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Airbus Defense and Space
Munich, Germany

johanna.sepulveda@airbus.com

Abstract—Currently NIST is working towards the standardiza-
tion of lightweight cryptography (LWC). Although the cryptana-
lytic strength of LWC is currently under deep scrutiny, the LWC
implementation security has not been yet widely explored. GIFT
block cipher is the main building block of many of the LWC NIST
candidates and therefore has the potential to be part of the next
lightweight crypto-standard. Hence it is important to understand
its implementation vulnerabilities such as side-channel attacks
(SCAs). Although SCAs have been evaluated for hardware imple-
mentations, no analysis or countermeasures have been proposed
yet for software implementations. This work evaluates GIFT 128-
bit software implementations (protected and unprotected) against
power-based SCAs. Our protected implementation is based on a
new lightweight countermeasure consisting of two balanced and
masked SBoxes. Our results show that GIFT’s SBox (or SubCell
function) is vulnerable against profiled and non-profiled attacks
when unprotected or protected implementations based on existing
balancing or masking techniques are used. On the other hand,
our proposed countermeasure that smartly combines balancing
and masking offers full protection with negligible overhead.

Index Terms—Lightweight cipher, Side channel analysis, GIFT,
Deep Learning, Countermeasure

I. INTRODUCTION

A recent study made by the Dutch software company Irdeto
showed that cyberattacks targeting the Internet of Things
(IoT) devices could cost the UK’s economy alone 1 billion
pounds annually [1]. When it comes to IoT devices’ security,
lightweight ciphers play an essential role. The U.S. National
Institute of Standards and Technology (NIST) started a process
for selecting the next lightweight cipher (LWC) standard [2].
GIFT, a lightweight block cipher devised by Banik et al. [3],
is currently used by seven of LWC NIST candidates as
the underlying cryptographic block of their security solution
(e.g., SUNDAE-GIFT [4], HYENA [5], ESTATE [6], GIFT-
COFB [7], etc.). Therefore, the probability that GIFT makes
it into the LWC standard is high. Although GIFT developers
studied the security details of the algorithm’s mathematical
part well, the resistance against implementation vulnerabilities
such as side channel has not received enough attention. Side
channels are unintended physical leakage sources such as
power, heat, etc. that can be exploited to retrieve secret infor-
mation. In the past two decades, many different side channel
attacks (SCAs) have been performed. For example, power [8]
and electromagnetic [9] based side channel attacks. SCAs
have been proven to be a powerful tool. The various SCAs

techniques were successful in attacking different cryptographic
algorithms, including many protected implementations [10,
11]. In the lightweight domain, there is only limited research
that focuses on side channel attacks, especially for GIFT
cipher.

To the best of our knowledge, there are only three articles
published in the literature that address SCAs against the GIFT
block cipher. The authors in [12] and in [13] presented a
correlation power analysis on GIFT 64-bit hardware imple-
mentation. Both papers show that by targeting the register
values of selected intermediate functions (e.g., SubCell and/or
AddRoundKey) within a round of the algorithm process, the
secret key can be recovered. However, their methodology is
strongly dependent on the hardware implementation, which
makes it for example not applicable to software-based im-
plementations. With respect to software, the authors in [14]
presented a cache memory attack to recover the key of a GIFT-
128. Although successful, the authors showed that such cache
attacks can be avoided when the implementation does not use
tables or when bigger cache lines are used. Overall, we ob-
serve that implementation based security evaluations are very
limited, and until now, no secure software implementations
have been proposed.

This paper analyzes vulnerabilities of GIFT software im-
plementations. Our evaluations consist of both non-profiled
(i.e., CPA) and profiled attacks (i.e., deep learning attacks).
We analyze two of the most popular existing countermeasures
techniques (i.e., balancing and masking) and propose a new
variant by combining them, referred to as balanced dual-mask.
The contributions of this paper can be summarized as follows:

• Proposal of balanced dual-mask countermeasure based on
masking and balancing.

• Evaluation of naive GIFT software implementation
against a non-profiled SCA (namely CPA) and a pro-
filed SCA (namely deep learning power attack) for the
unprotected and protected implementation.

• Comparison with existing countermeasure techniques.

