissions as entities. Role assignment to users and

Chapter 4. Access Control 109

 1 entity Role {
 2 name : String
 3 juniors : {Role}
 4 predicate equalOrSenior(r: Role){
 5 r == this || Or[r2.equalOrSenior(r) | r2 in this.juniors]
 6 }
 7 }
 8 extend entity User {
 9 roles : {Role}
10 }
11 extend session securityContext {
12 activeRoles : {Role}
13 }
14 var admin := Role{ name := "Administrator" }
15 var viewer := Role{ name := "Viewer" }
16 var editor := Role{ name := "Editor"
17 juniors := { viewer } }
18 access control rules
19 predicate isActive(r: Role){
20 Or[r2.equalOrSenior(r) | r2 in activeRoles]
21 }
22 rule page topic(t: Topic){ isActive(viewer) }
23 rule page editTopic(t: Topic){ isActive(editor) }
24 rule page editRoles(u: User){
25 isActive(admin)
26 rule action save {
27 ! (administrator in u.roles
28 && (viewer in u.roles || editor in u.roles))
29 }
30 }

Figure 4.13 Role-based access control.

permission assignment to roles determine the configuration of RBAC0, which
also provides the concept of a session, which is an activated subset of the
user’s roles. The permissions from the roles in the session are the ones that
can be used in access control decisions. The concept of user controlled sessions
creates a distinction between subject and user similar to MAC policies. RBAC1

introduces role hierarchies to model lines of authority and responsibility. Senior
roles inherit the permissions of junior roles, and junior roles inherit the user
assignment of senior roles (other implementations of role hierarchies allow
activation of junior roles to support hierarchies). RBAC2 adds constraints to
the RBAC model.

The notion of groups used in the example of Section 4.2 is similar to roles.
They are activated by the user and carry permissions with them. The example
presented in Figure 4.13 gives an RBAC implementation with hierarchical roles
— editor as a senior role of viewer — and separation of duty constraints —
administrators may not be viewers or editors. The permissions are encoded
in the policy, and role/permission assignment is fixed during execution. This
is a reasonable simplification that is used in many practical solutions such as
Acegi [Alex 2008] and Seam [Yuan and Heute 2007]. The data model extension
to implement RBAC consists of a Role entity, a reference to a set of Roles in
the User entity, and a reference to a set of roles in the securityContext to
represent the activated roles (roles in the session). The role hierarchy is
constructed by specifying which roles are the direct junior roles in the juniors

110

property. The equalOrSenior predicate added to the Role entity verifies
whether a role is equal or senior to another role. In this example application,
the roles are defined statically as application variables. The access control
rules, then, define that viewing a Topic requires the viewer role to be active or
to be a junior of another activated role (editor), and editing a Topic requires
the editor role to be active. Note that inside an access control rules section
the members of the securityContext are directly accessible, which is why
activeRoles can be used here instead of securityContext.activeRoles.
For administration purposes the page editRoles is created that allows editing
the roles property of a User. This page requires the administrator role to be
active. Furthermore, implementing separation of duty, the save operation has
an additional check to prevent illegal changes to the user/role assignments.

4.4 Transformational Semantics

In the previous sections we have seen that access control is defined separately
from the rest of a WebDSL definition. In order to enforce the rules specified
in a policy, local checks are introduced into pages, templates, and actions. In
this section, we give a high-level description of the weaving transformations
realizing this. The resources of a WebDSL application that can be protected
are pages, templates, and actions. Furthermore, it is possible to restrict access
more specifically to resources relative to other resources, e.g., actions within
pages and actions within templates, or to resources that use another resource
such as actions that use functions. The semantics of protecting a resource
differs for these resources and the combinations, which indicates the need for
the semantics description given in this section. In the transformations we use
x⃗ to denote a list formal parameters x1 : S1, ..., xn : Sn.

4.4.1 Policy Normalization

The first step in the implementation is the normalization of rule sets and
the policy definition to a single set of non-overlapping rules, as defined in
Figure 4.14. (Note that only the rules for OR are shown; the rules for AND are
dual, with && instead of ||.) We say that two rules match if they have the same
signature, i.e., resource type, name, and parameters are the same. If a rule set
contains two matching rules, they can be merged into a single rule with the
conjunctions of the two expressions as expression (Combining Rules). The OR

operator applied to a pair of matching rules turns into a single rule with the
disjunction of the expressions. The OR operator applied to two sets of rules
produces the pairwise disjunction of matching rules. That is, assuming that
the argument sets are normalized and thus contain for each resource at least
one rule, if a matching rule exists in each set they are combined with the OR

operator. Rules for which no matching counterpart exists are taken as is.

Chapter 4. Access Control 111

(rule r i(x⃗) {e1}) (rule r i(x⃗) {e2})

⇓ Combining Rules ⇓
rule r i(x⃗) { e1 && e2 }

(rule r i(x⃗) {e1}) OR (rule r i(x⃗) {e2})

⇓ OR ⇓
rule r i(x⃗) { e1 || e2 }

(r1 ... rn) OR (q1 ... qm)

⇓ combining rule sets with OR ⇓
(u1 ... uk) (v1 ... vl) (s1 ... sm)
where

ui = (rh OR qj) if rh and qj match
vi = rh if no matching q
si = qj if no matching r

Figure 4.14 Policy normalization.

4.4.2 Rule Weaving

Figure 4.15 defines the instrumentation rules that insert checks into pages
and actions. As an example we consider the following simplified page rule
transformation:

page p(x⃗) { elem* }

Page: ⇓ rule page p(x⃗) { e } ⇓

page p(x⃗) {
init{ if(!e) { redirect accessDenied(); } }
elem*

}

The rule states that an access control rule with signature page p(x⃗) inserts an
init block in the page definition with the signature page p(x⃗) containing a
redirect to the accessDenied page in case the condition of the rule evaluates
to false. The notation is slightly simplified here for clarity, in the actual
implementation the x⃗ also matches with different names for the arguments
and the inserted e has the correct names substituted accordingly.

The weaving of pages is more interesting if the page has other initialization
statements, which is shown in the Page transformation in Figure 4.15. The other
transformations shown are the following: Action protects the execution of an
action, Template controls the view of the template’s elements, PageAction shows
what a nested action check in a page means, TemplateAction shows a nested
action check in a template, Navigation is the semantics of inferring navigation
link visibility from page rules (e’ is e with formal arguments x⃗ substituted by
actual arguments y⃗).

112

page p(x⃗) { init{ stat* } elem* }

Page: ⇓ rule page p(x⃗) { e } ⇓

page p(x⃗) {
init {
if(e){ stat* }
else { redirect accessDenied(); } }

elem* }

action a(x⃗) { stat* }

Action: ⇓ rule action a(x⃗) { e } ⇓

action a(x⃗) {
if(e){ stat* }
else { redirect accessDenied(); } }

template t(x⃗) { elem* }

Template: ⇓ rule template t(x⃗) { e } ⇓

template t(x⃗) { if(e) { elem* } }

page p(x⃗) {
init{ stat1* }
action a(y⃗) { stat2* }
elem* }

PageAction: ⇓
rule page p(x⃗) {
e1
rule action a(y⃗) { e2 } }

⇓

page p(x⃗) {
init {
if(e1){ stat1* }
else { redirect accessDenied(); } }

action a(y⃗) {
if(e2){ stat2* }
else { redirect accessDenied(); } }

elem* }

template t(x⃗) {
action a(y⃗) { stat* }
elem* }

TemplateAction: ⇓
rule template t(x⃗) {

e1
rule action a(y⃗) { e2 } }

⇓

template t(x⃗) {
action a(y⃗) {
if(e1 && e2){ stat* }
else { redirect accessDenied(); } }

if(e1) { elem* } }

navigate(p(y⃗)) { elem* }

Navigation: ⇓ rule page p(x⃗) { e } ⇓

if(e’) { navigate(p(y⃗)) { elem* } }

Figure 4.15 Weaving transformation rules.

Chapter 4. Access Control 113

4.5 Related Work

In previous work our research group has developed MetaBorg [Bravenboer
and Visser 2004], an approach for embedding domain-specific languages in
general-purpose languages, and StringBorg [Bravenboer, Dolstra, and Visser
2010], an approach for syntactically embedding query and shell languages to
prevent injection attacks. This work extends the repertoire to the embedding
of DSLs in DSLs with a global-to-local weaving transformation as assimilation.
We have implemented WebDSL, in general, and the weaving transformation,
in particular, with the transformation language Stratego [Visser 2004].

4.5.1 Language Design

Mikkonen and Taivalsaari [2007] argue that software engineering principles
have degraded with the recent paradigm shift to web applications. The incre-
mental growth from static HTML pages to desktop application replacements
has left a trail of languages which require tool support to cope with. Devel-
opers need to learn these technologies which prevents them from focussing
on learning actual web application design principles, such as access control.
We review the software engineering principles of Mikkonen and Taivalsaari
[2007] for WebDSL access control: Separation of concerns: One of the main
goals of WebDSL access control is achieving separation of concerns while still
having an integrated language with static verification. WebDSL applications
can be easily adapted to support a different access control policy. Information
hiding: The details of how and where access control is applied is hidden in the
semantics of access control rules. Consistency: Access control checks are speci-
fied in the same expression language that is used in other parts of WebDSL
applications. Simplicity: one mechanism can be used to define a wide range of
policies. Reusability: Policy specifications can be reused for other pages and in
other WebDSL applications. Portability: WebDSL access control is translated to
normal WebDSL which is a model that abstracts from platform specific details.

Another benchmark is the requirements formulated by Evered and Bögeholz
[2004] for an ideal access control mechanism based on a case study of a health
information system. Concise: Access control checks in rules simply become the
boolean WebDSL expression that is executed for determining access. Reuse
through predicates limits the amount of mechanical repetition. Clear: Matching
of access control rules with resources is based on clear semantics and can
easily be verified to be correct. Aspect-oriented: Access control can be specified
separately from the rest of a WebDSL application, weaving takes care of
integration. Fundamental: All resources that can be protected by WebDSL
access control are denied access by default, this forces the application developer
to explicitly specify conditions for access. Positive: The access control rules
determine conditions for allowing access, they are positive authorizations.
Need-to-know: Access control can be used to hide information on pages, more
specifically template contents and navigation links. Efficient: Because access
control is integrated with the rest of the WebDSL application it can use the

114

same database interface and caching mechanisms.
Tschantz and Krishnamurthi [2006] present a set of properties for examining

the reasonability of access control policies under enlarged requests, policy
growth, and policy decomposition. We discuss their properties for WebDSL
access control. Deterministic: If the application’s data is considered part of
the policy, then identical requests always result in the same access control
decision. Totality: A decision to allow or deny is always made. The default to
deny can be caused by a condition evaluating to false, no rule matching the
resource, or an error occuring during checking. Safe: Since WebDSL access
control is integrated with the application it is not possible to make incomplete
access control requests. Independent composition: It is possible to reason about
rules in isolation, combining them will not change the result of an individual
rule. Not monotonic: Decisions can change from granting to non-granting
by adding another rule, caused by the single rule combination strategy of
taking the conjunction of matching rules. We believe that the standard way of
combining rules by conjunction is easier to comprehend than having multiple
rule combination strategies, and it results in a deny overrides strategy that we
consider a safe combination of rules.

4.5.2 Policy Languages

The Ponder policy specification language [Damianou et al. 2001] is a policy
language aimed at specifying access control for firewalls, operating systems,
databases, and Java programs. The language has many features such as built-in
notions of groups and roles, delegation, obligations (which specify what a
user must do), meta-policies for defining constraints on the policies themselves
(for example Separation of Duties). The paper presents examples of policies
to cover the different elements available in the language. However, there is
no information on how the policies are enforced in different contexts. This
makes it hard to compare the results of using Ponder to specify policies and
our own approach. Several of the elements available in the Ponder language,
such as delegation, obligations, and policy reuse, are still open for exploration
in WebDSL and provide options for future work.

XACML (eXtensible Access Control Markup Language) [Moses et al. 2005] is
a standard that describes both a policy language and an access control decision
request/response language (both written in XML). A policy is described using
rules that specify conditions for being applicable to a request. The requests in
the request/response language are access control queries and the responses can
be permit, deny, indeterminate (an error occurred) or not applicable (cannot
answer this request). In WebDSL we opted for ’allow’ and ’deny’ as the only
results for access requests. XACML rules are combined in policy sets, and
policy sets in a policy, both of these operations are controlled by selecting a
combination algorithm. In WebDSL access control rules are combined by using
the conjunction of the expressions, rule sets can be combined in a policy with
a boolean expression over the sets. For finer grained authorization in XACML
attributes are used, these are characteristics of the subject, resource, action, or

Chapter 4. Access Control 115

environment in which the access request is made. Most of these attributes have
to be specified in the XML request message when checks are needed. WebDSL
access control is integrated with the WebDSL application, there is no need for
creating requests and explicitly transmitting all the required data, this avoids
any inconsistencies.

4.5.3 Frameworks

Acegi [Alex 2008] is the security component of the Spring Java web application
framework. In keeping with the Spring approach, Acegi is based on XML
configuration of the framework components. Enforcing access control is done
by an aspect mechanism, these aspects are the components that need to be
configured to protect either URLs or specific methods. The weaving occurs
when the protected resource is invoked for the first time. In WebDSL access
control weaving is done statically which allows better error reporting and
compile-time guarantees. In Acegi a security context is available where the
authenticated user can be stored together with a collection of granted autho-
rization objects, for instance roles. This can be used to specify RBAC checks
in the XML configuration. These checks are application wide and cannot be
further customized with conditions. An active roles collection as used in the
RBAC example in Section 4.3 for enforcing the concept of least privilege has to
be managed in the application to work in this framework. When fine-grained
access control is needed, Acegi offers a DAC policy implementation which pro-
tects generic objects by listing the permissions available for each user. This is
stored in different database tables than the actual application. The combination
of RBAC and DAC has to be specified in the XML configuration. Fine-grained
access control must be encoded in the generic DAC policy, which might involve
duplicating information available in the application such as ownership of an
object. WebDSL provides an integrated way to specify access control, where
policies are combined in the rules, data is integrated with the application, and
accessible for administration.

The Seam Java web application framework [Yuan and Heute 2007] offers
a security API for access control. The basic mode is controlled by including
restrict annotations in the application code which verify whether a principal
has a certain role when accessing the annotated Java method or page URL. A
DAC policy can be implemented in a reserved function that takes the type of
the object, the action, and a reference to the specific object of the access request.
This is similar to the options Acegi has to offer and suffers the same drawbacks.
The advanced mode consists of using JBoss Rules [Yuan and Heute 2007] for
determining permissions. This is a logic language with an inference engine that
can deduce permissions from facts available in the engine. These facts specify
the access control policy. Although JBoss Rules allows separation of concerns
for access control, it is a separate engine which must be invoked correctly. Any
check based on information related to data in the application needs to have
this data supplied in the requests. WebDSL access control is integrated with
the application and does not have the risk of inconsistencies between known

116

data during access control checks and actual data of the application. Besides
the integration issue, the semantics of the rules is not specific to access control
but simply generic JBoss Rules, which prevents any assumptions to be made
about the access control policy (such as the visibility inference in WebDSL).

4.6 Discussion

While WebDSL access control elements are specified in separate language
constructs, the effect requires integrating with the WebDSL application. The
first type of integration is the use of WebDSL expressions for specifying access
control conditions. Besides the expressions, the data model is also completely
accessible for use in checks. Matching of arguments allows access to all the
data relevant for the type of resource that a rule protects. This data model
integration works the other way around as well, the data from WebDSL access
control is available in the WebDSL application which provides a simple way
to produce administration support. The semantics of the access control rules
illustrate that it is a pure WebDSL to WebDSL transformation, which lets
WebDSL access control reuse all the code generation.

WebDSL access control encodes policies and can be seen as a high-level
mechanism for access control. The default access control decision of denying
access provides a safe default and allows an incremental approach when speci-
fying the policy. Section 4.3 shows that WebDSL access control is transparent
and concise in expressing Mandatory, Discretionary, and Role-Based Access
Control and provides good support for the management of such policies.
Besides these paradigms there is a strong connection with the application
allowing application-specific customizations to be expressed easily.

By viewing access control as a proper language element, it becomes possible
to infer related elements from the policy specification. Assumptions can be
made about navigation to pages and visibility of page elements. This greatly
increases the productivity of application developers and also helps to make
sure the applications produced are consistent. This is a distinction from using
generic aspect mechanisms for access control, because there the semantic value
of access control rules is lost.

The applications we have build in WebDSL so far are isolated applications.
If the need arises to incorporate a WebDSL application into a larger system
and access control is going to be handled externally, this would only require
changing the checks in the rules to poll the external system instead of per-
forming a local check. The separation of access control rules will help this
conversion, and the semantics of access control rules as discussed in this paper
are still applicable. A similar argument can be made for authentication, the
user representation and authentication function can be customized to use an
external authentication system.

Chapter 4. Access Control 117

4.6.1 Future Work

Although we have created a flexible language for access control, abstractions for
common policies are still possible. Mainly for RBAC, built-in abstractions can
provide a more concise mechanism to support a role based policy. Separation
of duty checks as presented in the RBAC example in Section 4.3 could be
expressed declaratively instead of explicitly specifying where the check should
be enforced.

The access control rules specified in WebDSL are coupled with the pre-
sentation of the application, this allows inconsistencies where similar pages
have different rules. Better abstraction and encapsulation of entities and their
operations is needed in WebDSL which will allow access control to protect
entities and their specified interface directly and infer the current type of
checks. This would require tracing the use of these interfaces in pages, but will
provide better consistency verification of the access control policy.

Another approach is to declare access control directly on data operations.
The access control rules state which entities and entity properties are allowed
to be retrieved or edited. A downside of such an approach is that it must
hook into all data retrieval implementation aspects. Besides potential overhead,
there are also more conceptual problems, in particular regarding collections.
For example, what if an ordered list of entities is retrieved, of which some of
the entities are not allowed to be read. It is not clear whether there should
still be partial access to this collection, since part of the entities are accessible.
List operations would have to take into account the inaccessible entities, which
could be considered an information leak. If partial access has the effect of
making the entire collection fail to load, it would likely lead to confusing
errors in the application operation. A situation where data access control
seemingly works well is the search page. Entity objects are retrieved separately
as search results which may need to be filtered. However, even there it
cannot be implemented in a generic way. Besides hiding results, also the
statistics such as the number of hits need to be updated. Faceted search shows
categories derived from the search results, and would also be affected. These
consequences would have to be addressed in the search implementation itself.

Hiding navigation links to inaccessible pages is not always the best solution
to indicate an access control issue. A more generic mechanism of handling
inaccessible links could be added. For example, to display the link as regular
text or greyed out. Or to inform the user why access is prevented and whether
and how access can be obtained.

Logging of access control requests/decisions (not just writing to a text file
but integrated logging, persisted like other application data) is required for
doing access control audits and intruder detection. Adding this to WebDSL
would be a major improvement. An important point here is that the amount
of logging data can easily become unwieldy; a specification is needed that
determines what information is stored, how detailed the entries are, and when
they may be deleted or archived.

118

The DAC policy example presented in Section 4.3 included some facilities
for delegation of access control, this could be specified in a more general way.
Several models have been proposed for delegation [Zhang, Ahn, and Chu
2003; Zhang, Oh, and Sandhu 2003], which also shows there is a need for
abstracting delegation details from access control policies. Supporting high
level definitions of access control delegation would be an interesting addition
to WebDSL.

Temporal policies have been modeled in the literature [Latif 2005] and the
application of such models would provide an interesting case for WebDSL
access control. We have investigated an extension of WebDSL with workflow
abstractions [Hemel, Verhaaf, and Visser 2008], which also provides options for
exploring access control policies in that area. This can be compared to other
studies regarding workflow and access control [Bertino, Ferrari, and Atluri
1999].

Digital rights management has been connected to access control in [Park
and Sandhu 2004], where a conceptual model for usage control is presented.
Adding this functionality to WebDSL would provide useful insights in the
applicability of such an approach.

4.7 Conclusion

The extension of WebDSL with a declarative access control language provides
us with insight in how enforcing access control could be done better in general
web applications. Firstly, the use of integrated, access control specific, aspect-
oriented language elements result in a clear extension of the base language.
Secondly, WebDSL access control shows that various policies can be expressed
with simple constraints, allowing concise and transparent mechanisms to be
constructed. Finally, the advantage of having a language element for access
control, allowing assumptions to be made about the related parts in the
application. Practical solutions for access control often consist of libraries or
generic aspect-oriented implementations of fixed policies. These rarely have
clear interfacing capabilities and require manual extension and integration
with the application code. The extensions and integrations provide room for
errors that possibly invalidate the whole access control policy. The realization
that access control as a language element is necessary will provide the means to
defeat the errors caused by encoding policies in application code. Integration
of the language means that language extensions influence the semantics of
access control elements. New basic elements and new abstractions require
new rule types. Using transformational semantics, access control rules can be
defined clearly and concisely.

With this chapter concluded, the major WebDSL language features have
been described. In Chapter 5 we will investigate WebDSL language design
iterations, using a generic pattern used to guide feature evolution.

Chapter 4. Access Control 119

120

5
The WebDSL Language Evolution Pattern

5.1 Introduction

A healthy programming language is continuously developed. Practical appli-
cations provide invaluable feedback on further directions for language design.
New abstractions are introduced when additional concerns are discovered.
Existing abstractions may require reimplementation with better runtime com-
ponents. The evolution of a programming language can be described as a
continuous process with an iterative pattern of creating libraries, implementing
linguistic abstraction, and expanding core language features. This chapter
explains the WebDSL language evolution pattern, and shows its application to
the major language features.

Besides the main abstractions for data persistence, user interfaces, and func-
tions, a web application can require many additional reusable features. For
example, authentication through an external single sign-on server, generating
PDF reports, sending and receiving emails, providing and invoking a web serv-
ice API, file upload and download, and customized internal site search. The
WebDSL language provides hooks into the underlying platform to incorporate
external libraries. In particular, Java libraries can be included and imported
within the WebDSL application to make them available. JavaScript widgets
and user interface components can be imported into templates. JavaScript
fragments can be embedded in WebDSL templates, with the option to insert
dynamic values such as a DOM element id value. By using these generic
extension hooks, an application can lose some of its analyzability. However,
a completely closed system that does not provide any escape mechanism is
not very practical. To regain analyzability and increase coverage, a commonly
required feature can be integrated into the language. This allows for a properly
designed abstraction with custom syntax, semantics, and static verification.

Voelter et al. [2013] describe 7 design dimensions for Domain-Specific Lan-
guage (DSL) design. This relates directly to the WebDSL language evolution
pattern, because language evolutions aim to improve the language in one or
more of these design dimensions.

1. Expressivity A language L1 is more expressive in a domain than a lan-
guage L2, if for each program in the domain, the size of the program
encoded in L1 is smaller than the encoding in L2. Programs for a par-
ticular domain typically use a set of characteristic idioms and patterns.
A language created for this domain can provide linguistic abstractions
for those idioms or patterns, which makes their expression more concise
and simplifies their analysis and translation. Abstractions can be built
into the language (linguistic abstractions), or they can be expressed by
concepts available in the language (in-language abstractions). A language

121

with support for in-language abstraction, can be used by the language
developer to provide collections of domain-specific abstractions in a
standard library to language users.

WebDSL input handling templates were initially using high-level lin-
guistic abstraction with direct code generation, lacking flexibility for
customization. Subsequent implementation iterations evolved to a stan-
dard library of components using smaller core linguistic abstractions to
enable in-language abstraction. The resulting solution retains the original
high-level abstractions, while also having flexibility to customize and
make variants.

2. Coverage A language fully covers a domain if each program relevant to
the domain can be written in the language. The coverage of a domain
by a language is the percentage of programs in the domain that can be
expressed in the language.

In the WebDSL language design, choices cater for typical web information
systems. One example is the automatic handling of page URLs, which
are derived from the page name and arguments separated by slashes.
This was a limitation in coverage as some applications require free-form
URL construction. We extended the WebDSL language with a feature for
URL customization, to increase coverage.

3. Semantics

Semantics can be partitioned into static semantics and execution (or
dynamic) semantics. Static semantics are implemented by the constraints
and type system rules. Execution semantics denote the observable be-
havior of a program and can be defined using a function that maps a
program from one language into a more general language that has the
same observable behavior. The technical implementation of the mapping
can be a literal transformation to another program, or an interpreter that
reads and executes the program.

For WebDSL, platform conformance through code generation was the
initial strategy for execution semantics. Generated code can be tailored
to any target platform. The code can look exactly as manually written
code, without additional support libraries. The initial exploration of the
web programming domain relied on observing and capturing patterns in
solutions meant for regular Java programming (without code generators).
When the requirements for WebDSL and limitations of this initial target
became more clear, the generated code moved to more WebDSL specific
code, such as a custom framework for user interfaces. Chapter 6 provides
an overview of defining static semantics and execution semantics for
WebDSL.

4. Separation of Concerns

A domain may be composed from different concerns that each cover a
different aspect. Either a single integrated language can be designed or

122

separate concern-specific DSLs. There may also be cross-cutting concerns
that could be handled by the execution engine, or modularized in the
DSL, or remain cross-cutting in the DSL.

WebDSL provides specific languages for web programming concerns, but
linguistically integrates them into a single language. WebDSL developers
have freedom in factoring declarations into modules, such as grouping
data models together, or combining data model and user interface for a
specific application feature. Access control is a cross-cutting concern that
has been modularized in the DSL, the generator automatically injects
permission checks into the generated code. Access control rules can be
defined separately from the components being protected, such as page
definitions.

5. Completeness
Completeness refers to the degree to which a language can express pro-
grams that contain all necessary information for execution. Integrating
additional code or specifications in the case of an incomplete language
can be done in several ways: calling code written in another language
by declaring a foreign function interface, directly embedding another
language, composing manually written code without modifying gener-
ated files, and inserting manually written code in protected regions of
generated files.

In WebDSL, a native interface provides access to construct and call Java
classes with static and non-static methods and fields (foreign function
interface). JavaScript can be added in the user interface template declara-
tions (language embedding). WebDSL does not analyze this JavaScript,
however, this feature enables invoking many useful JavaScript functions
and libraries. Native class interfaces and JavaScript embedding can be
used as a first step in identifying a new language feature for WebDSL.
Library integration can be explored without immediately having to de-
sign syntax and update the compiler for full linguistic integration. For
example, the search sublanguage was iteratively developed, starting with
native class wrappers around the Hibernate Search [2023] and Lucene
[2023] libraries. Next, it was improved with custom syntax and checks
for declaring search mappings and querying, providing full linguistic
integration.

6. Language Modularity
Reuse of modularized DSL parts makes designing DSLs more efficient.

One example of language embedding in WebDSL is the integration of
the Hibernate Query Language (HQL) syntax as expressions. Queries
can refer to WebDSL entity types and to variables in the scope of the
query expression. Although not used in WebDSL syntax itself, the
implementation of WebDSL reuses the JavaFront Stratego library for
generating syntactically valid Java code, and enabling term rewriting
using concrete Java syntax fragments.

Chapter 5. The WebDSL Language Evolution Pattern 123

7. Syntax

Linguistic integration of domain concerns requires syntax design. A good
notation makes expressing common concerns simple and concise, and
provides sensible defaults. Syntax can be evaluated based on several cri-
teria: writability, readability, learnability for new users, and effectiveness
for experienced users.

WebDSL contains sublanguages with syntax designed for a particular
technical concern in web programming, e.g. entity declarations concisely
describe persisted data. Most of the syntax design happened in the early
stages of sublanguage implementation. However, there have been many
small incremental adjustments to the WebDSL syntax, such as removing
unnecessary keywords and brackets, and providing shorter notations
for commonly occurring fragments. Capturing common patterns in the
code and linguistically integrating them as new abstractions provides
opportunities for improving syntax in the areas of writability, readability,
learnability, and effectiveness.

Section 5.2 describes the generic evolution pattern used in the development
of WebDSL. The pattern is then explained in more detail with applications to
the evolution of core WebDSL language features: user interface templates (Sec-
tion 5.2.1), persisted data models (Section 5.2.2), and static code template
expansion (Section 5.2.3). Section 5.3 analyzes WebDSL language features
that are not required in all applications, however, are common enough to
be incorporated in the language. The language features are: email notifi-
cations (Section 5.3.1), file and image support (Section 5.3.2), and internal
site search (Section 5.3.3). Section 5.4 discusses considerations for the effort
of creating compiler extensions and code library management, after which
Section 5.5 concludes.

5.2 A Generic Language Evolution Pattern

Reflecting on the development of WebDSL, a recurring pattern can be identified
for the development of features in the language. This pattern is shown in
Figure 5.1. It consists of three phases:

• discover new abstractions,

• domain-specific language intregration,

• reimplement using new core abstractions tailored to the language.

These phases can be repeatedly applied, when current features can be im-
plemented in a better way, or as additional abstraction opportunities become
clear. To illustrate the pattern we walk through the evolution of user interface
templates in WebDSL shown in Figure 5.2.

124

Discover new abstractions

Reuse existing libraries defined in language, framework or code generator.

Explore the domain and find useful abstractions and dynamic semantics.

Identify recurring programming patterns and idioms.

No custom syntax or static verification specific to the feature, DSL opportunity.

Reimplement using new core abstractions tailored to the language

Find new core abstractions that address problems and provide building blocks to

build the higher-level abstractions.

Reimplement language feature as customizable library.

Keep high-level syntax, static and dynamic semantics

More control because dynamic semantics more explicit in language.

Increased flexibility by moving features from compiler to library.

Coverage increases through the new core abstractions.

Performance can be addressed better due to increased control.

Domain-specific language integration

Linguistic abstraction, integrate into compiler with syntax and semantics.

Initially keep using library or framework for the dynamic semantics.

Cleaner syntax without boilerplate code.

Inter- and intra-feature static verification with accurate error messages.

IDE support with inline errors, completions, resolving, etc.

Possible to add reuse and composition through static template expansion.

Reasons for domain-specific language integration

Through usage of the library discover typical problems.

Boilerplate code, recurring patterns in implementation.

Insufficient static verification, for example a code generator that accepts

unchecked annotations or external configuration files.

Integration issues with existing features.

Lacking IDE support.

Reasons for reimplementation

Through usage of the DSL discover issues in performance, reliability,

coverage, flexibility, control.

1

2

3
ne

w
 o

r r
em

ai
ni

ng
 is

su
es

ne
w

 a
bs

tra
ct

io
ns

 o
n

to
p

of
 e

xi
si

tin
g

D
S

L
ab

st
ra

ct
io

ns

Figure 5.1 Generic language evolution pattern.

Chapter 5. The WebDSL Language Evolution Pattern 125

5.2.1 Evolution of User Interface Templates

The initial features of WebDSL were based on common aspects of web frame-
works. To get an idea of the requirements, several frameworks were experi-
mented with. This is part of the first phase. There is no actual DSL abstraction
yet, because the domain and scope are not clear yet. These are discovered by
seeing what is commonly being used. A more thorough analysis was done
on the Seam Java web framework. Application code consisted of Hibernate
entity classes for persistence, JSF (Java Server Faces) XML files for rendering
pages and supporting Java classes to handle forms and submit actions. The
language in this case is the general purpose Java language, together with the
supporting languages like XML for templates. There were several opportuni-
ties for reducing boilerplate code, by combining templates and backing Java
code into a single definition, by abstracting over the persistence annotations
required by Hibernate (e.g. different annotations are required for primitive
fields, references, and collections), and by automatically generating boilerplate
project files required for compilation and deployment. These motivated a move
to phase 2, creating a DSL where syntax and semantics for persistence and
user interfaces are integrated as language abstractions.

Phase 2 is creating a domain-specific language that generates the applica-
tion code that was manually written in phase 1. The WebDSL syntax was
created for entities, templates, and functions. The compiler provided static
analysis on these language features and generated a Seam Java web applica-
tion. This version of WebDSL was quite useful for prototyping simple web
applications. Applications were very concise, due to generating the boilerplate
code. Application faults were caught early with static analysis. However, the
applications had several problems. Performance was bad, even for simple
pages the load time was close to a second. This was likely both due to general
aspects of the framework and a specific usage pattern to try to get reliable
and clear semantics (which sometimes required workarounds in the generated
code). The abstractions were very inflexible, all input and output templates
were part of the generator, changing a simple CSS class required changing the
generator. Some pages would give large stacktraces caused by an error deep in
the framework. The framework relied on in-memory server-side user sessions
for handling forms and submit, which polluted the URL with a meaningless
identifier, and caused annoying timeout behavior. AJAX support in JSF was
not integrated in the design and experiments made this clear as well. Data
validation was closely tied to the presentation layer, meaning that it was hard
to create a data validation abstraction that covered not just form checks, but
also data invariants. The high-level semantics of templates with type-derived
inputs and outputs were appealing, but the underlying foundation was shaky.
This was motiviation for looking at a replacement implementation for the
dynamic semantics of templates, and going to phase 3.

Phase 3 is finding core abstractions and reimplementing features as library
components. Most of the problems we had were related to the solution
for user interfaces in the Seam web framework. By building applications

126

Discover new abstractions

The Seam framework combines JSF templates with Hibernate persistence in
Java for handling web templates for rendering, inputs, submit actions, and
persistence (2006).

