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Nothing in life is to be feared. It is only to be understood.
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SUMMARY

Machine learning can arguably solve many problems we face today and make many as-
pects of our lives easier. Take, for example, the use of system data in a machine learning
model that is able to detect and predict system faults and failures. Such early warn-
ings and failure detection can be helpful in two ways: First, to understand systems fail-
ures better and thereby improve systems accordingly, and second, to plan related main-
tenance and repair actions in advance. Especially for safety-critical systems, such as
aircraft and satellite systems, such approaches are important. Failures of such systems
can lead to not only operational interruptions and, thereby, major costs and delays, but
also compromise the safety of operations. Of course, airlines and satellite operators take
steps towards ensuring smooth and safe operations of their systems. Almost every sys-
tem is monitored continuously. Operational and system health-related data is collected
in regular time intervals. And still, for both satellites and aircraft most of the mainte-
nance and system life-time calculation is done using simple statistical models not ex-
ploring the full range of available data. The monitored data is mostly used to track causes
of failures or faults that already occurred. But how can we move away from this practice
and put the vast amount of data to a better use? This is where machine learning ap-
proaches come into play. When used to build the above-mentioned machine learning
models that are able to detect and predict system failures, such models can help to cal-
culate system reliability dynamically over a system’s life and plan maintenance accord-
ingly. This practice is called condition-based maintenance. The major question now is:
Why are both airlines and satellite operators so reluctant to use such a practise if it is so
promising?

There are many reasons that complicate the application of machine learning approaches
for failure detection and prediction - one of the main reasons being linked to underly-
ing system data. Even though most systems are monitored continuously, the available
data is not guaranteed to capture failures or even degradation. This can be due to the
data itself (e.g. its quality, missing data or missing sensors), but it can also be due to
the nature of system degradation and failures. Some failures might, for example, hap-
pen spontaneously or without measurable degradation symptoms, which makes it im-
possible to predict them. Furthermore, many existing machine learning techniques are
implemented, validated, tested and sometimes even tailored to existing publicly avail-
able datasets in literature, mostly simulated ones. Therefore, a way to identify if system
data is suitable for failure or anomaly detection or prediction in the first place would be
needed. This is what we provide in this thesis in the form of a generic diagnostic (failure
detection) and prognostic (failure prediction) framework. There are two main aspects of
the framework: First, it provides a guideline for the development of detection or predic-
tion models for systems. Second, it gives an indication whether system data is suitable
for data-driven diagnostic and prognostic approaches.

xiii



xiv SUMMARY

This dissertation starts by systematically defining the requirements for a generic diag-
nostic and prognostic framework. Defining such requirements helps to approach the de-
velopment and implementation of the framework in a structured way. Therefore, based
on those requirements in Chapter 3 a Generic Diagnostics Framework is presented. It
is applied in two case studies: First, the performance of the framework is benchmarked
against existing approaches by applying it to an open source dataset. Second, it is used
to detect satellite system anomalies. The framework not only proves to be helpful in
the choice of diagnostic methodologies, but also shows the challenges with using real
world data for data-driven diagnostics. In Chapter 4, the Generic Prognostic Framework
is introduced. This results in a Generic Diagnostic and Prognostic Framework, which
can be used for a diagnostic or prognostic data suitability assessment, depending on the
use case. Again, it is applied to two systems: a simulated turbofan engine dataset and
an aircraft cooling unit dataset, both collected from a commercial aircraft. The results
show that the obtained accuracy is comparable to what has been achieved in literature
and provide insights into the adaptivity and generalizability of the framework, especially
with respect to real aircraft data. Finally, we aim to understand how the Generic Prog-
nostic Framework can be translated towards assessing the suitability of data for prognos-
tics. The focus lies on prognostics for this purpose, but the shown methodologies can be
adapted towards diagnostics as well. Several representative metrics are used within the
framework to guide the decision of whether system data is suitable for prognostics or
not. The thereby adapted framework is applied in three case studies to complex systems
with different underlying data quality, i.e. while some of the systems have data of high
quality that can be used to build prognostics models, others do not. The results show
two interesting findings: First, the choice of optimization metric has an impact on the
output of the generic prognostic framework and on the overall prognostic performance.
Second, such a first prognostic assessment can give a rough indication of whether or not
it makes sense to use system data to train prognostic models.

Now one might wonder: How is the conducted research overall useful? A generic frame-
work as presented in this dissertation can not only provide guidelines for further devel-
opment, but also give an indication whether system data are suitable for diagnostics or
prognostics. Of course, one has to keep in mind that such a framework can never be
truly generic - it is impossible to include all possible steps for diagnostics or prognos-
tics, let alone all available machine learning methodologies. The scale of the problem
is simply huge and still widely researched and therefore growing. In addition, the data
suitability assessment is based on metrics measuring the model quality. When used for
a specific application, such as aircraft maintenance, it might be more suiting to use met-
rics measuring other aspects, like the cost of not detected failures, as well. All in all,
the framework presented in this dissertation is still a big step towards the application
of diagnostics and prognostics in the aerospace domain due to two major advantages:
First, it can provide guidelines where further development should go and second, it can
indicate which systems to include in a PHM/ CBM solution and which system data are
suitable to train machine learning based models.



SAMENVATTING

Machine learning kan aantoonbaar veel problemen oplossen waar we mee te maken
hebben en veel aspecten van ons leven eenvoudiger maken. Neem bijvoorbeeld het
gebruik van systeemgegevens in een machine learning model dat systeemfouten en -
storingen kan detecteren en voorspellen. Dergelijke vroegtijdige waarschuwingen en
foutdetectie kunnen op twee manieren nuttig zijn: Ten eerste om systeemfouten beter
te begrijpen en daardoor systemen dienovereenkomstig te verbeteren en ten tweede om
gerelateerde onderhouds- en reparatieacties van tevoren te plannen. Vooral voor veilig-
heidskritische systemen, zoals vliegtuig- en satellietsystemen, zijn dergelijke benaderin-
gen belangrijk. Storingen in deze systemen kunnen niet alleen leiden tot operationele
onderbrekingen en daarmee tot grote kosten en vertragingen, maar ook tot gevaarlijke
situaties. Natuurlijk nemen luchtvaartmaatschappijen en satellietoperatoren maatrege-
len om een probleemloze werking van hun systemen te garanderen. Bijna elk systeem
wordt continu gemonitord en operationele data en gegevens over de gezondheid van het
systeem worden regelmatig verzameld. Toch wordt voor zowel satellieten als vliegtuigen
het grootste deel van het onderhoud en de berekening van de levensduur van het sys-
teem gedaan op basis van eenvoudige statistische modellen die niet het volledige scala
van beschikbare gegevens onderzoeken. De gemonitorde data worden meestal gebruikt
om inzicht te krijgen in oorzaken van storingen of fouten die al zijn opgetreden. Maar
hoe kunnen we van deze praktijk afstappen en de enorme hoeveelheid van data beter
gebruiken? Dit is waar machine learning methoden om de hoek komen kijken. Wan-
neer deze technieken worden gebruikt om modellen te bouwen die systeemstoringen
kunnen detecteren en voorspellen, kunnen ze helpen bij het plannen van onderhoud
en het dynamisch berekenen van de betrouwbaarheid van het systeem. Deze praktijk
wordt "condition-based maintenance"genoemd. De grote vraag is nu: Waarom zijn zo-
wel luchtvaartmaatschappijen als satellietexploitanten zo terughoudend in het gebruik
van een dergelijke praktijk als deze zo veelbelovend is?