The paper is organized as follows. Section II provides a
background on GIFT cipher and power attacks. Section III
describes the proposed countermeasure. Section IV explains
the attack methodology. Section V describes the experiments
and results. Finally, Section VI concludes this paper.978-1-6654-1060-1/22/$31.00 ©2022 IEEE
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Fig. 1: Round Operations of GIFT-128 Cipher

II. BACKGROUND

This section provides the necessary background for this
paper. Section II-A explains how the GIFT cipher works and
Section II-B how side channel attacks can be performed.

A. GIFT Cipher

GIFT is a lightweight block cipher designed by Banik et
al [3] as an improved to PRESENT. For performance reasons,
GIFT substitution blocks are smaller than PRESENT and use
less number of rounds. This makes the GIFT design very
compact with a high throughput. There are two versions of
GIFT, namely GIFT-64 and GIFT-128. The GIFT-64 uses 28
rounds with a 64-bit block size, while the GIFT-128 40 rounds
with a 128-bit block size. The key size is the same in both
versions (i.e., 128 bits). As shown in Figure 1, each round
of the GIFT cipher consists of four functions [3]: SubCells,
PermuBits, AddRoundKey, and Round Constant. Each function
will be described briefly next.

SubCells: This function processes the 128-bit round input
based on 4-bit data segments. Each 4-bit segment is replaced
using a substitution box (SBox). The inputs and outputs of the
SBox have a non-linear relation.

PermBits: This function processes its input state at bit-level.
The SubCells’ outputs are shuffled based on a fixed reordering
scheme.

AddRoundKey: This function processes its input state in a
4-bit segment based fashion. Only the middle two bits of each
segment are XORed with specific bits of the key as illustrated
in Figure 1. Note that in each round only 64 bits of the key are
used. For round 0 these are bits 0-31 and 64-95 as indicated
in the figure. A key scheduler is used to update the round key.

Round Constant: After the XOR operation with the key, a
selected number of bits (i.e., 3,7,11, 15,19, 23, and 127) are
XORed with the round constant.

Key Schedule After each round, the key is updated based
on two steps as illustrated in Figure 2. In the first step, the
key is circularly rotated by 32 bits to the right. In the second
step, the last eight segments (i.e., bits 64-95) are updated as
follows (see also the bottom part of the figure): (1) the first
four segments are reversed, i.e., bits 64-67 are moved to bits
76-79, bits 68-71 to bits 72-75, bits 72-75 to 68-71, and bits
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Fig. 2: Round Key Update Process

76-79 to 64-67; (2) the last four segments (i.e. bits 80-95) are
updated by circular shifting a segment to the left by two and
XORing it with the next segment that is circularly shifted by
two to the right (see Figure 5c). Note that the last segment
(i.e., bits 91 to 95) uses the segment with bits 80-83 as its
neighbour.

B. Side Channel Attacks (SCAs)

There are various ways of implementing side channel at-
tacks, which can be classified into two groups, namely non-
profiled and profiled attacks. Non-profiled attacks are attacks
that do not require prior access to the device and/or similar
alternatives. These attacks are carried directly to the target
device by analyzing the side channel traces and identifying
distinguishable patterns (e.g., power amplitude or execution
time). There are many examples of such attacks. The most
popular ones in the power domain are DPA [8] and CPA [15].
Since these attacks do not know the real power behavior of the
target device, they rely on power models. The most common
models use the hamming weight or hamming distance of the
result of a target operation. This target operation must have a
relation with the secret key. Consequently, the attacker creates
a hypothetical power estimation for each possible key/sub-key
and correlates each with the collected power traces.

In contrast, profiled attacks create a profiled template that
can be used later to attack the target device. Profile side
channel attacks consist of two phases namely profiling and
extraction phase [16]. In the profiling phase, the attacker
focuses on a similar or identical device to collect traces.
Thereafter, the attacker chooses an intermediate point of
attack (e.g., SubCells or AddRoundKey operations in GIFT
cipher). Next, the attacker records power traces and controls
all inputs, outputs, and used keys. With such information, a
profile template can be built. The template can be a statistical
model like multivariate distribution [15], or more recently, a
trained neural network [16]. Neural networks, especially deep
neural networks, have been gaining popularity due to their
high efficiency even against complex countermeasures [11].
After creating the template, the attacker can start with the
extraction phase. In the extraction phase, the attacker runs
the target device, collects power traces, and identifies the target



operation. Thereafter, the attacker uses the template to guess
the key.