Reimplement using new core abstractions tailored to the language

Reimplement templates with custom implementation.
Generate custom web framework code for template definitions and pages.
Enables recursion, and caching generated classes for unchanged templates.
Speed and reliability improves.

Domain-specific language integration

Syntax for pages and templates.
Template calls inlined because runtime template calls are limited (e.g. local
overrides not supported).
Semantic analysis on definitions.
Remove boilerplate code, generate both JSF and backing Java class from single
definition.

Reasons for domain-specific language integration

Boilerplate XML and Java for each page
No static consistency checking for JSF templates.

Reasons for reimplementation

Rendering is too slow.
The framework is not reliable enough, inconsistent errors.
Inlining all templates calls causes slow compilation from amount of
generated code, fragments are inserted many times.
Requires splitting methods when reaching Java method size limits.
No recursion in template calls.
Inlining prevents caching for code generation.

1

2

3
Reimplement with new core abstractions tailored to the language

New core abstractions for code in phases: databind, validate, render, action.
Explicit notion of generated, deterministic templateid in language.
Input templates implementation in library.

Remaining issues

Inputs implemented in code generator, inflexible and hard to customize.
Development too slow if a template tweak requires change in compiler.

3
Figure 5.2 Generic evolution pattern applied to user interface templates.

Chapter 5. The WebDSL Language Evolution Pattern 127

 1 override attributes inputInt { class = "int-1" } // override class attribute of built-in
 2
 3 page root {
 4 var i := 0
 5 form {
 6 input(i)[class = "int-2"] // class attributes are merged, result: "int-1 int-2"

Figure 5.3 Code example of attribute override.

Discover new abstractions

HTML class attributes merging often occurring code fragment.
Most attribute operations were related to class attribute.
Class attributes of built-in components hard to customize.

Domain-specific language integration

Automatically merge class and style attributes from ‘all attributes’.
Syntax for attribute collections.
Replace all hardcoded CSS classes in built-in components with attribute
collection include.
Override option for convenience in creating styling libraries that style built-in
templates.

Reasons for domain-specific language integration

Boilerplate code for managing class merging.
Also wanted to support adjusting attributes for built-in components.

1

2

New abstractions on top of existing DSL abstractions

Inputs implemented in code generator, inflexible and hard to customize.
Development too slow if a template tweak requires change in compiler.

Figure 5.4 Generic evolution pattern applied to attribute collections. Continuation of
refining user interface template abstraction.

we discovered the abstractions that were working and those that were not.
The main primitive required for building our own template solution was
a deterministic and unique template identity generator. This allowed the
creation of forms with inputs and submits without the application developer
having to specify custom ids. Furthermore, code needed to be executed in
phases, to allow data binding and validation before handling actions. The
primitives required were the databind, validate, action, and render blocks
with function code for that specific phase. Input and output templates could
now be moved to the standard library, while retaining the high-level syntax
and semantics that were introduced in the DSL in phase 2.

128

The process repeats itself, in the template abstractions we still see opportu-
nity for reducing boilerplate code. This means we go back to phase 1 (although
for a smaller part of the language), in this case the code we want to improve
is already written as a library in the DSL. We want to improve the library
code through introducing new high-level language constructs. For example, a
form of generics or code templating in user interface templates would help in
reducing duplication of similar templates that work on different entity types
with different sets of properties. To addess this issue, we added a static code
template expansion with IDE support which enables creation of better libraries
for input and output templates for all types. This feature is discussed in
Section 5.2.3.

Another refinement of the template definitions is related to attribute hand-
ling. The most commonly used attribute is the class attribute to set CSS styling
for HTML elements. In HTML, multiple classes can be attached as a list sepa-
rated by spaces. This merging of class attributes was made implicit to avoid
having to describe class attribute concatenation in many templates. Similarly,
style attributes are automatically merged. Additionally, some classes were
part of the built-in library input and output components, these were harder
to customize or remove. These required adding the custom class to each call
or wrapping the template for just adding a class. To solve this problem, we
added an abstraction for attribute collections to the language. This enables
referring to a group of attributes belonging to a built-in or library component,
and allow overriding them more easily. For example, the HTML style and class
attributes for all the submit and submitlink components in the application
can be overriden through the submit attributes. An example code fragment
of attribute overriding is shown in Figure 5.3. This continuation of refining the
template language with better attribute handling is shown in Figure 5.4.

Each phase improvement requires design and implementation effort. These
are not trivial, especially coming up with new core abstractions to move to
phase 3 can be hard. However, this is also were the biggest improvement is for
the language. Enabling further abstractions to be build on top of those primitive
building blocks. The DSL can then move beyond the original framework it was
based on.

5.2.2 Evolution of Persisted Data Models

Not all WebDSL language features have received multiple iterations like the
user interface templates. In particular, persistence and search heavily rely on
Hibernate ORM [2023], Hibernate Search [2023], and Lucene [2023]. These
language features have not yet been reimplemented tailored to the language,
and can be considered at phase 2. They are wrapping an existing framework
with concise syntax and static checks, and generating the boilerplate code. The
evolution of persistence is shown in Figure 5.5. In practice, for our applications
the persistence abstraction has been largely sufficient, however, there are
limitations. For example, performance can become problematic for certain
cases, like when editing very large collection type properties.

Chapter 5. The WebDSL Language Evolution Pattern 129

Discover new abstractions

Hibernate persistence library for Java, annotate Java entity classes.
The library dynamically generates proxy classes for lazy loading.
Threadlocal session object for implicitly passing it around.
Database support flexibility.

Domain-specific language integration

Concise webdsl entity declarations, removes boilerplate annotations.
Inverse annotations for inverse mapping which also generates required code for
updating the objects in memory.
Statically check that a mapping is allowed.

reasons for domain-specific language

Boilerplate code for setting up, registering each entity class.
Complexity in annotations, typically could be derived from type of property.
Proxy classes break Java semantics in subtle cases (e.g. instanceof no
longer correctly reflects the type hierarchy)
Inverse relation mapping requires additional boilerplate Java code to
update objects in memory.

reasons for reimplementation

Performance issues caused by expensive flush behavior.
Index creation coverage insufficient, depends on specific DBMS, need to
customize type and settings for best results.
Performance when operating on lists (entire list always loaded).
Only simple relations, one to one, one to many, many to many.
No built-in support for versioning data, and migration transformations.
Database management and backups managed with separate tools.

1

2

Figure 5.5 Generic evolution pattern applied to persisted data models.

5.2.3 Evolution of Static Code Template Expansion

A convenient feature for web application frameworks is to generate code for an
administration interface to view and edit entities in the database. An example
of this is the scaffolding feature in Ruby on Rails [2023], which generates
an admin interface based on the data model. A downside of the scaffolding
approach is that as soon as edits are made to the generated code, it can no
longer be updated after data model changes without manual intervention.
In the initial version of WebDSL we included derive statements that would
generate CRUD pages, and view and edit rows for entities. The generated code
for these is not exposed to the client, so they can always be kept up-to-date

130

 1 expand
 2 Int Float Long Bool String Text WikiText Email Secret Date
 3 to Type {
 4 template input(label: String, s: ref Type){
 5 controlGroup(label)[all attributes]{
 6 input(s)
 7 elements
 8 }
 9 }
10 template output(label: String, s: ref Type){
11 controlGroup(label)[all attributes]{
12 output(s)
13 elements
14 }
15 }
16 }

Figure 5.6 Code example of static code template expansion.

Figure 5.7 Editor screenshot of static code template expansion. The Typename

parameter can be used in any AST location where an identifier is expected, and can
also be part of an identifier and still get replaced.

whenever the set of properties of the entity is changed. Although it is a useful
feature for prototyping, it quickly became clear that more customization was
needed to keep these derived definitions useful for real applications. Besides
admin pages, and input/output rows, there are other repetitive fragments
that can appear in several other syntactic locations, e.g., entity definitions,
statements, template elements. To generalize these features, we have designed a
static code template expansion mechanism. The defined pattern is syntactically
checked, and semantically checked for each instantiation occurence. Because
WebDSL has static verification checks for many cases with descriptive errors,
any resulting semantic error can be easily traced to the cause. A code example
of this feature is shown in Figure 5.6. The IDE screenshot in Figure 5.7
demonstrates the editor integration of this feature. The evolution of this
feature is described in Figure 5.8.

Chapter 5. The WebDSL Language Evolution Pattern 131

Discover new abstractions

Commonly occurring repetitive fragments that only differ in one or more names

(such as entity or property names) inside.

Examples: CRUD pages, list of inputs/outputs for an entity

Reimplement using new core abstractions tailored to the language

Syntax for code template expansion at multiple syntax locations: top-level

definitions, template elements, statements, entity body declarations.

Powerful but easy to use, editor gives immediate analysis of expanded code.

Could be expanded to have code fragment arguments, but most common

pattern is repeated fragments where only one name/string/type/variable is

different.
Allows custom set of input and output components to create a library of styled
components, more flexible than just changing CSS classes with attributes, can
change HTML element layout.

Domain-specific language integration

Initially predesigned expansions implemented in code generator:

- derive CRUD pages for a basic admin interface

- derive viewRows to display all properties of an entity

- derive editRows to edit all properties of an entity

Reasons for domain-specific language integration

Avoid boilerplate code.

Reasons for reimplementation

Derives built into code generator, not user-definable.

Repetitive code fragments that vary only on one or more names occur in

multiple contexts, e.g., templates, statements, entity definitions.

Typical use cases are CRUD pages, input/output with label wrappers and

customized styling

1

2

3
Figure 5.8 Generic evolution pattern applied to static code template expansion.

5.3 Evolving Compiler Extensions

Web programming features that are required frequently can be implemented
as language extensions in the compiler. This allows specification of a syntax
specific to the feature, as well as static analysis and code generation. Because
this requires implementation effort from the language designer, the features
should be common enough to occur in multiple web applications. In this
section, we discuss sending email notifications, file upload and download, and
internal site search. These are examples where a feature has been added to the
language itself, instead of only building a library.

132

 1 email confirmRegistration(u: User){
 2 to(u.email)
 3 from("admin@webdsl.org")
 4 subject("webdsl.org registration confirmation")
 5 par { "Dear ~u.fullname," }
 6 par {
 7 "Welcome to webdsl.org. Your registration has been confirmed. "
 8 "You can find your profile at "
 9 navigate user(u){ output(navigate(user(u))) }
10 }
11 }
12 function confirm(u: User){
13 email confirmRegistration(u);
14 }

Figure 5.9 Example usage of email definition and send function.

Discover new abstractions

Template system for email.
Email sending and retry boilerplate.
Configuration for SMTP server.
Storing in database for asynchronous sending.

Domain-specific language integration

Template variant for generating emails.
Simple send function.
Configuration integrated in general config for web application.

reasons for domain-specific language integration

Remove boilerplate for sending and retry.
Reuse rendering of templates.
Integrate with database data retrieval.

1

2

Reimplement with new core abstractions tailored to the language

Store email as persisted QueuedEmail entity.
Primitives to render email to entity and to send email from content in entity.
Implement library code that handles the queue and avoids transaction conflicts.

Reasons for reimplementation

Submit action needs to wait for SMTP connection.
Email can be sent multiple times when there is a transaction conflict.
Hard to customize email sending behavior.

3
Figure 5.10 Generic evolution pattern applied to email.

Chapter 5. The WebDSL Language Evolution Pattern 133

5.3.1 Evolution of Email Notifications

Web applications often use email notifications to inform the user of important
events happening in the system. Examples of such events are the arrival of a
new message, moderation needed for a user account, a password reset request,
or a change is made by another user in important data. The main function of
an application can also be sending email notifications, e.g. in a monitoring
application.

Constructing an email is similar to constructing a page. An email is also a
template that must be filled in with entity data. Email templates are similar to
regular templates, but must be called with the email command from functions.
An example email template for confirming a user registration is shown in
Figure 5.9. The difference with regular templates is that additional definitions
are available, namely subject, to, cc, and bcc templates. These extra template
calls are used to provide the meta information for sending an email. The send
email command consists of the email keyword followed by a call to the email
template. Sending email requires configuration settings for the SMTP server.
These are configured in the application.ini configuration file. The provided
abstraction avoids having to specify boilerplate code for rendering an email
and connecting with the SMTP server. Email handling code is error-prone,
because a small mistake in such code can easily lead to an accidental spambot.

The evolution of the email feature is shown in Figure 5.10. In the initial
implementation of this feature, connecting to the local SMTP server was done
synchronously, which meant that any email notification triggered from a submit
function would cause the submit action to take several seconds. Another issue
was that if the action failed for some other reason, e.g. a database transaction
conflict, an email could be sent again. The feature was improved by making
the sending asynchronous, the email is first stored as a QueuedEmail entity in
the database. This avoids the problem of sending multiple times, because if
the actions fails, the email is not added to the queue. A background job takes
care of sending the emails in the queue, which is implemented in the standard
library of WebDSL. It has no other tasks and is the only thread that updates
or removes QueuedEmail entities from the queue, which avoids transaction
conflicts. If there is an issue while sending the email, this function will retry
after some time has elapsed.

5.3.2 Evolution of Files and Images

Storage of binary data files such as images and PDF files is another common
feature in web applications. The File and Image property types handle storage
of binary data in WebDSL. This feature uses the database support for storing
binary data files. The output template for Image will display the image,
whereas the output template for File type will display a download link. The
input templates for both types use the HTML file input tag to display an
upload file widget.

134

 1 template addPhoto {
 2 var photo := Photo{}
 3 action add {
 4 photo.save();
 5 photo.owner := principal;
 6 return showPhoto(photo);
 7 }
 8 form {
 9 label("Photo"){ input(photo.data) }
10 submit add { "Save" }
11 }
12 }
13 page showPhoto(p: Photo){
14 output(p.data)
15 }
16 entity Photo {
17 data : Image
18 owner : User
19 }
20 entity User {
21 photos : {Photo} (inverse = owner)
22 }

Figure 5.11 Image upload and output.

Discover new abstractions

Supporting file upload and download, image upload and output.
Database mapping for files.
Hooking into request handling for uploads.
Integrate with entity storage.

Domain-specific language integration

Types Image and File with input and output templates provide a simple interface.
Boilerplate code integrated in code generator.

reasons for domain-specific language integration

Boilerplate code for integrating into request handling, database mapping.
Form variant for multipart influences existing form template.

1

2
Figure 5.12 Generic evolution pattern applied to files and images.

The example in Figure 5.11 shows a Photo entity used for storing an im-
age. The addPhoto template displays the upload image interface and stores
uploaded images as a new instance of Photo belonging to the logged in user.
The showPhoto page shows an uploaded photo using the output template for
type Image.

The implementation of file and image handling builds upon the features
available in the platform. The evolution of file handling followed a straight-
forward path to integration in the DSL, and is shown in Figure 5.12. In the

Chapter 5. The WebDSL Language Evolution Pattern 135

generated Java code, file and image content are handled with binary streams
and persisted as blob columns. Additional functionality, such as transforming
images can be implemented using standard image manipulation functions, ei-
ther by a custom wrapping function or direct invocation of Java library classes.
Handling upload on the server uses standard servlet code for this purpose.
The database is required to have support for binary files, and serialization is
already covered by the Hibernate framework. Storing files can be handled in
several other ways, storage can be done in a separate database, or even in the
file system directly. These variants could still be implemented for optimization
or scalability by creating a Java library for it. The built-in file handling provides
easy management of application file data: the data is stored together with all
the other data in the database, and file data can be handled just like other entity
properties. Storing files typically requires some configuration of the database
engine, e.g. changing the maximum file size limit in MySQL. It can also require
changing the maximum file upload size in the web proxy or application server.

5.3.3 Evolution of Internal Site Search

Internal site search enables the content of a web application to be indexed,
searched, and displayed. This is different from external web search engines
like Google and Bing, which index only the externally visible rendered pages.
Internal site search can provide a much richer search mechanism by utilizing
the data model directly. This enables features like faceted search. Faceted
search is a dynamic way of representing search filter options when browsing a
collection of items. For example, in a webshop the search query results can be
refined by selecting a specific category of items, a price range, and a particular
brand name.

The action of searching consist of four phases: query formulation, action,
review of results, and refinement [Shneiderman, Byrd, and Croft 1997]. A
search engine can provide spell corrections and autocomplete suggestions. A
search action can be triggered after a button is pressed or automatically when
the search query is changed. Completion is based on terms that occur in the
indexed data and thus guarantee to produce a result. Shown search results
need to represent the found entities in a concise manner, highlighting the
elements relevant to the search. For example, in a long text fragment only the
fragment around the searched word is shown.

The example in Figure 5.13 shows a search mapping for a Publication

entity. The + indicates fields that are searched by default. The title field
without any analyzers is used for autocompletion suggestions. The search
function uses the searcher language to build up a search query, in this case the
default settings are used for the given query. Limiting results and pagination
is achieved by invoking functions on the searcher type that results from a
searcher language invocation.

The specification of internal site search supports definitions for configu-
ration, search mapping and constraints, retrieval of data, and user interface.
The evolution of this feature (shown in Figure 5.14) is similar to persistence,

136

there is custom syntax that ties into configuration and operations in Hibernate,
Hibernate Search, and Lucene. Configuration is needed to manage the external
index, which is stored separately from the application database. Search con-
straints determine what entities and entity properties are searched and how
the values are analyzed. Analysis consists of character filters, tokenization,
and token filters. Common analysis operations are lowercasing and stemming.
Retrieval of data is governed by a Searcher type that is available for each en-
tity with a search constraint specification. The user interface can be expressed
with WebDSL templates. A more detailed description of the search features in
WebDSL can be found in Van Chastelet [2013].

5.4 Discussion

Compiler extension implementation effort Compiler extensions take more effort
to create than libraries. WebDSL is implemented using SDF for syntax defini-
tion, Stratego for compilation, and Spoofax for the IDE. It is not a trivial step
to go from a library implemented in WebDSL to a language feature, because
it requires knowledge of these tools and the WebDSL implementation itself.
These tools are still being improved to provide better abstractions for the
creation of programming languages. Another way to address the problem is to
provide a new sublanguage in WebDSL that handles common implementation
patterns for language features so these can be defined entirely in libraries.

In SugarJ [Erdweg 2013] language extensions are implemented as library
components. The syntax and semantics are specified with embedded SDF and
Stratego. The method has been applied to create Java extensions as libraries
that introduce additional language syntax and semantics into applications.

Common mechanisms for external tools Extensions that invoke external tools
often require similar features, such as asynchronous scheduling, throttling,
retry behavior, managing temporary files, and running tools in a sandbox.
Typical examples of such extensions are email and PDF generation. Sending
an email might temporarily fail, and needs to be retried. After a few failures
there might be some fallback mechanism required that informs a user about
the failure. The PDF generation tool is an external process that generates a file,
this file needs to be imported into the database and can then be removed. All
these features end up having to be reimplemented in many cases. These could
benefit from a better abstraction for invoking external tools, and a library of
utility functions.

Library repository In order to make libraries visible to other developers,
a repository has to be maintained. There are many sources of inspiration
from general-purpose languages. Each language has some form of library
repository, such as CPAN for Perl, Cabal for Haskell, and the Maven repository
for Java. IDEs can provide seamless integration with library repositories, such
as DrRacket for Racket [2023] that automatically downloads the library when
importing it in a file.

Chapter 5. The WebDSL Language Evolution Pattern 137

 1 entity Publication {
 2 title : String (id, name)
 3 authors : {Author}
 4 description : WikiText
 5 citations : Int
 6 search mapping {
 7 title using none as suggest (autocomplete)
 8 // for autocomplete suggestions use original title name
 9 +title^1000.0 using titleAnalyzer (spellcheck)
10 // ^ boosts ranking for this property
11 +authors
12 +description using snowball (spellcheck)
13 // spellcheck enables analysis for 'did you mean' suggestions
14 citations
15 }
16 }
17 default analyzer titleAnalyzer {
18 tokenizer = StandardTokenizer
19 token filter = StandardFilter
20 token filter = LowerCaseFilter
21 }
22 function search(query: String): [Publication] {
23 return (search Publication matching query).results();
24 }

Figure 5.13 Search analyzer specification.

Discover new abstractions

Hibernate search integrates Lucene search with Hibernate persistence.
Requires supporting classes for invoking search APIs.
Specification of search mapping for entities.

Domain-specific language

Search mappings part of entity specification.
Searcher type for convenient access to search API.
Boilerplate code integrated in generator.

Reasons for domain-specific language

Generate the boilerplate code and search customization.
Integrate search mapping in language for static checks.

1

2
Figure 5.14 Generic evolution pattern applied to search.

Client-side code abstraction To avoid tampering, all WebDSL function code
runs on the server. However, for integrating a JavaScript input widget, there is
often some glue JavaScript code required. A typical approach is to put a hidden
input field next to a JavaScript widget, and implement a hook that updates
the state of the hidden input with the state of the widget. When submitting
such a form, the value of the hidden input represents the selection in the
widget. Besides input widgets, some applications require more client-side
behavior such as animated page elements or transitions. The current way to

138

handle client-side code is to include JavaScript in a WebDSL template or return
JavaScript to be executed as a response to an action. There is no checking or
integration for this JavaScript embedding. There is room for improvement by
incorporating client-side functionality as a sublanguage that can be checked
for consistency with respect to the server-side components.

5.5 Conclusion

This chapter reflected on the evolution of the WebDSL language. The generic
evolution pattern used in the development of WebDSL consists of first discover-
ing new abstractions, then implementing domain-specific language abstraction,
and finally reimplementing features using new core abstractions tailored to the
language. The pattern repeats when additional problems or improvements are
discovered. The WebDSL language design went through several iterations. In
particular, the user interface language improved significantly from the initial
implementation with rigid input components defined in the code generator.
The current implementation provides customizable library-defined compo-
nents for input and output templates using a small set of language primitives.
Several examples of the pattern applied to evolution of language features have
been discussed, including persistence, static code templates, email generation,
files, and internal site search. For every feature in the language, a trade-off
has been made to determine whether it is worth designing and implementing
language support, or to keep it as a library implementation using custom Java
or JavaScript code.

This chapter concludes the discussion of WebDSL language features. In
Chapter 6 we analyze the WebDSL compiler, IDE and runtime implementation.

Chapter 5. The WebDSL Language Evolution Pattern 139

140

6
The WebDSL Compiler, IDE, and Runtime

6.1 Introduction

Web application concerns are represented as first-class citizens in the WebDSL
language. This differs from common web programming solutions where a
general-purpose language only provides a low-level programming layer and
a large framework is built on top. The implementation of a large language
imposes its own set of software problems. For example, how to organize
and maintain such a language, how to get sufficient performance, how to
provide IDE support such as code completion and reference resolving, and
how to make building and deploying seamless. The implementation of such
a language benefits from reusable patterns for language analysis and code
generation.

The design and implementation of the WebDSL compiler explores the inter-
action between analysis and transformations, in a high-level transformation
language based on the paradigm of rewrite rules with programmable strategies
(Stratego). The implementation uses transformations that gradually transform
a high-level input model to an implementation. Language constructs are
desugared down to a core language, and subsequently the core language is
transformed to fragments in the target language (Java). The use of concrete
object syntax guarantees syntactic correctness of code patterns, and enables
the subsequent transformation of generated code. This approach is called code
generation by model transformation [Hemel et al. 2010]. WebDSL is the largest
programming language created with the Stratego program transformation lan-
guage and the Spoofax language workbench, in which the compiler and IDE
have been iteratively developed. In this chapter we will provide a high-level
overview of the WebDSL compiler, IDE and runtime implementation.

Section 6.2 provides an overview of the WebDSL compiler pipeline, which
consists of analysis, transformations, code generation, and Java compilation.
Section 6.3 explains the analysis that happens in WebDSL, which is divided
into the following steps: parsing and imports, declare global definitions, name
resolution, and check constraints and report errors. The compiler continues
with transformations, illustrated with several examples in Section 6.4, which
provides reuse in the WebDSL language semantics by encoding language
features into other language features, and reducing an application definition
to a smaller core language. Section 6.5 shows which part of the WebDSL
compiler is reused for the IDE, and explains the type of caching that has
been implemented in the IDE for reducing error feedback time. After the
front-end is done, the back-end generates the application, this is covered in
Section 6.6. The resulting application code is based on a standard runtime
library shared among WebDSL applications, and application-specific generated

141

analysis

code generation

WebDSL application
code

WebDSL core

Java classes

Java
compilation

Java servlet application

transformations
additional name

resolution

parsing and
imports

declare global
definitions

name resolution

check constraints
and report errors

Figure 6.1 WebDSL compiler pipeline.

classes. We have designed multiple caching strategies in the compiler to
reduce recompilation times, which are discussed in Section 6.7. Section 6.8
shows a typical deployment scenario for WebDSL applications. Section 6.9
discusses design considerations and opportunities for improvement related to
the implementation of the WebDSL compiler, and Section 6.10 concludes this
chapter.

6.2 Compiler Pipeline

Figure 6.1 shows an overview of the WebDSL compiler pipeline. The front-
end of the language first parses the application files to create an abstract
syntax tree (AST). Program analysis is performed on the AST. This means
resolving definitions from use-site to declaration-site, calculating the type of
each expression, and checking constraints to report errors. If there are errors,
they are reported and the compiler is done. If there are no errors, the next step
is program transformation. Some language features are expressed in terms

142

of other simpler language features. These are desugared during program
transformation. This means there is a core WebDSL, a subset of the language,
which reduces the number of language features to support in the back-end.
Through desugaring, new WebDSL fragments are generated. These can require
additional binding and type analysis to construct the fully analyzed AST. After
the application is normalized to the core language, the back-end generates code.
Bindings, types and all other information required for code generation of a top-
level definition is merged into their AST node. These are the language elements
like entities, pages, templates, and functions. With all required information
merged into the AST, code generation is deterministically derived from the
top-level AST nodes. This step can be cached easily by using the AST node as a
cache key. The Java code that is generated is a complete Java Servlet application.
Part of the dynamic semantics is defined in a precompiled runtime library
written in Java. This runtime library is automatically included in the generated
project. A supporting Ant build script is used to coordinate build activities
such as copying template files, invoking the WebDSL compiler, invoking the
Java compiler, and deploying generated applications. The generated Java
servlet application runs in any Servlet container such as Tomcat or Jetty. The
generated code uses the Hibernate ORM [2023] library for database persistence,
which has support for various databases. We use MySQL on the production
server and the H2 in-file or in-memory database engine for tests. Search is
powered by the Lucene library and Hibernate Search.

The compiler is a standalone command-line compiler created using the
Stratego/XT language and toolset for program transformation [Bravenboer
et al. 2008]. The syntax definition is specified in SDF, and the compiler itself is
written with Stratego transformation rules and strategies. The IDE, an Eclipse
plugin, is created with the Spoofax language workbench [Kats and Visser
2010]. Spoofax provides an interface to language editor services for Stratego
projects. The plugin includes the compiler and adds IDE features such as inline
error markers, content completion, and reference resolving. Additionally, the
WebDSL plugin integrates the build and deployment actions into a convenient
project build action.

6.3 Front-End Analysis

The WebDSL language performs static verification on application code. These
checks are executed before the compiler continues further processing of trans-
formations and code generation. If there is a fault in the application code, the
application developer must be notified. The fault must be corrected before
being able to continue the build of the application.

parsing and imports The compiler first parses the application code to create
an AST. If the application is not valid WebDSL syntax, the AST cannot be
constructed and no semantic analysis can be performed. WebDSL has a simple
import system, where any file imported is included once in the application
code, and there are no language elements to restrict visibility. This means that

Chapter 6. The WebDSL Compiler, IDE, and Runtime 143

WebDSL application

entity Issue{
 title : String
 description : Text
}

template showIssue(i: Issue){ ... }

function findIssues(q: String):
 [Issue]{...}

Globally visible definitions

page project(p: Project){ ... }

Issue <: Entity
Issue.title:String ∈ Property
Issue.description:Text ∈ Property

showIssue(i:String) ∈ Template

project ∈ PageName
project(p:Project) ∈ Page

findIssues(q:String):[Issue]
 ∈ Function

principal is Person with credentials
 name, password

securityContext <: SessionEntity
securityContext.principal:Person
 ∈ Property
authenticate(n:String,p:Secret):
Bool ∈ Function

Figure 6.2 Declare globally visible definitions. The Issue entity declares an Issue

type, and for each property a relation between entity and a property with type. The
showIssue template declares a signature with name and parameter types. Function
signatures are also a name with list of types. Page names are declared with just the
name, because these need to be unique, but also with the signature, which allows
checking navigate elements. Each language construct can declare several facts.
If the semantics of a language construct implies that other WebDSL definitions are
generated and can be called, these are declared in this phase as well. For example,
a principal is Person declaration implicitly generates the securityContext{

principal: Person } session entity, so securityContext is declared when
analyzing principal is Person.

imports are transitive, any file that can be reached through imports starting at
the main application file is included into the application AST.

declare global definitions When a valid AST has been loaded for the whole
application, the first analysis traversal can be performed. This traversal records
globally visible definitions. These are the entity names, its properties with
types, page and template signatures, function signatures, and any other infor-
mation required for resolving bindings and types. An example analysis phase
for declaring globally visible definitions is explained in Figure 6.2.

name resolution After declaring the globally visible definitions, it becomes
possible to resolve global and local bindings. Variables and calls are connected
to their referred definitions. The type of each expression can be determined.
This phase is illustrated in Figure 6.3.

144

WebDSL application

entity Issue{

 function addComment(t: Text, a: User){

 var c := Comment{text:= t author:= a};

 comments.add(c);

 }

 content : WikiText

 title : String

}

page issue(i: Issue){

 main{

 h2{ "Issue: " output(i.title) }

 par{ output(i.content) }

 }

}

template par(){

 <par all attributes> elements </par>

}

Resolved bindings and globally unique names

entity Issue{
 title : String
 content : WikiText

 function addComment(
 t{e_issue_t0}: Text,
 a{e_issue_a0}: User){
 var c{e_issue_c0} := Comment{
 text := t{e_issue_t0}
 author := a{e_issue_a0};
 comments.add(c{e_issue_c0});
 }
}
page issue(i{p_issue_i0}: Issue){
 main{
 h2{ "Issue: " output(i{p_issue_i0}.title) }
 par{ output(i{p_issue_i0}.content) }
 }
}

Types
Issue <: Entity
Issue.title:String ∈ Property
Issue.content:WikiText ∈ Property
t{e_issue_t0}:Text ∈ Variable
a{e_issue_a0}:User ∈ Variable
c{e_issue_c0}:Comment ∈ Variable
i{p_issue_i0}:Issue ∈ Variable

Figure 6.3 Resolve bindings and types. The entity function addComment has local
references to the t and a arguments, and the variable c. The issue page refers
to the globally defined Issue entity type, and its properties title and content.
Other global references are to templates main, h2, par, output(String), and
output(WikiText). Local references are to the page argument i.

Template and function calls have support for overloading, allowing def-
initions with the same name but different argument types. Overloading is
resolved in this step by determining for each call a compatible definition with
the closest matching types. If a closest match cannot be determined, the call is
not resolved and an error will be reported in the constraints phase. This can
happen if a template call with arguments A and B could refer to a template
definition where argument A is more specific in type and another template
definition where argument B is more specific.

To handle storing of resolve and type information, each local variable is
given a globally unique name. This way an index can be created that holds
type information for the whole application. Besides type information, any
additional information related to bindings can be added in this phase. For
example, a closure of the local variables can be added to elements that will be
lifted out of their context. This is illustrated in Figure 6.4. Globally unique
names are derived deterministically from the context to allow caching in later
phases.

check constraints and report errors At this point in the compiler pipeline all
information required for determining application faults is available. Global
definitions have been stored and local bindings are resolved. The ‘check
constraints and report errors’ phase takes care of checking static analysis

Chapter 6. The WebDSL Compiler, IDE, and Runtime 145

Resolve bindings information required for transformation

WebDSL application

page issue(p: Project, i: Issue){
 par{
 output(p.name)
 output(i.title)
 output(i.content)
 }
}

template par(){
 <par all attributes>
 elements
 </par>
}

Will be transformed to core

page issue(p{p_issue_p0}: Project, i{p_issue_i0}: Issue){
 par{p{p_issue_p0}, i{p_issue_i0}}{
 output(p{p_issue_p0}.name)
 output(i{p_issue_i0}.title)
 output(i{p_issue_i0}.content)
 }
}

page issue(p: Project, i: Issue){
 par with { elements() = p_issue_par_elements0(p,i) }
}

template p_issue_par_elements0(p: Project, i: Issue){
 output(p.name)
 output(i.title)
 output(i.content)
}

Figure 6.4 Insert binding information in AST where required for transformation. The
elements template passed to par will be lifted to a separate template with a gener-
ated name p_issue_par_elements0 in the transformation phase. Performing that
transformation requires the closure of local variables that are in scope and used. In
the resolve bindings phase shown at the bottom this information is available and
can be inserted at the par template call.