Er zijn veel redenen die de toepassing van machine learning benaderingen voor fout-
detectie en -voorspelling bemoeilijken - een van de belangrijkste redenen heeft te ma-
ken met de onderliggende systeem data. Hoewel de meeste systemen continu worden
gemonitord is er geen garantie dat de beschikbare data storingen of zelfs degradatie re-
gistreren. Dit kan te maken hebben met de data zelf (de kwaliteit, ontbrekende data,
ontbrekende sensoren, etc.). Sommige storingen kunnen bijvoorbeeld spontaan of zon-
der meetbare degradatie symptomen optreden, waardoor het onmogelijk is om ze te
voorspellen. Bovendien zijn veel bestaande technieken voor machine learning geïm-
plementeerd, gevalideerd, getest en soms zelfs toegesneden op bestaande, publiekelijk
beschikbare datasets in de literatuur, meestal gesimuleerde datasets. Daarom is er be-
hoefte aan een manier om te bepalen of systeem data überhaupt geschikt zijn voor het
detecteren of voorspellen van storingen of anomalieën. Dit is wat we in dit proefschrift

xv
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presenteren in de vorm van een generiek diagnostic (foutdetectie) en prognostic (fout-
voorspelling) framework. Er zijn twee belangrijke aspecten van het framework: Ten eer-
ste biedt het een richtlijn voor de ontwikkeling van detectie- of voorspellingsmodellen
voor systemen. Ten tweede geeft het een indicatie of systeem data geschikt zijn voor da-
tagestuurde diagnostic en prognostic benaderingen.

We beginnen met het systematisch definiëren van vereisten voor een Generic Diagnos-
tic and Prognostic Framework. Het definiëren van requirements helpt om de ontwikke-
ling en implementatie van het framework op een gestructureerde manier aan te pakken.
Daarom wordt op basis van de requirements in hoofdstuk 3 een generiek diagnostisch
raamwerk gepresenteerd. Het wordt toegepast in twee case studies: Ten eerste wordt de
prestatie van het raamwerk vergeleken met bestaande benaderingen door het toe te pas-
sen op een open source dataset. Ten tweede wordt het gebruikt om afwijkingen in satel-
lietsystemen te detecteren. Het raamwerk blijkt niet alleen nuttig te zijn bij de keuze van
diagnostische methoden, maar laat ook de uitdagingen zien bij het gebruik van indu-
striele data voor datagestuurde diagnostiek. In hoofdstuk 4 wordt het Generic Prognos-
tic Framework geïntroduceerd. Dit resulteert in een Generic Diagnostic and Prognostic
Framework, dat kan worden gebruikt voor een diagnostische of prognostische beoor-
deling van de geschiktheid van data, afhankelijk van de use case. Het wordt opnieuw
toegepast op twee systemen: een gesimuleerde dataset van een turbofanmotor en een
dataset van een koeleenheid van een vliegtuig. De resultaten laten zien dat de verkre-
gen nauwkeurigheid vergelijkbaar is met wat in de literatuur is bereikt en geven inzicht
in de aanpasbaarheid en generaliseerbaarheid van het raamwerk, vooral met betrekking
tot echte vliegtuig data. Tot slot willen we begrijpen hoe het Generic Prognostic Frame-
work kan worden gebruikt om in te schatten of en in welke mate data geschikt is voor
prognostische doeleinden. De focus ligt hierbij op prognose, maar de getoonde metho-
dologieën kunnen ook worden aangepast voor diagnostiek. Binnen het framework wor-
den verschillende representatieve meetindicatoren gebruikt om te bepalen of systeem
data geschikt zijn voor prognostics of niet. Het framework wordt in drie case studies
toegepast op complexe systemen met verschillende onderliggende data kwaliteit, d.w.z.
terwijl sommige systemen data van hoge kwaliteit hebben die gebruikt kunnen worden
om prognostische modellen te bouwen, hebben andere systemen dat niet. De resultaten
laten twee interessante bevindingen zien: Ten eerste heeft de keuze van de meetindica-
tor voor optimalisatie invloed op de output van het Generic Prognostic Framework en op
de algehele prognostic prestaties. Ten tweede kan zo’n eerste prognostische beoordeling
een ruwe indicatie geven of het al dan niet zinvol is om systeem data te gebruiken om
prognostic modellen te trainen.

Nu kun je de vraag stellen: Hoe is het uitgevoerde onderzoek in het algemeen relevant?
Een Generic Framework als gepresenteerd in dit proefschrift kan niet alleen richtlijnen
geven over waar verdere ontwikkeling naartoe zou moeten gaan, maar het kan ook hel-
pen om te begrijpen of we überhaupt in staat zijn om diagnostische of prognostische
modellen te leveren. Natuurlijk moet men in gedachten houden dat een dergelijk frame-
work nooit echt generiek kan zijn - het is onmogelijk om alle stappen voor diagnostiek
of prognostiek op te nemen, laat staan alle beschikbare methoden voor machinaal leren.
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De omvang van het probleem is enorm, wordt nog steeds op grote schaal onderzocht
en groeit daarom nog steeds. Bovendien is de beoordeling van de geschiktheid van data
gebaseerd op metrieken die de kwaliteit van het model meten. Bij gebruik voor een spe-
cifieke toepassing, zoals vliegtuigonderhoud, is het misschien beter om ook metrieken
te gebruiken die andere aspecten meten, zoals de kosten van niet gedetecteerde fou-
ten. Al met al is het raamwerk dat in dit proefschrift is gepresenteerd nog steeds een
grote stap in de richting van de toepassing van diagnostiek en prognostiek in de lucht-
en ruimtevaart vanwege twee grote voordelen: Ten eerste kan het richtlijnen geven voor
verdere ontwikkeling en ten tweede kan het aangeven welke systemen opgenomen moe-
ten worden in een PHM/ CBM-oplossing en welke systeemgegevens geschikt zijn om op
machine learning gebaseerde modellen te trainen.





1
INTRODUCTION

1.1. RESEARCH BACKGROUND
An increasing amount of systems installed on aerospace vehicles like aircraft and satel-
lites are monitored continuously: Health related data is collected through sensors and
can be used to detect system malfunctions, anomalies or even failures. In this way, un-
expected failures can be avoided, anticipated on or, at minimum, be reacted to proac-
tively at occurrence. In case of aircraft systems such information can be used to schedule
maintenance and prevent the failure from happening. For satellite systems the benefit of
system health monitoring lies in a better understanding of failure rates, a more accurate
reliability and availability assessment and, in some cases, even a maintenance action
conducted from the operational center on ground.

So, using system monitoring data for maintenance or a system health assessment has
substantial benefits. The question now is: How can system data be translated into a
useful health assessment or even failure prediction? There certainly is not merely one
correct answer to this question. It also entails many more questions, such as the ques-
tion of what "useful" means in this context. In the past years, a vast amount of literature
has been published on data-driven solutions for system health assessment and remain-
ing useful life predictions (Zio, 2022). Data-driven approaches make use of such con-
dition monitoring data to assess system health or estimate remaining useful life (Kan
et al., 2015) either by statistical methods or by artificial intelligence methodologies (An
et al., 2015; Peng, Dong, et al., 2010). However, as we later on establish in more detail,
most of the published studies are conducted using simulated data sets. There is not
much literature available dealing with and digging into the challenges of using real-life
aerospace system-related data sets. A shortcoming, which can partly be attributed to
the lack of publicly available real-life data sets. Applying existing data-driven models or
frameworks, which have been tested on simulated data sets, to real-life aerospace sys-
tems comes with challenges. The resulting models are, in many cases, worse performing
due to a loss of accuracy. In some cases, this issue can be solved by applying more ad-
vanced model tuning techniques. However, more often it has nothing to do with the
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models themselves, but instead can be linked back to underlying system data, to data
quality or to system failure behaviour. Therefore, we argue that the better question to
ask is: How can we tell whether system data is suitable for a useful health assessment or
failure predictions? Before we look in further detail into how we will address this, we give
an overview over existing data-driven solutions used for real-life aerospace systems and
how they are translated to further actions, such as maintenance tasks.

Today, most airlines and maintenance providers, such as Maintenance, repair and over-
haul providers (MROs), still apply traditional maintenance approaches and maintain
their systems in a preventive or corrective way (Gerdes et al., 2016). In preventive main-
tenance, systems are checked at regular time intervals. Those intervals are pre-determined
with simple statistical models developed using historical data. Preventive maintenance
has two disadvantages, however: First, it can affect aircraft safety when underlying mod-
els fall short of detecting degradation or failures due to the fact that they do not receive
information about the actual system health. Second, it can lead to still healthy or only
slightly degraded systems being replaced (M. Scott et al., 2022). Corrective maintenance
refers to systems operated in a run-to-failure way. A redundancy is created, and sys-
tems are only repaired after they fail. However, corrective maintenance can lead to un-
expected aircraft-on-ground events and thereby cause delays.