III. BALANCED DUAL-MASK COUNTERMEASURE

This section discusses the proposed countermeasure ap-
proach. First, we motivate the rationale behind it and then
discuss its design and implementation.

A. Motivation

When it comes to securing crypto algorithms from power
attacks, most countermeasures revolve around one of two
techniques: 1) randomizing the power behavior or 2) balancing
the power behavior for every key and plaintext/ciphertext pair.
In our study, we considered one popular approach from each
technique. For the power randomization approach, we use
masking. Masking [17] introduces multiple randomized shares
called the mask. For the power-balance approach, we apply the
method in [18] where the output of the sensitive function that
leaks the most (i.e., SBox) always results in the same number
of ones. Hence, the leakage model will always be the same.
Unfortunately, neither method was successful in securing the
SubCell function as we will see in the up coming sections.
Therefore, a new more robust countermeasure is needed.

Fig. 3: Balanced Dual Masks Scheme

B. Design and Implementation

Both power-balancing and masking countermeasures failed
to protect the SubCells function (see Section V-B). To over-
come their limitations, we propose a balanced dual-masks
scheme. In this technique, as illustrated in Figure 3, we
apply two masks to each SubCells index; both masks together
contain 4-bits of actual data and 4-bits of dummy data. This
dummy data can reside (partly) in either of the masks. On top
of that, instead of using a single set of dual masks we can
integrate n different sets. Therefore, in the figure, Ma and Mb

of dual mask 1 are not equal to Ma and Mb of dual masks 2.
During run-time, only one of the outputs related to the n sets
will be used and the dummy bits will be filtered out.

IV. ATTACK METHODOLOGY

This section describes the performed attack methodology.
First, it explains the threat model and thereafter the attacks.

A. Threat Model

Our threat model consists of the following assumptions:
• The attacker has the ability to measure the side channel

source (i.e., power consumption) from the target device
during the execution of GIFT.

• The attacker can observe the plaintext of the encryptions
and their associated power traces.

• The attacker has the ability to procure a similar or an
identical device to the target to perform profiled attacks.

B. Non-profiled Attack

The concept behind GIFT cipher is similar to most block
ciphers such as DES [19], AES [19], PRESENT [20], etc.
where the plaintext is encrypted using several confusion and
diffusion blocks such as substitution box (which is called
SubCells in GIFT), add round key and permutation operation.
Similar to DES cipher, the add round key operation occurs
only at the end of the round which makes it unpractical
to target any first round operation as a target intermediate
function (with the exception of the add round key itself).
Therefore, the first part of the sub-key used by GIFT in the
first round (key-bits from 31 to 0 for GIFT-64 and key-bits
from 63 to 0 for GIFT-128), can only be attacked through the
following intermediate functions:

• 1st Round AddRoundKey: In this case, the attacker cal-
culates the inputs of the AddRoundKey operation based
on the used plaintext. Hence, the hypothetical hamming
weight (HW) of the XOR result can be estimated for all
possible key-bits.

• 2nd Round SubCells: In this case, the attacker attacks the
output of the SBox operations of the second round. The
attacker first needs to calculate the possible inputs at the
SubCells operation of the second round. As a result, each
guessed key-bit (considered in the AddRoundKey of the
first round) will result in an input to the SBox. Thereafter,
the HW or HD of the output of the SBox can be used to
estimate the power consumption.

• 2nd Round PermBits: We use the outputs of the estimated
SubCells SBox operation to calculate the outputs of the
permutation operation. Thereafter, the HW or HD of this
result can be used as target operation.

Next, the attacker can apply a correlation process of the
targeted operation with the collected power traces. Pearson
correlation is commonly used in CPA for this task [21]. Finally,
after retrieving the sub-keys used in the first round, the same
methodology can be repeated to target the sub-keys of the
following rounds.

C. Profiled Attack

The intermediate functions discussed for non-profiled at-
tacks can be also used for profiled attacks. Next, we describe
the profiling and extraction phase in more detail.