WebDSL application

entity Issue{
 project : Project (inverse=issue)
 title : Strin
 comments : {Commen} (inverse=issue)
 closed : Bool
 author : User (inverse=issues)
 content : WikiText

 function addComment(t: Text, a: User){
 var c := Comment{ text := t author := t };
 comments.add(c);
 }
}

page issue(i: Issue){
 main{
 gridro{
 gridcolhalfmiddle{
 h2{ "Project: " output(i.project) }
 h2{ "Issue: " output(i.itle) }
 par{ output(i.description) }
 par{ showCommentsTable(i.comments.list()) }
 }
 }
 }
}

Errors

Property not defined: 'Project.issue'

Type not defined: 'Strin'

Template not defined: 'gridro()'

Property not defined: 'Issue.itle'

Type of expression 'Text' is
incompatible with type 'User' of
entity property 'Comment.author'

Figure 6.5 Check constraints and report errors. The properties Project.issue

and Issue.itle do not exist. The type Strin does not exist. The template
gridro() does not exist. Issue.author is of type User and cannot be assigned
a value t of type Text.

146

Application Code var u := User{}

Resolved bindings and types

Transformation

var u{u_p_user0} := User{}

var u{u_p_user0}: User := User{}

u{u_p_user0}:User ∈ Variable

Figure 6.6 Analysis and transformation of variable declaration with inferred type.
The application code contains the declaration of a variable u. In the resolve bindings
and types phase, the variable is given a unique name, and requires a type to be
specified for that name. At this point the type of the initializer expression can be
determined, which is given to the variable u{u_p_user0}. In the transformation
phase the actual AST node is changed to a variable declaration with explicit type,
so the back-end code generator can retrieve the type from the node itself.

rules and collecting the resulting errors for feedback to the developer. In a
command-line compiler these errors will be shown on the standard output
with file location. In an IDE the errors will be marked at the faulty application
element in the editor. Additionally, the file with the error is marked in project
navigation views and the error is listed in the project errors overview.

Some checks can be based entirely on the globally declared information.
For example, checking for duplicate entity or page names. Most checks state a
requirement of a node in the AST. For example, does a referenced type exist, is
a called template defined, are template argument types valid, does a variable
reference point to an existing variable or argument. A check of a variable
reference in this phase is trivial, because the resolved binding information
indicates whether it refers to an existing name. With the binding and type
information of variables and calls, all expression should produce a type. If
the type of an expression cannot be determined there is an error that needs
to be reported to the developer. Figure 6.5 illustrates constraint checking and
error reporting. It has several incorrect property name references, template call
references, and type incompatibilities.

6.4 Front-End Transformations

The compiler continues with transformations after analysis has been performed
and the application does not contain any faults. The goal of the transformations
is to reuse WebDSL language semantics to encode other language features, and
thereby reducing the implementation effort of the back-end. The application
is transformed to a core of the WebDSL language. Entire sublanguages can
be created based on existing language features. A good example is the access
control language, for which the semantics is defined as tranformations on
WebDSL definitions. Transformations can also be very small, such as the
transformation for adding an inferred type in a variable declaration or for

loop.
Transformations that introduce WebDSL application fragments may require

an additional ‘resolve bindings and types’ pass on the new fragment. By
making sure that each transformation leaves the application AST in a valid
and analyzed state, the transformations become independent. New transfor-

Chapter 6. The WebDSL Compiler, IDE, and Runtime 147

Application Code
var cs := getComments();
var u := principal;
var t := [c.text | c in cs where c.author == u];

Resolved bindings
and types

Transformation

var cs{cs0} := getComments{g0}();
var u{u0} := principal{p0};
var t{t0} := [c{c0}.text | c{c0} in cs{cs0}
 where c{c0}.author == u{u0}];

var cs{cs0} := getComments{g0}();
var u{u0} := principal{p0};
var t{t0} := listcompr0{lc0}(cs{cs0}, u{u0});
...

function listcompr0{lc0}(cs{cs1}: [Comment], u{u1}: User): [Text] {
 var list{l0}: [Text];
 for(c{c1} in cs{cs1} where c{c1}.author == u{u1}){
 list{l0}.add(c{c1}.text);
 }
 return list{l0};
}

cs{cs0}:[Comment] ∈ Variable
u{u0}:User ∈ Variable
c{c0}:Comment ∈ Immutable Reference
t{t0}:[Text] ∈ Variable
principal{p0}:User ∈ Variable
getComments{g0}:[Comment] ∈ Function

Figure 6.7 Analysis and transformation of list comprehension. The WebDSL expres-
sion language has a list comprehension construct as a convencience for performing
filter and map operations. This example shows a variable texts being initialized
with a list comprehension expression. When bindings from variable references to
variable declarations are resolved, the type of the list comprehension can be deter-
mined. In this case a list of Comment entities is transformed to a list of Text values,
which correspond to the text property of each Comment. List comprehensions are
desugared entirely to WebDSL core. A function is generated that iterates over the
collection, filtering the elements, and applying the expression to each element. The
location of the list comprehension expression is replaced with a call to the generated
function listcompr0. Newly generated code fragments are analyzed to resolve
bindings and types. Transformation rules are applied exhaustively, definitions frag-
ments can be transformed code fragments that need further transformations.

mations can be added without interfering with existing ones. Transformation
rules are exhaustively applied. When no further changes can be made, the
transformation phase is done. The following figures illustrate the implementa-
tion of several language features and their implementation as transformations.
Variable declaration with inferred type in Figure 6.6, list comprehension in
Figure 6.7, entity extension in Figure 6.8, and template inlining in Figure 6.9.

6.5 IDE support

To assist programmers, an Integrated Development Environment (IDE) pro-
vides more direct feedback. First of all, errors are marked in the file itself,
which saves the programmer from matching an error report to its location.
Syntax highlighting provides visual hints of the program structure. Refer-
ence resolving allows convenient navigation from use sites to declaration sites.
Content completion suggests what the available options are for completing

148

Application Code

entity User {
 name : String
}

extend entity User {
 isAdmin : Bool
 function mayEdit(c: Comment): Bool {
 return c.author == this || isAdmin;
 }
}

Transformation

entity User {
 name : String
 isAdmin : Bool
 function mayEdit(c: Comment): Bool {
 return c.author == this || isAdmin;
 }
}

Declare

User <: Entity
User.name:String ∈ Property
User.isAdmin:Bool ∈ Property
User.mayEdit(c:Comment):Bool ∈ Function

Figure 6.8 Analysis and transformation of extend entity. Entities definitions can be
spread over multiple files. The extend entity declaration adds properties and
functions to an already defined entity. The added properties and functions become
part of the entity definition as if they were all in one declaration. The declare phase
registers the properties and functions of the entity. The entity extension elements
are handled the same as the regular entity elements. It does not matter whether
a property is declared in the entity definition or one of its extensions. It will be
accessible from each fragment of the entity definition. The transformation phase
actually merges the entity with extensions into one entity definition. The back-end is
now a simple one-to-one mapping to the target platform representation of entities.
In the current compiler this is a Java class with Hibernate persistence annotations.

an expression or other definition. Outline views provide an overview of the
definitions in a file. Besides editor support, the IDE provides an integrated
solution for building and deploying applications.

The WebDSL IDE has been created with the Spoofax language work-
bench [Kats and Visser 2010; Kats 2011]. Figure 6.10 shows a screenshot
of the WebDSL editor. Spoofax provides IDE creation for projects based on the
Stratego transformation toolset. The WebDSL editor invokes the analysis from
the compiler to provide editor support. This is illustrated in Figure 6.11. The
parsing phase is needed for the editor to provide syntax highlighting. Global
definition information and name binding analysis is required for reference re-
solving and content completion. Constraints need to be checked and reported
in the editor. The IDE analysis is done at this point, because it can already
provide all the editor features. It keeps the analysis information in memory
until there is a change and reanalysis.

The parser in the editor is not entirely the same as in a command-line
compiler. A variant of the parser is required that provides error recovery,
making sure that an invalid syntax still produces a valid AST for analysis.
For example, when a user types an entity variable name followed by a dot,
the editor should be able to come up with valid completions of property

Chapter 6. The WebDSL Compiler, IDE, and Runtime 149

Application Code

page root {
 main {
 gridrow {
 showProjects
 }
 }
}
template gridRow {
 div[class = "row", all attributes]{ elements }
}
template div {
 <div all attributes> elements </div>
}

Transformation

page root {
 main {
 <div class = "row">
 showProjects
 </div>
 }
}

Figure 6.9 Inline templates optimization. Wrapper templates are quite common,
because these can provide an abstraction for CSS styling classes. For example,
the gridRow template wraps an HTML div element around the template elements
passed to it. A CSS styling class is applied to it, in this case a row for a flexi-
ble table-like layout. Such simple templates can be easily inlined, which saves
some templatecall overhead at run-time. The transformation for inlining determines
whether a template is safe for inlining, in particular this means there are no uses of
the unique template identifier inside it. Then, the template elements are inserted
at the call site with the original elements applied at the elements call. An inlined
template definition is removed from the application AST.

Figure 6.10 Editor screenshot, example intentionally seeded with faults to show
static checks in IDE

names. Even though the application is not a valid syntax as described in
the language definition, because a variable followed by just a dot is not a
valid expression. Spoofax handles this automatically, through generating error
recovery productions in SDF [De Jonge et al. 2012; De Jonge 2014].

150

IDE

analysis

code generation

WebDSL application
code

WebDSL core

Java classes

Java
compilation

Java servlet application

transformations
additional name

resolution

parsing and
imports

declare global
definitions

name resolution

check constraints
and report errors

Figure 6.11 The IDE reuses the analysis steps, using the parsing for syntax high-
lighting, resolved names for reference resolution, registered definitions for content
completion, and reporting errors with location info inside the editor with error mark-
ers. Parser requires error recovery to be able to parse incomplete programs and
still provide editor support.

6.5.1 IDE Caching

The WebDSL compiler is implemented as a whole-program compiler. Such a
compilation strategy is not optimal for editor usage. WebDSL has transitive
imports, meaning that a file imported anywhere is visible everywhere. An
editor window shows only a single file. While editing the file, analysis would
by default analyze the whole program on each change. The analysis on each
small change quickly becomes too slow for interactive usage. To address this
problem a caching mechanism is implemented to optimize IDE usage.

The caching for IDE usage works as follows. In the background, all files are
analyzed for globally visible declarations. This information is stored. When a

Chapter 6. The WebDSL Compiler, IDE, and Runtime 151

file is opened in an editor, the cached declare information of all the other files
is loaded. Then the complete analysis is run for the changed file. This means
that all the constraints can be evaluated for the file. Any file that depends
on definition signatures in the changed file is scheduled for re-analysis in the
background. If the user tries to resolve to a definition outside the current
file, the referred file and position are read from the cache. The referred file is
opened in a new editor and the cursor is navigated to the referred position. This
also handles aspect-oriented features like extend entity correctly, because
properties and function signatures are part of the cached declare information.

6.6 Back-End

WebDSL core gets translated to Java servlet code in the back-end of the compiler.
The Java code is compiled and deployed to an application server. The back-end
consists of two components:

• the runtime library that is the same for each application;

• and application-specific generated classes.

The code generation approach and runtime library are described in this section.

6.6.1 Code Generation

The WebDSL back-end compiles core application code to Java. There are several
approaches to generating target application code. The most straightforward
way is to generate a String that is written to a file. This is the approach
most code generation template engines use. This String concatenation method
does not provide any static checks to ensure that correct syntax is generated.
Another method is to build up an AST using an API, where the API enforces
the construction of correct syntax. The API provides a method to prettyprint
the contents of an AST to a file. This method guarantees that the syntax of files
is correct. However, it is also harder to use than String concatenation, because
the source code fragments of the target language are no longer literally in the
templates. The abstract syntax represented with the API is also less concise
than the concrete syntax of the language. There is a method that combines
the benefits of these two methods, namely concrete object syntax[Visser 2002;
Bravenboer and Visser 2004]. Textual patterns in the syntax of the language
are compiled to the corresponding abstract syntax pattern. This provides the
same level of reusability as template engines, while also guaranteeing syntactic
correctness of code patterns. Another benefit of the concrete syntax approach is
that it allows subsequent transformations on the template fragments. Because a
structured representation has been constructed, it can be augmented to include
convenient features that are not in the target language. There are two additions
used in WebDSL’s target Java that help code generation, namely identifier
composition and partial classes and methods.

152

Identifier Composition When generating a class field and the getter and
setter method, several String concatenations are required to construct the
names. The name of the field is changed to avoid collisions with reserved
names such as Java keywords ‘class’ and ‘public’. The getter and setter names
capitalize the field name and are prepended with get and set. While this
is straightforward code, it is quite repetitive and distracting when trying to
understand a template fragment. To avoid this problem we extended the
target Java language with the # operator, which composes its two operand
identifiers into a single identifier following Java’s naming contenctions. Thus,
get#name becomes getName and _#name becomes _name. The # operator is
implemented by a transformation that replaces composite identifiers by regular
Java identifiers. The Java extension and the transformation is reusable for other
code generators that produce Java code.

Partial Classes and Methods In the initial WebDSL implementation, the gen-
erator was constructed in a centralized fashion. A single “God rule” was
associated with each generated artifact, such as a template or an entity. Much
like a “God class”, an anti-pattern in object-oriented programming, such a God
rule dispatches a large number of smaller transformation rules to generate a
monolithic target artifact like a Java class. These rules would grow to unwieldy
size as new language features were added. This pattern is a code smell that
hinders the extensibility and maintainability of the generator. The reason for
the God rule is caused by the structure the target language: Java does not
support composition of classes. Other platforms, such as C#, provide partial
classes, which allow subdividing classes into smaller units. Our extension
uses Java’s annotation syntax to identify partial classes and methods with the
annotation @Partial. In the compiler, all the generated class fragments are
collected and merged. Partial classes with the same name and package are
merged into a single Java class. Similarly, the bodies of partial methods with
the same signature in the same class are merged into a single method. The
rules should not make assumptions about the order in which they are merged,
as this is not defined. If an ordering is required, the method should be refac-
tored into a regular method that calls partial methods in the required order.
These partial methods are then the extension points for the entire method.

Runtime While all Java code could be placed in code generation templates,
these would explode the amount of code being generated, killing performance
of application compilation. A precompiled runtime library for common com-
ponents is convenient to develop and unit test, just like a regular Java library.
Having the constant code in a precompiled library saves compilation time in
both the code generation and Java compilation steps.

Code Generation Patterns What remains are classes that implement the specific
behavior defined in the WebDSL definitions. Figure 6.12 gives an example of
generated classes for a WebDSL application. By generating specific code for
each WebDSL feature, security issues related to flexible interpreter implemen-
tations are avoided. Furthermore, there is no need to dynamically store view
states or have in-memory session data to manage page views and navigation.

Chapter 6. The WebDSL Compiler, IDE, and Runtime 153

Top-level core WebDSL definitions

Entity Project

Entity Issue

Template editIssue

Template showProject

Function createIssue

Java classes

entity/Project.java

entity/Issue.java

template/EditIssue.java

template/showProject.java

function/CreateIssue.java

util/PageLookup.java

Page project
page/Project.java

util/TemplateLookup.java

util/HibernateConfig.java

template/Page_project.java

Figure 6.12 Code generation from core WebDSL to Java classes. Simple depen-
dencies mean that the top-level definition can function as key for caching and avoid
recompilation of unchanged classes. Entities are transformed to Hibernate ORM
entity classes. Entity methods in WebDSL become methods in these entity classes.
Global functions each get their own class with a static method containing the im-
plementation. Pages and templates become classes with methods to handle each
phase of request handling. Template variables are fields in the template class. There
are some managing classes that incorporate information from multiple WebDSL
definitions, such as the template and page lookup classes.

Any data that is dynamic in the application is stored in entities. The generated
class for a template takes care of reconstructing the right state for rendering
and handling form submits. Submit functions are part of the template context
and do not require separate controller declarations and access control checks.
The reachability of submits and inputs is determined by the template structure
entirely. This relieves the application programmer from managing separate
controller actions and data passing from rendered forms to submit action
handlers. It also avoids the security problems that can arise from separate
components for form and action that make it tempting to share data through
the client for programming convenience.

6.6.2 WebDSL Request Lifecycle

The main runtime behavior of WebDSL applications is handling browser page
requests for retrieving a page (GET) and requests for posting form data (POST).
The request processing lifecycle is shown in Figure 6.13. The dispatch handler

154

Data model
entities

loaded in
memory

database

UI Templates

load entities
read property values

retrieve entities by query

set property values
create new instances

flush changes and
commit transaction

or
rollback transaction

start new transaction

commit or rollback

query entities
Databinding

Validate Forms

Handle Actions

Access Control
Check

Commit writes if
validation ok
or rollback

Render
Response
or Redirect

HTML response
JSON reponse for ajax update

File Download
Redirect Headers

GET request
POST request with form data

Convert Request
Parameters

Redirect to accessDenied page

Figure 6.13 WebDSL request lifecycle

starts by analyzing request parameters to determine the page that was accessed
and load the arguments to the page. Session data is also loaded to determine
whether a user is logged in. This is followed by an access control check,
which can deny access to the rest of processing and redirect. In case of a GET
request that only reads data, the templates are rendered, and no database
transaction commit is required. In case of a form submit the templates are
evaluated in multiple phases: databinding processes inputs and transforms
request data to updates in the loaded entities, validation then checks for failing
validation rules before deciding to execute the requested action, and finally
the requested action is executed. In case of validation failure, the transaction is
rolled back, and the page is rendered with errors. When validation succeeds,
the transaction is committed and the response is rendered or a redirect is
triggered. An AJAX update request is a variation of this process, where only
part of a page is rendered and returned. Throughout the request phases, the
persistent data model is accessed to load entity data by id or through queries.
Entity updates are tracked, and flushed back to the database when committing.
Database transaction semantics decide how to resolve conflicts in updating
persisted data.

Chapter 6. The WebDSL Compiler, IDE, and Runtime 155

6.6.3 Runtime System

The runtime library of WebDSL contains the code that is constant for each
application. There are many components in the runtime library:

• dispatch logic;

• implementations of standard library functions;

• superclasses with common code for generated definitions such as tem-
plates and pages;

• servlet deployment logic with database initialization;

• support code for handling dynamic environments such as local template
overrides;

• utility classes to interface with the persistent storage;

• and interface and wrappers for search classes.

The primary component is the dispatch logic. This governs the way a browser
request is handled at the server. Figure 6.14 provides a flow diagram of the
dispatch logic.

An example runtime class structure is shown at a high level in Figure 6.15.
The Dispatch servlet looks up the page class that is being requested. The Page
superclass contains further links to Template lookup, persistence session, and
function code. Common code for Pages and Templates are placed in their
superclasses. Besides these superclasses, the precompiled Java library contains
utility functions for built-in components such as sending email, filtering HTML,
filtering JavaScript, filtering URLs, markdown rendering, etc.

An example configuration of objects at runtime in a page request is shown
in Figure 6.16. The dispatch servlet, page class, and persistence session are
registered as Java Threadlocal objects, which can be retrieved anywhere in the
thread without having to pass references to these objects around. In case of
a form submit, the template instances with state are kept in memory while
handling the phases. That way the variables that have data binding and
validation will still be available in subsequent action or render with validation
error phases. If there is only a render phase, the template instance is discarded
after it has rendered its contents. The persistence session keeps references to
all loaded entities. It can perform a flush to check for entity changes and send
them to the database, this happens automatically when a query is performed
or the transaction is about to be committed. An environment is used to keep
track of local overrides for templates.

6.7 Compiler Caching Strategies

In this section we discuss compiler caching strategies that have been applied
to decrease compilation time when developing WebDSL applications.

156

form submit?

database transaction
marked as aborted validation errors?

databind phase

validate phase

execute submit function

yes

no

download triggered
in action?

yes

no

yes

no

ajax replace calls?

yes

submit invalid in
partial page?

no

yes

render with validation errors
in enclosing placeholder

submit invalid?yes

render with validation errors

redirect in page init?

download in page
init?

redirect

no

no

no

regular page render

yes

downloadyes

ajax partial page updates

validation errors?

yes

no

no

read known session cookie
or create new

determine requested page

retrieve arguments from
page url and GET/POST

parameters

handle page

page known and
arguments ok?

yes

no

show error page

Figure 6.14 Dispatch logic.

Chapter 6. The WebDSL Compiler, IDE, and Runtime 157

Template Superclass

Page Superclass

Template [generated]

Template Lookup

Dispatch Servlet

Page Lookup

Page [generated]

Entity [generated]

Persistence Session Function [generated]

Figure 6.15 High-level class structure of WebDSL runtime code.

Page editIssue

Persistence
Session Template input

Dispatch Servlet

Entity Issue

Template editIssue

Template input Function save

Template form

Template submit

Figure 6.16 Example object instantiation at runtime. Double border objects are
registered as ThreadLocal and accessible from anywhere in the thread, this avoids
having to pass references around.

158

6.7.1 Code Generation Cache

The back-end Java code generator is cached for top-level WebDSL components,
such as entities, functions, templates and pages. The AST fragment containing
WebDSL core that comes from the front-end can be used as a key for the cache.
This is due to the design decision that any information required for code
generation is inserted into the AST, and the back-end rules are implemented as
a pure function that takes only this AST fragment as input. Examples of this
information are the types of entity properties and expressions, and the static
components of unique names for templates that are invoked. Some generated
Java classes depend on many components and are often regenerated, such as
the lookup classes for pages and templates. Other classes are quite stable, such
as template classes for simple CSS styling templates. The templates that are in
the standard library are precompiled when building the compiler itself, and
shipped with the compiler to optimize clean first builds.

6.7.2 Compile Unit Cache

The back-end caching strategy does not reduce the time spent in the front-end,
for analyzing and desugaring all the definitions that have not changed. If a
definition has not changed and will generate the same classes, e.g. a template
together with lifted templates and other derived classes, then it does not
have to be analyzed completely either. A compile unit cache can throw away
AST top-level elements for unchanged elements after analysis and checking.
Transformations that would eventually lead to the generated classes are not
relevant if there are no changes that influence the unit. Even the declare globals
phase can be cached for files that have not changed, as is done for IDE caching.
The dependencies determine when a template or entity top-level AST node
can be discarded. In case of templates these are often quite simple, they just
depend on the signature of a called template, unless that template is inlined.
For entities, however, there are many places in the application code that refer
to entity types and their properties. The signature of an entity is in a sense, the
whole entity definition with all its properties and annotations, and function
signatures. With a simple comparison of new and old top-level AST nodes, it
can be determined which templates have been changed. These are the most
commonly occuring changes, small incremental template tweaks for layout and
styling. The only features that have to be taken account are template inlining
and access control rules. Access control matching rules need to be preserved
in the AST to correctly generate the template. Changes to inlinable templates
require recompilation of all templates that have it inlined in the generated
code. Lookup classes depend entirely on the declared information, so these
are correctly constructed.

The optimization of compile units caching saves time in the complete chain
of analysis and code generation. Figure 6.17 shows timing results of performing
compilation of several applications, and the speed up by the code generation
cache, and the compile unit cache. The difficulty here is that the compiler has

Chapter 6. The WebDSL Compiler, IDE, and Runtime 159

Yellowgrass Weblab Researchr Reposearch
0

50

100

150

200

250

300

S
e
co

n
d
s

No Cache

Code Generation Cache

Compile Unit Cache

Figure 6.17 Compile times for clean build, with code generation cache, and with
compile unit cache. Yellowgrass issue tracker, WebLab learning environment,
Researchr conference website hosting, and Reposearch code search engine.

been designed as a whole-program compiler. The compile unit cache has been
implemented to explore the possibility of caching by completely removing
application fragments before going through subsequent compiler steps. The
dependency analysis is currently manually implemented by reasoning about
coarse-grained language feature dependencies, which means there is room for
improvement. If dependency analysis can be automatically derived from the
analysis rules additional unnecessary recompilation can be prevented.

6.8 Application Deployment

The WebDSL compiler creates a war file with a complete Java web application.
A typical deployment scenario is illustrated in Figure 6.18. Here, the war
file is copied into the webapps folder of a Tomcat application server. On
initialization of the application, MySQL database table schemas are created
if they do not exist, and updated if new columns are added. Nginx receives
incoming requests first and decides based on the domain which application
and application server are requested. Using a reverse proxy server to handle
outside requests is more secure than directly exposing an application server
to the web. The Apache Httpd and Nginx projects get a lot more scrutiny
because these are used everywhere. Additionally, they can be set up to connect
to multiple Tomcat instances, and take care of common web deployment
configuration, like HTTPS encryption. A Tomcat application server can host
one or more web applications, and a MySQL instance can host databases for
multiple web applications.

6.9 Discussion

Build speed and development An important feature of scripting languages such
as PHP and Ruby is that there is no compilation step that takes time. The effect
is that as soon as the file is saved, the code can be tried by refreshing the page

160

Nginx

Tomcat

http

JDBC

Tomcat

MySQL

http

JDBC

Tomcat

MySQL

http

JDBC

https
application code

WebDSL compiler

generated Java

Java compiler

war file

Compile
WebDSL

Application

Deploy
WebDSL

Application

Figure 6.18 Deployment scenario, each box can be a separate server or the same
depending on application requirements

in the browser. This immediate feedback contributes to a better development
experience. Unfortunately, the current WebDSL compiler does not provide
such immediate feedback. There is time lost with building and deploying
the application. Building an application for the first time can take between
seconds for a small application and minutes for very large applications. When
rebuilding the application, the cached compile units and code generation save
much time, however, these could be improved to become more fine-grained.

After Stratego compilation, there is a Java compilation step, and a deploy
servlet application step. Incremental compilation of Java code is provided by
the Eclipse Compiler for Java (ECJ). The standard deploy behavior in a servlet
container like Tomcat is to reload all classes, which becomes slower as the
application grows. Possible improvements for servlet deploy-time are based
on custom classloaders that reload smarter. An example system that provides
improved classloading is JRebel [Perforce 2023].

Besides improving the compilation and deployment of the regular Java back-
end, another option is to implement a different WebDSL back-end specifically
for development. An interpreter could be created to avoid compilation and
deploy time. However, maintaining multiple back-ends is not easy, they are
likely to diverge in subtle ways. This can lead to the unfortunate situation
where the application works fine in development, but triggers a bug in the
production environment compiled with the regular back-end.

While this chapter focuses on the implementation aspects of WebDSL itself,
it also constitutes one of the most complex applications written in the Stratego
language and Spoofax language workbench. As such, it also provided a case
study for developing real-world programming languages using Spoofax. IDE
analyses in a large language requires caching strategies, which we explored to
increase performance of the WebDSL editor [Bruning 2013]. The performance
requirements, together with the patterns for implementing analysis have been
important for guiding further Spoofax development. New domain-specific lan-
guages for language definition were developed that provide increased support
for such requirements. In particular, the NaBL name binding language pro-
vides abstractions for describing name resolution rules with caching provided

Chapter 6. The WebDSL Compiler, IDE, and Runtime 161

by a task engine [Wachsmuth et al. 2013]. Another direction is the specification
of type systems using scope graphs in the Statix language [Van Antwerpen
et al. 2018]. Zwaan, Van Antwerpen, and Visser [2022] present a technique to
automatically derive incremental typecheckers from type system specifications
written in Statix, using the WebDSL specification developed in De Krieger
[2022] as a benchmark.

Retargetability Having multiple back-ends is possible, however, it is quite
hard to get consistent behavior when targeting different languages with source-
to-source transformations. Typically part of the underlying language semantics
becomes part of the DSL semantics, such as primitive type value ranges.
Additionally, libraries like Hibernate have complex semantics and not trivial to
reimplement for another platform. Another issue is that the monitoring tools
will be different for each platform, e.g. a Java process can be inspected with
JVisualVM which provides information on threads, heap, and CPU activity.
Improving retargetability would require migrating to a virtual machine or
interpreter for the DSL core, without relying on the target language features
through code generation. Although retargetability sounds nice in principle,
for web application code running on the server it does not matter that much.
The end-user of the application will not notice what kind of application code
is running as long as it works correctly and is responsive enough.

6.10 Conclusion

WebDSL is the largest programming language created with the Stratego pro-
gram transformation language and the Spoofax language workbench, in which
the DSL compiler and IDE have been iteratively developed. This chapter gave a
high-level overview of the WebDSL compiler, IDE and runtime implementation.
Our approach of designing and implementing a new language like WebDSL
is indeed feasible. We have used the WebDSL compiler for several real-world
applications with thousands of users. Our experiences in using WebDSL
to design, implement, and operate these applications are further described
in Chapter 7, in which we evaluate practical applicability and reliability of
WebDSL.

162

7
WebDSL in Practice

7.1 Introduction

In previous chapters, we explained the WebDSL language (Chapter 2), with
specific focus on user interface templates (Chapter 3) and access control (Chap-
ter 4). We then discussed evolution of the language (Chapter 5), and compiler
implementation (Chapter 6). In this chapter, we evaluate the practical appli-
cability and reliability of WebDSL. We answer the following questions, by
reflecting on our experiences:

1. How well did the focus on web programming abstractions, removing boil-
erplate code, and providing timely and accurate feedback on problems
in application source code work in practice?

2. We set out to build a system that ensures reliability (robustness, perfor-
mance, scalability, and security) of applications, did we indeed reach
these goals?

We have been developing and using WebDSL for over 10 years to create
information systems for academic workflows. The initial WebDSL research
was focused on DSL compiler design [Visser 2007; Hemel et al. 2010], language
design for access control and data validation concerns [Groenewegen and Visser
2008; Groenewegen and Visser 2013], and static consistency checking [Hemel
et al. 2011]. The applications we created at that point were prototypes and
case studies, with few external users. We continued working on WebDSL:
adding language features, improving runtime efficiency, reducing compile
times, and fixing bugs. Because WebDSL became more reliable, the applications
became more ambitious. By now we have developed several applications with
thousands of users:

• EvaTool [2012]: a course evaluation application that supports processes
for analyzing student feedback by lecturers and other staff.

• WebLab [2012]: an online learning management system with a focus on
programming education (students complete programming assignments
in the browser), with support for lab work and digital exams, used by
over 40 courses at TU Delft.

• Conf Researchr [2014]: a domain-specific content management system
for creating and hosting integrated websites for conferences with multiple
co-located events, used by all ACM SIGPLAN and SIGSOFT conferences.

• MyStudyPlanning [2016]: an application for composition of individual
study plans by students and verification of those plans by the exam
board, used by multiple faculties at TU Delft.

163

Codebase Size To get an idea of the codebase size, Figure 7.1 shows the
WebDSL lines of code per language element for each of these applications. We
learned many lessons while developing these applications, which we used to
improve the reliability of the WebDSL language and its runtime. The abstrac-
tion layer that the WebDSL language provides between application specification
and implementation, entails that the time invested in fine tuning reliability, ro-
bustness, performance, scalability, and security of the language and its runtime
benefits all applications. Engineering a reliable runtime requires coordination
between all the heterogeneous components of a web application, and takes a
lot of experimentation to improve.

Team Composition For the majority of the applications operation time our
AWE (Academic Workflow Engineering) team consisted of one team leader
(Eelco Visser) and only two programmers (me and Elmer van Chastelet). Web-
Lab and EvaTool started out being developed by additional programmers for
the first one or two years, and after that became part of our portfolio of main-
tained applications. Besides working on requirements engineering, feature
implementation, and bug fixing in the web application software, we main-
tained the server hardware and software configuration for deployment as well.
We also worked on improving the language runtime and adding additional
language features based on the typical usage patterns we observed. More
recently, our team has expanded with one part-time programmer maintaining
and supporting LabbackDocker (Daniel Pelsmaeker) and another programmer
working on new application features and providing support (Max de Krieger).

The first sections of this chapter provide details of the most prominent
WebDSL applications, namely EvaTool (Section 7.2), WebLab (Section 7.3),
Conf Researchr (Section 7.4), and MyStudyPlanning (Section 7.5). In the next
sections, we highlight interesting events and improvements made to WebDSL
in the areas of robustness (Section 7.6), performance (Section 7.7), and security
(Section 7.8). Section 7.9 is a collection of reflections on our experiences from
applying WebDSL in practice to answer the questions stated at the beginning
of this chapter. Section 7.10 discusses threats to validity, and Section 7.11

concludes this chapter.

7.2 EvaTool

The EvaTool platform is a web application designed to facilitate in gathering
course evaluation data and communicating this data to various employees
involved with the quality of education. The platform guides the feedback
process applied at various faculties within TU Delft. Figure 7.2 shows a
screenshot of the EvaTool application. Table 7.1 shows usage statistics of
EvaTool.

Evaluation Workflow An evaluation is designed to follow the workflow of the
faculty education feedback process:

1. create evaluation for a course or education;

164

EvaTool WebLab Researchr MyStudyPlanning Standard Library
0

5000

10000

15000

20000

25000

30000

35000

40000
Li

n
e
s

Entities

Pages

Templates

Ajax Templates

Other UI Definitions

Access Control Rules

Global Functions

Java Class Wrappers

Figure 7.1 Lines of code per language element. These statistics were extracted by
parsing the application files, and pretty printing the AST with a standardized layout.
This process avoids differences from code layout styles. The code base versions
are from October 2021. Entities include entity definitions containing properties
and functions, search specifications, entity validation rules, and data initialization
such as enums. The division between Pages, Templates, and AJAX Templates
still depends on coding style, a page or AJAX template can call one template to
handle all the content. Other UI definitions include HTML wrappers, attribute
customization, statically expanded code templates (e.g. custom input and output
definitions for different types), and routing configuration. Global functions includes
definitions for background execution and web services. The statistics for applications
include the standard library, which is also shown separately in the figure.