In order to provide a solution to those downsides of classical maintenance, the concept
of Condition-Based Maintenance (CBM) was introduced (Broer et al., 2022; Montero
Jimenez et al., 2020; Peng, Liu, et al., 2010). The main principle of CBM is to collect
system-related health data through condition monitoring and recommend according
maintenance actions (Jardine et al., 2006). It has the capability to improve reliability,
safety, and availability while reducing the life-cycle operational costs of components (J.
Zhang et al., 2018). To standardize the implementation of CBM systems, the Open Sys-
tem Architecture (OSA)-CBM standard framework was developed in 2001 by an industry-
led team consisting of members such as Boeing, Rockwell Automation, or Oceana Sen-
sor Technologies (Swearingen et al., 2007). According to the framework, a CBM strategy
consists of the following steps:

1. Data Acquisition

2. Data Manipulation

3. State Detection

4. Health Assessment

5. Prognostics

6. Advisory Generation

In the first three steps, condition monitoring data is collected, processed, and used to
build models that identify abnormal behavior. Steps 4 to 6 combine the monitored data
with methodologies to assess components’ health, predict the future health state and
make maintenance decisions based on the results. Both diagnostics and prognostics
play an important part in CBM. Diagnostics detect, isolate, and identify faults, while
prognostics attempt to predict failures before they occur (Jardine et al., 2006).
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As can be seen in the OSA-CBM framework, CBM starts with the step of data acquisi-
tion. This step is crucial as the key requirement for data-driven algorithm development
is the availability of data of sufficient quality characterizing system behavior in all phases
of normal and faulty operation (Elattar et al., 2016). Data availability is a requirement
that, for many applications, cannot or is not sufficiently fulfilled. Frequently it is dis-
covered that the collected data is inaccurate, incomplete, or redundant (Y. Chen et al.,
2013). While much literature exists on developing diagnostic and prognostic solutions,
a much smaller number of authors focuses on the data suitability aspect (Coble, 2010).
The literature that exists on data suitability aspects in a CBM framework typically focuses
on analyzing the data and trends within the data themselves. The problem with such
an approach is that most of the existing data-driven diagnostic and prognostic mod-
els are based on machine learning techniques, and it is usually not clear beforehand
(and for some even not after applying the algorithm) which features should be used
to train the models (Y. Liu & Goebel, 2018). In addition, time is needed to set up data
pipelines, enable continuous data collection and monitoring, develop and test data pre-
processing tools, define straightforward or combined features and develop and adapt
machine learning models. All of this, most of the times, happens without knowing if it is
even worth the effort.

The second development in the field of diagnostics and prognostics is as follows: The
main focus in the past years has been on developing more advanced and more accu-
rate models and algorithms. Standard data sets are often used as these enable com-
parative evaluation of multiple models, which make the approaches application- and
system-specific (Lewis & Groth, 2022a). Therefore, most existing diagnostic or prognos-
tic models are system specific and their translation towards application in aerospace sys-
tems is lacking. As a consequence, especially for aerospace systems, the system-related
data is still often not explored to its full extent and, in many cases, only after a fault,
anomaly or failure occurred (Yang et al., 2021). If data is used during operations, then
often simple methodologies are applied, such as the out-of-limits (OOL) method, which
compares monitored satellite telemetry data with a manually pre-defined threshold (Xu
et al., 2023).

1.2. RESEARCH MOTIVATION
Consider, for example, an airline operating different types of aircraft and aiming to intro-
duce diagnostics and prognostics on a broad basis. Now, in recent years, the following
developments could be seen in diagnostics and prognostics: First, typically, data-driven
models are developed on and tailored to specific data sets- often simulated open source
data sets, which are publicly available (Coble, 2010). To return back to the example: If
the airline CEO has heard of those developments and now has an interest to make use of
diagnostic and prognostic solutions for airline maintenance, she or he might approach
the data scientists with this suggestion. The data scientists of the airline, however, are
aware of the following: Each aircraft can be considered a complex system with multiple
subsystems and components. A dedicated diagnostic and prognostic model is needed
for each of these subsystems or components. Each of those models needs to be devel-
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oped, tested, and validated. The costs and time required for such an undertaking are
high, especially when considering the scale of the problem. Multiple models are needed
for complex systems with a multi-level hierarchy and system dependencies. What would
be more desirable is a generic prognostic framework that chooses the most accurate di-
agnostic or prognostic approach from a set of algorithms given component data.

For this purpose, data suitability studies and methodologies have been developed. As
highlighted in Section 1.1, data-driven diagnostic and prognostic approaches rely on
data covering all phases of normal and faulty operations as well as degradation scenarios
under certain operating conditions (Elattar et al., 2016). Not only is such data necessary
for model development, but also, as (Jia et al., 2022) points out: Underlying system data
and its quality have a major impact on the performance of data-driven diagnostic and
prognostic solutions. (Coble & Wesley Hines, 2009) state that defining a suitable, accu-
rate health index, which can be a measure of system degradation, is key to successfully
applying prognostics within CBM. An optimization approach is presented to develop
a prognostic model based on prognostic parameter suitability metrics. (Y. Chen et al.,
2013) suggest a method to evaluate data quality before the modeling by clustering the
data into different system conditions. (Omri et al., 2021) propose a set of data quality
requirements, especially for step 4 in a CBM framework, the health assessment and fault
detection. They propose a ’detectability’ metric to assess the suitability of data for fault
detection.

A limitation of existing data suitability assessments is that they are often done apart from
the actual implementation of data-driven approaches for diagnostics or prognostics. In
previous papers, statistical methodologies and pre-defined metrics, depending on the
underlying trends in data, are used to assess the data quality. However, Artificial intelli-
gence (AI) based methodologies are in some cases able to detect failures even though the
underlying data degradation is not visible or statistically traceable (Braglia et al., 2012).
In addition, the quality of the AI models is often influenced by steps taken before the
implementation of the actual technique, such as data pre-processing or feature engi-
neering (Lecun et al., 2015). Therefore, diagnostic and prognostic techniques should be
integrated into a proper assessment of the suitability of system data in a CBM frame-
work.

When observing the existing literature, we identify two gaps:

1. Data suitability approaches presented in the literature are often focused on the
data rather than on the data within a CBM framework.

2. Existing approaches are often tailored to specific systems.

To fill those gaps, what we suggest in this thesis is an integrated framework to assess the
data suitability and aspects such as the ability to apply diagnostic and prognostic ap-
proaches to systems based on underlying data. Note that we refer to it as "diagnostic"
and prognostic framework, while in fact regarding diagnostics it only covers the aspect
of anomaly detection. Diagnostics, as (Jardine et al., 2006) point out, covers a number
of steps, fault detection as it is addressed through anomaly detection being one of the
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most important ones. With this perspective in mind, in the following we keep referring
to it as "diagnostics" framework. In addition to providing a data suitability assessment,
the framework is generic, can be adapted to various systems and provides guidelines for
choosing diagnostic or prognostic methodologies. It outputs good-performing anomaly
detection models, respectively remaining useful life estimating models and gives an in-
dication of which techniques to use given a specific dataset. Multiple metrics for the
performance assessment of the models are implemented to make the framework more
robust. With this one of the challenges of applying anomaly detection and prognostic
methodologies in real practice of complex systems is addressed.

1.3. RESEARCH AIM

1.3.1. RESEARCH QUESTION

This thesis fills the in Section 1.2 presented gaps: It presents a way to assess the quality
of system data for the development of diagnostic or prognostic models and a way to pro-
vide diagnostic or prognostic methodology choices based on the system data. The main
research question asked in the thesis is as follows:

How can system data be used to assess the application of diagnostic and prognostic
methodologies for failure detection and prediction?