Profiling Phase: In this phase we prepare the neural net-
work model to attack the GIFT cipher algorithm. It consists
of the following steps (S):
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Fig. 4: Accuracy Analysis of Non-profiled Attacks

S1: Select a target intermediate function. In our case we tried
all the three intermediate functions: the AddRoundKey of the
first round, and PermBits and SubCells of the second round,
respectively. For brevity, the next steps are described only for
the SubCells intermediate function. However, the same steps
can be applied to the PermBits and AddRoundKey.
S2: Use the outputs of the SubCells operation in the second
and third rounds as labels during the training of the profile
model. Since the key is known in this phase, it is easy to
compute the labels. In this step we need to create labels for
all the different SubCells functions (i.e., every two bits of the
key). Since the key is 128-bit we need 64 sets of labels. Note
that during this profile phase both the plaintext and key values
are randomly selected. As a leakage model we considered the
HW and HD.
S3: Record power traces during the execution of the targeted
intermediate function. The traces are divided into two datasets,
one for each round.
S4: Construct a neural network and determine its structure,
i.e., the number of input and output neurons, the number
of layers, activation function, loss function, etc. The number
of input neurons is determined by the number of samples
in the recorded power trace. The number of output neurons
is determined by the total number of labels. The structural
parameters of our neural network can be seen in Table I.
S5: Train the neural network. In this step we train the neural
network based on the labels generated from Step 2 and use
the corresponding recorded traces from Step 3 as input. As
the labels generated from Step 2 are different for each sub-
key, the neural network is trained 64 times each time targeting
a different sub-key.

Extraction Phase: In this phase, we use the trained neural
network to extract the key from the target device. This phase
consists of two parts. First, we recover the key bits used
in the first round by attacking the SubCells function of the
second round. Next, we use the recovered bits to attack the
key bits used in the second round by attacking the SubCells
function of the third round. To predict the key value, we use
Algorithm 1. First, the output of the permutation of the first
round is calculated. Then, for each sub-key, we loop through
the traces of the targeted round and predict the output of the
SBox using the trained neural network. The probability results
of all traces are accumulated for all key possibilities. The

TABLE I: Deep Learning Specifications

Layer (type) Output Shape Param #
input 25 (InputLayer) (None, 3000, 1) 0
conv1d 73 (Conv1D) (None, 1000, 64) 256
max pooling1d 73 (MaxPooling) (None, 333, 64) 0
activation 73 (Activation) (None, 333, 64) 0
conv1d 74 (Conv1D) (None, 111, 128) 24704
max pooling1d 74 (MaxPooling) (None, 37, 128) 0
activation 74 (Activation) (None, 37, 128) 0
conv1d 75 (Conv1D) (None, 13, 256) 98560
max pooling1d 75 (MaxPooling) (None, 4, 256) 0
activation 75 (Activation) (None, 4, 256) 0
flatten 25 (Flatten) (None, 1024) 0
dense 25 (Dense) (None,16) 16400
Total params: 139,920 Trainable params: 139,920

actual key is most likely the one with the highest occurrence
probability. For the SubCells intermediate function, we have
tried different leakage functions denoted by leakage function
lkf() on line 10. Note that the algorithm is used to retrieve the
keys of both rounds.

V. EXPERIMENT RESULTS

This section first describes the experimental setup. Subse-
quently, it presents the security and performance analysis.

A. Experiment Setup

To validate the proposed attack scheme, the publicly avail-
able open-source software implementation of the GIFT 128-
bit cipher [22] was used. The GIFT 128-bit program is written
in C code. The power traces have been collected by running
the implementation on the Chipwhisperer board from NewAE
Technology Inc [23]. Chipwhisperer is a development board
that comes with an Atmel XMEGA micro-controller that is
used as a target device. It has been used in many attacks such
as ECC [24]. The power traces were captured by an Analogue-
to-Digital Converter with a sample rate of 105 MS/s. Both
the target chip and the measurements setup are connected to
the computer using a USB interface, to execute the program
and transfer the recorded traces. The proposed attack was
implemented in Python using the Keras library. This is an
open-source software library that can be used to create, train,
and run artificial neural networks.