2. gather evaluation data;

3. ask the responsible course instructor to respond;

4. and review by Director of Studies.

Features EvaTool can send email notifications in order to ask for action, send
reminders, inform about status, and invite people to log in. EvaTool provides
various ways to project evaluation data. A user who is privileged to access
one or more evaluations will have a filterable dashboard. From this they can
directly view the evaluation or create a printable version. A custom visual
representation can be created using a fact-sheet desinger tool built into the
application.

Access Control Model EvaTool stores, organizes and presents sensitive data.
Various roles give users privilege to access (and enter) evaluation data. The
user roles in EvaTool are designed to reflect the relevant employee roles from
the educational organization with their corresponding privileges and at the
corresponding level (course, education programme and faculty level). An
overview of the roles and privileges of the users with access is available in

Chapter 7. WebDSL in Practice 165

Figure 7.2 Screenshot of EvaTool application. This is the course evaluation status
page which indicates the current status and next step for completing the evaluation.

Table 7.1 EvaTool Application Usage Statistics in July 2023. An education cohort is
one study year of an education program, e.g. Bachelor Computer Science 20/21.

Description Number
In Operation Since Year 2012

Education Committee Members 280

Instructors 1,220

Education Cohorts 376

Course Evaluations 8,358

each evaluation. A designated super user of a faculty is able to assign the roles
to other people within the faculty, such as members of Education Committees,
Programme Coordinators and Course Instructors. An overview page lists
for each user exactly the capabilities awarded based on their combined roles.
On evaluation forms the super user can also directly see “who has access to
this”, which helps them in self diagnosing access configuration problems. The
application uses the university Single-Sign On so that employees automatically
have an account with their details.

166

Figure 7.3 Screenshot of WebLab application. This is the programming question
interface, the assignment description is displayed on the left, the middle contains
the code editor, and shown on the right are the run output and test score.

7.3 WebLab

WebLab is an online learning management system with a focus on program-
ming eduction (students complete programming assignments in the browser),
with support for lab work and digital exams, used by over 40 courses at TU
Delft [Van der Lippe et al. 2016]. Figure 7.3 shows a screenshot of the WebLab
application. Table 7.2 shows usage statistics of WebLab. Besides programming
assignments, other assignment types such as multiple choice, open question,
file submissions are also supported. Assignments can be configured with
automatic or manual grading. In the case of programming assignments, auto-
matic grading is done through setting up specification test code that evaluates
student solutions. Checklists with points can be set up to facilitate consis-
tent manual grading. A core feature is the possibility to run (remote) exams
with built-in tooling to minimize fraud. This entails several features, such as
one-time key exam tickets unique per student, individual question order per
student, timed questions, randomized variant questions, and plagiarism scans.
The WebLab application consists of two components, the web application
written in WebDSL and the student program job runner (LabBack).

Features The web application component manages all the courses, assign-
ments, and submissions. Single Sign-On is used to automatically create ac-
counts for students. Optionally, a separate login facility is available for external
users. WebLab embeds the JavaScript-based Ace [2023] and Monaco [2023]
code editors that run in the browser. This provides the main interface com-
ponent for students, a large code editor with syntax highlighting. The course
manager can create assignments using these editors. Assignments can be orga-

Chapter 7. WebDSL in Practice 167

Table 7.2 WebLab Application Usage Statistics in July 2023. A course edition is
one run of a course in a study year, e.g. Concepts of Programming Languages
21/22. Programming, essay (open) questions, and multiple choice questions are the
most used question types in WebLab. An assignment submission is an attempted
solution by a student, and in the case of programming assignments typically involving
multiple program runs to evaluate the entered solution.

Description Number
In Operation Since Year 2012

Staff Accounts 1,203

Student Accounts 11,553

External Accounts 1,504

Course Editions 380

Programming Questions 15,143

Essay Questions 14,502

Multiple Choice Questions 21,296

Assignment Submissions 5,677,793

nized in a folder structure. Grading of assignments can be configured with
simple schemes or custom formulas. Assignment data can be imported and
exported to provide a way to manage them in a version control system such
as Git. There is an exam dashboard which contains all the relevant action for
running an exam. This includes actions for creating exam tickets, configuring
deadlines and personal deadline extensions, and inspecting student progress.
A grading interface streamlines the manual grading process by providing a
convenient way to traverse solutions.

LabBack Running student program jobs in a reliable and safe way turns out
to be pretty difficult. The guest code can contain malicious fragments, whether
intentionally or not. Potential issues are, for example, allocating too much
memory, infinite looping, and thread bombing. The original LabBack [Vergu
2012] is a Java process that compiles Java or Scala files in memory, loads
them in the classloader, and runs them with restrictions from the Java security
manager. One particular problem with this approach is that although heap
usage can be constrained easily in the JVM, CPU usage is hard to constrain.
This requires additional setup on the host machine, using an additional tool
like cpulimit or cgroups, in order to avoid one process from occupying too
many cores. Another limitation is that the programming assignments have
to run in the JVM. We used a creative solution for C using Emscripten [2023]
and a JavaScript interpreter in Java, however, this was not ideal because error
messages were completely different from a real environment. Also Python
could be run on the JVM with Jython, but would miss all the essential libraries,
in particular NumPy and Matplotlib.

LabBackDocker As Docker became more popular, and provided a natural fit
for implementing job runners, we later developed LabBackDocker [Crielaard,

168

Bruin, and Aerts 2017]. This is a Java application that schedules jobs on a
Docker server. LabBackDocker enables courses to run assignments with any
programming environment that can be configured as a Docker image. It allows
setups with custom sets of libraries and evaluation commands. There are now
courses that use Python with native libraries, Java configurations with custom
libraries and test coverage analysis tools, and many other languages like C,
Haskell, Agda, mCRL2, and Stratego. One downside compared to the legacy
back-end is that a Java process is slow when restarted every time, because of
dynamic class loading and JIT compiler optimization warmup. The docker
images are newly instantiated on every run in order to avoid any interference
from old student code. In particular, the Scala compiler benefits a lot from
staying loaded and optimized in the JVM in the legacy back-end.

Exams Exams functioned as excellent stress tests for WebDSL, WebLab and
LabBack(Docker), by now we have run hundreds of live exams. Part of the
exam setup was creating an environment with the IT support team to boot
up a system with a browser, that can only access WebLab. This required
many test sessions, because there would easily be some shared drive or other
mechanism through which students could potentially communicate in the
exam. WebLab cannot use any CDNs for typical libraries such as JQuery or
Bootstrap, because that would require opening a route to Google or other
servers in the firewall, and can unintentionally give access to a search engine
that has a huge cache of internet pages. Other problems we have encountered
were network disruptions, Nginx configured with too strict limits, and an
unavailable single sign-on server. Also computers simply having random
hardware problems, such as a broken mouse or disconnected cables from
students plugging the connectors into their laptops during regular lab hours.
WebLab itself initially had some features that turned out to be problematic
for the exam situation, such as a user profile page with editable text which
would be visible to other students. The LabBack problem of not sufficiently
limiting CPU became apparent with a Scala exam, where a relatively simple
parallel list operation would put the system on full load. The JVM default
settings for maximum heap space and garbage collector threads look at the
machine specifications, and for a server would allocate gigantic heapspaces
and over 50 garbage collector threads, which cause huge overhead for small
programs. An important issue we resolved in WebDSL itself was a deadlock
problem in the database handling, caused by an outdated configuration of the
connection pool library. We have now had very few issues in the last 5 years of
running WebLab exams, although WebLab itself is continuously being tweaked
to become better for this purpose. For example, an announcement feature was
introduced more recently to inform every student in the exam of important
updates to exam questions. Student numbers are also growing, in 2022 we
had exams with over 600 students concurrently working with the system and
executing code on the back-ends without any problems.

Chapter 7. WebDSL in Practice 169

Figure 7.4 Screenshot of Researchr conference application. This is the detailed
program view that shows session blocks and scheduled presentation events. Filters
can be selected at the top to narrow the visible program, e.g. only showing a certain
track.

7.4 Conf Researchr

Conf Researchr is a domain-specific content management system for creating
and hosting integrated websites for conferences with multiple co-located events,
used by all ACM SIGPLAN and SIGSOFT conferences. Figure 7.4 shows a
screenshot of the Researchr application. Figure 7.5 shows the number of
monthly users reported by Google Analytics. Figure 7.6 shows the progression
of Conf Researchr in terms of number of conference website instances and
conference days since its inception. Table 7.3 shows application usage statistics
of Researchr. While conference websites for a single presentation track can be
quite simple, in the case of multi-level conferences with co-located workshops
and conferences, the website can grow in complexity quickly. For computer
science conferences we observed that these websites were often created from
scratch every year, because every time a different group of people is responsible
for setting it up. The idea for the Researchr conference application is to provide
a unified model for entering conference data and standardizing the process of
creating conference websites.

Features The application contains built-in notions of publications, authors,
presentation events, sessions, rooms, time slots, and call for papers. It auto-
mates many of the steps involved in setting up a conference website. Data
from accepted publications can be imported from Easychair or HotCRP. These
papers become events to schedule in rooms for presentations. Room scheduling
detects conflicts such as a speaker in multiple tracks at the same time. Main
conference, subconference and track management can be delegated using the

170

Figure 7.5 Monthly users of Conf Researchr reported by Google Analytics.

Table 7.3 Researchr Application Usage Statistics in July 2023. A Conference Edition
is one year’s edition of a particular conference. Events are scheduled program items
such as paper presentations or demo sessions.

Description Number
In Operation Since Year 2014

User Accounts 48,541

Conference Editions 1,128

Conference Tracks 3,082

Events 28,558

access control configuration options. Additional features provide convenience
for online conferences, such as schedules with localized times. Furthermore,
it has generic Content Management System features for flexibility in creating
information pages. The data entry is managed by designated conference man-
agers, which involves a multi-level access control model for allowing content
editors of subsections like tracks or workshops.

Multitenancy Researchr is a multi-tenant application, it hosts many conference
edition websites from a single application instance and a single database. This
makes the overhead for adding additional conference editions minimal. A
single conference edition might not get many requests, especially for past
editions. However, because the overhead of hosting another edition is so low,
we can easily host many past years of a conference. Clients of the system have
been using this effectively by importing data from older versions of conference
websites as well.

Adding another conference edition does not require any additional deploy-
ment setup for Tomcat or MySQL. The only additional server script we use is
for setting up HTTPS certificates in Nginx with Let’s Encrypt [Let’s Encrypt
2023]. We extended WebDSL with URL rewriting capabilities to provide better
support for multi-tenancy with clean URLs.This allows the application to select
a conference edition context based on the domain name in the URL.

The instances are not entirely separated, because users can have a general
user account that can be applied to multiple conference editions. This is a
convenient feature for allowing users to stay logged in when going to new
conference edition websites. They only have to create one account for all the

Chapter 7. WebDSL in Practice 171

0 20 40 60 80 100 120 140 160 180 200

2014

2015

2016

2017

2018

2019

2020

2021

2022

5 days

25 days

42 days

44 days

57 days

68 days

124 days

140 days

185 days

18 inst.

41 inst.

77 inst.

88 inst.

89 inst.

116 inst.

89 inst.

102 inst.

113 inst.

1 inst.

6 inst.

9 inst.

9 inst.

11 inst.

14 inst.

20 inst.

26 inst.

31 inst.

Main Conference Websites
Co-Hosted Conference Websites
Total Conference Days

Figure 7.6 A breakdown showing the number of Conf Researchr website instances
for main conferences and co-hosted conferences, and the total number of conference
days for each year since the application’s inception.

conference editions hosted on the platform.

Support Tasks Operation of the researchr application involves a few main-
tenance tasks. Although publication data can be automatically matched to
authors based on email address, occasionally there is a missing connection due
to an email address change.

When setting up a new edition of a conference, many settings can be copied
from the previous edition as a starting point. This has been made into a
workflow in the application, a getting started page guides the administrator
of the conference through the options of copying components from previous
year. Workshop proposals, to be colocated with a conference, have also been
integrated as a workflow in the application.

Supporting Online Conferences During the Covid pandemic many conferences
switched to a fully online edition. To support this style of conference, a number
of features were added. The main change was the introduction of timezone
settings in the schedule page, where previously only the local timezone of the
conference was relevant. Some conferences also ran duplicate sessions of talks
to suit different time zones. Besides timezone settings, other features that were
requested was the option for adding participation info. This can contain for

172

Table 7.4 MyStudyPlanning Application Usage Statistics in July 2023.

Description Number
In Operation Since Year 2016

Staff Accounts 676

Student Accounts 11,145

Master Cohorts 70

Track Configurations 551

Imported Courses 8,757

Student Submissions 19,617

example Zoom or Youtube links for the presentations. Features we did not add
were direct chat or adhoc voice communication, although these were typically
covered by tools like Slack, Discord, and Zoom.

7.5 MyStudyPlanning

MyStudyPlanning is a web application that supports the individual study
program selection by students and approval of these submissions by staff
members. Figure 7.7 shows a screenshot of the MyStudyPlanning application.
Table 7.4 shows usage statistics of MyStudyPlanning.

The individual study program selection supported by this application con-
sists of two phases: setting up the track options, and the approval workflow.
The track options setup phase contains the following steps:

1. import new course data;

2. configure selection options and constraints for tracks;

3. review track configuration by track coordinator;

4. and finally open it to students.

The approval workflow is as follows:

1. student selects master track and courses;

2. coordinator judges submission;

3. board of examiners judges submission;

4. support staff enters approved program in central administration.

Staff members receive notification emails when there is an action expected,
and students receive notifications of status updates. Coordinating staff mem-
bers can select several overviews of students, to inspect the progress in each
education track and cohort.

Chapter 7. WebDSL in Practice 173

Figure 7.7 Screenshot of MyStudyPlanning application. This shows a section of the
course selection interface, where courses are presented for each selected research
group. From this section students can easily choose elective courses based on their
preferred topics.

Challenge Before we started this project, the process was based on a paper
form that needed to be filled in by the student. Then they would have to get a
signature from a master coordinator, and finally hand it in at the service desk so
that it could be approved by the board of examiners. Since the documents were
often handwritten instead of printed, there was tedious work and opportunity
for errors in deciphering student handwriting and manually adding up all the
study points.

The difficulty in automating this process and making it fully online was in
the variations that each faculty used, the departments for handling student
administration in each faculty are separated and do not follow the same
workflows exactly. Similar projects have been attempted and usually fail.
An external software consultancy company works closely with a few pilot
users, however, they are likely to specialize too much to the workflow of these
particular users. For adoption of the software it needs to be approved by a
larger committee where it often turns out the software is not flexible enough
to handle the workflows of each individual faculty.

Interesting Implementation Aspects Single sign-on is an important part of this
application, this was already implemented for other applications EvaTool and
WebLab and could be reused.

The course selection page uses the inline AJAX refresh (see Section 3.7.2)
to make the entire page refresh immediately after an action. This improves
the user experience by avoiding page reloads and unintentional change of
scroll state (part of the page being viewed does not change after clicking on
an action). There are several constraints connecting components on the course

174

selection page. Selecting a course in one category prevents selecting it in
other categories. Other categories listing the same course show a message that
the course is already selected. Updating these connected components in the
user interface is handled automatically by refreshing the course selection page
component.

Another example of effective use of inline page refresh is the track constraint
configuration page. The categories, including mandatory and optional courses
to be selected, are constructed on a single page. Course details are imported
by looking up the entered course codes in the imported course data.

7.6 Robustness Engineering Experiences

In this section we list some of the improvements we made and experiences we
had regarding robustness. We define robustness as: applications should not
crash and should not show glitches in availability.

Single Application per JVM In an ideal scenario for deploying Java web
applications, it is enough to have one application server instance hosting all
the applications, and one database server instance hosting all the databases.
What we experienced in practice is that there are many reasons why the JVM
can crash:

• Hanging Tomcat JVM due to expensive page request

• Tomcat crashing automatically after 50 days [Lopes 2014]

• Crashed JVM due to bug in JNI code of a library

• Maximum open file handles reached for process

These problems can all be solved, some require changing the OS environment,
or JVM parameters, or the bug has been fixed in a newer JVM/Tomcat/library.
Even though they can be solved, having all applications in one application
server means if one crashes the JVM, all applications are down. For robustness
in our application deployment we switched to one application per Tomcat
instance. With MySQL we experienced few robustness issues. However, for
performance tuning it can be useful to have one application database per
MySQL instance to have more control over settings.

Fluent Redeploy When redeploying an application there is a small delay
between the war file being deployed and the first request being accepted. This
delay can be reduced by using tomcat war file versioning e.g. by copying a war
file with version number appended, e.g. ROOT##42.war. The new war file is
deployed next to the old one, and requests are directed to the new application
instance as soon as it is finished deploying. A WebDSL application starts
with checking the database schema for updates. In the case of adding a new
property to an entity with many saved instances, this can be slow. The schema
update can also be done in advance to avoid the delay in deployment. Another
issue was related to template identity. The identifiers are partially based on

Chapter 7. WebDSL in Practice 175

a static id assigned to template calls at compile-time. If this id is not stable
between recompilations, input and action ids can change. This means that
if a user is looking at a loaded page, then a redeploy is performed on the
application server, the forms on the loaded page are no longer valid. A page
refresh is needed to get back to a working page. We improved this behavior by
making the ids more deterministic, using the AST location as unique identifier,
which resulted in fewer failed actions after a redeploy.

Data Migration In the most commonly occurring data migration scenario,
adding a new property or entity, the database schema is updated when the ap-
plication is deployed. This does not support every type of change, in particular
changing the type of an existing property and potentially removing data is not
allowed. However, a new property can be created with the new type. Data
migration can then be expressed on an administrators page, by implementing
an action button in WebDSL to perform the migration and initialize the new
property values, optionally based on existing properties or other functions.
To avoid a delay when deploying, database schema updates can also be done
in advance on the live database. WebDSL shows the updates to the database
schema in the log, which can be applied to the existing database. A comparison
check is performed when deploying an application, only the missing schema
definitions are added. For experimental or rarely used features, it is also
an option to handle the connection with existing entities through dynamic
composition. This can become relevant for entities with millions of rows.
When the particular feature is required, a query retrieves the corresponding
entity that holds the data for the new feature, without encoding it directly
in the entity relationships. From an abstraction perspective this is not ideal,
conceptually a regular reference property would be expected. The boilerplate
code for retrieving the dynamic composition could be transformed into a small
language feature. The Acoda tool [Vermolen 2012] involved an experiment into
applying data migration on WebDSL applications. Besides the experimental
status of the tool, a conceptual issue was that it introduced a separate DSL for
describing migrations. From a WebDSL programmer perspective, it is much
easier to be able to express data migrations in the WebDSL language itself. In
practice, creating a migration action has been sufficient for migrating data in
our applications.

Transaction Retry In the majority of requests there is no issue with concurrent
edits of the same data. Since we rely on the transaction behavior of the database
to handle conflicts, there are specific scenarios where a request fails because
another transaction committed changes at the same time, e.g. by code in a
background task. This situation was observable as a page sometimes not
loading, or an action failing to complete. We added a retry mechanism to
handling requests in the specific scenario of a concurrent change. By default,
requests are tried upto 3 times before giving up. In most situations this is
enough to let the update be processed. The request is handled as if it came
after the commit that caused the conflict. Transaction semantics can not be
hidden entirely from the WebDSL application developer, as we experienced in

176

a WebLab scenario. A new feature was added to calculate an average grade for
all exam assignments, updated every time a change was made by any student.
This led to all student transactions being in conflict, because they were trying
to update the same row storing the average grade in the database. The problem
of describing derived values concisely and deriving a robust evaluation was
inspiration for the IceDust language [Harkes, Groenewegen, and Visser 2016;
Harkes, Van Chastelet, and Visser 2018; Harkes 2019].

Submit Failure Feedback Another improvement was made in the handling of
failed actions. When data is updated in the database, it might happen that a
form is no longer available, meaning the unique ids of the inputs and actions
will be ignored. If the user then submits the form, it is not recognized as a
valid action. The initial implementation would cause the button not to get
a response, which was confusing for users. We improved this behavior by
explicitly notifying the user with a customizable message. For example, in
WebLab, the submit button for an assignment becomes unavailable after the
deadline passes. The student now gets a message explaining that the deadline
has passed, when they press the submit button.

7.7 Performance Engineering Experiences

In this section we list some of the improvements we made and experiences we
had regarding performance. We define performance as: applications should
have no noticeable delay in response times, and this should hold also when
the amount of data increases (scalability).

In-Memory Page Cache In many applications there are more users reading data
than writing data. In that case, a page cache is very beneficial for performance,
e.g. in CMS-style applications such as Researchr. By building a page cache into
the runtime we can automatically handle cache invalidation. After checking
access control, the rendered page is retrieved from cache if available. The cache
is filled automatically and keeps the most recently used pages in cache. Cache
space is allocated for anonymous users, and for logged in users, which helps
improve the browsing speed for a user session on the website. All caches are
invalidated when an entity change happens. If it is a session entity change,
only the page cache for logged in users is invalidated.

Query Prefetching In the data model of the WebDSL runtime, we use Hibernate
ORM [2023] to implement objects with persistence. In the runtime, we made the
decision to have a default configuration that retrieves reference properties lazily.
In many cases this is a good default. If the reference is not used, it does not have
to be loaded from the database. The effect is that the queries that get generated
are small and fast. However, the number of executed queries is high. When
there is an iteration over a large collection, and for each iteration a query is
executed, it is often faster to do one query with a join for the extra needed data
(eager fetching). This is referred to as the N+1 problem in ORM terminology.
We have experimented with deriving automatic prefetching [Gersen 2013],
which showed us that the decision for eager fetching can be partly static, by

Chapter 7. WebDSL in Practice 177

analyzing access patterns in the application code. However, there is also a
dynamic component. The actual speed improvement depends on the table
sizes and several database settings. To have more control, we also added
prefetching syntax to the language to force eager fetching. This turned out to
be very convenient in practical situations where a single page was getting too
slow.

7.8 Security Engineering Experiences

In this section we list some of the improvements we made and experiences
we had regarding security. We define security as: applications should prevent
attacks from malicious sources, where vulnerabilities in the web technology
stack are abused.

Improving CSRF Protection Easy to guess id attributes in form inputs are
vulnerable to Cross-Site Request Forgery (CSRF) attacks. A malicious website
can create a link or image that is a forged request to execute an action on
the targeted application. If the victim is logged in to the targeted application,
the browser will perform the request using the victim’s credentials. Template
id generation in WebDSL depends on the data and is hashed to make them
hard to guess. We further improved this protection by including the principal
user entity id in all template id attributes. This can be done transparently
because the compiler controls id generation, and the entity used as principal is
explicitly identified for access control. A common way to do CSRF protection
in frameworks like Django [2023] is to rely on adding an additional CSRF
token to all the forms. The token is a random secret value associated with a
user session that needs to be submitted with the request parameters to perform
the action. Although it makes protection convenient, it is still something that a
developer can forget to include, or cause confusion if it is used incorrectly and
blocks a submit unintentionally.

Server-side and Client-side Components with Rendering Markdown syntax is
used in many WebDSL applications for creating texts with markup and links.
The WikiText type in WebDSL automatically renders the content as Markdown
in an output. Because HTML markup and hyperlinks can be created based
on links in the text, the regular HTML escaping is too rigid for the output of
Markdown. A separate whitelist filter is used for the output of Markdown, to
allow a safe subset of HTML to remain in the resulting page source. In some
cases, however, such as a CMS where a trusted user is editing the page source,
full control over HTML might be required. For these cases it is possible to
turn the filter off with rawoutput, which requires more responsibility from the
application developer to keep the application secure. Besides components that
perform server-side rendering, there are also client-side rendering components.
One example is the MathJax [MathJax 2023] library that we use in WebLab
to allow LaTeX when editing text. A problem that we initially did not catch
was that this library can also generate hyperlinks based on different syntax.
This allowed potential XSS to be performed, by including a hyperlink with

178

JavaScript, encoded as a link in MathJax. The MathJax library includes a
safe mode that limits the type of urls that can be constructed, which must be
enabled to avoid XSS.

Force HTTPS A feature that is best solved before requests go to the application
server at all, is forcing request to go over HTTPS. This makes sure all sensitive
form data and cookies gets sent encrypted. This is simple to configure in
Apache httpd or Nginx and can be configured with HSTS headers so that
browsers cache the decision to access the site over HTTPS.

Single Sign-On One of the larger security issue we experienced was a bug in
the A-Select single sign-on Apache module provided by the university. The
module was vulnerable to a directory traversal attack, which would circumvent
the filter that blocked access. The lesson learned here is to be very careful with
external authentication integration, the application code might have a perfect
access control model, but if you cannot trust the signin procedure it is useless.

Deployment Isolation Since we were running the servers, we also managed
a Jenkins instance for our research group. This became a problem when
the jenkins user started executing suspicious commands on the server. It
turned out that a vulnerability in Jenkins was abused to run arbitrary scripts.
The lesson we learned was to not trust that other developers of other web
applications get security right, and deploy applications (especially those with
scripting components) in as much virtualization and isolation as possible.

Heartbleed Heartbleed [Synopsys 2020] was a serious vulnerability in the
widely used OpenSSL library, and affected our servers as well. It was publicly
disclosed in 2014. Due to a missing bounds check in the TLS heartbeat
extension in the OpenSSL implementation, more data could read than should
be allowed. This bug allows reading the memory of affected systems, which
compromises secret keys to identify services and encrypt traffic, names and
passwords of users, and communication content.

Log4Shell vulnerability The Log4Shell vulnerability [National Vulnerability
Database 2021], publicly disclosed in 2021, affected many systems includ-
ing WebDSL applications. This is the largest security vulnerability we have
encountered so far. Log4Shell was a zero-day vulnerability in Log4j, a pop-
ular open-source Java logging framework. Log4j had a lesser known feature
that allowed requests to arbitrary LDAP (Lightweight Directory Access Pro-
tocol) and JNDI (Java Naming and Directory Interface) servers to retrieve
Java class files and execute them, which enabled an attacker to execute arbi-
trary code. The attack was simple to exploit, anywhere the attacker could
cause a string to be logged, e.g. by passing it in a HTTP header like User-
Agent, a JNDI lookup command could be inserted. Using a command such as
$jndi:ldap://example.com/file, the application server JVM would query
that URL, load the Java object, and execute it.

Chapter 7. WebDSL in Practice 179

7.9 Reflections on Experiences

In this section, we evaluate practical applicability of WebDSL by reflecting
on our experiences of the whole design and implementation process of these
applications: requirements gathering, development, testing, deployment and
server maintenance, application support, version migrations, bug fixes, security
fixes, and feature additions.

Abstraction The persistence abstraction has been very stable, sticking close
to its original design. One problem that plagued us for a while in WebLab
operations was a subtle bug in the library for handling connections to the
database. This caused a frustrating issue where in some cases no further
connections could be created, usually during an exam with peak load. After
this bug was found and fixed in WebDSL, we did not encounter such large
problems anymore. Besides this problem we have had very few bugs related
to saving and loading entity data.

The language features for function code have also been pretty stable, al-
though we did add several small improvements, such as string interpolation
and typecase. Extensions for calling into Java libraries are used in several
applications, e.g. to invoke the LabBack component to run student code in
WebLab.

The user interface abstraction received several iterations, and is the most
interesting aspect of the WebDSL language. We have explored abstractions for
AJAX initially in the nested page template abstraction (Section 3.7.1). While
this enabled creating single page interfaces, for smaller dynamic behavior in
forms it was not suitable. The inline refresh (Section 3.7.2) abstraction was
created later to address this shortcoming. This feature is heavily used in
MyStudyPlanning, where the course selection page handles all the selection
events by updating the page contents directly with a placeholder refresh. While
this feature enables dynamic forms, there are some limitations because it needs
to work together with the declarative nature of regular WebDSL input forms.
The benefit of both abstractions is that because they run on the server, the code
is safe from any client-side JavaScript tampering. This aspect is where the most
recent feature additions in WebDSL have been. It will be worth investigating
client-side rendering abstractions to have complete flexibility, however, that
would require extra care for handling data securely. The extensibility option to
include JavaScript is used in several applications, e.g. to include a component
for client-side sortable tables, and a component for improved dropdowns with
search. Also in cases where custom client-side behavior was required, the
solution was to write this in JavaScript and include it. For example, the client-
side filtering in the Conf Researchr program is written as a small reusable
JavaScript library.

The access control abstraction is used in all applications. Every application
has multiple types of roles that are connected to specific data, such as course
managers in WebLab, or web chairs in Conf Researchr.

Reflecting on our experiences, the abstractions in the WebDSL language are
effective in creating real-world web information systems. There is room for

180

improvement when it comes to client-side code and rendering, however, in our
web information system applications there were only a few cases where this
was really needed.

Boilerplate Code Boilerplate code is generated for many low-level aspects of
web programming, such as setting up entity persistence mapping to database
tables, generating form input identifiers, and importing form data in action
handlers. It is hard to measure the impact of code that you did not have
to write. This only becomes apparent when trying to implement the same
application in a different framework. A comparison of small applications
implemented in other solutions is made in Chapter 8. It makes clear that there
is a significant reduction in boilerplate code in persistence and user interface
handling, avoiding bookkeeping code and removing the potential for errors in
lookups (e.g. retrieving inputs in action handlers).

We can look at the amount of generated code to provide a rough indicator
of generated boilerplate code. The WebDSL compiler generates Java code from
WebDSL application source code. One application with 30,000 lines of WebDSL
turns into 720,000 lines of Java code (factor 24), and another application of
18,000 turns into 480,000 lines (factor 26.7). This size is only a rough indication
of the amount of boilerplate code that did not have to be written, it is likely
that an equivalent application written in Java directly would be fewer lines of
code. Compiler techniques used in WebDSL, such as desugaring definitions
iteratively down to a core language, can cause quickly expanding size of
resulting Java code. Some language features (e.g. entities) generate more code
than others (e.g. functions), the distribution of language features determines
the increase factor. It is actually better for the WebDSL compiler to try to
reduce the amount of generated code, because it will improve build and
deploy performance. Some improvements were also specifically made in this
area, previous versions would have a larger factor of generated code.

When specific repeated patterns emerge in the applications, we can initially
use static code templates to generate the code fragment, or look for potential
language additions that cover the requirements. The topic of choosing how to
improve the language iteratively is covered in Chapter 5.

Fast Prototyping Beyond an initial data model sketch on a whiteboard, we
usually did not spend much time designing systems on paper. With only only a
rough idea idea for an application, it is very easy to create a working prototype
with entity persistence and user interfaces in WebDSL without a large time
investment. Especially when there is no live application and real data to
preserve yet, the entire data model can be redesigned, and user interface code
adapted over and over. When changing large fragments of the data model
or user interface, strong consistency checking in WebDSL is the most visible.
It prevents application faults immediately when changes are made, the IDE
reports issues such as broken links and references, wrong types, incorrect
template calls.

With a live database, it requires some more thought when redesigning entity
data, as migration code will have to be written when changing existing data

Chapter 7. WebDSL in Practice 181

properties. New entities and properties are still easy to add, tables and columns
are created automatically when deploying a new version of the application.
User interfaces and other definitions remain easy to change completely, even
with live data.

Our typical way of working is understanding the workflow and intended
use cases, implementing it as a prototype, and discuss with users to see what
is working and not working, and what is missing. Then, adjust the prototype
and repeat. A tangible prototype avoids misconceptions between application
designer and client. It also makes the client enthusiastic by seeing the progress
every time.

Maintainability As the applications become larger, the focus shifts away from
only fast prototyping. Instead of writing large code fragments, it becomes
more common to read old code and make adjustments. In this situation, the
abstractions are really beneficial, as they reduce the effort to grasp the code.
Entity definitions always deal with persistence, user interface templates with
output and input of data, and access control rules always check the access
policy. We are continuously evolving the applications, adding new features
and changing old behavior, and have not run into blocking problems. Code
written many years ago remains understandable, by the writer and by other
programmers.

Integrated Development Environment The WebDSL IDE in Eclipse is used daily
in our web application development work. Compared to a generic code editor,
especially having syntax coloring and inline error markers makes it much easier
to work with WebDSL code. Besides those features, also reference resolving and
semantic code completion are convenient to have (e.g. to complete template
names or entity property names). Inline error markers update fast enough
due to the caching of file analysis. The code for detecting errors is shared
with the compiler, so there are no differences between editor feedback and
compiler feedback. Introducing a variant of the IDE suitable for dark mode
also increased coding comfort quite a bit, this is used by all developers.

Initially, we fully integrated the build and deploy steps into the IDE. Unfor-
tunately, in our experience, the Web Tools Platform for Eclipse, which provides
support for interacting with a Tomcat process, would often lose track of run-
ning processes. This made redeployment very flaky, where often you would
get an old version of the application after deploying. We decided to switch
back to regular command-line deployment, because it did not suffer from
such problems. The webdsl run command builds the application, unpacks
Tomcat, starts Tomcat, and deploys the application. The output log is right in
the terminal, and a simple ctrl+c exits the process reliably.