1.3.2. RESEARCH SCOPE

To answer the above research question is a challenging undertaking, especially when
considering the vast amount of machine learning and deep learning algorithms avail-
able, as well as the fact that systems are operated differently in various conditions and
in varying environments. All those factors influence how to approach the task of CBM,
of detecting/ predicting system failures. No two systems are exactly the same and so far,
we did not even mention all the challenges connected to data quality, data collection,
sensors and data storage. In other words- we cannot provide a one size fits all model for
diagnostics or prognostics; there is no free lunch. However, it might be worth to at least
have cheaper supper (Calikus et al., 2020) - especially when faced with the task of doing
a first diagnostic or prognostic assessment for a range of systems and make decisions for
further model development based on such an assessment. This could help with deciding
where to put further resources in the investigation of diagnostic or prognostic solutions.

What could such a "cheaper supper" look like? In order to provide a diagnostic and prog-
nostic assessment based on system data, such a solution would need to entail both a
range of representative diagnostic as well as prognostic data-driven techniques. What is
more, diagnostic and prognostic approaches consist of several steps and for each of the
steps a range of methods are available. An example for such a step is data manipulation
(see Section 1.1) - as well as other steps included in the previously presented OSA-CBM
framework. When developing a model, depending on the underlying algorithm, it might
be beneficial to use several of those methods, while omitting others. Therefore, in addi-
tion to including a range of diagnostic and prognostic methods, a set of techniques for
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each of the steps included in the design of a diagnostic or prognostic model needs to be
contained in such a solution.

When considering the above indicated complexity of designing a generic diagnostic or
prognostic solution, it becomes clear that we cannot design a truly "generic" framework.
To make this clearer, consider the following: (Nassif et al., 2021) who summarized what
they found in reviewing 290 research articles on machine learning for anomaly detec-
tion (which is only a part of diagnostics) from the years 2000 to 2020, found 28 different
machine learning methods and 21 different methodologies for feature selection/ extrac-
tion. Similarly, (Zio, 2022) in a recent literature review on prognostics and health man-
agement identified 16 different types of machine learning techniques for fault detection
and 15 different diagnostics and prognostics algorithms. Considering those numbers
and considering the possibility to combine algorithms, which multiplies the numbers,
shows the scale of the problem. The number of methods that could be included in a
generic solution is considerable and when taking into account the additional steps that
can be taken to arrive at diagnostics or prognostics models, it even increases. It seems
like a big undertaking to provide a "generic" assessment for diagnostics or prognostics.
However, it also can be considered a valuable undertaking, especially when the goal is to
arrive at a first assessment rather than a fully developed accurate model.

In order to provide such a solution, a generic diagnostic and prognostic framework with
the capability to select optimal diagnostic and prognostic settings is developed in this
thesis. We start by setting a scope, defining according requirements for such a frame-
work and develop it over the next chapters. A framework with the capability to diagnose
or prognose systems based on system data is presented. It provides a data suitability
evaluation for developing diagnostic and prognostic models within a CBM strategy. In
other words, the framework is used to link diagnostic and prognostic approaches back
to the question of data suitability. It is tested on both aircraft and satellite system data
and validated on a simulated data set.

1.3.3. CONTRIBUTION
The main contributions of the thesis are as follows:

• A set of requirements for a generic diagnostic and prognostic framework is sys-
tematically derived and presented.

• A generic diagnostic and prognostic framework is developed within the set scope
and based on the defined requirements.

• The framework is adapted and used on various system data. This includes simu-
lated and real data, fault-related and component run-to-failure data, and satellite
and aircraft systems case studies.

• The resulting outcomes are compared, and the value and limitations of the gen-
eralizability of the framework are highlighted. This gives further insight into the
challenges of diagnostic and prognostic methodologies, especially when applying
them to real system data.
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• A system data suitability assessment is presented based on the generic framework
and tested on real-life aircraft data sets.

1.4. THESIS OUTLINE
The aim of the thesis is to provide a way to use system data to assess the applicability
of diagnostic and prognostic methodologies for failure detection and prediction. From
the main research question (RQ), the following sub-questions are derived: Main RQ:
How can system data be used to assess the application of diagnostic and prognostic
methodologies for failure detection and prediction?

• RQ 2: What are the requirements for a generic diagnostic and prognostic frame-
work that is applicable to different components in various applications?

• RQ 3: In what way can diagnostic methodologies be integrated into such an
adaptive framework that, when applied to given system data, provides a diag-
nostic assessment?

• RQ 4: How can prognostic methodologies estimating a system’s remaining use-
ful life be integrated into such an adaptive framework that, when applied to
given system data, it provides an assessment of the prognosability?

• RQ 5: How can the quality of prognostics on a system be evaluated within a CBM
strategy?

This is addressed in two main parts as visualized in Figure 1.1: In Part 1, a generic di-
agnostic and prognostic framework is developed and implemented in case studies on
aircraft and satellite systems. In Part 2, the framework is used to assess the ability to di-
agnose or prognose systems based on the underlying system data. The implementation
of such a generic diagnostic and prognostic framework is approached from a systems en-
gineering perspective based on ideas presented by (Li, Verhagen, et al., 2020) to address
RQ 2. In Chapter 3, a generic diagnostic framework is developed and tested in a satellite
system case study to answer RQ 3. Based on RQ 4, the framework is then extended in
Chapter 4 to assess the ability to prognose systems and applied to an aircraft case study.

Using diagnostic and prognostic approaches in a CBM context requires a proper assess-
ment of the quality of predictions (Zio, 2022). This thesis also uses this quality assess-
ment to quantify the suitability of system data for diagnostics and prognostics. For this
purpose, diagnostic and prognostic metrics are used. A particular focus is put on the
assessment of prognostics. An effort to standardize prognostic metrics has been made
by (Saxena, Goebel, et al., 2008b), (Saxena et al., 2010). An overview of existing met-
rics to evaluate prognostic performance is presented in (Ochella & Shafiee, 2021). The
authors point out that prognostic metrics should capture three aspects of predictions:
accuracy, precision, and timeliness. In this thesis, together with the generic diagnostic
and prognostic framework, we attempt to link identified metrics capturing all three as-
pects, accuracy, precision, and timeliness, back to the data quality, which is addressed
in Chapter 5 through RQ 5. Finally, the conclusion and a summary of the findings are
presented in Chapter 6.
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Figure 1.1: Thesis outline and reading flow



2
REQUIREMENTS FOR A GENERIC

FRAMEWORK FOR DIAGNOSTICS

AND PROGNOSTICS

There are two main aspects of the diagnostic and prognostic framework presented in this
thesis: First, it provides a guideline towards the choice of diagnostic and prognostic algo-
rithms for complex systems. Second, it assesses whether system data is suitable for data-
driven diagnostic and prognostic approaches. In this chapter the requirements for such a
framework are defined in a systematic way using system engineering methodologies.

9
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2.1. INTRODUCTION

A variety of mechanical and electrical systems in aerospace are constantly monitored by
numerous sensors and system telemetry data is collected continuously. Within a Prog-
nostics and Health Management (PHM) or CBM framework such data can be used for
diagnostics or prognostics (M. J. Scott et al., 2022). Diagnostics aim at using data-driven
methods to detect failures or anomalies in systems and prognostics aim at predicting
such instances before they occur (Swearingen et al., 2007).

When designing and developing data-driven diagnostic or prognostic models, choices
have to be made, e.g. regarding suiting algorithms or data pre-processing methods.
Those decisions, however, require expertise and time. Since the quality of resulting mod-
els depends on those choices, this is a crucial step in the development of diagnostics or
prognostics solutions. Consider the example of a satellite, which consists of many sub-
systems. As highlighted in Chapter ??, developing diagnostic or prognostic models for
each of those subsystems in this way would therefore not only be costly but also time
intensive. Furthermore, in some cases it results in models not able to predict or even
detect failures or anomalies due to a lack of training data or low data quality.

Therefore, what would help is a framework that automatically creates diagnostic and
prognostic models, given system data, and thereby provides both- a data suitability as-
sessment and guidance in further development. However, such a framework is difficult
to design, due to several reasons, such as systems exhibiting different failure behaviour,
having multiple failure modes, acting differently in various operating conditions and
failure data capturing the entire range of failure behaviour being scarce or not available
at all. All in all, the development of data-driven diagnostic and prognostic systems is a
difficult undertaking.