B. Security Analysis of Naive Implementation

To validate the GIFT cipher against power attacks, three
functions were selected as targets: 1) the SubCells function
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Fig. 5: Rank Analysis of Profiled Attacks
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Fig. 6: Countermeasures Analysis using Non-profiled Attacks

Algorithm 1 Extract Key bits

1: procedure KET EXTRACT(Tracesset, ptarray)
2: pt = output of Permutation XORed with constant
3: Pk[0, 15] = key probability
4: predict = is the trained model the sub-key
5: for each sub-key do
6: Pk[0, 15] = 0
7: for each trace in trace-set do
8: X0,15 = predict(trace)
9: for k=0 to 15 do

10: y = lkf(SBOX[pt[sub− key]
⊕

k])
11: Pk[k] = Pk[k] +X[y]
12: end for
13: end for
14: guesssub−key = max(Pk)
15: end for
16: end procedure

during second and third rounds; 2) the PermBits of the second
round; and 3) the AddRoundKey in first round. They have been
used in both non-profiled (i.e., CPA) and profiled attacks(i.e.,
deep learning power attack). Their results are discussed next.

1) Non-profiled Attacks: The attacks were evaluated ini-
tially with a single trace and iteratively reevaluated by adding
each time a single trace until 100 traces have been used.
Figure 4 show the accuracy analysis of CPA attacks for the
three attacked functions, respectively. A higher accuracy value
means that more sub-keys were correctly guessed; e.g., a 100%
accuracy means that all sub-keys were correctly guessed. We
observe that CPA attack was successful in recovering the

majority of sub-keys values for SubCells while targeting other
functions was unsuccessful. The more traces are used, the
closer the guessed sub-key is from the correct sub-key. The
results indicate that the software implementation of GIFT is
attackable using non-profiled techniques. Although a few sub-
keys have not been attacked successfully, it could be possible
to attack the entire key when more traces are added.

2) Profiled Attacks: The performed profile attacks are
described in Section II. The results for SubCells in terms
of rank analysis is shown in Figure 5a; the lower the rank,
the better the guessed sub-key.. All sub-keys reached a rank
of 1 (i.e., they were fully recovered) using only 50 traces.
Similarly, the results for PermuBits and AddRoundKey are
shown in Figures 5b and 5c. The key ranking results show
random behaviour which means that it is difficult to retrieve
the correct sub-key value.

C. Security Analysis of Proposed Implementation
First, we separately evaluated the balancing and masking

countermeasures presented in [18] and [17], respectively.
Using CPA, we were able to achieve a high accuracy with
only a few traces for both countermeasures as shown in
Figures 6a and 6b. Next, we evaluated the security analysis
using one single dual mask only (i.e., only Dual mask 1) to
validate the minimum security level of the proposed approach.
Note that only the SubCells function was targeted as both
AddRoundKey and PermBits functions were unattackable in
the naive implementation. In the non-profiled attack (i.e., CPA)
the approach was secure as the maximum accuracy the attack
could reach was 25% as shown in Figure 6c. However, using
the profiled attack (i.e., deep learning) the attack was not fully
secure as some of the sub-keys were recovered as can be seen
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Fig. 8: Double Dual Masks Analysis

in Figure 7. To solve this issue, we increased the number of
dual masks to two, i.e., we used different masks for profiling
and attack phases where n=2 in both cases. The results shows
that the sub-keys are secure as shown in Figure 8. In order
for an attacker to create a successful template, he needs to
consider all 16n combinations for the different masks. This
becomes quickly infeasible for n=8.

D. Area overhead and Performance Analysis

Our proposed technique only increases the width of the
SBox table. Therefore, there is no area overhead unless the
number of dual masks exceeds the word size (i.e., 4 dual
masks in 32-bit wide memories and 8 dual masks in 64-bit
wide memories). The performance overhead is measured by
the additional number of instructions added to the baseline
execution. Since these extra instructions are only required to
multiplex the dual masks and select one of them. Hence, the
increase in execution time is negligible.

VI. CONCLUSION

In this paper, we analyzed the security of a software
implementation of GIFT 128. Our proposed countermeasure,
consisting of a masking and balancing technique, is secure
against power SCA while having a low overhead. This

increases the chances of having GIFT integrated in coming
lightweight security standards.
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