The IDE is not perfect, because there are some cases where updating errors
is delayed. The cause of these problems is likely a situation where the cache
is not cleared entirely. This has not been a high priority problem, so it was
not addressed. Another issue is that it has been difficult to keep the WebDSL
IDE updated with latest Spoofax developments, in particular the switch to
new languages for static semantics involves quite some migration effort. This

182

has become clear in Max de Krieger’s thesis work on migrating to SDF3 and
Statix [De Krieger 2022]. A negative side effect is that the latest Eclipse versions
are having compatibility problems loading the WebDSL IDE plugin. We might
explore other IDE platforms than Eclipse. The IDE options have improved
over the years, with the availability of more easily pluggable IDEs such as
Visual Studio Code [Microsoft 2023b], and standardization of IDE plugins for
language support through the Language Server Protocol [Microsoft 2023a].

Security In Section 7.8 we listed some of our experiences we had regarding
security. The main conclusion here is that web application security cannot be
guaranteed by a programming language itself. A large part of the risk lies in
the underlying software and hardware stack. Security is a continuous process
for live web applications, it requires regular updates and staying up to date
with news about discovered vulnerabilities.

When looking at web application vulnerabilities specifically, the cases where
we had problems were often related to including an external library. Examples
are the issues with an authentication library for Single Sign-On, and the
integration of components for Markdown and LaTeX rendering as discussed
in Section 7.8. We have not found evidence of data tampering, CSRF, or XSS
issues arising from the use of standard library WebDSL components. The
default input templates are well tested, however, when creating new input
templates for WebDSL it takes some attention to avoid potential issues with
tampering. The databind section in the template needs to make sure that only
valid options can be accepted by the component. Another potential problem is
incorrect use of rawoutput, this feature provides flexibility to skip the HTML
escaping, which means the fragment should be safe (e.g. through custom
filtering) or has been created by a trusted user. The reason for having a feature
like rawoutput is extensibility. For example, it is required for the Markdown
output rendering of WikiText type because it can produce HTML.

The access control policy in the applications is another security aspect. This
feature has worked really well in deployed applications, we have not observed
issues where URL or form data tampering provides more access than the policy
allows. While we did not have issues enforcing the access control policy, the
specification of the policy rules can have mistakes. For example, in WebLab
there was a case where too much information was visible. A newly added
feature for student dossiers, an overview of all the questions in the course
with the grades, initially did not take into account visibility of the assignments.
This caused a problem where students could observe exam question titles
before the release of the exam. In larger applications it can become harder to
make sure the same capabilities (e.g. viewing assignment titles), is enforced
with the equivalent access control restrictions in every context. Support for
specifying access control rules on data could be interesting for these cases,
however, there are some open questions for the design of such a feature in
WebDSL, as discussed in Section 4.6.1.

WebDSL Application Performance Flexibility and expressivity has been chosen
over raw performance in the design of the WebDSL language. In practice,

Chapter 7. WebDSL in Practice 183

we see that applications need to grow the database quite a bit before a page
might become too slow, and the cause is often inefficient data retrieval (see
Section 2.4.7 and Section 7.7). Manual prefetch hints that optimize data retrieval
can help in many of these cases.

The deployed applications are using MySQL, which requires configuration
tweaks for larger applications to run smoothly, e.g. increasing memory limits
and cache sizes. There are several supporting tools to identify such setting
tweaks.

In the user interface part of the language, one problem we sometimes
encounter is that the amount of HTML can become quite large, which usually
also indicates a usability problem. For example, a page might have too many
buttons (thousands), in this case there might be a better user interaction
possible by splitting activities across different pages. Or a page loads too much
data, and needs pagination or filtering. Sometimes there might also be an
image or other resource that is too large, for these cases running a website
scanning tool like GTmetrix [2023] quickly uncovers the problems. Page
caching speeds up stable pages like the conference pages in Conf Researchr.
Overall, the performance is suitable for the applications we operate.

WebDSL Compiler Performance The performance of the WebDSL compiler
could be further improved. While the caching features in the compiler help a
great deal, every round-trip from save to deploy still takes at least 20 seconds.
Comparing to other tools this is very slow. For example, when developing user
interfaces with React [2023], there is a process that detects file changes and
can immediately process an update and deploy changes without noticeable
waiting time. The discussion in Section 6.9 reflects on the problem of build
speed and identifies potential improvements.

We notice the delay especially when finetuning user interfaces, only making
small changes for which you want to inspect the result. On the other hand,
for an experienced developer implementing larger fragments, it might take
a while before a rebuild and redeploy is necessary. The abstractions help to
make fewer mistakes, and there is immediate feedback in the editor when
inconsistencies arise. For tweaking styling in CSS, we can also use the browser
support for live editing, and afterwards copy the fixes into the application.

Testing A comprehensive regression test suite for the WebDSL compiler
employs browser testing to perform complete integration tests. Browser tests
are specified through an interface that wraps the Selenium [2023] library in
WebDSL. This allows starting a browser, clicking buttons, entering input data,
and inspecting the resulting page content. The test suite involves hundreds of
small WebDSL applications where specific language features are tested. We
created a separate testsuite specifically for verifying the consistency checks
and the errors that the compiler and IDE should produce. The tests in this
testsuite run the WebDSL compilation, and check expected errors in the output
messages of the compiler.

Although the WebDSL language itself is tested well, for specific applications
we have not created automated regression tests often. Testing is done manually

184

while developing a change or new feature. Common behavior is already tested
in the compiler. It is rare to encounter a confusing bug, e.g. in persistence or in
rendering. When we do observe an unexpected error, it is more often an issue
in the compiler, and not in the application. In this case, a fix is created for the
compiler, together with a new regression test. Unfortunately, we do not have
time to fix every issue, as application improvements often take precedence.
Especially when there is a trivial workaround, an issue might remain open
longer.

Wearing Many Hats An issue that we experienced is that it is hard to separate
the roles of language designer, application developer, operations support,
consultant, all at the same time. Often the most practical issue has precedence,
which is typically some support question asked over email. Especially support
requests can be costly for focus, because they require context switching even
though the individual task might be small. Some issues simply take precedence
over everything, such as hardware issues like a failing harddisk or crashed
server, or patching security vulnerabilities. Working on the language is the
least urgent, when application features are requested as well, even though
language improvements benefit all the applications and have the most impact.

Flexible Access Control To reduce support requests it is important to think
about which actions the users can help with, this is where the access control
models get interesting. In all our applications there are multiple levels of roles
connected to a section of the application. For example, courses in WebLab have
instructors, teaching assistants, and observers. Some roles allow managing the
roles with lower permissions in their own section of the web application. It is
important to start early with adding these features to enable users to do more
and support each other, in order to reduce support requests to our development
team. The access control model should handle people with multiple roles in
different contexts, people leaving and joining, and transferring tasks from one
person to the next.

Being Selective With Time Another observation we have made is that because
the language enables fast prototyping and quick results, the amount of re-
quested features can also increase quickly. Care has to be taken that these
features are broad enough to be useful to multiple users and not just serve one
person’s workflow.

Not Targeting Other Platforms We have experimented with targeting other
platforms with WebDSL, namely Python, but we experienced from the start
that it was very hard to keep a consistent semantics among those back-ends. In
particular, the used libraries can have a large impact on the behavior and might
not be easy to reproduce in other platforms. Running a web application also
gives some freedom when it comes to the platform. As long as the application
is working as intended and performing well, the user does not have to care
which implementation platform is being used on the server. A similar issue
occurs when code is being moved to the DBMS, or to the client, small details in
the semantics might be tricky to get aligned, e.g. integer overflow behavior or

Chapter 7. WebDSL in Practice 185

string equality checking while taking database collation settings into account.

Language Maintenance Maintenance on the language, in particular the libraries
in the runtime system, has been slow due to giving priority to supporting and
operating the applications. New features, in particular client-side operations,
websockets, have not been thoroughly investigated as abstractions. In principle
there is no limitation that would prevent the inclusion of abstractions for these
concerns.

Opportunities We see many opportunities for new software to address work-
flow problems, however, having an effective language does not save you from
the effort to dive into the heads of the clients to understand what they are really
asking for. Continuous prototyping can help a lot in requirements gathering,
and this is the process we have used in all our applications. Emphasizing our
unique approach with a custom programming language can generate some
resistance and worry about future support and development. What we see in
practice, however, is that applications tied to a particular framework developed
by external parties, are often abandoned when the contract ends or getting
entirely redone in the next popular framework.

7.10 Threats to Validity

The first threat to validity is discussed in Section 1.8: in the Technical Action Re-
search method, a major threat to validity is that the researcher, who developed
the artifact, is able to use it in a way that no one else can. Most members of
our academic workflow engineering team joined in later phases of the project,
and were not involved in the entire artifact design and implementation process.
We have also had students contribute to our application development, e.g. in
the case of EvaTool and WebLab. On the other hand, we do know the limits of
the system quite well, because we are a team that also maintains the language.
WebDSL did not attract other users beyond our group, although it does not
help that documentation and smoothing the new user experience were not a
high priority.

The experiment we performed is very open. For evaluating practical appli-
cability, the criteria that matters most to us, it does not make sense to have
a very controlled and repeatable experiment. Running it in the wild is the
only way to get answers about practical applicability. A threat to validity in
this case is that the discussed application case studies are not open source
software. The reason for this is that funding is acquired for developing these
applications, which requires protecting the value that these applications pro-
vide and prohibit sharing it freely. The funding for these applications also
sustains maintenance and further development of WebDSL itself.

Another threat to validity is that we do not create fully equivalent appli-
cations in other technical solutions to compare against. Unfortunately, this
would be too much effort, for very little practical value to our clients. We did
make smaller comparisons such as the analysis performed in Chapter 8.

186

The WebDSL language helps us create meaningful applications that tackle
real automation problems. In our experiences at the university, external soft-
ware development companies often fail to fully understand the requirements
and think along with the client. There are many failed projects, contract con-
flicts, and applications that are in production but not further developed. Our
experience with both the software and the domain of university education
provides an edge to making these applications. This edge was important for
getting real users, however, for the experiment it could be considered a threat
to validity, is that edge a necessity? In our experience it was very productive
to have a close connection to the real clients, otherwise you cannot prototype
very fast, even if the chosen software system supports it. In an earlier stage
of our application development activities we tried developing a system for an
external client in an unfamiliar domain. The progress was very slow, largely
because communication was slow, and we did not have much opportunity to
talk with actual users. Our focus shifted to the academic domain, where such
problems were not forming bottlenecks, and we could focus on the technical
implementation instead.

7.11 Conclusion

In this chapter, we evaluated the practical applicability and reliability of
WebDSL based on our experiences designing, implementing, and operating
several real-world applications. We summarize the answers to the questions
stated in the introduction of this chapter:

1. How well did the focus on web programming abstractions, removing boilerplate
code, and providing timely and accurate feedback on problems in application
source code work in practice?

The web programming abstractions and reduction of boilerplate code
enabled fast prototyping in the initial phase of development, as well
as maintaining source code over a longer period of time. Abstractions
keep the code readable, the purpose of a code fragment is immediately
clear from the language element used. Boilerplate code is generated for
many low-level aspects of web programming, such as setting up entity
persistence mapping to database tables, generating form input identifiers,
and importing form data in action handlers. The compiler and IDE result
in a productive development environment, with immediate feedback on
problems in application code. These features enable making changes
while minimizing risk of breaking old code. However, the build and
deploy speed is an annoying bottleneck in application development.

2. We set out to build a system that ensures reliability (robustness, performance,
scalability, and security) of applications, did we indeed reach these goals?

Our applications have been running stable for a long time, with usage
numbers steadily increasing. Some smaller improvements have been
made to improve robustness, such as a transaction retry mechanism,

Chapter 7. WebDSL in Practice 187

and feedback on submit failure. The most critical issue we encountered
in the generated application code was a problem in database connec-
tion handling, which was resolved. Application performance is good
enough out of the box for medium-sized web information systems in
the university and academia domain, in some cases it required manual
tweaks for optimizing database access when loading many entities. A
programming language can do a lot to avoid security vulnerabilities in
web programming, however, security depends on the whole software
and hardware stack, not just the application code.

In Chapter 8 we will compare WebDSL to other solutions found in practice
and in related work.

188

8
Related Work

8.1 Introduction

WebDSL has been designed to integrate web application programming con-
cerns into a single language. Comparing with existing languages and frame-
works, it functions as a full-stack web programming solution like the Spring
[2023] framework for Java, Django [2023] framework for Python, Ruby on Rails
[2023], Laravel [2023] for PHP, and Sails [2023] for Node.js. React [2023], Angu-
lar [2023], and Elm [2023] are purely client-side rendering frameworks. These
are not full-stack solutions, and require a separate server-side application to
handle concerns like persistence and access control.

Integrating concerns as language features requires making design decisions
up front. This means WebDSL is particularly suited for information systems.
However, it might not be a good choice for other styles of web applications. For
example, if you need raw performance, or a client-side rendered user interface
with mostly web socket communication, then the current language features in
WebDSL are not sufficient.

In this chapter, we first discuss conventional full-stack web frameworks
(Section 8.2), highlighting points from the initial motivation described in
Chapter 1. Then, we compare WebDSL with other multi-tier programming
languages for web programming proposed by other researchers (Section 8.3).
Because these are also language-integrated solutions, they are the most similar
to WebDSL and give opportunity for a detailed comparison. In particular, case
studies and practical experience reports are discussed, because they provide
information on the practical usability of the tools and approaches. Next, a
general comparison with modeling and low-code tools is made (Section 8.4),
although the gap between these graphical model editors and WebDSL is larger
than other discussed solutions based on programming languages. Section 8.5
concludes this chapter on related work.

8.2 Conventional Full-Stack Web Frameworks

The motivation for WebDSL is based on addressing shortcomings in conven-
tional web frameworks. Examples of popular full-stack stack web programming
solutions are the Spring [2023] framework for Java, Django [2023] framework
for Python, Ruby on Rails [2023], Laravel [2023] for PHP, and Sails [2023]
for Node.js. These frameworks are popular for a reason, they get the job of
building a web application done. These web frameworks provide abstraction
over web programming details and allow reuse of existing knowledge for
building web applications. Due to the large number of people using these
frameworks they are well-tested and it is easy to find many tutorials, examples,

189

and answered questions about particular problems. As explained in Chapter 1,
there is still room for improvement in several areas, which can be achieved
by a programming language dedicated to web programming. The areas of
improvement are:

1. Abstraction Web frameworks are designed within the constraints of a
general-purpose programming language. Design choices in the program-
ming language can cause notational overhead and potential confusion
when used in a web programming context. For example, object identity
has different requirements when objects are being persisted in database
tables with an ORM (Section 2.4.4). Cross-cutting concerns such as access
control are not easily specified in abstraction features provided by most
general-purpose programming languages.

2. Static Verification The general-purpose programming language’s compiler
and IDE sees the web framework as a regular library, and is limited
to the typechecking strength in the language to enforce correct usage.
Third party linting tools can provide additional framework usage checks,
but require the programmer to make the right selection of tools for the
combination of frameworks and features used.

3. Security General-purpose programming languages are not designed with
web security concerns in mind, even simple features like string interpola-
tion can encourage wrong programming patterns that introduce injection
vulnerabilities (Section 1.5.2). More complex features like eval in Ruby,
can lead to arbitrary code execution vulnerabilities (Section 1.5.5). Cre-
ating user interfaces in the templating library of a web framework may
require the programmer to explicitly enable security features, such as
managing a CSRF-token.

To illustrate these issues with a concrete example, we investigate code frag-
ments for the Django web framework in more detail, and make a comparison
with WebDSL code.

8.2.1 Django

Django is a high-level Python web framework for rapid development of web
applications. It takes care of common tasks in web programming, so the
programmer should be able to focus on writing the code that is specific to the
application. To compare Django to WebDSL, we will look at concrete code
fragments based on the getting started Django Tutorial [2023]. In this tutorial,
the construction of a simple questionnaire application is described.

Figure 8.1 shows the data model definition in Django for persistence to
a database using Object-Relation Mapping (ORM). This fragment creates a
Question and a Choice class for storing and retrieving questionnaires. The
__str__ method returns the string representation of the object in Python. The
equivalent for __str__ in WebDSL is the name property, which can be declared
as property or annotation (Section 2.4.2). The first thing to note here, is that

190

from django.db import models

class Question(models.Model):
 question_text = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')
 def __str__(self):
 return self.question_text

class Choice(models.Model):
 question = models.ForeignKey(Question)
 choice_text = models.CharField(max_length=200)
 votes = models.IntegerField(default=0)
 def __str__(self):
 return self.choice_text

Figure 8.1 Django tutorial data model
 1 entity Poll {
 2 question : Text (name) // can also be WikiText to get Markdown input/output
 3 choices : [Choice]
 4 published : Date
 5 }
 6
 7 entity Choice {
 8 answer : Text (name)
 9 poll : Poll (inverse=choices) // bidirectional association for easy navigation
10 votes : {Vote} // store votes and derive total
11 total : Int := votes.length
12 }
13
14 entity Vote {
15 // could also reference user making the vote and other relevant info
16 chosenOption : Choice (inverse=votes)
17 }

Figure 8.2 WebDSL version of Django tutorial data model

the data persistence class is a regular Python class. Programmers need to keep
track of distinguishing between Python classes used for persistence, and regu-
lar Python classes without ORM behavior attached. The language itself has no
notion of ORM built-in, so it will not report issues when e.g. trying to store
data in a class that has no persistence behavior. The second thing to note is the
amount of boilerplace code, such as the word ‘model’ being used 10 times, in
order to distinguish a persistence class from a regular Python class. Database
table creation commands can be derived from the declared model, and can be
installed to the database using a few manual commands. The commands for
updating the database have to be repeated after every data model change. In
WebDSL, we have automated the database table creation steps, the database is
initialized and updated automatically when running the application. Figure 8.2
shows the related fragment in WebDSL. This example has been expanded com-
pared to the Django fragment, to show WebDSL coding style and create a
complete application (together with the code in Figure 8.4). The Poll entity
holds the question text and references the choices belonging to it. The Choice

entity holds choices and references the votes. Bidirectional associations (de-
clared using inverse annotation) between Poll.choices and Choice.poll,
and Choice.votes and Vote.chosenOption, allow easy navigation between
related entities without writing any explicit join queries.

Chapter 8. Related Work 191

Polls/view.py

...
def detail(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 return render(request, 'polls/detail.html', {'question': question})

def vote(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 try:
 selected_choice = question.choice_set.get(pk=request.POST['choice'])
 except (KeyError, Choice.DoesNotExist):
 # Redisplay the question voting form.
 return render(request, 'polls/detail.html', {
 'question': question,
 'error_message': "You didn't select a choice.",
 })
 else:
 selected_choice.votes += 1
 selected_choice.save()
 # Always return an HttpResponseRedirect after successfully dealing with POST data.
 # This prevents data from being posted twice if a user hits the Back button.
 return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))

def results(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 return render(request, 'polls/results.html', {'question': question})

Polls/templates/polls/detail.html

<form action="{% url 'polls:vote' question.id %}" method="post">
{% csrf_token %}
<fieldset>
 <legend><h1>{{ question.question_text }}</h1></legend>
 {% if error_message %}<p>{{ error_message }}</p>{% endif %}
 {% for choice in question.choice_set.all %}
 <input type="radio"
 name="choice"
 id="choice{{ forloop.counter }}"
 value="{{ choice.id }}">
 <label for="choice{{ forloop.counter }}">{{ choice.choice_text }}</label>

 {% endfor %}
</fieldset>
<input type="submit" value="Vote">
</form>

Polls/templates/polls/results.html

<h1>{{ question.question_text }}</h1>

{% for choice in question.choice_set.all %}
 {{ choice.choice_text }} -- {{ choice.votes }}
{% endfor %}

Vote again?

1

1

1

2

3

2

3

4

4

6

5

Figure 8.3 Django tutorial user interface

Figure 8.3 shows fragments of the Django tutorial that together form a user
interface component with submit action for the questionnaire application. We
will highlight the points of boilerplate code and potential errors, these numbers
correspond to the arrows in the figure:

1. The programmer must explicitly load arguments from URL parame-
ters, e.g. question_id, this is boilerplate code that results from having
separate view templates and controller classes.

2. View templates must be explicitly seeded with data by the controller
class, in this case it is only the single occurrence of question, however

192

the number of passed arguments increases with more complex view
templates. Additionally, the page reference polls/detail.html is a
dynamic string value, which will not be checked by a compiler to be a
correct page reference.

3. The names used for input elements in the view and unpacking this data
in the controller must match. In this case, the name choice connects
the view with the controller. This name is not checked by the compiler.
Additionally, there is boilerplate code required for unpacking all the
submit parameters from POST data in the controller, which also increases
for more complex view templates.

4. Enforcing data validation is spread over the controller and the view
template. The check and message are specified in the controller, and
the view template must check for the error and insert this error at a
suitable location based on a matching argument value. This style of data
validation causes boilerplate code from passing additional arguments to
the view template, and introduces potential mistakes from incorrectly or
omitting checking for data validation errors produced in the controller.

5. In general, a redirect is required after a form submit to avoid accidental
form resubmission. This is not enforced automatically, but requires
boilerplate code from the programmer to declare the redirect.

6. The programmer must remember to include the CSRF token to enable
Cross-Site Request Forgery protection. Forgetting to include this frag-
ment makes the form vulnerable to attacks, which will not be reported
by the compiler as an error.

Figure 8.4 shows the fragment expressed in WebDSL code. The shortcomings
of boilerplate code and potential errors observed in the Django fragment are
addressed in the following ways in WebDSL:

1. Page argument retrieval from the database is automatic, in this case the
p argument with type Poll.

2. Data can be referenced in user interface templates directly, e.g. p.question

displays the question from the Poll argument.

3. Input element names and data retrieval from submit parameters are part
of the abstraction provided by input templates. The radio input template
generates parameter names using deterministic template identifiers, and
updates the r.chosenOption property.

4. Data validation is integrated in the language, and can be enforced by
a single validate declaration indicating the check, error message, and
location to show the error.

5. Redirect after submit is automatic, either the user specifies a return page
to redirect to, or a redirect to the same page happens.

Chapter 8. Related Work 193

 1 page poll(p: Poll){
 2 var r := Vote{}
 3 div{ ~p.question }
 4 form {
 5 radio(r.chosenOption, p.choices)
 6 validate(r.chosenOption != null, "Pick one option")
 7 submit action {
 8 r.save();
 9 return viewAnswers(p);
10 }{ "Confirm" }
11 }
12 }
13
14 page viewAnswers(p: Poll){
15 div{ ~p.question }
16 for(o in p.choices order by o.total desc) {
17 div{ ~o.total ": " ~o.answer }
18 }
19 }
20
21 // root page with demo data setup to complete application code
22 page root {
23 submit action {
24 var p := Poll{ question := "Tabs or spaces?" }.save();
25 p.choices := [
26 Choice{ answer := "tabs" }
27 , Choice{ answer := "spaces" }
28];
29 return poll(p);
30 }{ "go" }
31 }

Figure 8.4 WebDSL version of Django tutorial user interface

6. Cross-Site Request Forgery protection is automatically enforced in gen-
erated template identifiers by seeding these with the unique data being
accessed and the identity of the logged-in user.

In the Django example, the separation of the controller from the view tem-
plate is at the root of much boilerplate code. The view and controller definitions
need to be kept in sync, which causes mental overhead for the programmer.
For example, if an additional form input is added in the view, an additional
request parameter needs to be decoded in the controller, possibly requiring
additional error handling in both the view and controller as well. Besides
additional inputs, other constraints also require checks in both locations. For
example, a time limit feature would require a condition to be checked in the
view to decide whether to render the form, and the same condition check in
the controller to decide whether to handle submits from this form.

In the Django tutorial, a race condition is pointed out, because adding
a vote is done by updating the same value in the database from different
transactions (selected_choice.votes += 1). Database transaction semantics
might lose votes when multiple votes happen at the same time, because when
two transactions both increment a number by 1, the end result would be the
same number and not considered a conflict, even though a vote is lost. The
solution suggested in the Django tutorial is to use a feature for executing direct

194

SQL expressions to increment transactionally. This solution breaks down the
abstraction level provided by the framework, programmers will need to decide
when it is required to escape to direct database manipulation. In WebDSL,
this transaction conflict could also occur if votes were counted with an integer
property. Instead, the example shows a more extensible way of expressing
this data and avoiding transaction conflicts, using a separate Vote entity. This
entity could also be used to store more information about the vote action, e.g.
to avoid double votes. Each transaction will only add data, namely additional
Vote entities, and will not try to update a value that has high potential for
transaction conflicts.

8.3 Multi-tier Web Programming Languages

Several multi-tier web programming languages have been proposed that gen-
erate code for client, server, and database from one application definition. In
general, they use the same technique as WebDSL to achieve abstraction, namely
a language-integrated solution. In particular, we will be looking at the Ur/Web
and Links languages, which are also full-stack languages used to build the
entire web application. These are complete languages with a large number
of features that could be examined in detail. Just looking at the persistence
solution already shows different approaches being used, where WebDSL uses
ORM abstraction, Links generates SQL from list comprehension syntax, and
Ur/Web integrates SQL as a sublanguage. We recognize that the research
focus and design philosophy is also different for these languages, e.g. Links
explores advanced features for translating generic code to queries, and Ur/Web
explores typechecked metaprogramming abstractions. However, the authors
provide working demo applications which can function as concrete compar-
ison cases. For the code comparisons we examine essential web application
features, namely data retrieval and form input handling for server-side storage
of data. We compare equivalent WebDSL code to the examples. Although a
larger case study would be insightful, it is time-consuming to understand the
language idioms and create these applications in all the languages to get a
representative comparison. That is why we compare example code provided
by the tool authors themselves. The comparison is also based on available
published material, of which some parts might be outdated, or do not reflect
the latest status of the tools.

Although a small application comparison is useful, the benefits provided
by WebDSL’s language features in terms of abstraction, static verification, and
security become more pronounced when application codebases get larger (see
Chapter 7). For example, the compared languages mix client- and server-side
code. This has implications for security, because the client-side code and data
in the JavaScript engine of the browser is vulnerable to tampering by the user.
Controlling access and ensuring valid data enters the system cannot be done
purely on the client. In WebDSL, all pages and actions that can be requested
are forced to be protected by an access control rule, and action code only runs
on the server.

Chapter 8. Related Work 195

8.3.1 Ur/Web

Chlipala [Chlipala 2010] develops the Ur functional programming language
which aims to provide verification of rich program properties through type-
checking. Ur/Web [Chlipala 2015] is Ur with a special standard library that
provides web programming features on top of the Ur base language. Ur/Web
supports construction of dynamic web applications backed by SQL databases.
It enables checking dynamic web application code that generates HTML,
JavaScript and SQL.

Language Design Goals There are many similarities with the WebDSL design
goals, in particular the focus on static analysis, and using a custom program-
ming language to abstract over web programming concepts. The Ur/Web
manual [Chlipala 2020] states that a well-typed Ur/Web application should
not crash during page generation, but may also not:

• Suffer from any kinds of code-injection attacks

• Return invalid HTML

• Contain dead intra-application links

• Have mismatches between HTML forms and the fields expected by their
handlers

• Include client-side code that makes incorrect assumptions about the
“AJAX”-style services that the remote web server provides

• Attempt invalid SQL queries

• Use improper marshaling or unmarshaling in communication with SQL
databases or between browsers and web servers

While WebDSL shares many aspects in the list above, there is a difference in
how some of these are archieved. In particular the way mismatch between
forms and action handlers is handled in WebDSL, is through a combination of
deterministic id generation by the runtime, and standard library definitions
of input components. The application developer does not need to think
about form field names. Additionally, it enables additional protection against
CSRF by avoiding easily guessable form parameter names. One feature that
WebDSL currently does not provide is a way to write client-side code as part
of the language (JavaScript can be included but is not checked against other
application definitions). The “AJAX”-style in WebDSL is not client-side code
but server-side calculated updates to the DOM. The remainder of this section
will discuss features of the Ur/Web language using examples of these features,
and compare them to WebDSL.

196

table t : { A : int, B : string }
PRIMARY KEY A

fun list () =
rows <- queryX (SELECT * FROM t)

(fn row => <xml><tr>
<td>{[row.T.A]}</td>
<td>{[row.T.B]}</td>

</tr></xml>)
return <xml><table>{rows}</table></xml>

fun main () =
xml <- list ();
return <xml><body>{xml}</body></xml>

Figure 8.5 Table Ur/Web demo
 1 entity T {
 2 b : String
 3 }
 4 template list {
 5 for(x in (from T)){
 6 row {
 7 col { ~x.id }
 8 col { ~x.b }
 9 }
10 }
11 }
12 page root {
13 table { list }
14 }
15 htmlwrapper {
16 table table
17 row tr
18 col td
19 }

Figure 8.6 Equivalent entity declaration in WebDSL

Persistence A table declaration in Ur/Web declares a SQL table with rows of a
particular record type. The embedded SQL syntax enforces that all queries and
updates are typechecked. It prevents executing invalid SQL queries, and the
marshaling and unmarshaling happens implicitly without the risk of making
wrong assumptions about the types of tables. The system generates a file with
SQL statements to initialize the tables in the database. Figure 8.5 shows a
simple table definition with two columns for an integer value and a string
value. The integer column is manually declared as primary key. This fragment
is taken from the Ur/Web SQL demo [Chlipala 2023]. The queryX function
takes as arguments a SQL query, and a function that maps the result rows
of the query to a list of XML fragments, enclosed by <xml> tags. Accessing
the column data in the mapping function is typechecked. Ur/Web performs
escaping on the values that are inserted from the database into the output
XML to avoid XSS issues.

Figure 8.6 shows an equivalent WebDSL fragment. Entity declarations
used to persist data will create database tables automatically when deploying,
and update the tables when entities change. Primary keys are implicit in
WebDSL, the runtime implicitly creates primary keys for all entities. The value
of a primary key, which is of type UUID, can be accessed through the id

property. Using htmlwrapper simple HTML tags such as table, tr, and td

Chapter 8. Related Work 197

table t : { Id : int, Name : string, Parent : option int }
PRIMARY KEY Id,
CONSTRAINT Name UNIQUE Name,
CONSTRAINT Id CHECK Id >= 0,
CONSTRAINT Parent FOREIGN KEY Parent REFERENCES t(Id)

fun main () =
list <- queryX (SELECT * FROM t)

(fn r => <xml><tr>
<td>{[r.T.Id]}</td>
<td>{[r.T.Name]}</td>
<td>{case r.T.Parent of

None => <xml>no parent</xml>
| Some id => <xml>{[id]}</xml>}</td>

</tr></xml>);
return <xml><body>

<table>
{list}

</table>
</body></xml>

Figure 8.7 Table Constraints Ur/Web demo
 1 entity T {
 2 name : String
 3 parent : T
 4 }
 5 page root {
 6 table {
 7 for(x in (from T)){
 8 row {
 9 col { ~x.id }
10 col { ~x.name }
11 col {
12 if(x.parent == null){ "no parent" }
13 else { ~x.parent.id }
14 }
15 col { ~x.parent.name }
16 }
17 }
18 }
19 }

Figure 8.8 Equivalent entity references in WebDSL

can be syntactically used as templates. The property accesses x.id and x.b

are typechecked. Similar to Ur/Web, queries are part of the language, data
marshaling happens implicitly, and data is escaped to avoid XSS issues.

For the next comparison, we include references to other tables. The fragment
in Figure 8.7 is taken from the Ur/Web Constraints demo [Chlipala 2023].
Foreign key constraints are explicitly declared in Ur/Web. A type error will be
reported when a foreign key column refers to a property that is not a primary
key or does not have a uniqueness constraint. Retrieving and updating data
always requires explicit select and update queries in Ur/Web. The parent
reference in the example is the primary key, retrieving the parent data requires
a join in this query or an additional separate query. The interesting feature
of these queries is that they are integrated into the language and typechecker.
The typechecker understands the structure of the result set of a query that for
example contains ‘join’ and ‘group by’ clauses.

The equivalent WebDSL code is shown in Figure 8.8. In WebDSL queries

198

are only needed to select entities that are not directly related to the page or
template arguments, and updating always happens implicitly by setting new
values for object properties. WebDSL employs an ORM solution to avoid
having to write SQL queries for most data retrieval cases. When an object
is loaded from the database (typically the initial objects loaded are the page
arguments), the object graph can be traversed by accessing the members,
which might trigger additional queries in the background to load the required
data (unless there is prefetching active which avoids additional queries). In
practice, this means explicit queries are usually not necessary, however, they
are supported in case a page component benefits from loading data with an
explicit join. Doing an output of a value that does not exist, will skip rendering
that call. For example, when the value of x.parent is null, the rendering of
x.parent.id and x.parent.name is skipped (see Section 2.5.4).