So, before we dive into the challenging task of designing such a diagnostic and prognos-
tic framework, we approach this from a systems engineering perspective in a systematic
way and come up with a set of underlying functional requirements for such a frame-
work. We therefore, starting from our identified need, provide a systems engineering
based definition of requirements for a generic diagnostic and prognostic framework for
specific stakeholders. The question we ask ourselves is: How can the development of a
generic diagnostic and prognostic framework that can be used for a first data suitabil-
ity assessment be approached in a systematic way? In order to understand this, we first
identify a list of stakeholders and define in what environment and by which stakeholders
such a framework would be used, before we move to the definition of functional require-
ments.

The remainder of this chapter is structured as follows: Section 2.2 presents the current
state of the art, in Section 2.3 we present the methodology and in Section 2.4 the stake-
holders and the functional requirements are defined. The resulting requirements are
discussed and further directions for research are indicated in Section 2.5. Finally, we
conclude our findings in Section 2.6.
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2.2. LITERATURE REVIEW AND BACKGROUND

In the following we give an overview over existing literature on diagnostic and prognos-
tics within the PHM context in Section 2.2.1 and introduce publications in this field pro-
viding a systems engineering approach towards the design of diagnostic and prognostic
frameworks in Section 2.2.2.

2.2.1. DIAGNOSTICS AND PROGNOSTICS IN THE PHM CONTEXT

PHM and CBM aims at utilizing system data to automatically detect and predict sys-
tem failures and plan according maintenance actions (Swearingen et al., 2007). There
are multiple steps in a typical PHM approach, such as data acquisition or data manip-
ulation, but the two steps we focus on in this work are diagnostics and prognostics. In
a PHM approach, system’s health is monitored through sensors continuously and the
collected information are processed by algorithms to perform diagnostics and prognos-
tics. While diagnostics aim at detecting failures, prognostics deal with predicting failures
(Peng, Dong, et al., 2010; J. Zhang et al., 2018). Data-driven diagnostic and prognostic
methods can further be split into statistical and AI-based methods. Mainly due to ma-
jor advances that were made in the past year in the field of AI in general, especially AI-
based methodologies have grown more popular recently and many studies have been
conducted regarding those. Several literature reviews on such methodologies applied in
PHM exist (Diez-Olivan et al., 2019; Elattar et al., 2016; M. J. Scott et al., 2022; J. Zhang
et al., 2018).

2.2.2. A SYSTEMS ENGINEERING PERSPECTIVE ON THE DESIGN OF A GENERIC

DIAGNOSTIC AND PROGNOSTIC FRAMEWORK

A coherent and thorough overview over the basic principles of Systems engineering (SE)
can be found in (Blanchard et al., 1990). In the following, we give an overview over exist-
ing literature on applying those principles to determine requirements or some form of
standardization for PHM approaches.

An early effort of coming up with requirements for a PHM system has been made by
(Brown et al., 2007). The authors highlight and point out the challenges and efforts of
applying PHM to the Joint Strike Fighter (JSF) and mention how they translate underly-
ing requirements into the development of PHM solutions. (Saxena et al., 2012) provide
requirements for prognostic algorithmic performance of PHM systems. They argue that
requirements towards prognostic performance can be retrieved from high level func-
tional requirements limitations and demonstrate their findings in an example. Their
focus lies on prognostic algorithms and specifically the evaluation of prognostic models
within a PHM system. A set of data quality requirements for PHM applications, espe-
cially for fault detection is provided by (Omri et al., 2021). (Li, Verhagen, et al., 2020a,
2020b) provide a systematic PHM architecture design methodology. A thorough defini-
tion of requirements for a PHM system is given and the principles of systems engineering
are used to provide guidelines for how to systematically design a PHM system.
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Figure 2.1: Systems engineering: From a need towards requirement definition

2.3. METHOD
We make use of basic principles of SE as explained in more detail in the following sec-
tions and shown in Figure 2.1.

2.3.1. NEED/ MISSION OBJECTIVE

In systems engineering the so-called ’Conceptual Design’ is the first phase of the system
design and development process (Blanchard et al., 1990). The idea is to determine the
function, form, cost and development schedule of a system. The starting point for this
phase is the identification of a need or mission objective.

2.3.2. STAKEHOLDERS

A stakeholder "is a group or individuals that is affected by or has a stake in the prod-
uct or project" (“NASA Systems Engineering Handbook Rev. 2.”, 2018). It is important
to consider stakeholders in the concept design phase of systems engineering as their
expectations and needs are influencing and should be reflected in the system require-
ments.

According to (Viscio et al., 2015) stakeholders can be categorized in the following five
categories:

• Sponsors, who define the mission statement, fix bounds on schedule and fees,

• operators, who are in charge of controlling space and ground assets,

• end-users, i.e. people/ entities that receive mission products and capabilities,

• customers, who pay fees to utilize a specific mission’s product or service and

• developers, who are those who develop the product based on the mission state-
ment.
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2.3.3. FUNCTIONAL ANALYSIS
In a SE approach, one major way to elicit and define requirements is through the appli-
cation of functional analysis. A ’function’ refers to a specific or discrete action (or series
of actions) that is necessary to achieve a given objective" (Blanchard et al., 1990). In the
functional analysis in an iterative way, functions are defined and translated into top-level
system requirements (see Section 2.3.4) and vice versa. The system in this step is defined
in ’functional’ terms, i.e. with respect to what functionalities it should fulfill in order to
meet the top-level requirements and especially the identified need. The question to be
asked in this step is therefore more the ’what?’ (What should the system be able to do?)
rather than the ’how?’ (How does the system achieve the required functionality?).

Usually this is done by the means of Functional Flow Block Diagram (FFBD)s. In such a
diagram all activities throughout the system life cycle are covered and the relationship
or sequences between those is reflected.

2.3.4. REQUIREMENTS DEFINITION
We approach the definition of the requirements as mentioned above through an iterative
process using Functional Analysis. Starting from the identified need, we therefore derive
a set of top-level requirements and iteratively refine those using the Functional Anal-
ysis performed. (Viscio et al., 2015) differ several categories of requirements: mission,
functional, configuration, interface, environment, operational, logistic support, perfor-
mance, design, physical and product assurance and safety related requirements. We aim
at building a tool which can be used to assess data suitability. We focus on the develop-
ment and implementation of this tool in further consequence and less the application
to specific user applications. The for this purpose relevant requirements are functional
and performance related requirements. Therefore, in this work, we will focus on those
two types of requirements.

2.4. RESULTS

2.4.1. MISSION OBJECTIVE/ NEED
As highlighted in Section 2.1, our aim is to provide a systematic (SE-based) way to design
and development a Generic diagnostic and prognostic framework (GDPF). Therefore,
the need can be formulated as follows:

Provide a framework with the capability to perform diagnostic and prognostic assess-
ment of different aerospace system data for subsequent PHM development.

2.4.2. STAKEHOLDERS
We differ between five types of stakeholders (Section 2.3.2). In our case, there are the
following stakeholders:

• Sponsors: airlines, aircraft manufacturers, satellite system designers, space agen-
cies, such as European Space Agency (ESA), private companies launching space
missions
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• Operators: maintenance engineers, who perform diagnostics and prognostics on
an ongoing basis and maintenance planners, who use the framework to plan and
schedule maintenance tasks

• End-users/ customers: airlines, Maintenance Return and Overhaul providers, satel-
lite operators

• Developers: data scientists, data analysts developing diagnostic or prognostic mod-
els, future missions departments making decisions about in which future research
to put time and money

For this purpose, the framework is developed from a developers perspective, i.e. data
scientist, data analysts or future missions and projects teams at airlines or space agen-
cies - in other words, players who make decisions about how to develop models further,
for which systems to use diagnostic or prognostic approaches and how to assess those
for further use in a PHM context. There are several reasons for this choice. First, the
developers perspective represents the first step in the development of diagnostic and
prognostic methods, before considering deployment of such or actual application for
maintenance or other activities within a PHM framework. Second, as already mentioned
above, a list of requirements or constraints is and has to be application and sometimes
even system specific and therefore would narrow down the analysis to specific systems
and applications. However, we want to provide with our research a first assessment,
which can adaptively be applied to different systems in aerospace applications.