In general there is no concept of Objects or an ORM in Ur/Web because it
follows a functional programming style, using records to hold data instead.
These records do not have a built-in identity like Objects, two records that
have the same values are indistinguishable. Identities need to be handled
explicitly using a primary key field when executing queries. The WebDSL
entity abstraction simplifies this aspect for the developer. The application
developer does not have to make design decisions about primary key fields and
foreign keys. Database primary key identities are implicitly tracked and kept
in sync with object identities in the request handling session. Multiple queries
that select the same objects will get references to the same in-memory objects in
the result list (in the request handling session a particular entity instance is only
instantiated once). Changes to objects are recorded and implicitly flushed with
update queries at the end of a request handling session. References to other
entities automatically get the required schema with foreign keys to ensure data
integrity (every persisted entity reference refers to a persisted entity), including
support for bidirectional one-to-one and one-to-many relations.

User Interface Form and Action Handling As indicated in the language features
of Ur/Web, it prevents mismatches between forms and the fields expected by
their action handlers. The fragment in Figure 8.9 taken from the Ur/Web Con-
straints demo [Chlipala 2023] illustrates this feature. In this example the form
fields Id, Name, Parent are tracked by the type system, and it enforces that the
handler function add expects a record containing exactly those fields with their
types. To store the entered data, the handler performs an insert query through
the dml (Data Manipulation Language) function. Antiquoted Ur code can be
inserted into queries and DML commands, the typechecker catches mistakes
in the expression types of the inserted fragments. The readError function
will throw a runtime error if the submitted data is incorrectly formatted with
respect to the type.

An equivalent WebDSL fragment is shown in Figure 8.10. A mismatch
between form fields and action handler can also not occur, because form ids
are handled by the runtime system implicitly. The databind abstraction in
WebDSL using deterministic template identifiers avoids having to specify input
names. An update query is not necessary because the persistence mechanism

Chapter 8. Related Work 199

fun main () =
return <xml><body>
<form>

<table>
<tr> <th>Id:</th> <td><textbox{#Id}/></td> </tr>
<tr> <th>Name:</th> <td><textbox{#Name}/></td> </tr>
<tr> <th>Parent:</th> <td><textbox{#Parent}/></td> </tr>
<tr> <th/> <td><submit action={add}/></td> </tr>

</table>
</form>

</body></xml>
and add r =

dml (INSERT INTO t (Id, Name, Parent)
VALUES ({[readError r.Id]}, {[r.Name]},

{[case r.Parent of
"" => None

| s => Some (readError s)]}));

Figure 8.9 Form inputs Ur/Web demo
 1 page root {
 2 var t := T{}
 3 form {
 4 table {
 5 row { header { "Name:" } col { input(t.name) } }
 6 row { header { "Parent:" } col { input(t.parent) } }
 7 row { header col { submit action{ t.save(); }{ "Add" } } }
 8 }
 9 }
10 }

Figure 8.10 Equivalent form inputs in WebDSL

commits persisted data automatically at the end of the request. The save call
is sufficient to mark the new entity instance for it to be persisted. The input
widget created for input(t.parent) is not a text field input, but a dropdown
where the only options are the allowed entity instances. Data validation for
types, e.g. valid integer, is built-in for WebDSL inputs. These would not
require the developer to insert a check like readError. It will also not be a
runtime error like in the case of the Ur/Web example, instead it will display a
form input error message with customizable styling.

Security The security model, as reported in the manual, states that there is
a pragmatic approach to security. Some things cannot be secured reasonably,
such as any code invoked using the foreign function interface (FFI). Strings
are never implicitly interpreted as programs, to avoid code-injection attacks,
this is enforced by having specific language constructs for all tiers, there are
no embeddings of code in string values necessary.

To protect against Cross-Site Request Forgery (CSRF) attacks, cookie values
are signed cryptographically. Signing and signature checking are inserted
by the compiler. The form input names themselves are readable in the page
source and equivalent to the declared names in the application code. A form
that is available without logging in (or any other cookies), would be vulnerable
to CSRF. A difference with WebDSL is that WebDSL implicitly makes the form
input names unique based on the specific data it references (which already
provides some protection), and additionally adds the user identity in the input

200

name hash, if a login session (based on cookie) is available.
The Ur/Web manual also states that there is no guarantee that all function

calls experienced by the application are possible according to legit traversal of
links and forms. WebDSL provides stronger guarantees about which actions
and functions can be invoked. Form actions in WebDSL are not direct endpoints
for request handling, they are always executed in the context of the request
handling of a page. Actions that are no longer available according to the page
flow and current state of the data, cannot be executed.

Experience Report Van Casteren [Van Casteren 2019] reports on his experiences
with Ur/Web in a one-person commercial web application project. The listed
benefits are that it is trivial to keep front-end and back-end code in sync.
Similarly, keeping database query code up-to-date is enforced by the language.
Explicit control is possible for handling rendering and client-side calculation.
The runtime is performant. The language provides an option to mark a function
as pure, to enforce that there are no side-effects.

There were also negative experiences while using the tool in practice. Com-
piler errors were often confusing. There is a small library ecosystem and no
package management. Build times can get annoying, taking minutes to build
an application from scratch.

When comparing with the WebDSL experiences, the error reporting in
WebDSL has been one of the design goals. Errors are represented in domain
concepts that relate directly to the code, and do not include type system
mechanism details. Similar to Ur/Web, WebDSL has a very limited user
base and small library ecosystem. Build times are also a problematic point
in WebDSL, and improvements for incremental building have made a huge
difference in the practical applicability (see Section 6.7).

8.3.2 Links

The Links [Cooper et al. 2006] web programming language provides a single
language from which code for all tiers (client, server, and database) is generated.
Functions are labelled as intended to be executed on client or server. Client-side
code compiles into JavaScript to run on the client. Queries are written in Links
notation and compiled into SQL. The database abstraction provides transparent
optimized database queries derived from the code. This differs from solutions
where SQL is embedded in the language or other query syntax tree solutions as
used in WebDSL, Ur/Web, or LINQ for .NET [Meijer, Beckman, and Bierman
2006]. Queries are written using Links list comprehension syntax and can be
built out of reusable components. A notable feature of Links is that all server
state is serialized and passed to the client, and restored to the server when
required. The used approach is that continuation objects are defunctionalized,
functions are replaced with unique identifiers. The execution context is then
represented by identifying the closures which need to execute in the future of
the computation, and the dynamic data needed as part of these closures.

In WebDSL, server calculation state is not exposed to the client. The only
output of data comes from inserting values into the generated HTML code.

Chapter 8. Related Work 201

The only input of data comes from accepting a URL and form parameter
values, which get checked by the input components to contain only valid
options. These are single instances or collections of primitive values and entity
identifiers. These parameters do not encode calculations. Additionally, the
input identifiers are protected from CSRF attacks by making them unique
based on the referenced data and logged-in user information. WebDSL does
not provide an explicit mechanism for continuing a calculation at a later point.
Complex operations with multiple steps are typically backed by an entity to
store intermediate state in the database. From a security perspective, storing
the whole execution context on the client raises concerns, as this state would
be vulnerable to tampering without additional security measures.

Cooper et al. [Cooper et al. 2008] address a shortcoming in the initial work
on Links by providing a mechanism for abstracting over form components
called formlets. This work identifies the following problems in conventional
web programming solutions:

• no static association between form inputs and handlers;

• fields retrieved as strings individually, need to be parsed and recombined
into data structures;

• two form definitions cannot be merged without concern for name clashes,
making it hard to abstract over form components, e.g. using a form
component twice in a larger form.

The formlets solution provides static association (consistency check between
form parameters and action handler), supports processing raw form data into
structured values, and allows composition by generating fresh field names at
runtime.

The WebDSL solution for forms and inputs provides similar benefits. The
check between form input and action handler is made obsolete by the provided
template identifiers from the runtime, and databinding abstraction. Input
templates provide abstraction over transforming field values back into data
model structures. Form composition is effortless, templates containing inputs
can be reused within conditional sections and loops without risking name
clashes. Customization is supported in several ways, such as changing class
attributes with attribute overrides, overriding a template globally or locally
within a certain context, or simply taking the definition of an input template
and creating a variant of it with a different name. For example, in the built-
in library, there are variants for the set of entities input, one based on the
<select multiple> HTML input component, and one based on a list of
checkbox inputs.

Fowler et al. [2021] performed a larger case study using Links. They
reimplemented an existing Java web application in Links, ensuring functional
correctness by crawling both applications, and evaluated the differences in
performance. The studied application is a web front-end for a curated scientific
database. An important feature of Links for this case study is the shredding
technique for implementing nested queries by Cheney, Lindley, and Wadler

202

[2014]. This technique gives an upper bound guarantee on the number of SQL
queries: the upper bound is the number of occurrences of collections in the
query result type, which is independent of the number of records returned by
a query. Another relevant Links feature is translation of user-defined functions
to SQL code where possible, which relies on query normalization [Cooper
2009]. The queries Links generated in the case study were both fewer and faster
to execute than the ones in the original Java application. However, the ordinary
code execution speed for generating pages was worse than the equivalent Java
code, making the overall performance typically comparable.

WebDSL generates code for the Java platform, and it benefits from the
general maturity of that underlying platform, in particular for performance.
Note that WebDSL also generates the database schema entirely from the entity
definitions, so for a similar experiment as performed by Fowler et al. [2021],
the original database would have to be migrated first. WebDSL uses an ORM
with lazy loading for persistence, which, unfortunately, does not give an upper
bound to the number of queries. When iterating a collection, a query could be
executed for every element in the collection to retrieve additional data (N+1

query problem). A potential solution is prefetching of required data based
on static analysis of the program, which we explored in Gersen [2013]. We
found that having more complex join queries up front, which intuitively should
give a performance boost, does not guarantee a performance improvement.
Additionally, due to the many different types of caches in the DBMS, it is very
hard to benchmark the results accurately. A possible reason for the mixed
results is that tiny queries that were generated received more benefit from the
caches than large join queries. For our deployed applications, we provide our
DBMS with a large amount of memory to benefit as much as possible from
various caches. In our real-world applications, we have used manual prefetch
directives in some cases to preload data on pages where the queries became
too numerous and slow. WebDSL provides a debug feature for logging all
queries executed on a page render or in an action, which can pinpoint an issue
quickly. Even with a detailed query that retrieves all required data at once, a
page might also simply load too much data, which is a situation where all the
discussed solutions would suffer in performance.

Persistence Example We will now look at a code fragment comparison between
Links and WebDSL. This provides an indication of the abstraction differences
provided by the languages. The fragment in Figure 8.11 is taken from the
Citeseer data example of the Links demos [Links 2023]. First, the tables for
authors and papers are declared. The join table to connect authors to papers
is also explicitly declared. In the data retrieval query written in Links, the
join requirements of paperauthorTable are explicitly indicated, matching
paperid with the id field of paper, and matching authorid with the id field
of author.

This example is a good illustration of the benefit of the ORM abstraction in
WebDSL. Figure 8.12 shows an example of a similar data retrieval in WebDSL.
An inverse relation can be used to automatically keep both collections syn-
chronized, which would also be the behavior of a single join table. The code

Chapter 8. Related Work 203

var authorsTable = table "authors"
with (id : Int, name : String) where id readonly from db;

var papersTable = table "papers"
with (id : Int, title : String) where id readonly from db;

var paperauthorTable = table "paperauthor"
with (paperid : Int, authorid : Int) from db;

sig getAuthors : (Paper) -> [Author]
fun getAuthors(paper) server {

query {
for (r <- paperauthorTable)
where (paper.id == r.paperid)
for (a <- authorsTable)
where (r.authorid == a.id)
[(id=a.id, name=a.name)]

}
}

Figure 8.11 Data retrieval example in Links
 1 entity Author {
 2 name : String
 3 papers : {Paper}
 4 }
 5 entity Paper {
 6 name : String
 7 authors : {Author} (inverse = papers)
 8 }
 9 // function for equivalence with Links example, typically would just use paper.authors
10 function getAuthors(paper: Paper): {Author} {
11 return paper.authors;
12 }

Figure 8.12 Equivalent data retrieval example in WebDSL

generator will also generate table mapping to a single join table in this case. The
convenience this provides becomes clear when implementing the getAuthors

function, which is actually not required because a simple papers.authors

property access would retrieve the list of authors. Implicit (lazy) loading of
additional referenced data enables a more natural style of writing application
code. The application developer does not have to think about which data to
load in advance. Any fetching of related data happens automatically through
traversing the object graph.

Form input handling and data update In this next fragment from the Links
demos, we will look at form handling and updating persisted data. This
fragment is shown in Figure 8.13. Displaying data while escaping HTML
tags is performed with the stringToXml function. This example uses a fixed
name paperTitle for the input which is problematic for reuse and CSRF
prevention. The action handler updatePaper is invoked and supplied with
a record containing the paper id and the entered title. The server keyword
marks the function to be executed on the server rather than the client, which is
required for the database update. The update statement selects the relevant
paper from the database and updates the title column.

Figure 8.14 shows an equivalent WebDSL fragment. It is easy to observe the
benefit gained from the WebDSL abstractions in terms of lines of code. The
application developer needs to take fewer decisions in implementing simple

204

typename Paper = (id:Int, title:String);
var papersTable = table "papers"

with (id : Int, title : String) where id readonly from db;
mutual {

fun updatePaper(paper) server {
update (p <- papersTable)
where (p.id == paper.id)
set (title=paper.title);
showPaperInfo(paper)

}
sig showPaperInfo : (Paper) ~> Page
fun showPaperInfo(paper) server {

page <html><body>
<h1>{stringToXml(paper.title)}</h1>
<form l:action="{updatePaper((id=paper.id, title=paperTitle))}"

method="POST">
<input type="text"

class="input"
l:name="paperTitle"
value="{paper.title}"/>

<button type="submit">update title</button>
</form>

</body></html>
}

}

Figure 8.13 Form example in Links
 1 entity Paper {
 2 title : String
 3 }
 4 page showPaperInfo(paper: Paper){
 5 h1 { ~paper.title }
 6 form {
 7 input(paper.title)
 8 submit { "update title" }
 9 }
10 }

Figure 8.14 Equivalent form example in WebDSL

forms like this, which reduces the number of bugs that can be created. The
pages in WebDSL automatically construct html and body tags with required
includes. Automatic data binding takes care of displaying the current paper
title in the input field, and updating the data model with the newly entered
title on submit. Updating properties of persisted entities automatically get
committed in a submit action, no additional commands are required in the
action in this case.

8.3.3 Hop.js

Hop.js [Serrano and Prunet 2016; Serrano 2006] is a multitier programming
environment for JavaScript. A single JavaScript program describes both client-
side and server-side components. The HopScript language provided in Hop.js
is a super set of JavaScript. The major additions it provides are HTML syntax
support, integrated server-side web workers and native websockets. Hopscript
is compiled to JavaScript for client-side execution, and compiled to a multi-
threaded variant of the Scheme language for server-side execution. Hopscript is

Chapter 8. Related Work 205

a dynamically typed language and does not come with IDE support. In popular
client-side libraries like React, GUI updates are automatically derived from
changes in state. Hop.js does not support this style of client-side programming,
instead GUI updates are programmed explicitly.

The design goals for Hop.js are quite different than WebDSL. Hop.js is in-
tended for applications with few users, as the website [Serrano 2023] explains
that users must be declared before executing a program, and the system only
accepts requests from authenticated users. It is designed for light-weight appli-
cations like multimedia applications, ubiquitous computing, home automation,
mashups, and office tools. It does not target full-stack web applications, and
does not provide any specific support for database persistence, access control,
and data validation. The security requirements are also much lighter, because
only predefined trusted users can access the applications. Because of the
dynamically typed nature of the language and lack of IDE, static verification
of the application code and error reporting quality are not considered.

8.4 Modeling and Low-Code Tools

Modeling solutions have been applied to web programming problems for a
long time, as seen in tools like WebML (Web Modeling Language) [Brambilla
et al. 2008], UWE (UML-based Web Engineering) [Koch, Kraus, and Hen-
nicker 2001], OOHDM (Object-Oriented Hypermedia Design Model) [Schwabe
and Rossi 1995], Object Oriented Web Solution (OOWS) [Pastor, Fons, and
Pelechano 2003], and Hera [Houben et al. 2003]. The tools attempt to bring
a more structured approach to the development process of web applications.
Web programming concerns such as page composition and navigation are
represented in a graphical model. A graphical editor is required to interact
with the application definition. Some classes of errors are avoided through
the graphical application editor, e.g. a link or reference can only be created
as an arrow between existing boxes. Typically, the modeling languages target
conventional programming languages, such as Java and C#, for their code
generation. The focus in these methods is often on the high-level application
components, generating only a partially complete application. Detailed behav-
ior tweaking relies on extending generated code, or falling back on a scripting
language. In those cases there will be a disconnect between the graphical
models and the custom code, weakening the provided abstraction, and often
not providing static verification.

There are several commercial platforms such as Mendix [2023] promoting
low-code (or no-code) solutions, which conceptually are the same as modeling
languages. Applications can be “clicked together” in a graphical environment,
hosted in a locally installed editor or directly online in the cloud. The tools
enable non-programmers to build relatively simple applications. Complex
business logic is often delegated to extension components and requires hiring
a programmer or consultant from the company behind the tool.

Comparing modeling and low-code tools to WebDSL, the main difference is
in the graphical tools used and the perspective of enabling business experts

206

to provide (partial) implementation of applications. WebDSL is a textual
programming language, and enables programmers to become more effective
in creating complete web applications.

8.4.1 WebML

Brambilla and Fraternali [2014] report on the experience of the WebRatio Model-
Driven Engineering tool. The tool employs transformation to applications from
models expressed in the DSL called WebML (Web Modeling Language). This
approach has been applied in many industrial projects, resulting in practical
experience and lessons learned.

Applications are created in a graphical tool using high-level page com-
ponents such as login, show all items, search items, item detail. High-level
components have the benefit of allowing fast prototyping, and enabling non-
programmers to contribute to the implementation. A notable feature of WebML
is that there is no sub-model for business logic. This requires an extension
mechanism in the DSL in the form of custom units, encoding user-defined
business logic. The approach is based on multiple people or roles taking part
in the development process. High-level models of the process are created by
a business analyst, realistic prototypes are created by an application analyst,
detailed web layout templates by a web designer, and custom business logic
by a Java developer. A downside of these separated abstraction levels, is that
they become their own source of potential inconsistencies. For fine-grained
behavior the models can be extended with scripts written in Groovy [Apache
2023], or a new component can be programmed in Java. This happens quite
soon, e.g. for writing custom operations on data and data validation rules. A
WebRatio expert with knowledge of the underlying architecture is required to
write essential parts of the web application, given that the scripts need to inter-
face with the generated code and runtime. Changes to the higher-level model
can invalidate custom written components, where the high-level designer is
oblivious to such inconsistencies.

8.5 Conclusion

In this chapter, we have compared WebDSL to existing solutions and research,
and identified key differences. Compared to conventional full-stack web
programming frameworks, WebDSL provides improvements in the areas of
abstraction, static verification, and security. The closest comparison can be
made with tierless programming languages proposed in research, that provide
a single language abstraction to generate code for all tiers. The comparisons
in this chapter show that WebDSL abstractions are more concise and are
able to hide more of the web programming accidental complexity (e.g. input
identifiers and table mappings), while providing similar (e.g. automatic XSS
protection), or better (e.g. automatic CSRF protection) security.

Chapter 8. Related Work 207

208

9
Conclusion

In this concluding chapter we revisit the thesis in Section 9.1, and revisit the
design principles in Section 9.2. Finally, we will discuss directions for future
work in Section 9.3.

9.1 Thesis Revisited

New web programming abstractions integrated in a domain-specific lan-
guage improve web programming by avoiding boilerplate code, providing
timely and accurate feedback on problems in application source code, and
ensuring reliability (robustness, performance, scalability, and security) of
applications. The design and implementation of such a language is feasible
and has practical applicability.

The thesis contains several topics that have been addressed in this work.
The topics are new web programming abstractions, domain-specific language
design, static verification and providing timely and accurate feedback, web
application security, performance and robustness of the runtime, and finally
feasibility and practical applicability.

New web programming abstractions have been designed in WebDSL that
avoid boilerplate code and associated possibility errors and security flaws.
Chapter 2 discusses the base components of WebDSL: persistence handling,
data objects, functions on that data, and user interface components for ren-
dering the data. Chapter 3 shows the design of the user interface abstraction,
including the essential support for input of data and data validation. This
is the most important abstraction in WebDSL, which differentiates it from
other web programming solutions by using a notion of deterministic template
identifiers supplied by the runtime system. Chapter 4 describes the design
of the access control language and modeling of policies in WebDSL. This is
another unique aspect of WebDSL, other web programming languages have
little or no support for access control policy specification through semantics of
the language itself.

The next topic is domain-specific language design. The WebDSL language
is a large case study into domain-specific languages. Chapter 5 describes our
process of incremental DSL design, which evolved the WebDSL compiler to
its current state. Chapter 6 describes our compiler implementation strategy,
where both compiler and IDE are developed in conjunction based on the same
analysis implementation. The implementation combines rewriting and analysis
in order to reuse language elements in the implementation of other higher
level of abstraction language elements.

The third topic is static verification and providing timely and accurate
feedback on problems in application specifications. Chapter 6 describes im-

209

plementation aspects for creating the analysis in WebDSL. By leveraging the
Spoofax language workbench, checking application constraints is performed
live on every edit action in the IDE. Because the WebDSL language has specifi-
cally designed syntax for web abstractions, errors can be connected to these
elements, and describe problems in terms of the abstractions.

The fourth topic is web application security in order to ensure reliability.
Security plays a role in many of the abstractions found in WebDSL, but in
particular in the user interface component. Web application vulnerabilities
such as Cross-Site Scripting and Cross-Site Request Forgeries are addressed in
the abstractions provided by WebDSL. Chapter 7 describes and reflects on our
experiences with running real-world applications. In practice we have seen
that keeping applications secure is a continuous task, zero-day vulnerabilities
in underlying libraries do occur even in conceptually harmless features such as
logging, as seen with the Log4J vulnerability in 2021. Vulnerabilities also occur
in other areas of the application stack, look for example at the Heartbleed bug
in OpenSSL discovered in 2014.

The fifth topic is performance, scalability, and robustness of the runtime in
order to ensure a reliable application. The majority of the work on this topic
is contained in the source code of WebDSL. As described in Chapter 7, for
many years we have improved these aspects while testing it with new real-
world applications along the way. We have made robustness improvements
by solving discovered bugs, and adding features that improve the behavior in
exceptional situations. Application performance is good enough out of the box
for medium-sized web information systems in the university and academia
domain, in some cases it required manual tweaks for optimizing database
access when loading many entities.

Finally, feasibility and practical applicability is part of all our work on
WebDSL and web applications. In writing the compiler and runtime, manag-
ing builds with automatic regression testing, creating web applications with
WebDSL, configuring web servers, operating the web applications, supporting
the usage of the web applications, and the continuous improvement of all these
aspects.

9.2 Design Principles Revisited

In the introduction we listed the 5 core design principles of WebDSL (Sec-
tion 1.7), based on the problems we observed in web programming languages,
and our experiences in designing and developing the WebDSL language and
applications. In this section we revisit those design principles and relate them
back to the topics discussed in this thesis.

1. Linguistic abstractions should enable direct expression of intent. Language
concepts are designed with as much or little flexibility as required for the
essential complexity. The syntax and semantics are tailored to exactly what
they need to cover. Accidental complexity is removed, only essential complexity
is expressed. In order to determine what the essential complexity is, the scope

210

of the language needs to be clear, meaning what type of applications are going
to be covered by the language. If you design for everything, you end up
with a general-purpose programming language, and cannot provide benefit
for domain-specific contexts. The design decisions made for WebDSL to
achieve better abstraction favor convenience for application developer over
pure performance or more control over implementation details. Boilerplate
code is generated or hidden in the runtime as much as possible. Design
decisions have to made up front about what is boilerplate code or accidental
complexity. This allows providing many aspects for free, however, it takes
away control over these aspects.

Boilerplate code is avoided in multiple web application concerns. Any per-
sistence code related to database setup, table creation, and constructing queries
is hidden. Primary key fields for entities and their foreign key references are
implicit and automatically created. An important aspect of web programming
for forms and actions, is the handling of input name identities. These need
to be deterministic for detecting what the contents of input fields are when
handling the submit request, however, they should also be unique to the user
and related data to avoid Cross-Site Request Forgery problems. WebDSL hides
this name generation aspect from application programmers entirely, which
avoids many potential bugs, without specific static analysis. Data validation
is completely integrated into the user interface abstraction, using a separate
request handling phase that can conveniently access submitted data through
the entity model as well as query against the database. In most programming
languages, access control rules need to be inserted across the whole application.
In WebDSL, the access control policy can be specified in rules separate from
the rest of the application code. The boilerplate code for weaving in checks
at all the right spots is avoided, avoiding many potential bugs from manually
inserting these checks.

The lack of control makes WebDSL not an ideal tool for every web applica-
tion. We have applied WebDSL in practice for several information systems with
thousands of users, where it enabled us as to make real-world impact with a
small team. The WebDSL tooling enables fast prototyping, which is essential
for discovering the specific requirements for an application, and adjusting the
application when these requirements inevitably change.

2. Linguistic abstractions should ensure reliability and security. Applications
should keep working when deployed in a real setting. This means the runtime
should ensure robustness, performance, scalability, and also security, protect-
ing against malicious web technology exploits (e.g. Cross-Site Scripting or
remote code evaluation). Security should not add boilerplate code, exploit
countermeasures are enforced in the runtime without adding complexity to
application code.

A general problem for web applications is the possibility and ease of tam-
pering with client-side JavaScript code and state, or form submit request
parameters. Updating entity data and function code always happens server-
side in WebDSL. Form submit request parameters are checked to confirm that
they select only options that are (still) available, which is implemented in the

Chapter 9. Conclusion 211

input handling components of the standard library. Access control rules are
checked for every server request, and data validation happens server-side.
Tampering with JavaScript or form parameters cannot provide any additional
unintended functionality.

Typical web security problems arise from injection attacks, where a user-
defined value becomes code that is executed. In the case of SQL queries,
injections are avoided in WebDSL by integrating queries in the language syntax
and enforcing automatic escaping of values. The entity persistence abstraction
that allows traversal of the object graph with implicit loading of data also
avoids the need for direct querying in many cases. Cross-Site Scripting is
avoided by automatically escaping values that are inserted in the page output,
which is also enabled by having page rendering syntax integrated in the
language. Cross-Site Request Forgery problems are avoided with automatically
generated input name identifiers that are not predictable, as they are based on
the data it concerns and the logged in user.

General robustness, performance, and scalability of WebDSL applications is
partially gained from targeting a mature platform: the Java language, the Java
Virtual Machine, and Java application servers. The Java ecosystem is large, and
not all libraries and frameworks contribute to better robustness, performance,
scalability, and security. Initially the WebDSL project also targeted an existing
web programming framework, which turned out to be too limiting for further
development of the language, as well as having problems in these areas. The
recent Log4Shell vulnerability shows that even though a platform is considered
mature, there is no guarantee that it is free from security problems. Operating
web applications requires constant attention for security problems and updates.

In practice, applications often require integration with other code such as
invoking web services, invoking libraries, and including JavaScript widgets.
There is a trade-off in expressivity and security, security becomes harder to
enforce when there is more expressivity. For example, having an escape to Java
and JavaScript code in WebDSL has been essential for application development,
however, it takes extra attention from the application developer to ensure
security with these extensions.

A better programming language can do a lot to avoid security vulnerabilities
in web programming. However, security cannot be completely ensured by
the programming language runtime, it also relies on a large software stack
underneath. Attackers can focus on any link in the connection chain between
the client and the server. For example, attacks might happen on DNS servers,
networking, operating system, proxy servers, and application servers. The
application is only as secure as its weakest link.

3. Static checking should present errors in terms of the domain. WebDSL is
designed from the ground up with static analysis and cross-language consis-
tency checking in mind. The intent of code is precisely described by using
abstractions for a limited domain. In a general-purpose programming lan-
guage it can become very hard to detect patterns that are encodings of certain
web application concerns. An example of this are navigation links, in many

212

solutions these would be based on a dynamic string value and harder to detect
and check statically.

Part of developing abstractions for the WebDSL language, is thinking about
static analysis. In a good abstraction, the remaining possible errors become
small. However, even small mistakes can consume a lot of development time
when they are discovered late. For example, unused declared variables are re-
ported as warnings by WebDSL. Together with an error marker for an unknown
variable usage, it becomes trivial to fix such an inconsistency immediately
without searching. Regular template arguments cannot be assigned to, and
immediately generate errors when trying to assign new values or passing them
to an input template. In some cases, static analysis may actually not be the best
solution, and a more dynamic runtime solution provides better abstraction.
This is seen with the template identifier generation, where the abstraction in
WebDSL can automate this task entirely.

Because of the explicit syntactic constructs for language concepts, semantic
errors can be precise and messages in terms of the domain concepts. Error
messages should be easy to follow and fix for application developers. These
messages should not contain technical terms from the type system mechanics,
and should provide a clear link to the violating language constructs.

The first version of the WebDSL compiler was developed as a command-
line compiler in the Stratego language. The Spoofax language workbench
is an evolution of the Stratego language to generate IDEs from language
definitions. The WebDSL language is the largest language developed in the
Spoofax language workbench. The WebDSL compiler and IDE share analysis
code, the IDE can report errors immediately with error markers in the editor
view. In addition to error markers, the IDE provides syntax highlighting,
semantic code completion, and reference resolving.

4. Extensibility should be explicit. The WebDSL language achieves flexibility
by providing several language features for customization, such as the option
for global and local template overrides, and attribute set overrides. However,
the DSL cannot cover everything an application might need. In practice we
have seen several application-specific features that required integration with
existing libraries. In these cases it is important to avoid that abstractions
become leaky. Generated code could be modified to include integration with
additional libraries, however, this causes an integration problem where explicit
mechanisms are required to keep generated code and extensions synchronized.
Additionally, the application code would not show any indication that an
extension is used, which makes reasoning about the application more difficult.
Instead of modifying generated code, extension with external components is
done through explicit foreign function interfaces in the language, such as for
invoking server-side Java or client-side JavaScript libraries. A clean interface is
created for these extension components. Java code is typically invoked through
a static function, or through a declaration of the Java class with properties and
functions mapped to a WebDSL type. JavaScript components can usually be
entirely encapsulated in a template definition.

Chapter 9. Conclusion 213

There are several examples of extensions in our applications. An often used
component in several of our applications is a client-side sortable and filterable
table, which is a JavaScript widget wrapped in a WebDSL template definition.
The MyStudyPlanning system imports data from an existing system for course
descriptions. This importer is a small Java program developed separately from
the WebDSL application. The importer is invoked through a global function,
and the resulting data structure is mapped to the WebDSL type system. Single
sign-on integration is essential for our university applications in order to
allow students to log in and automatically retrieve their data. This involves
configuration on the server, as well as calling into Java libraries to retrieve the
data. The WebLab application enables online programming assessment, using
an integration of the Ace [2023] and Monaco [2023] code editors.

5. Lessons learned should be consolidated in the language. Language and applica-
tions should co-evolve, reflecting experiences from requirements engineering
and application development in the language design. General problems found
and fixed in applications should become language improvements, so that other
applications automatically reap the benefits. Instead of creating a library or
framework, a language feature can be created with static analysis and full
integration with other language semantics, to enable better reuse of gained
knowledge. The WebDSL development process of discovering new abstrac-
tions, domain-specific language abstraction, and reimplementing using new
core abstractions is described in Chapter 5.

Runtime fixes can be applied to get security issues fixed for all applications.
For example, the Markdown rendering provided by the WikiText type in
WebDSL is a commonly used component in our applications. This component
has received several iterations to improve security and performance. An
example feature added to the language based on application requirements
is multitenancy support in Conf Researchr. To host multiple conferences on
different domains, a mechanism was required to customize URL patterns and
perform additional lookups before deciding the arguments to a page. An
extension was created that provides control over the generation of navigation
links, and the decoding of requests to pages with parameters.

9.3 Directions for Future Work

The scope of the WebDSL project covers many areas of web programming,
which each provide directions for future work. In this section, we discuss
future work topics where we have done initial exploration or work, in the
areas of language design, compiler and runtime, compiler and IDE tooling,
and application maintainance.

Client-side code abstraction A missing feature in the current WebDSL is
an abstraction for client-side calculation and rendering. From a security
perspective, this can also be considered a benefit, as the application developer
does not have to worry about which application fragments are running in the
client, and which are on the server. There is no risk of tampering with any of the

214

function code or calculation state, which are associated with code running on
the client. The current WebDSL language provides sufficient coverage for most
of the real-world application features. However, there are a few instances in our
applications where we rely on client-side programming using the JavaScript
extension. A good example of this is the client-side faceted filtering in the
Conf Researchr conference programs. Initially this was handled server-side
using the search features [Van Chastelet 2013]. Because the experience was not
great with wireless at conferences often being unreliable, we decided to move
this to the client [Van Chastelet 2020]. This client-side implementation is not
ideal, as it needs to search the DOM and perform manual DOM manipulation.
A feature like this would becomes easier to customize, maintain and optimize
when client-side rendering is integrated into the language. Technologies for
client-side rendering like React [2023] have become very mature, and would
be a good target for code generation. In addition to client-side rendering,
features for generating server-side APIs for data retrieval and updating need
to be improved. This has been partially explored [Melman 2013], although
in that work the client-side component was written in a separate language.
Another feature to explore related to client-side calculations is WebSocket
communication, which is heavily used in popular communication platforms
like Slack, Mattermost, and Discord.