Next, we might ask what the need of the developer, as identified stakeholder is or what
questions such a stakeholder might ask. We identified the following set of questions:

• How do we identify systems with available data suitable for diagnostics/ prognos-
tics?

• How can we get a first diagnostic/ prognostic assessment of such systems?

• Is it possible to build simple (i.e. not too complex) yet robust (i.e. reaching a min-
imum required performance for system data) models?

• How can such models be assessed, especially towards further applications within
a PHM framework?

2.4.3. REQUIREMENTS DEFINITION AND FUNCTIONAL ANALYSIS

As mentioned in Section 2.3.3, the definition of requirements and performing the func-
tional analysis is an iterative process. Since we handle it as such, we present the results
for both in a single section. First, starting from the need/ mission objective defined in
Section 2.4.1 and keeping the stakeholders, identified in Section 2.4.2, in mind, we de-
fine the top-level requirements.

There are four top level requirements as shown in Figure 2.2:
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• R1.0 Utilize aerospace time-series and telemetry data of systems: The frame-
work should be able to process time-series telemetry and sensor data related to
aerospace systems health.

• R2.0 Capability to perform diagnostics: The framework should provide the capa-
bility of outputting diagnostic models trained using the system input data.

• R3.0 Capability to perform prognostics: The framework should provide the capa-
bility of outputting prognostic models trained using the system input data.

• R4.0: Assessment for subsequent PHM use: The framework should provide as
an output metrics/ evaluation criteria that can be further used by developers to
make design decisions and understand if the data is suitable for diagnostics or
prognostics.

Figure 2.2: Top level requirements for the Generic Diagnostic and Prognostic Framework.

Figure 2.3: High-level Functional Analysis for the Generic Diagnostic and Prognostic Framework.

In Figure 2.3 the according Functional flow block diagram is shown including the high-
level functionalities the framework needs to be able to provide and perform. The colours
in the figure indicate which function relates to which top-level requirement. According
to the OSA-CBM standard framework (Swearingen et al., 2007), the main functionalities
for such a generic diagnostic and prognostic framework are as follows:

• F1.0 Load system data,

• F2.0 pre-process input data

• F3.0 build diagnostics models,
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Figure 2.4: Detailed Functional Analysis for the Generic Diagnostic and Prognostic Framework.

• F4.0 build prognostics models,

• F5.0 generate evaluation metrics and

• F6.0 assess the models for PHM use.

Figure 2.4 provides a more detailed overview over the functionalities.

Based on the top-level requirements and the identified functionalities, further require-
ments are defined. Figures 2.5, 2.6 and 2.7 show the according detailed set of require-
ments derived from top level requirements 1.0, 2.0 and 3.0 and 4.0 respectively. The
requirements 2.0 and 3.0 regarding the diagnostic and prognostic models are handled
simultaneously because they are in essence the same.

The requirements derived from top level requirement R1.0, which states the framework
should be capable of utilizing time-series and telemetry data of systems, as presented in
Figure 2.5, are as follows:

• R1.1 Capability to handle missing/incomplete or incorrect data: The framework
should include solutions to identify and pre-process missing, incomplete or incor-
rect data.

• R1.2 Capability to handle imbalanced data: The framework should be able to
handle imbalanced data, e.g. when the number of failures or anomalies in the
provided system dataset is low.

• R1.3 Capability to handle multi-variate time series data: The framework needs
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to be able to handle and pre-process time-series data containing multiple features
and variables that are continuously measured over time.

Figure 2.5: Detailed list of requirements derived from top level requirement 1.0 for the Generic Diagnostic and
Prognostic Framework.

Figure 2.6: Detailed list of requirements derived from top level requirement 2/3.0 for the Generic Diagnostic
and Prognostic Framework.

The requirements derived from top level requirement R2.0 and R3.0, related to the diag-
nostic and prognostic models are shown in Figure 2.6 and are as follows:

• R2/3.1 Capability to use provided system data as input: The framework needs to
be capable to pre-process the provided system data in a way that it can further
be used by the diagnostic and prognostic models contained in the framework. In
more detail, this includes the following sub-requirements:

– R2/3.1.1 The framework is able to handle different failure modes and operat-
ing conditions.

– R2/3.1.2 It needs to be capable to split the data in train, validation and test
set.

– R2/3.1.3 It needs to provide and include other state of the art pre-processing
solutions.

• R2/3.2 Computational pipeline: The framework needs to perform the required
functionalities in an automated way, i.e.
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– R2/3.2.1 it needs to be able to automatically load train, test and validation
data,

– R2/3.2.2 automatically train the diagnostic and prognostic models and

– R2/3.2.3 save the models and results in a standardized format, so that in a
further step the evaluation metrics can be automatically calculated and ex-
tracted.

• R2/3.3 Diagnostic/ prognostic models: The framework needs to be able to output
diagnostic/ prognostic models. This includes the following:

– R2/3.3.1 It should provide a verification and validation solution for the diag-
nostic and prognostic models.

– R2/3.3.2 It needs to be capable to identify relevant/ health related features.

– R2/3.3.3 The framework should include a range of diagnostic/ prognostic al-
gorithms reflecting the state of the art and different model types (such as ma-
chine learning based methods, or statistical algorithms).

Figure 2.7: Detailed list of requirements derived from top level requirement 4.0 for the Generic Diagnostic and
Prognostic Framework.

Finally, in Figure 2.7, the requirements derived from top level requirement R4.0, related
to the assessment within a PHM framework, are shown. They include the following:

• R4.1 Algorithmic performance: The framework needs to be able to assess the di-
agnostic and prognostic model performance in a comprehensive and suiting man-
ner.

– R4.1.1 It needs to be able to measure and output model accuracy.

– R4.1.2 It needs to be able to assess whether the predictions are produced far
enough in advance for subsequent use in PHM applications (e.g. for schedul-
ing maintenance).

– R4.1.3 The framework should measure and return the prediction uncertainty.
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• R4.2 Framework performance: The framework should meet performance require-
ments, which are mostly linked to constraints set by the stakeholder. Below we
provide an example of three such requirements.

– R4.2.1 The framework needs to run within a specified time limit.

– R4.2.2 The framework needs to be generalizable, i.e. it needs to be adaptive
(applicable to various aerospace systems), generic (include a thorough set of
methodologies) and robust (produce reliable and consistent results).

– R4.2.3 The outputs of the framework need to be interpretable to be used
within a PHM setting.

• R4.3 Assessment for the subsequent use: The framework should provide an as-
sessment of the system data with regards to whether or not they are suitable for
diagnostics or prognostics in PHM.

– R4.3.1 It therefore needs to include a thorough set of performance metrics.

– R4.3.2 It should be capable to be embedded in a PHM solution.

– R4.3.3 It should provide guidelines for further diagnostic/ prognostic model
development and deployment.

2.5. DISCUSSION AND LIMITATIONS
A set of requirements has been systematically derived and presented for a generic di-
agnostic and prognostic framework. This was done on basis of the identified need to
provide a framework to perform a diagnostic and prognostic assessment of different
aerospace system data. However, there are two main limitations we want to point out.
The first concerns the completeness of the presented requirements. As already men-
tioned in Chapter 1, the question of what a generic framework needs to include is man-
ifold and complex and often depends on factors, such as the underlying system and its
failure behaviour. It is in part due to this that we cannot guarantee a completeness of
such a framework, which translates back to the requirements: How can we, for exam-
ple, be sure that the requirements we impose upon data pre-processing methods cover
all aspects that need to be covered? This is especially true when considering that new
methods, techniques and ways to perform tasks (such as data pre-processing) are intro-
duced and further developed over time. The second concerns the validation of the set
of requirements. In order to validate requirements in a systems engineering setting, one
needs to ensure three points: First that the set of requirements is consistent. Second that
a practical system can be built that satisfies the requirements and third that it is possible
to prove that the system satisfies the requirements. As to the second and third point, we
will come back to those in Chapter 6 and validate the requirements based on the devel-
oped framework. However, we did not perform a consistency check of the requirements,
which should be the next step in its validation. Despite those two limitations, the list of
requirements is as complete as possible and can provide guidance in the development
of a generic framework for diagnostics and prognostics.
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2.6. CONCLUSION
While existing data-driven prognostic and diagnostic solutions yield promising results, it
takes time and expertise to tune them to a specific system dataset. A generic framework
to perform this task automatically is needed to provide a quick diagnostic and prognostic
assessment. In this chapter, we approach the development of such a generic diagnostic
and prognostic framework in a systematic way and use system engineering methodolo-
gies for this purpose. We define a need statement, identify possible stakeholders and
based on those perform a functional analysis to define requirements. This work can be
used as a formal baseline for the further development and implementation of a frame-
work that takes as an input system data and outputs a diagnostic and prognostic assess-
ment for the provided input data.



3
A GENERIC FRAMEWORK FOR

DIAGNOSTICS OF COMPLEX

SYSTEMS

Based on the requirements defined in the previous chapter, in this chapter we introduce a
generic framework for diagnostics. In addition to diagnostic techniques, it also includes
methodologies for data pre-processing and feature engineering. This framework is applied
in two case studies. First, the performance of the framework is benchmarked against ex-
isting approaches by applying it to an open source dataset. Second, it is used to detect
satellite system anomalies. Thereby an initial verification and validation of the frame-
work is performed, with particular attention towards its generalizability. Furthermore,
the framework not only proves to be helpful in the choice of diagnostic methodologies, but
also shows the challenges with using real world data for data-driven diagnostics.

This chapter is based on on the publication: Bieber, Marie, Verhagen, Wim JC, Cosson, Fabrice, and Santos,
Bruno F . "Generic Diagnostic Framework for Anomaly Detection—Application in Satellite and Spacecraft Sys-
tems." Aerospace 10(8), (2023): 673. (Bieber et al., 2023).
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3.1. INTRODUCTION
Spacecraft consist of many complex systems, with each system’s functional and opera-
tional availability contributing to the overall spacecraft availability. Failures and faults of
a single system can lead to major operational interruptions and substantial costs. There-
fore, spacecraft operators go to great lengths to ensure the high reliability of all systems
and subsystems (J. Chen et al., 2021). Currently, reliability and availability calculations
of most systems are based on historical data and statistical analysis (Fuertes et al., 2016).
While spacecraft systems are equipped with sensors recording telemetry and system be-
haviour in regular time intervals, the vast amount of available data is still not fully ex-
plored (Hundman et al., 2018). However, together with operational and technical system
data, such sensor data can be used to detect, diagnose and predict faults and failures and
plan according to actions.

Fault or anomaly detection is typically seen as the first major step in prognostics and
health management (PHM). It aims at identifying data deviating from what is considered
normal, expected or likely behaviour (Zio, 2022). Several anomaly detection approaches
exist, ranging from statistics or signal processing techniques to machine learning (Ba-
sora et al., 2019). As mentioned above, most existing approaches for spacecraft rely on
statistical models. However, as Zeng et al. (Zeng et al., 2022) point out, statistical models
for anomaly detection rely on historical data, which makes them inflexible towards new
failure modes or change(s) in operating conditions, leading to thresholds often not being
exceeded and is associated with time-consuming development. Furthermore, faults oc-
cur randomly for some systems, and failure modes are diverse. Therefore it can be chal-
lenging to collect sufficient historical data representing all types of faults (Z. Chen et al.,
2023). With this in mind, machine learning models have gained popularity over the past
few years and have been widely developed for anomaly detection in other engineering
applications. For example, Shao et al. (Shao et al., 2023) developed an unsupervised ma-
chine learning-based anomaly detection approach for application to wind turbines. An
online adaptive transfer learning model for unsupervised anomaly detection for steam
turbines is presented by Chen et al. (Z. Chen et al., 2023).

Over the past years, especially fuelled by the increased number of small satellites (cube-
sat) launches, there has been an increase in published research on telemetry data and
its usage for anomaly detection for satellite systems. Chen et al. (J. Chen et al., 2021)
present a real-time onboard satellite anomaly detection system based on Bayesian neu-
ral networks, which characterise uncertainty and re-evaluate samples with high uncer-
tainty. Hundman et al. (Hundman et al., 2018) achieve high performance for spacecraft
anomaly detection with an LSTM network mainly due to their non-parametric, dynamic
and unsupervised technique to set the threshold. An anomaly detection approach con-
sidering parameter interactions is suggested in (Zeng et al., 2022). The drawback of those
anomaly detection approaches as well as the ones presented in the previous paragraph
for other applications, is that they aim for more complexity in algorithms instead of try-
ing to find out which methods work best for the underlying data or simply understanding
if the data is suitable for anomaly detection at all. In other words, a fundamental under-
lying assumption is present regarding anomalies and the associated data’s suitability for
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anomaly detection approaches. This assumption is not necessarily true: it can, for ex-
ample, be the case that failures occur suddenly or there are so many failure modes and
operational conditions to consider that much more data would be required to train ma-
chine learning models. In addition, it could also be the case that available data does not
capture degradation, for instance, because the sensor properties do not represent the
underlying physical degradation process.

Therefore, as Fink et al. (Fink et al., 2020) point out in their article addressing challenges
and future directions for deep learning in PHM applications, what is needed are anomaly
detection approaches which are both applicable and adaptable to different systems and
failures. Such a framework is presented in this paper: The Generic Diagnostic Frame-
work (GDF) takes as input system data and outputs the optimal combination of data pre-
processing and anomaly detection methods as expressed in terms of predefined metrics.
It thereby provides a quick diagnostic assessment for the underlying system and, at the
same time, gives an indication of which AI-based methods are worth pursuing further (if
applicable).

There are two things worth noting regarding the in this paper presented framework:
First, it is referred to as "diagnostic" framework, while in fact it is a "Generic Anomaly
Detection Framework". Diagnostics, as Jardin et al. (Jardine et al., 2006) point out, in-
corporates the steps of fault detection, isolation and identification. Anomaly detection
only deals with a part of it, namely fault detection. The purpose of the framework, how-
ever, is to be adaptive and it can easily be extended incorporating multiple more meth-
ods also for fault isolation and identification. Therefore, we will continue to refer to it
as "Generic Diagnostic Framework" in the remainder of the paper. Second, we claim
it to be "generic". When considering the scale of the problem, the amount of machine
learning methods available and challenges, such as those related to using real-life data,
it becomes clear that such a framework can never truly be "generic". In recent reviews
on machine learning methods for anomaly detection, the scale of the problem becomes
clear: Choi et al. (Choi et al., 2021) who focus on deep learning methods only, for ex-
ample, list 27 methods in total. Nassif et al. (Nassif et al., 2021) who summarized what
they found by looking at 290 research articles on machine learning from the years 2000
to 2020, found 28 different machine learning methods and 21 different methodologies
for feature selection/ extraction. And Zio (Zio, 2022) lists 16 methods only for the step of
fault detection, just to give a few examples. However, the purpose of the framework is to
provide a quick assessment and further guidance for the development and employment
of diagnostic methods based on system data. Furthermore, as demonstrated in three
case studies, it is generic in the sense that it is capeable of taking into account different
systems and can be adapted quickly.

We pursue the following three objectives: First, to provide an adaptive framework which
outputs good-performing anomaly detection models and gives an indication of which
techniques to use given a specific dataset. Second, to make the framework robust by
including multiple metrics for the performance assessment of the anomaly detection
models. Third, to improve the anomaly detection models further by including thresh-
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olding methodologies. Our contributions can be summarised as follows:

• A robust and adaptive framework for automatically creating anomaly detection
models is presented.

• The framework is applied in three case studies, including benchmark datasets for
satellite and spacecraft systems and a real-life satellite dataset provided by the Eu-
ropean Space Agency (ESA).