Persistence performance The current persistence abstraction has proved to
be reliable and fast enough for practical applications. There is room for
improvement, because the current implementation still heavily relies on the
Hibernate ORM framework, instead of having a persistence library tailored to
the WebDSL semantics and requirements. The default behavior is currently lazy
loading of referenced entities and properties. Our investigation of prefetching
strategies [Gersen 2013] provided practical speed improvements, however, there
is still room for further improvement. Potential improvements are deriving
detailed queries from application code (as seen in the Links related work in
Section 8.3.2), to avoid unnecessary query counts and loading unused data.
Such improvements should not impact the persistence abstraction negatively.

Formal model of dynamic semantics Based on collaboration with William
Cook, we have made an initial attempt to describe the dynamic semantics of
WebDSL in a formal model. Besides a clean description of the behavior of
WebDSL programs, such a semantic description enables automated testing
of the compiler. Semantically correct test programs can be generated, and
the output of the model implementation can be checked against the actual
compiler implementation. One problem we experienced is that the more details
are included in this model of WebDSL, the more work it is to maintain. To
reduce the amount of work required for developing and maintaining semantic
models, there are several formalisms and tools which could be used, such
as reduction semantics in PLT Redex [Felleisen, Findler, and Flatt 2009] and
component-based semantics in CBS [Mosses 2019; Mosses 2021].

Static semantics specification The typesystem rules in WebDSL are currently
described in Stratego code. This is an encoding of typesystem rules in a func-

Chapter 9. Conclusion 215

tional programming language. There is room for improvement in readability
and maintainability of this code by moving to higher level languages in speci-
fying type systems. In particular, we have investigated a migration to specify
the type system using scope graphs in the Statix language [De Krieger 2022].

Incremental compilation Improving performance and incrementality of the
WebDSL compiler is an ongoing goal. Incrementality in compilation was
partially explored in earlier work [Bruning 2013]. This resulted in code gen-
eration caching and IDE caching, which were vital to the practical usability
of WebDSL. Later we extended this with a compile unit cache, which was a
more language-specific caching of top-level definitions in WebDSL, such as
pages and templates. This is still a relatively course-grained incrementaliza-
tion, more fine-grained incrementalization could provide additional build-time
performance. Pipelines for Interactive Environments (PIE) [Konat 2019] can
provide an interesting opportunity for improving the general handling of
incrementalization in the compiler and IDE processes.

Deployment speed The time between saving the application code and observ-
ing the results in the browser should be minimized as much as possible to
provide the best development experience. The compiler is a Java application,
which benefits from running a longer time, because the initial class loading
causes overhead and the JVM performs optimizations on frequently executed
code. We currently run the WebDSL compiler as a daemon using the Nailgun
library [Lamb 2023] to get the benefits from keeping the JVM alive. The de-
ployment of the web application in an application server can still take around
10 seconds, even if the incremental build of the application code was fast.
This is also caused by the JVM initialization and class file loading overhead.
There are solutions for performing hot reloading of classes in the JVM, such as
JRebel [Perforce 2023] and Spring Loaded [2023]. Such a solution would have
to be customized to the features of the WebDSL language. A custom solution
for class reloading is also currently being used in the JVM-based LabBack
back-end for WebLab for hot reloading student code.

216

Bibliography

Ace (2023). Ace: the High Performance Code Editor for the Web. https://ace.
c9.io/ (cited on pages 167, 214).

Alex, B. (2008). Acegi Security, Reference Documentation 1.0.7. https://web.
archive.org/web/20110518155758/http://www.acegisecurit
y.org/guide/springsecurity.pdf. Accessed: 2011-05-18 (cited on
pages 95, 110, 116).

Anderson, A. (2004). “XACML Profile for Role Based Access Control (RBAC)”.
In: OASIS Access Control TC Committee Draft 1, page 13 (cited on page 95).

Angular (2023). Angular: One framework. Mobile & desktop. https://angular.
io/ (cited on pages 87, 189).

Apache (2023). Apache Groovy, a multi-faceted language for the Java platform.
https://groovy-lang.org/ (cited on page 207).

Bertino, E., Ferrari, E., and Atluri, V. (1999). “The specification and enforcement
of authorization constraints in workflow management systems”. In: ACM
Transactions on Information and System Security 2.1, pages 65–104. issn: 1094-
9224. doi: 10.1145/300830.300837 (cited on page 119).

Bloch, J. (2008). Effective Java. Addison-Wesley Professional (cited on page 37).
Bootstrap (2023). Build fast, responsive sites with Bootstrap. https://getboots

trap.com/ (cited on page 29).
Brabrand, C., Møller, A., and Schwartzbach, M. I. (2001). “Static validation of

dynamically generated HTML”. In: Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools and Engineering,
PASTE 01, Snowbird, Utah, USA, June 18-19, 2001. ACM, pages 38–45. isbn:
1-58113-413-4. doi: 10.1145/379605.379657 (cited on page 8).

Brambilla, M., Comai, S., Fraternali, P., and Matera, M. (2008). “Designing Web
Applications with Webml and Webratio”. In: Web Engineering: Modelling and
Implementing Web Applications. Edited by G. Rossi, O. Pastor, D. Schwabe,
and L. Olsina. Human-Computer Interaction Series. Springer, pages 221–
261. isbn: 978-1-84628-922-4. doi: 10.1007/978-1-84628-923-1_9
(cited on page 206).

Brambilla, M. and Fraternali, P. (2014). “Large-scale Model-Driven Engineering
of web user interaction: The WebML and WebRatio experience”. In: Science
of Computer Programming 89, pages 71–87. doi: 10.1016/j.scico.2013.
03.010 (cited on page 207).

Bravenboer, M., Dolstra, E., and Visser, E. (2010). “Preventing injection at-
tacks with syntax embeddings”. In: Science of Computer Programming 75.7,
pages 473–495. doi: 10.1016/j.scico.2009.05.004 (cited on pages 12,
45, 114).

Bravenboer, M., Kalleberg, K. T., Vermaas, R., and Visser, E. (2008). “Strate-
go/XT 0.17. A language and toolset for program transformation”. In: Science

217

https://ace.c9.io/
https://ace.c9.io/
https://web.archive.org/web/20110518155758/http://www.acegisecurity.org/guide/springsecurity.pdf
https://web.archive.org/web/20110518155758/http://www.acegisecurity.org/guide/springsecurity.pdf
https://web.archive.org/web/20110518155758/http://www.acegisecurity.org/guide/springsecurity.pdf
https://angular.io/
https://angular.io/
https://groovy-lang.org/
https://doi.org/10.1145/300830.300837
https://getbootstrap.com/
https://getbootstrap.com/
https://doi.org/10.1145/379605.379657
https://doi.org/10.1007/978-1-84628-923-1_9
https://doi.org/10.1016/j.scico.2013.03.010
https://doi.org/10.1016/j.scico.2013.03.010
https://doi.org/10.1016/j.scico.2009.05.004

of Computer Programming 72.1-2, pages 52–70. doi: 10.1016/j.scico.
2007.11.003 (cited on page 143).

Bravenboer, M. and Visser, E. (2004). “Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions”. In:
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2004. Edited by
J. M. Vlissides and D. C. Schmidt. Vancouver, BC, Canada: ACM, pages 365–
383. isbn: 1-58113-831-8. doi: 10.1145/1028976.1029007 (cited on
pages 114, 152).

Bruning, N. (2013). Separate Compilation as a Separate Concern: A Framework
for Language-Independent Selective Recompilation. Master’s thesis. http://
resolver.tudelft.nl/uuid:d2ebe038-fc1e-47b4-a708-e043e
9d3ca74 (cited on pages 25, 161, 216).

Buck, J. (2006). Skinny Controller, Fat Model. https://web.archive.org/
web/20220808063147/http://weblog.jamisbuck.org/2006/10/
18/skinny-controller-fat-model. Accessed: 2022-08-08 (cited on
page 6).

Burns, E. and Kitain, R., editors (2006). JavaServer Faces Specification. Version 1.2.
Sun (cited on page 8).

Cheney, J., Lindley, S., and Wadler, P. (2014). “Query shredding: efficient
relational evaluation of queries over nested multisets”. In: International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-
27, 2014. Edited by C. E. Dyreson, F. Li, and M. T. Özsu. ACM, pages 1027–
1038. isbn: 978-1-4503-2376-5. doi: 10.1145/2588555.2612186 (cited
on page 202).

Chlipala, A. (2015). “Ur/Web: A Simple Model for Programming the Web”.
In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015. Edited by S. K. Rajamani and D. Walker. ACM, pages 153–165. isbn:
978-1-4503-3300-9. doi: 10.1145/2676726.2677004 (cited on page 196).

Chlipala, A. (2020). The Ur/Web Manual. https://web.archive.org/web/
20211225145747/https://www.impredicative.com/ur/manual.
pdf. Accessed: 2021-12-25 (cited on page 196).

Chlipala, A. (2023). Ur/Web Demo. http://impredicative.com/ur/demo/
(cited on pages 197–199).

Chlipala, A. J. (2010). “Ur: statically-typed metaprogramming with type-level
record computation”. In: Proceedings of the 2010 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2010, Toronto,
Ontario, Canada, June 5-10, 2010. Edited by B. G. Zorn and A. Aiken. ACM,
pages 122–133. isbn: 978-1-4503-0019-3. doi: 10.1145/1806596.1806612
(cited on pages 4, 8, 196).

Conf Researchr (2014). Conf Researchr. https://conf.researchr.org
(cited on pages 20, 163).

Cooper, E. (2009). “The Script-Writer’s Dream: How to Write Great SQL in Your
Own Language, and Be Sure It Will Succeed”. In: Database Programming
Languages - DBPL 2009, 12th International Symposium, Lyon, France, August 24,

218

https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1145/1028976.1029007
http://resolver.tudelft.nl/uuid:d2ebe038-fc1e-47b4-a708-e043e9d3ca74
http://resolver.tudelft.nl/uuid:d2ebe038-fc1e-47b4-a708-e043e9d3ca74
http://resolver.tudelft.nl/uuid:d2ebe038-fc1e-47b4-a708-e043e9d3ca74
https://web.archive.org/web/20220808063147/http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
https://web.archive.org/web/20220808063147/http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
https://web.archive.org/web/20220808063147/http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
https://doi.org/10.1145/2588555.2612186
https://doi.org/10.1145/2676726.2677004
https://web.archive.org/web/20211225145747/https://www.impredicative.com/ur/manual.pdf
https://web.archive.org/web/20211225145747/https://www.impredicative.com/ur/manual.pdf
https://web.archive.org/web/20211225145747/https://www.impredicative.com/ur/manual.pdf
http://impredicative.com/ur/demo/
https://doi.org/10.1145/1806596.1806612
https://conf.researchr.org

2009. Proceedings. Edited by P. Gardner and F. Geerts. Volume 5708. Lecture
Notes in Computer Science. Springer, pages 36–51. isbn: 978-3-642-03792-4.
doi: 10.1007/978-3-642-03793-1_3 (cited on page 203).

Cooper, E., Lindley, S., Wadler, P., and Yallop, J. (2006). “Links: Web Program-
ming Without Tiers”. In: Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands, November
7-10, 2006, Revised Lectures. Edited by F. S. de Boer, M. M. Bonsangue, S.
Graf, and W. P. de Roever. Volume 4709. Lecture Notes in Computer Science.
Springer, pages 266–296. isbn: 978-3-540-74791-8. doi: 10.1007/978-3-
540-74792-5_12 (cited on pages 4, 201).

Cooper, E., Lindley, S., Wadler, P., and Yallop, J. (2008). “The Essence of Form
Abstraction”. In: Programming Languages and Systems, 6th Asian Symposium,
APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings. Edited by G.
Ramalingam. Volume 5356. Lecture Notes in Computer Science. Springer,
pages 205–220. isbn: 978-3-540-89329-5. doi: 10.1007/978- 3- 540-
89330-1_15 (cited on page 202).

Crielaard, B., Bruin, C., and Aerts, T. (2017). Native WebLab: Safe Execution of
Native Code in WebLab. Bachelor’s thesis. http://resolver.tudelft.
nl/uuid:f45d3e78- 95a6- 4c8b- 9ca4- 723680513f59 (cited on
page 168).

Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001). “The Ponder Policy
Specification Language”. In: Policies for Distributed Systems and Networks: Int.
Workshop, Policy 2001, Bristol, Uk, January 29-31, 2001: Proceedings (cited on
pages 95, 115).

De Jonge, M. (2014). “Language-parametric Techniques for Language-Specific
Editors”. PhD thesis. Delft University of Technology. doi: 10.4233/uuid:
5b485a4a-e502-42d9-8bd2-21c02226ed91 (cited on page 150).

De Jonge, M., Kats, L. C. L., Visser, E., and Söderberg, E. (2012). “Natural and
Flexible Error Recovery for Generated Modular Language Environments”.
In: ACM Transactions on Programming Languages and Systems 34.4, page 15.
doi: 10.1145/2400676.2400678 (cited on page 150).

De Krieger, M. M. (2022). Modernizing the WebDSL Front-End: A Case Study in
SDF3 and Statix. Master’s thesis. http://resolver.tudelft.nl/uuid:
564b8471-631f-4831-a049-58b187425aed (cited on pages 26, 162,
183, 216).

Django (2023). Django: The web framework for perfectionists with deadlines. https:
//www.djangoproject.com/ (cited on pages 2, 13, 178, 189).

Django Tutorial (2023). Writing your first Django app. https://docs.django
project.com/en/4.1/intro/ (cited on page 190).

Elm (2023). elm: A delightful language for reliable web applications. https://elm-
lang.org/ (cited on pages 87, 189).

Emscripten (2023). Emscripten is a complete compiler toolchain to WebAssembly,
using LLVM, with a special focus on speed, size, and the Web platform. https:
//emscripten.org/ (cited on page 168).

Bibliography 219

https://doi.org/10.1007/978-3-642-03793-1_3
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-89330-1_15
https://doi.org/10.1007/978-3-540-89330-1_15
http://resolver.tudelft.nl/uuid:f45d3e78-95a6-4c8b-9ca4-723680513f59
http://resolver.tudelft.nl/uuid:f45d3e78-95a6-4c8b-9ca4-723680513f59
https://doi.org/10.4233/uuid:5b485a4a-e502-42d9-8bd2-21c02226ed91
https://doi.org/10.4233/uuid:5b485a4a-e502-42d9-8bd2-21c02226ed91
https://doi.org/10.1145/2400676.2400678
http://resolver.tudelft.nl/uuid:564b8471-631f-4831-a049-58b187425aed
http://resolver.tudelft.nl/uuid:564b8471-631f-4831-a049-58b187425aed
https://www.djangoproject.com/
https://www.djangoproject.com/
https://docs.djangoproject.com/en/4.1/intro/
https://docs.djangoproject.com/en/4.1/intro/
https://elm-lang.org/
https://elm-lang.org/
https://emscripten.org/
https://emscripten.org/

Erdweg, S. T. (2013). “Extensible Languages for Flexible and Principled Domain
Abstraction”. PhD thesis. Philipps-Universität Marburg. doi: 10.17192/
z2013.0280 (cited on page 137).

EvaTool (2012). EvaTool. https://evatool.tudelft.nl (cited on pages 20,
163).

Evered, M. and Bögeholz, S. (2004). “A case study in access control require-
ments for a Health Information System”. In: ACSW Frontiers. Dunedin,
New Zealand: Australian Computer Society, Inc., pages 53–61 (cited on
page 114).

Felleisen, M., Findler, R., and Flatt, M. (2009). Semantics Engineering with PLT
Redex. MIT Press (cited on page 215).

Ferraiolo, D., Kuhn, D., and Chandramouli, R. (2003). Role-based Access Control.
Artech House (cited on page 109).

Fowler, S., Harding, S. D., Sharman, J. L., and Cheney, J. (2021). “Cross-tier Web
Programming for Curated Databases: a Case Study”. In: Int. J. Digit. Curation
16.1, page 21. doi: 10.2218/ijdc.v16i1.735 (cited on pages 202–203).

Gamma, E., Johnson, R., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (cited
on page 47).

Gersen, C. M. (2013). ORM Optimization through Automatic Prefetching in Web-
DSL. Master’s thesis. http://resolver.tudelft.nl/uuid:597b318c
-a1af-4fde-865f-4422f548336b (cited on pages 25, 40, 177, 203, 215).

Groenewegen, D. M. (2008). Declarative Access Control for WebDSL. Master’s
thesis. http://resolver.tudelft.nl/uuid:4d1844c8- 89df-
4787-b777-c742b4a27217 (cited on page 23).

Groenewegen, D. M., Hemel, Z., Kats, L. C. L., and Visser, E. (2008a). “WebDSL:
A Domain-Specific Language for Dynamic Web Applications”. In: Com-
panion to the 23rd ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications (OOPSLA 2008). Edited by N. Mielke
and O. Zimmermann. (poster). Nashville, Tenessee, USA: ACM, pages 779–
780. isbn: 978-1-60558-220-7 (cited on page 232).

Groenewegen, D. M., Hemel, Z., Kats, L. C. L., and Visser, E. (2008b). “When
Frameworks Let You Down. Platform-Imposed Constraints on the Design
and Evolution of Domain-Specific Languages”. In: Proceedings of the 8th
OOPSLA Workshop on Domain Specific Modelling (DSM’08). Edited by J. G.
Gray, J. Sprinkle, J.-P. Tolvanen, and M. Rossi. Nashville, Tennessee, USA
(cited on pages 24, 232).

Groenewegen, D. M., Hemel, Z., and Visser, E. (2010). “Separation of Concerns
and Linguistic Integration in WebDSL”. In: IEEE Software 27.5, pages 31–37.
doi: 10.1109/MS.2010.92 (cited on pages 23, 232).

Groenewegen, D. M., Van Chastelet, E., and Visser, E. (2020). “Evolution of the
WebDSL runtime: reliability engineering of the WebDSL web programming
language”. In: Programming’20: 4th International Conference on the Art, Science,
and Engineering of Programming, Porto, Portugal, March 23-26, 2020. Edited by
A. Aguiar, S. Chiba, and E. G. Boix. ACM, pages 77–83. isbn: 978-1-4503-
7507-8. doi: 10.1145/3397537.3397553 (cited on pages 23, 231).

220

https://doi.org/10.17192/z2013.0280
https://doi.org/10.17192/z2013.0280
https://evatool.tudelft.nl
https://doi.org/10.2218/ijdc.v16i1.735
http://resolver.tudelft.nl/uuid:597b318c-a1af-4fde-865f-4422f548336b
http://resolver.tudelft.nl/uuid:597b318c-a1af-4fde-865f-4422f548336b
http://resolver.tudelft.nl/uuid:4d1844c8-89df-4787-b777-c742b4a27217
http://resolver.tudelft.nl/uuid:4d1844c8-89df-4787-b777-c742b4a27217
https://doi.org/10.1109/MS.2010.92
https://doi.org/10.1145/3397537.3397553

Groenewegen, D. M., Van Chastelet, E., De Krieger, M. M., and Pelsmaeker,
D. A. A. (2023a). “Eating Your Own Dog Food: WebDSL Case Studies to
Improve Academic Workflows”. In: Eelco Visser Commemorative Symposium
(EVCS 2023). Edited by R. Lämmel, P. D. Mosses, and F. Steimann. Vol-
ume 109. Open Access Series in Informatics (OASIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 13:1–13:11. isbn: 978-3-
95977-267-9. doi: 10.4230/OASIcs.EVCS.2023.13 (cited on pages 23,
231).

Groenewegen, D. M., Van Chastelet, E., De Krieger, M. M., Pelsmaeker, D. A. A.,
and Anslow, C. (2023b). “Conf Researchr: A Domain-Specific Content Man-
agement System for Managing Large Conference Websites”. In: Eelco Visser
Commemorative Symposium (EVCS 2023). Edited by R. Lämmel, P. D. Mosses,
and F. Steimann. Volume 109. Open Access Series in Informatics (OASIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
12:1–12:6. isbn: 978-3-95977-267-9. doi: 10.4230/OASIcs.EVCS.2023.
12 (cited on pages 23, 231).

Groenewegen, D. M. and Visser, E. (2008). “Declarative Access Control for
WebDSL: Combining Language Integration and Separation of Concerns”.
In: Proceedings of the Eighth International Conference on Web Engineering,
ICWE 2008, 14-18 July 2008, Yorktown Heights, New York, USA. Edited by
D. Schwabe, F. Curbera, and P. Dantzig. IEEE, pages 175–188. isbn: 978-
0-7695-3261-5. doi: 10.1109/ICWE.2008.15 (cited on pages 23, 163,
232).

Groenewegen, D. M. and Visser, E. (2009a). “Integration of Data Validation
and User Interface Concerns in a DSL for Web Applications”. In: Software
Language Engineering, Second International Conference, SLE 2009. Edited by
M. G. J. van den Brand, D. Gasevic, and J. G. Gray. Volume 5969. Lecture
Notes in Computer Science. Springer, pages 164–173. isbn: 978-3-642-12106-
7. doi: 10.1007/978-3-642-12107-4_13 (cited on pages 23, 232).

Groenewegen, D. M. and Visser, E. (2009b). “Weaving web applications with
WebDSL (demonstration)”. In: Proceedings of the 24th ACM SIGPLAN con-
ference companion on Object oriented programming systems languages and ap-
plications, pages 797–798. doi: 10.1145/1639950.1640020 (cited on
page 232).

Groenewegen, D. M. and Visser, E. (2013). “Integration of data validation and
user interface concerns in a DSL for web applications”. In: Software and
Systems Modeling 12.1, pages 35–52. doi: 10.1007/s10270-010-0173-9
(cited on pages 23, 163, 231).

GTmetrix (2023). How fast does your website load? Find out with GTmetrix. https:
//gtmetrix.com/ (cited on page 184).

H2 Database Engine (2023). H2 Database Engine. https://www.h2database.
com/html/main.html (cited on page 40).

Halfond, W., Viegas, J., and Orso, A. (2006). “A classification of SQL-injection
attacks and countermeasures”. In: Proceedings of the IEEE International Sym-
posium on Secure Software Engineering, Arlington, VA, USA, pages 13–15 (cited
on page 10).

Bibliography 221

https://doi.org/10.4230/OASIcs.EVCS.2023.13
https://doi.org/10.4230/OASIcs.EVCS.2023.12
https://doi.org/10.4230/OASIcs.EVCS.2023.12
https://doi.org/10.1109/ICWE.2008.15
https://doi.org/10.1007/978-3-642-12107-4_13
https://doi.org/10.1145/1639950.1640020
https://doi.org/10.1007/s10270-010-0173-9
https://gtmetrix.com/
https://gtmetrix.com/
https://www.h2database.com/html/main.html
https://www.h2database.com/html/main.html

Halfond, W. G. J. and Orso, A. (2008). “Automated identification of parameter
mismatches in web applications”. In: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2008, Atlanta,
Georgia, USA, November 9-14, 2008. Edited by M. J. Harrold and G. C.
Murphy. ACM, pages 181–191. isbn: 978-1-59593-995-1. doi: 10.1145/
1453101.1453126 (cited on page 8).

Harkes, D. (2019). “Declarative Specification of Information System Data Mod-
els and Business Logic”. PhD thesis. Delft University of Technology. doi:
10.4233/uuid:5e9805ca-95d0-451e-a8f0-55decb26c94a (cited
on pages 24, 177).

Harkes, D., Groenewegen, D. M., and Visser, E. (2016). “IceDust: Incremental
and Eventual Computation of Derived Values in Persistent Object Graphs”.
In: 30th European Conference on Object-Oriented Programming, ECOOP 2016,
July 18-22, 2016, Rome, Italy. Edited by S. Krishnamurthi and B. S. Lerner.
Volume 56. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
isbn: 978-3-95977-014-9. doi: 10.4230/LIPIcs.ECOOP.2016.11 (cited
on pages 24, 177, 231).

Harkes, D., Van Chastelet, E., and Visser, E. (2018). “Migrating business logic
to an incremental computing DSL: a case study”. In: Proceedings of the 11th
ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2018, Boston, MA, USA, November 05-06, 2018. Edited by D. P. 0005,
T. Mayerhofer, and F. Steimann. ACM, pages 83–96. isbn: 978-1-4503-6029-6.
doi: 10.1145/3276604.3276617 (cited on pages 24, 177).

Hemel, Z. (2012). “Methods and Techniques for the Design and Implementation
of Domain-Specific Languages”. PhD thesis. Delft University of Technology.
http://resolver.tudelft.nl/uuid:c3ca8bef- ecda- 4f71-
9fda-bfc4bd353660 (cited on pages 2, 24).

Hemel, Z., Groenewegen, D. M., Kats, L. C. L., and Visser, E. (2011). “Static
consistency checking of web applications with WebDSL”. In: Journal of
Symbolic Computation 46.2, pages 150–182. doi: 10.1016/j.jsc.2010.
08.006 (cited on pages 2, 7, 23, 163, 232).

Hemel, Z., Kats, L. C. L., Groenewegen, D. M., and Visser, E. (2010). “Code
generation by model transformation: a case study in transformation modu-
larity”. In: Software and Systems Modeling 9.3, pages 375–402. doi: 10.1007/
s10270-009-0136-1 (cited on pages 24, 141, 163, 232).

Hemel, Z., Verhaaf, R., and Visser, E. (2008). “WebWorkFlow: An Object-
Oriented Workflow Modeling Language for Web Applications”. In: Model
Driven Engineering Languages and Systems, 11th International Conference, MoD-
ELS 2008, Toulouse, France, September 28 - October 3, 2008. Proceedings. Edited
by K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter. Volume 5301.
Lecture Notes in Computer Science. Springer, pages 113–127. isbn: 978-3-
540-87874-2. doi: 10.1007/978-3-540-87875-9_8 (cited on page 119).

Hemel, Z. and Visser, E. (2011). “Mobl: the new language of the mobile web”. In:
Companion to the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, part of
SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011. Edited by C. V.

222

https://doi.org/10.1145/1453101.1453126
https://doi.org/10.1145/1453101.1453126
https://doi.org/10.4233/uuid:5e9805ca-95d0-451e-a8f0-55decb26c94a
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.1145/3276604.3276617
http://resolver.tudelft.nl/uuid:c3ca8bef-ecda-4f71-9fda-bfc4bd353660
http://resolver.tudelft.nl/uuid:c3ca8bef-ecda-4f71-9fda-bfc4bd353660
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1007/978-3-540-87875-9_8

Lopes and K. Fisher. ACM, pages 23–24. isbn: 978-1-4503-0942-4. doi:
10.1145/2048147.2048159 (cited on page 25).

Hibernate ORM (2023). Hibernate ORM: Your relational data. Objectively. https:
//hibernate.org/orm/ (cited on pages 4–5, 36, 129, 143, 177).

Hibernate Search (2023). Hibernate Search: ORM. Lucene. Elasticsearch. Integrated.
https://hibernate.org/search/ (cited on pages 123, 129).

Hoare, T. (2009). “Null references: The billion dollar mistake”. In: Presentation
at QCon London 298, page 88 (cited on page 47).

Houben, G.-J., Barna, P., Frasincar, F., and Vdovjak, R. (2003). “Hera: Devel-
opment of Semantic Web Information Systems”. In: Web Engineering, Inter-
national Conference, ICWE 2003, Oviedo, Spain, July 14-18, 2003, Proceedings.
Edited by J. M. C. Lovelle, B. M. G. Rodríguez, L. J. Aguilar, J. E. L. Gayo,
and M. del Puerto Paule Ruíz. Volume 2722. Lecture Notes in Computer
Science. Springer, pages 529–538. isbn: 3-540-40522-4 (cited on page 206).

JavaEE (2023). The Java EE Tutorial: Expression Language. https://javaee.
github.io/tutorial/jsf-el.html (cited on page 4).

Johnson, R. et al. (2005). Professional Java Development with the Spring Framework.
Wrox Press Birmingham, UK (cited on page 95).

Kats, L. C. L. (2011). “Building Blocks for Language Workbenches”. PhD thesis.
Delft University of Technology. http://resolver.tudelft.nl/uuid:
c3b17264-a7ed-4f6d-aca7-88c34f2f6958 (cited on pages 24, 149).

Kats, L. C. L. and Visser, E. (2010). “The Spoofax language workbench: rules for
declarative specification of languages and IDEs”. In: Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010. Edited by W. R. Cook, S. Clarke,
and M. C. Rinard. Reno/Tahoe, Nevada: ACM, pages 444–463. isbn: 978-
1-4503-0203-6. doi: 10.1145/1869459.1869497 (cited on pages 143,
149).

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold,
W. (2001). “An overview of AspectJ”. In: Lecture Notes in Computer Science
2072.327-355, pages 110–121 (cited on pages 96, 101).

Koch, N., Kraus, A., and Hennicker, R. (2001). “The Authoring Process of the
UML-based Web Engineering Approach”. In: First International Workshop on
Web-Oriented Software Technology (cited on page 206).

Konat, G. (2019). “Language-Parametric Methods for Developing Interactive
Programming Systems”. PhD thesis. Delft University of Technology. doi:
10.4233/uuid:03d70c5d-596d-4c8c-92da-0398dd8221cb (cited
on page 216).

Lamb, M. (2023). nailgun. https://github.com/facebook/nailgun
(cited on page 216).

Laravel (2023). Laravel: The PHP Framework for Web Artisans. https://larav
el.com/ (cited on pages 2, 189).

Latif, U. (2005). “A Generalized Temporal Role-Based Access Control Model”.
In: IEEE Transactions on Knowledge and Data Engineering 17.1, pages 4–23

(cited on page 119).

Bibliography 223

https://doi.org/10.1145/2048147.2048159
https://hibernate.org/orm/
https://hibernate.org/orm/
https://hibernate.org/search/
https://javaee.github.io/tutorial/jsf-el.html
https://javaee.github.io/tutorial/jsf-el.html
http://resolver.tudelft.nl/uuid:c3b17264-a7ed-4f6d-aca7-88c34f2f6958
http://resolver.tudelft.nl/uuid:c3b17264-a7ed-4f6d-aca7-88c34f2f6958
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.4233/uuid:03d70c5d-596d-4c8c-92da-0398dd8221cb
https://github.com/facebook/nailgun
https://laravel.com/
https://laravel.com/

Let’s Encrypt (2023). Let’s Encrypt. https://letsencrypt.org/ (cited on
page 171).

Links (2023). Links: Linking Theory to Practice for the Web. https://links-
lang.org/ (cited on page 203).

Livshits, V. B. and Lam, M. S. (2005). “Finding Security Vulnerabilities in
Java Applications with Static Analysis”. In: Proceedings of the 14th USENIX
Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005. Edited by
P. McDaniel. USENIX Association (cited on page 11).

Lopes, G. (2014). Bug 56684 - java7: java.net.SocketTimeoutException: Accept timed
out. https://web.archive.org/web/20211119211541/https:
//bz.apache.org/bugzilla/show_bug.cgi?id=56684. Accessed:
2021-11-19 (cited on page 175).

Lucene (2023). Apache Lucene. https://lucene.apache.org/ (cited on
pages 123, 129).

MathJax (2023). MathJax, beautiful and accessible math in all browsers. https:
//www.mathjax.org/ (cited on page 178).

Meijer, E., Beckman, B., and Bierman, G. M. (2006). “LINQ: reconciling object,
relations and XML in the .NET framework”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Chicago, Illinois,
USA, June 27-29, 2006. Edited by S. Chaudhuri, V. Hristidis, and N. Polyzotis.
ACM, page 706. isbn: 1-59593-256-9. doi: 10.1145/1142473.1142552
(cited on page 201).

Melman, C. (2013). A Generative Approach for Data Synchronization between Web
and Mobile Applications. Master’s thesis. http://resolver.tudelft.nl/
uuid:e3b70e0e-ef65-4b17-9e28-2c29a1e40972 (cited on pages 25,
215).

Mendix (2023). Mendix: Low-code. High impact. https://www.mendix.com/
(cited on page 206).

Microsoft (2023a). Language Server Protocol. https://microsoft.github.
io/language-server-protocol/ (cited on page 183).

Microsoft (2023b). Visual Studio Code. https://code.visualstudio.com/
(cited on page 183).

Mikkonen, T. and Taivalsaari, A. (2007). Web Applications: Spaghetti Code for
the 21st Century. Technical report TR-2007-166. Sun Microsystems (cited on
page 114).

Monaco (2023). Monaco. https://microsoft.github.io/monaco-edit
or/ (cited on pages 167, 214).

Moses, T. et al. (2005). “eXtensible Access Control Markup Language (XACML)
Version 2.0”. In: OASIS Standard 200502 (cited on pages 95, 115).

Mosses, P. D. (2019). “Software meta-language engineering and CBS”. In:
Journal of Computer Languages 50, pages 39–48. doi: 10.1016/j.jvlc.
2018.11.003 (cited on page 215).

Mosses, P. D. (2021). “Fundamental Constructs in Programming Languages”.
In: Leveraging Applications of Formal Methods, Verification and Validation -
10th International Symposium on Leveraging Applications of Formal Methods,
ISoLA 2021, Rhodes, Greece, October 17-29, 2021, Proceedings. Edited by T.

224

https://letsencrypt.org/
https://links-lang.org/
https://links-lang.org/
https://web.archive.org/web/20211119211541/https://bz.apache.org/bugzilla/show_bug.cgi?id=56684
https://web.archive.org/web/20211119211541/https://bz.apache.org/bugzilla/show_bug.cgi?id=56684
https://lucene.apache.org/
https://www.mathjax.org/
https://www.mathjax.org/
https://doi.org/10.1145/1142473.1142552
http://resolver.tudelft.nl/uuid:e3b70e0e-ef65-4b17-9e28-2c29a1e40972
http://resolver.tudelft.nl/uuid:e3b70e0e-ef65-4b17-9e28-2c29a1e40972
https://www.mendix.com/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://code.visualstudio.com/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://doi.org/10.1016/j.jvlc.2018.11.003
https://doi.org/10.1016/j.jvlc.2018.11.003

Margaria and B. Steffen. Volume 13036. Lecture Notes in Computer Science.
Springer, pages 296–321. isbn: 978-3-030-89159-6. doi: 10.1007/978-3-
030-89159-6_19 (cited on page 215).

MyStudyPlanning (2016). MyStudyPlanning. https://mystudyplanning.
tudelft.nl (cited on pages 21, 163).

National Vulnerability Database (2013). CVE-2013-0156 Detail. https://nvd.
nist.gov/vuln/detail/CVE-2013-0156 (cited on page 14).

National Vulnerability Database (2021). CVE-2021-44228 Detail. https://nvd.
nist.gov/vuln/detail/CVE-2021-44228 (cited on page 179).

Node.js (2023). Node.js is an open-source, cross-platform JavaScript runtime environ-
ment. https://nodejs.org/ (cited on page 4).

Open Web Application Security Project (2017). OWASP Top Ten 2017. https:
//web.archive.org/web/20211215030551/https://owasp.org/
www-project-top-ten/2017/. Accessed: 2021-12-15 (cited on page 9).

OWASP (2022). Cross Site Request Forgery (CSRF). https://web.archive.o
rg/web/20221205130427/https://owasp.org/www-community/
attacks/csrf. Accessed: 2022-12-05 (cited on page 13).

Park, J. and Sandhu, R. (2004). “The UCON ABC Usage Control Model”. In:
ACM Transactions on Information and System Security 7.1, pages 128–174 (cited
on page 119).

Pastor, O., Fons, J., and Pelechano, V. (2003). “OOWS: A method to develop
web applications from web-oriented conceptual models”. In: Web Oriented
Software Technology (IWWOST’03), pages 65–70 (cited on page 206).

Perforce (2023). JRebel. https://www.jrebel.com/products/jrebel
(cited on pages 161, 216).

Racket (2023). Racket. https://racket-lang.org/ (cited on page 137).
Rails Guides (2022). Rails Guides: Active Record Associations. https://web.

archive.org/web/20220118080032/https://guides.rubyonra
ils.org/association_basics.html. Accessed: 2022-01-18 (cited on
page 36).

React (2023). React: A JavaScript library for building user interfaces. https://
reactjs.org/ (cited on pages 87, 184, 189, 215).

Reenskaug, T. (2003). The Model-View-Controller (MVC) Its Past and Present. h
ttps://web.archive.org/web/20200914164659/https://heim.
ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf.
Accessed: 2020-07-28 (cited on page 6).

Reposearch (2011). Reposearch. https://codefinder.org/ (cited on page 63).
Ruby on Rails (2023). Ruby on Rails: Compress the complexity of modern web apps.

https://rubyonrails.org/ (cited on pages 2, 36, 130, 189).
Sails (2023). Sails: The MVC framework for Node.js. https://sailsjs.com/

(cited on pages 2, 189).
Samarati, P. and di Vimercati, S. D. C. (2001). “Access Control: Policies, Models,

and Mechanisms”. In: Foundations of Security Analysis and Design on Foun-
dations of Security Analysis and Design (FOSAD’00). London, UK: Springer-
Verlag, pages 137–196. isbn: 3-540-42896-8 (cited on pages 95, 106–107,
109).

Bibliography 225

https://doi.org/10.1007/978-3-030-89159-6_19
https://doi.org/10.1007/978-3-030-89159-6_19
https://mystudyplanning.tudelft.nl
https://mystudyplanning.tudelft.nl
https://nvd.nist.gov/vuln/detail/CVE-2013-0156
https://nvd.nist.gov/vuln/detail/CVE-2013-0156
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nodejs.org/
https://web.archive.org/web/20211215030551/https://owasp.org/www-project-top-ten/2017/
https://web.archive.org/web/20211215030551/https://owasp.org/www-project-top-ten/2017/
https://web.archive.org/web/20211215030551/https://owasp.org/www-project-top-ten/2017/
https://web.archive.org/web/20221205130427/https://owasp.org/www-community/attacks/csrf
https://web.archive.org/web/20221205130427/https://owasp.org/www-community/attacks/csrf
https://web.archive.org/web/20221205130427/https://owasp.org/www-community/attacks/csrf
https://www.jrebel.com/products/jrebel
https://racket-lang.org/
https://web.archive.org/web/20220118080032/https://guides.rubyonrails.org/association_basics.html
https://web.archive.org/web/20220118080032/https://guides.rubyonrails.org/association_basics.html
https://web.archive.org/web/20220118080032/https://guides.rubyonrails.org/association_basics.html
https://reactjs.org/
https://reactjs.org/
https://web.archive.org/web/20200914164659/https://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf
https://web.archive.org/web/20200914164659/https://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf
https://web.archive.org/web/20200914164659/https://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf
https://codefinder.org/
https://rubyonrails.org/
https://sailsjs.com/

Sandhu, R., Ferraiolo, D., and Kuhn, R. (2000). “The NIST model for role-based
access control: towards a unified standard”. In: Proceedings of the fifth ACM
workshop on Role-based access control, pages 47–63 (cited on pages 95, 109).

Sandhu, R. S. (1998). “Role-Based Access Control”. In: Advances in Computers.
Edited by M. Zerkowitz. Volume 48. Academic Press (cited on pages 95,
109).

Sandhu, R. S. (1993). “Lattice-Based Access Control Models”. In: Computer
26.11, pages 9–19. issn: 0018-9162. doi: 10.1109/2.241422 (cited on
page 106).

Sandhu, R. and Samarati, P. (1994). “Access control: principle and practice”. In:
Comm. Magazine, IEEE 32.9, pages 40–48. issn: 0163-6804. doi: 10.1109/
35.312842 (cited on pages 95, 107–109).

Schwabe, D. and Rossi, G. (1995). “The Object-Oriented Hypermedia Design
Model”. In: Communications of the ACM 38.8, pages 45–46 (cited on page 206).

Selenium (2023). Selenium automates browsers. https://www.selenium.dev/
(cited on page 184).

Serrano, M. (2006). Hop, multitier Web Programming (cited on page 205).
Serrano, M. (2007). “Programming web multimedia applications with hop”. In:

Proceedings of the 15th International Conference on Multimedia 2007, Augsburg,
Germany, September 24-29, 2007. Edited by R. Lienhart, A. R. Prasad, A.
Hanjalic, S. Choi, B. P. Bailey, and N. Sebe. ACM, pages 1001–1004. isbn:
978-1-59593-702-5. doi: 10.1145/1291233.1291450 (cited on page 4).

Serrano, M. (2023). Hop.js. http://hop.inria.fr/home/index.html
(cited on page 206).

Serrano, M. and Prunet, V. (2016). “A glimpse of Hopjs”. In: Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, Nara, Japan, September 18-22, 2016. Edited by J. Garrigue, G.
Keller, and E. Sumii. ACM, pages 180–192. isbn: 978-1-4503-4219-3. doi:
10.1145/2951913.2951916 (cited on page 205).

Shneiderman, B., Byrd, D., and Croft, W. B. (1997). “Clarifying Search - A User-
Interface Framework for Text Searches”. In: D-Lib Magazine 3.1, pages 1–15.
doi: 10.1045/january97-shneiderman (cited on page 136).

Spolsky, J. (2002). The Law of Leaky Abstractions. https://web.archive.
org/web/20220103161223/https://www.joelonsoftware.com/
2002/11/11/the-law-of-leaky-abstractions/. Accessed: 2022-
01-03 (cited on page 3).

Spring (2023). Spring: Build the apps that make the world run. https://spring.
io/ (cited on pages 2, 189).

Spring Loaded (2023). Spring-Loaded. https://github.com/spring-
projects/spring-loaded (cited on page 216).

Sun, C. (2010). Operational Transformation Frequently Asked Questions and Answers.
https://web.archive.org/web/20210606202842/https://ww
w3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/. Accessed:
2021-06-06 (cited on page 77).

Synopsys (2020). The Heartbleed Bug. https://heartbleed.com/ (cited on
pages 65, 179).

226

https://doi.org/10.1109/2.241422
https://doi.org/10.1109/35.312842
https://doi.org/10.1109/35.312842
https://www.selenium.dev/
https://doi.org/10.1145/1291233.1291450
http://hop.inria.fr/home/index.html
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1045/january97-shneiderman
https://web.archive.org/web/20220103161223/https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://web.archive.org/web/20220103161223/https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://web.archive.org/web/20220103161223/https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://spring.io/
https://spring.io/
https://github.com/spring-projects/spring-loaded
https://github.com/spring-projects/spring-loaded
https://web.archive.org/web/20210606202842/https://www3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/
https://web.archive.org/web/20210606202842/https://www3.ntu.edu.sg/scse/staff/czsun/projects/otfaq/
https://heartbleed.com/

Tilro, J. (2023). Comparing Static Semantics Specifications for the IceDust DSL: A
Case Study of Statix. Master’s thesis. http://resolver.tudelft.nl/
uuid:9a4875c0-6af7-49c4-b050-6c855b40857c (cited on page 24).

Tschantz, M. C. and Krishnamurthi, S. (2006). “Towards reasonability properties
for access-control policy languages”. In: Proceedings of the eleventh ACM
symposium on Access control models and technologies. Lake Tahoe, California,
USA: ACM, pages 160–169. isbn: 1-59593-353-0. doi: 10.1145/1133058.
1133081 (cited on page 115).

Van Antwerpen, H., Néron, P., Tolmach, A. P., Visser, E., and Wachsmuth,
G. (2016). “A constraint language for static semantic analysis based on
scope graphs”. In: Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. Edited by M. Erwig and T. Rompf. ACM, pages 49–
60. isbn: 978-1-4503-4097-7. doi: 10.1145/2847538.2847543 (cited on
page 25).

Van Antwerpen, H., Poulsen, C. B., Rouvoet, A., and Visser, E. (2018). “Scopes
as types”. In: Proceedings of the ACM on Programming Languages 2.OOPSLA.
doi: 10.1145/3276484 (cited on pages 25, 162).

Van Casteren, S. (2019). Using Ur/Web: Pro’s and Con’s. https://web.arc
hive.org/web/20211225143835/https://frigoeu.github.io/
urweb1.html. Accessed: 2021-12-25 (cited on page 201).

Van Chastelet, E. (2020). Client-side faceted filtering. https://github.com/
webdsl/client-side-faceted-filtering (cited on page 215).

Van Chastelet, E. (2013). A Domain-Specific Language for Internal Site Search.
Master’s thesis. http://resolver.tudelft.nl/uuid:61f7f022-
60a4-4935-af13-6b5438d89c04 (cited on pages 25, 63, 137, 215).

Van der Lippe, T., Smith, T., Pelsmaeker, D. A. A., and Visser, E. (2016). “A
scalable infrastructure for teaching concepts of programming languages in
Scala with WebLab: an experience report”. In: Proceedings of the 7th ACM
SIGPLAN Symposium on Scala, SCALA@SPLASH 2016, Amsterdam, Nether-
lands, October 30 - November 4, 2016. Edited by A. Biboudis, M. Jonnalagedda,
S. Stucki, and V. Ureche. ACM, pages 65–74. isbn: 978-1-4503-4648-1. doi:
10.1145/2998392.2998402 (cited on page 167).

Vergu, V. A. (2012). LabBack: An extendible platform for secure and robust in-
the-cloud automatic assessment of student programs. Master’s thesis. http:
//resolver.tudelft.nl/uuid:8c683733- 546a- 4fd2- 8303-
a2cf2edf3cd8 (cited on page 168).

Vermolen, S. (2012). “Software Language Evolution”. PhD thesis. Delft Univer-
sity of Technology. doi: 10.4233/uuid:93988a21-5be3-4181-b471-
b5a941a3641b (cited on pages 24, 41, 176).

Visser, E. (1997). “Syntax Definition for Language Prototyping”. PhD thesis.
University of Amsterdam (cited on page ix).

Visser, E. (2002). “Meta-programming with Concrete Object Syntax”. In: Gen-
erative Programming and Component Engineering, ACM SIGPLAN/SIGSOFT
Conference, GPCE 2002, Pittsburgh, PA, USA, October 6-8, 2002, Proceedings.
Edited by D. S. Batory, C. Consel, and W. Taha. Volume 2487. Lecture Notes

Bibliography 227

http://resolver.tudelft.nl/uuid:9a4875c0-6af7-49c4-b050-6c855b40857c
http://resolver.tudelft.nl/uuid:9a4875c0-6af7-49c4-b050-6c855b40857c
https://doi.org/10.1145/1133058.1133081
https://doi.org/10.1145/1133058.1133081
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://web.archive.org/web/20211225143835/https://frigoeu.github.io/urweb1.html
https://web.archive.org/web/20211225143835/https://frigoeu.github.io/urweb1.html
https://web.archive.org/web/20211225143835/https://frigoeu.github.io/urweb1.html
https://github.com/webdsl/client-side-faceted-filtering
https://github.com/webdsl/client-side-faceted-filtering
http://resolver.tudelft.nl/uuid:61f7f022-60a4-4935-af13-6b5438d89c04
http://resolver.tudelft.nl/uuid:61f7f022-60a4-4935-af13-6b5438d89c04
https://doi.org/10.1145/2998392.2998402
http://resolver.tudelft.nl/uuid:8c683733-546a-4fd2-8303-a2cf2edf3cd8
http://resolver.tudelft.nl/uuid:8c683733-546a-4fd2-8303-a2cf2edf3cd8
http://resolver.tudelft.nl/uuid:8c683733-546a-4fd2-8303-a2cf2edf3cd8
https://doi.org/10.4233/uuid:93988a21-5be3-4181-b471-b5a941a3641b
https://doi.org/10.4233/uuid:93988a21-5be3-4181-b471-b5a941a3641b

in Computer Science. Springer, pages 299–315. isbn: 3-540-44284-7. doi:
10.1007/3-540-45821-2_19 (cited on page 152).

Visser, E. (2004). “Program Transformation with Stratego/XT: Rules, Strategies,
Tools, and Systems in StrategoXT-0.9”. In: Domain-Specific Program Gener-
ation. Edited by C. Lengauer et al. Volume 3016. LNCS. Spinger-Verlag,
pages 216–238 (cited on page 114).

Visser, E. (2007). “WebDSL: A Case Study in Domain-Specific Language En-
gineering”. In: Generative and Transformational Techniques in Software Engi-
neering II, International Summer School, GTTSE 2007. Edited by R. Lämmel,
J. Visser, and J. Saraiva. Volume 5235. Lecture Notes in Computer Sci-
ence. Braga, Portugal: Springer, pages 291–373. isbn: 978-3-540-88642-6. doi:
10.1007/978-3-540-88643-3_7 (cited on pages 27, 163).

Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L. C.,
Visser, E., and Wachsmuth, G. (2013). “DSL engineering-designing, imple-
menting and using domain-specific languages”. In: (cited on page 121).

Wachsmuth, G., Konat, G., Vergu, V. A., Groenewegen, D. M., and Visser,
E. (2013). “A Language Independent Task Engine for Incremental Name
and Type Analysis”. In: Software Language Engineering - 6th International
Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings.
Edited by M. Erwig, R. F. Paige, and E. Van Wyk. Volume 8225. Lecture
Notes in Computer Science. Springer, pages 260–280. isbn: 978-3-319-02653-
4. doi: 10.1007/978-3-319-02654-1_15 (cited on pages 24, 162,
231).

WebLab (2012). WebLab. https://weblab.tudelft.nl (cited on pages 20,
163).

Weststrate, M. (2009). Abstractions for Asynchronous User Interfaces in Web
Applications. Master’s thesis. http://resolver.tudelft.nl/uuid:
355f297a-bc22-445e-a489-934582d1d1d2 (cited on page 25).

Weststrate, M. (2023a). Immer. https://immerjs.github.io/immer/
(cited on page 25).

Weststrate, M. (2023b). MobX: Simple, scalable state management. https://
mobx.js.org/ (cited on page 25).

Wiedermann, B., Ibrahim, A., and Cook, W. R. (2008). “Interprocedural query
extraction for transparent persistence”. In: Proceedings of the 23rd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN,
USA. Edited by G. E. Harris. ACM, pages 19–36. isbn: 978-1-60558-215-3.
doi: 10.1145/1449764.1449767 (cited on page 25).

Wieringa, R. and Moralı, A. (2012). “Technical Action Research as a Validation
Method in Information Systems Design Science”. In: Design Science Research
in Information Systems. Advances in Theory and Practice. Edited by K. Peffers,
M. Rothenberger, and B. Kuechler. Berlin, Heidelberg: Springer Berlin
Heidelberg, pages 220–238. isbn: 978-3-642-29863-9 (cited on page 17).

YAML (2023). YAML: YAML Ain’t Markup Language. https://yaml.org/
(cited on page 14).

228

https://doi.org/10.1007/3-540-45821-2_19
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1007/978-3-319-02654-1_15
https://weblab.tudelft.nl
http://resolver.tudelft.nl/uuid:355f297a-bc22-445e-a489-934582d1d1d2
http://resolver.tudelft.nl/uuid:355f297a-bc22-445e-a489-934582d1d1d2
https://immerjs.github.io/immer/
https://mobx.js.org/
https://mobx.js.org/
https://doi.org/10.1145/1449764.1449767
https://yaml.org/

Yuan, M. and Heute, T. (2007). JBoss Seam: Simplicity and Power Beyond Java EE.
Prentice Hall PTR Upper Saddle River, NJ, USA (cited on pages 95, 110,
116).

Zhang, L., Ahn, G. J., and Chu, B. T. (2003). “A rule-based framework for
role-based delegation and revocation”. In: ACM Transactions Information and
System Security 6.3, pages 404–441 (cited on page 119).

Zhang, X., Oh, S., and Sandhu, R. (2003). “PBDM: a flexible delegation model
in RBAC”. In: Proceedings of the eighth ACM symposium on Access control
models and technologies, pages 149–157 (cited on page 119).

Zwaan, A., Van Antwerpen, H., and Visser, E. (2022). “Incremental type-
checking for free: using scope graphs to derive incremental type-checkers”.
In: Proceedings of the ACM on Programming Languages 6.OOPSLA2, pages 424–
448. doi: 10.1145/3563303 (cited on page 162).

Bibliography 229

https://doi.org/10.1145/3563303

230

Curriculum Vitae

Danny Maria Groenewegen
Born March 23rd 1984 in Nootdorp, the Netherlands

2012 - present
Research Software Engineer
Delft University of Technology
Programming Languages research group
Computer Science & Engineering Teaching Team

2008 - 2023
Ph.D. in Computer Science
Delft University of Technology
Programming Languages research group

2005 - 2008
M.Sc. in Computer Science
Delft University of Technology
Specialization: Software Engineering

2002 - 2005
B.Sc. in Computer Science
Delft University of Technology
Bachelor Technische Informatica

1996 - 2002
Gymnasium diploma (cum laude)
Sint-Maartenscollege in Voorburg
Nature & Technology Profile

231

232

List of Publications

Groenewegen, D. M., Van Chastelet, E., De Krieger, M. M., and Pelsmaeker,
D. A. A. [2023a]. “Eating Your Own Dog Food: WebDSL Case Studies to
Improve Academic Workflows”. In: Eelco Visser Commemorative Symposium
(EVCS 2023). Edited by R. Lämmel, P. D. Mosses, and F. Steimann. Volume 109.
Open Access Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 13:1–13:11. isbn: 978-3-95977-
267-9. doi: 10.4230/OASIcs.EVCS.2023.13

Groenewegen, D. M., Van Chastelet, E., De Krieger, M. M., Pelsmaeker,
D. A. A., and Anslow, C. [2023b]. “Conf Researchr: A Domain-Specific
Content Management System for Managing Large Conference Websites”. In:
Eelco Visser Commemorative Symposium (EVCS 2023). Edited by R. Lämmel,
P. D. Mosses, and F. Steimann. Volume 109. Open Access Series in Informatics
(OASIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 12:1–12:6. isbn: 978-3-95977-267-9. doi: 10.4230/OASIcs.
EVCS.2023.12

Groenewegen, D. M., Van Chastelet, E., and Visser, E. [2020]. “Evolution of the
WebDSL runtime: reliability engineering of the WebDSL web programming
language”. In: Programming’20: 4th International Conference on the Art, Science,
and Engineering of Programming, Porto, Portugal, March 23-26, 2020. Edited by A.
Aguiar, S. Chiba, and E. G. Boix. ACM, pages 77–83. isbn: 978-1-4503-7507-8.
doi: 10.1145/3397537.3397553

Harkes, D., Groenewegen, D. M., and Visser, E. [2016]. “IceDust: Incremental
and Eventual Computation of Derived Values in Persistent Object Graphs”.
In: 30th European Conference on Object-Oriented Programming, ECOOP 2016,
July 18-22, 2016, Rome, Italy. Edited by S. Krishnamurthi and B. S. Lerner.
Volume 56. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. isbn:
978-3-95977-014-9. doi: 10.4230/LIPIcs.ECOOP.2016.11

Groenewegen, D. M. and Visser, E. [2013]. “Integration of data validation
and user interface concerns in a DSL for web applications”. In: Software and
Systems Modeling 12.1, pages 35–52. doi: 10.1007/s10270-010-0173-9

Wachsmuth, G., Konat, G., Vergu, V. A., Groenewegen, D. M., and Visser, E.
[2013]. “A Language Independent Task Engine for Incremental Name and
Type Analysis”. In: Software Language Engineering - 6th International Conference,
SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings. Edited by
M. Erwig, R. F. Paige, and E. Van Wyk. Volume 8225. Lecture Notes in
Computer Science. Springer, pages 260–280. isbn: 978-3-319-02653-4. doi:
10.1007/978-3-319-02654-1_15

233

https://doi.org/10.4230/OASIcs.EVCS.2023.13
https://doi.org/10.4230/OASIcs.EVCS.2023.12
https://doi.org/10.4230/OASIcs.EVCS.2023.12
https://doi.org/10.1145/3397537.3397553
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.1007/s10270-010-0173-9
https://doi.org/10.1007/978-3-319-02654-1_15

Hemel, Z., Groenewegen, D. M., Kats, L. C. L., and Visser, E. [2011]. “Static
consistency checking of web applications with WebDSL”. in: Journal of Sym-
bolic Computation 46.2, pages 150–182. doi: 10.1016/j.jsc.2010.08.006

Groenewegen, D. M., Hemel, Z., and Visser, E. [2010]. “Separation of Concerns
and Linguistic Integration in WebDSL”. in: IEEE Software 27.5, pages 31–37.
doi: 10.1109/MS.2010.92

Hemel, Z., Kats, L. C. L., Groenewegen, D. M., and Visser, E. [2010]. “Code
generation by model transformation: a case study in transformation modu-
larity”. In: Software and Systems Modeling 9.3, pages 375–402. doi: 10.1007/
s10270-009-0136-1

Groenewegen, D. M. and Visser, E. [2009a]. “Integration of Data Validation
and User Interface Concerns in a DSL for Web Applications”. In: Software
Language Engineering, Second International Conference, SLE 2009. Edited by
M. G. J. van den Brand, D. Gasevic, and J. G. Gray. Volume 5969. Lecture
Notes in Computer Science. Springer, pages 164–173. isbn: 978-3-642-12106-7.
doi: 10.1007/978-3-642-12107-4_13

Groenewegen, D. M. and Visser, E. [2009b]. “Weaving web applications with
WebDSL (demonstration)”. In: Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications,
pages 797–798. doi: 10.1145/1639950.1640020

Groenewegen, D. M., Hemel, Z., Kats, L. C. L., and Visser, E. [2008b]. “When
Frameworks Let You Down. Platform-Imposed Constraints on the Design and
Evolution of Domain-Specific Languages”. In: Proceedings of the 8th OOPSLA
Workshop on Domain Specific Modelling (DSM’08). Edited by J. G. Gray, J.
Sprinkle, J.-P. Tolvanen, and M. Rossi. Nashville, Tennessee, USA

Groenewegen, D. M., Hemel, Z., Kats, L. C. L., and Visser, E. [2008a]. “Web-
DSL: A Domain-Specific Language for Dynamic Web Applications”. In:
Companion to the 23rd ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications (OOPSLA 2008). Edited by N. Mielke and
O. Zimmermann. (poster). Nashville, Tenessee, USA: ACM, pages 779–780.
isbn: 978-1-60558-220-7

Groenewegen, D. M. and Visser, E. [2008]. “Declarative Access Control for
WebDSL: Combining Language Integration and Separation of Concerns”. In:
Proceedings of the Eighth International Conference on Web Engineering, ICWE 2008,
14-18 July 2008, Yorktown Heights, New York, USA. edited by D. Schwabe, F.
Curbera, and P. Dantzig. IEEE, pages 175–188. isbn: 978-0-7695-3261-5. doi:
10.1109/ICWE.2008.15

0000-0003-3400-4416

234

https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1109/MS.2010.92
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1007/978-3-642-12107-4_13
https://doi.org/10.1145/1639950.1640020
https://doi.org/10.1109/ICWE.2008.15
https://orcid.org/0000-0003-3400-4416

Titles in the IPA Dissertation Series since 2020

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational and
Declarative Views. Faculty of Science
and Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of
Science, Mathematics and Computer
Science, RU. 2020-02

R.A. van Rozen. Languages of Games
and Play: Automating Game Design &
Enabling Live Programming. Faculty of
Science, UvA. 2020-03

B. Changizi. Constraint-Based Analy-
sis of Business Process Models. Faculty
of Mathematics and Natural Sciences,
UL. 2020-04

N. Naus. Assisting End Users in
Workflow Systems. Faculty of Science,
UU. 2020-05

J.J.H.M. Wulms. Stability of Geo-
metric Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2020-06

T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty of
Mathematics and Computer Science,
TU/e. 2020-07

P. van den Bos. Coverage and Games
in Model-Based Testing. Faculty of Sci-
ence, RU. 2020-08

M.F.M. Sondag. Algorithms for Coher-
ent Rectangular Visualizations. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2020-09

D. Frumin. Concurrent Separation Log-
ics for Safety, Refinement, and Security.

Faculty of Science, Mathematics and
Computer Science, RU. 2021-01

A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer Sci-
ence, VU. 2021-02

P. Derakhshanfar. Carving Infor-
mation Sources to Drive Search-based
Crash Reproduction and Test Case Gen-
eration. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2021-03

K. Aslam. Deriving Behavioral Speci-
fications of Industrial Software Compo-
nents. Faculty of Mathematics and
Computer Science, TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2021-05

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and
Computer Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled
Automated Reasoning. Faculty of
Mathematics and Computer Science,
TU/e. 2022-02

M. Safari. Correct Optimized GPU
Programs. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2022-03

M. Verano Merino. Engineering
Language-Parametric End-User Pro-
gramming Environments for DSLs. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2022-04

235

G.F.C. Dupont. Network Security
Monitoring in Environments where Dig-
ital and Physical Safety are Critical. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2022-05

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2022-06

P. Vukmirović. Implementation of
Higher-Order Superposition. Faculty of
Sciences, Department of Computer
Science, VU. 2022-07

J. Wagemaker. Extensions of (Concur-
rent) Kleene Algebra. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2022-08

R. Janssen. Refinement and Partial-
ity for Model-Based Testing. Faculty of
Science, Mathematics and Computer
Science, RU. 2022-09

M. Laveaux. Accelerated Verification
of Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2022-10

S. Kochanthara. A Changing Land-
scape: On Safety & Open Source in Au-
tomated and Connected Driving. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2023-01

L.M. Ochoa Venegas. Break the
Code? Breaking Changes and Their Im-
pact on Software Evolution. Faculty of
Mathematics and Computer Science,
TU/e. 2023-02

N. Yang. Logs and models in en-
gineering complex embedded produc-
tion software systems. Faculty of

Mathematics and Computer Science,
TU/e. 2023-03

J. Cao. An Independent Timing Analy-
sis for Credit-Based Shaping in Ether-
net TSN. Faculty of Mathematics and
Computer Science, TU/e. 2023-04

K. Dokter. Scheduled Protocol Pro-
gramming. Faculty of Mathematics
and Natural Sciences, UL. 2023-05

J. Smits. Strategic Language Work-
bench Improvements. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2023-06

A. Arslanagić. Minimal Structures
for Program Analysis and Verification.
Faculty of Science and Engineering,
RUG. 2023-07

M.S. Bouwman. Supporting Railway
Standardisation with Formal Verification.
Faculty of Mathematics and Com-
puter Science, TU/e. 2023-08

S.A.M. Lathouwers. Exploring An-
notations for Deductive Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2023-09

J.H. Stoel. Solving the Bank, Light-
weight Specification and Verification
Techniques for Enterprise Software. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2023-10

D.M. Groenewegen. WebDSL: Lin-
guistic Abstractions for Web Program-
ming. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2023-11

	WebDSL: Linguistic Abstractions for Web Programming
	Summary
	Samenvatting
	Preface
	Contents
	Introduction
	Web Information Systems
	Problems in Web Programming
	Insufficient or Leaky Abstraction
	Design Coverage
	Design Fragmentation
	Forced MVC structure

	Lack of Static Verification
	Linguistic Separation
	Typical Verification Problems
	Error Reporting Quality
	Statically and Dynamically Typed Languages
	Verification Related Work

	Security Flaws
	Web Application Security Vulnerabilities
	SQL Injection
	Cross-Site Scripting
	Cross-Site Request Forgeries
	Reflection and Run-Time Code Manipulation

	Thesis
	WebDSL Design Principles
	Research Methodology
	Contributions
	Structure of this Dissertation
	Origin of Chapters

	The WebDSL Web Programming Language
	Introduction
	Language Concepts
	Example Application
	Data Model
	Web Interface

	Transparent Data Persistence
	Memory and Storage
	Entity Objects
	Associations
	Object Identity
	Inheritance and Polymorphism
	Invariants
	Discussion Data Persistence

	Expressions and Functions
	Functions
	Safe Query Embedding
	Java Interoperability
	Discussion Functions

	Pages and Templates
	Pages and Navigation
	Templates
	Template Calls
	Template Content

	User Interface Input
	Forms and Input

	User Management and Access Control
	Search
	Discussion
	Conclusion

	User Interface Templates
	Introduction
	Design Goals
	Request Lifecycle
	User Input
	Multi-phase Evaluation

	Language Primitives for Input Implementation
	Phase Function Code
	Ref Types
	Tempate Identifier Generation

	Data Validation
	Value Well-Formedness
	Data Invariants
	Form Input Validation
	Function Assertions
	Messages
	Validation Phase in Request Lifecycle
	Library Input With Validation

	Partial Page Updates
	Nested Page
	Inline Refresh
	Inputs with Immediate Validation

	Conclusion

	Access Control
	Introduction
	Access Control
	Authentication
	Restricting Access
	Administration

	Access Control Policies
	Mandatory Access Control
	Discretionary Access Control
	Role-Based Access Control

	Transformational Semantics
	Policy Normalization
	Rule Weaving

	Related Work
	Language Design
	Policy Languages
	Frameworks

	Discussion
	Future Work

	Conclusion

	The WebDSL Language Evolution Pattern
	Introduction
	A Generic Language Evolution Pattern
	Evolution of User Interface Templates
	Evolution of Persisted Data Models
	Evolution of Static Code Template Expansion

	Evolving Compiler Extensions
	Evolution of Email Notifications
	Evolution of Files and Images
	Evolution of Internal Site Search

	Discussion
	Conclusion

	The WebDSL Compiler, IDE, and Runtime
	Introduction
	Compiler Pipeline
	Front-End Analysis
	Front-End Transformations
	IDE support
	IDE Caching

	Back-End
	Code Generation
	WebDSL Request Lifecycle
	Runtime System

	Compiler Caching Strategies
	Code Generation Cache
	Compile Unit Cache

	Application Deployment
	Discussion
	Conclusion

	WebDSL in Practice
	Introduction
	EvaTool
	WebLab
	Conf Researchr
	MyStudyPlanning
	Robustness Engineering Experiences
	Performance Engineering Experiences
	Security Engineering Experiences
	Reflections on Experiences
	Threats to Validity
	Conclusion

	Related Work
	Introduction
	Conventional Full-Stack Web Frameworks
	Django

	Multi-tier Web Programming Languages
	Ur/Web
	Links
	Hop.js

	Modeling and Low-Code Tools
	WebML

	Conclusion

	Conclusion
	Thesis Revisited
	Design Principles Revisited
	Directions for Future Work

	Bibliography
	Curriculum Vitae
	List of Publications
	Titles in the IPA Dissertation Series since 2020