The remainder of the paper is structured as follows: Section 3.2 gives an overview of
existing literature on anomaly detection with a special focus on space applications and
generic methods. In Section 3.3, the generic diagnostic framework is introduced. Section
3.4 presents the conducted case studies and the discussion, and Section 3.5 summarises
the main findings and indicates directions for further research.

3.2. LITERATURE REVIEW AND BACKGROUND
In the following, we present a general overview over literature on anomaly detection in
Section 3.2.1, provide an introduction into adaptive anomaly detection methods in Sec-
tion 3.2.2 and finally focus on advances for adaptive anomaly detection methods applied
to space applications in Section 3.2.3.

3.2.1. ANOMALY DETECTION
Anomaly detection has been studied widely and finds application areas in many do-
mains. The term ’anomaly detection’ or ’outlier detection’ refers to finding data patterns
that are not aligned or do not conform to expected behaviour (Nassif et al., 2021). (Chan-
dola et al., 2007) differ three types of anomalies:

• point anomalies, which are punctual occurrences of anomalous data with respect
to the remaining data,

• contextual anomalies, which are instances that show anomalous behaviour in a
specific context, e.g. instances with relatively larger/smaller values in their context
but not globally and

• collective anomalies are anomalies consisting of a set of related data instances
(e.g., occurring at a specific time range) that are anomalous with respect to the
entire data set.

TAXONOMY OF ANOMALY DETECTION METHODS

Data-driven anomaly detection techniques can be classified into statistical and AI-based
methods. As pointed out in Section 3.1, in this study, we focus on AI-based methods, in
particular machine-learning (ML) methods. Recent reviews, such as (Choi et al., 2021;
Khan et al., 2021; Nassif et al., 2021), provide an overview of such techniques. (Basora
et al., 2019) provide a comprehensive summary of advances in anomaly detection ap-
plied to aviation. Based on (Basora et al., 2019), we classify AI-based anomaly detection
techniques in four categories, as shown in Figure 3.1:
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Figure 3.1: Taxonomy of AI-based anomaly detection methodologies. The methods marked in green are the
ones included in the Generic Diagnostic Framework.

• proximity-based methods, which rely on the definition of a distance/ similarity
function between two data instances,

• ensemble-based methods, which use ensembles of AI algorithms for anomaly de-
tection,

• domain-based methods, which define boundaries or domains to separate normal
data from anomalies and

• reconstruction-based methods, which embed data in a lower dimension to sepa-
rate normal instances from anomalous ones.

THRESHOLDING

The outputs of anomaly detection techniques are scores and labels as defined in (Chan-
dola et al., 2007). Scores are assigned to each instance, depending on whether it is an
anomaly. Thus, scores can be viewed as a ranked list of anomalies. Those scores are, in
further instances, used to assign labels to each data instance. Labels are binary values
and simply classify a data instance as normal or anomalous. In order to calculate labels
using the scores, thresholding techniques are used. Setting an appropriate threshold in-
fluences the quality of an anomaly detection model and is always a trade-off (Basora et
al., 2021a; Choi et al., 2021). If it is set too high, anomalies will be missed, and if it is
set too low, the rate of false positives will become high. Typically used methodologies
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for thresholding are Area Under Curve Percentage (AUCP) (Ren et al., 2019), Median Ab-
solute Deviation (MAD) (N. & Pawar, 2015), Modified Thompson Tau Test (MTT) (Ren-
gasamy et al., 2021), Variational Autoencoders (VAE) (Xiao et al., 2020), Z-Score (Bagdon-
avičius & Petkevičius, 2020) or Clustering based techniques (Klawonn & Rehm, 2011).

3.2.2. ADAPTIVE ANOMALY DETECTION METHODS

We claimed in Section 3.1 that in many cases, the techniques presented in the literature
are tuned to specific applications or even datasets. Still, there have been some efforts
in the past to create more generic methods. (C. Zhao & Shen, 2022) present an adap-
tive open set domain generalisation network using local class cluster-based representa-
tion learning and class-wide decision boundary-based outlier detection. In (Alam et al.,
2019), a simple yet robust way to detect anomalies in arbitrary time series by detect-
ing seasonal patterns and identifying critical anomaly thresholds is presented. A meta-
framework to create unsupervised anomaly detectors is introduced by (Calikus et al.,
2020). The output is a suitable anomaly detection model of temporal streaming data.
Several methods for anomaly detection are included, however, not all proved to be re-
silient against noise and different anomaly types in the data. In addition, several papers
have been published guiding or even enabling automatic machine learning model devel-
opment. (Akiba et al., 2019), for example, present an open-source solution for automatic
hyperparameter selection. Such tools are powerful and provide easily adaptive solutions
for machine learning model development. However, they are very generic and in order
to adapt them to specific applications choices have to be made with regards to machine
learning or feature engineering methods.

3.2.3. ADAPTIVE ANOMALY DETECTION METHODS FOR SPACE APPLICATIONS

Efforts to develop more adaptive anomaly detection models for spacecraft systems us-
ing telemetry data have been made, for example, at the German Space Operation Center
(GSOC). A statistical-based anomaly detection approach, called "automated telemetry
health monitoring system" (ATHMoS), is presented in (O’meara et al., 2016). The authors
explored the application of deep neural networks within ATHMoS in (O’meara et al.,
2018). An autoencoder was applied for automatic feature extraction, and a Long short-
term memory (LSTM)-Recurrent Neural Network (RNN) structure was used for anomaly
detection. The authors found, however, that due to the complexity of the methods and
the black-box nature of the outputs, such approaches are challenging to apply to satellite
telemetry data, especially when trying to link the output to the raw sensor signal. For this
purpose one could make use of existing techniques in other domains. For example, a vi-
sual representation technique linking the output of Bayesian Recurrent Neural Networks
back to input signals to identify faults is presented in (Sun et al., 2019). (Freeman et al.,
2022) provide guidelines on choosing anomaly detection methods based on character-
istics in time series (such as seasonality, trend or missing time steps). Several anomaly
detection methods are compared, and current challenges of anomaly detection meth-
ods for time series are provided. What the above-presented methods have in common,
though, is that they tend to focus on the data rather than on the more complex dynamics
of using the data within a PHM framework.
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Table 3.1: Confusion Matrix

3.3. METHODOLOGY

Using machine learning methods for anomaly detection, we aim to understand if sys-
tem data is suitable for anomaly detection in the first place. For this purpose, we make
use of a Generic diagnostic framework (GDF), which is an extension of the Generic Prog-
nostic Framework presented in (Bieber & Verhagen, 2022). While the underlying idea
and concept remain the same, we extend the framework to include anomaly detection
methods. The basic idea is that taking system data as an input, the framework optimises
the choice of data pre-processing techniques in combination with anomaly detection
and thresholding methods simultaneously. The details of this process are explained in
Section 3.3.2. Such an optimisation relies heavily on the choice of suitable metrics. We
argue that using a single metric for our purpose is insufficient since a single metric can-
not capture the quality of a resulting machine learning model to a full extent. This is
explained in more detail in Section 3.3.1.

3.3.1. METRICS FOR ANOMALY DETECTION

The anomaly detection problem is a classification problem in ML. Classification prob-
lems output binary values, and therefore, each resulting prediction can be one of the
four: A true positive, if the true value was predicted correctly, a false positive, if an
anomaly was predicted but none occurred, a false negative, if an anomaly occurred but
was not predicted, or a true negative, in case no anomaly occurred and none was pre-
dicted. This can be visualised in the form of a confusion matrix as in Figure 3.1.

The typically used metrics for classification problems are precision (P) and recall (R),
computed as follows:
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P = T P

T P +F P

R = T P

T P +F N
,

(3.1)

with TP denoting the number of true positives, FN the number of false positives and
FN the number of false negatives. The precision is the fraction of relevant anomalies
among retrieved ones, while the recall is the fraction of retrieved relevant anomalies.
Using precision and recall, the F1 score can be calculated as their harmonic mean, i.e.

F 1 = 2 ·P ·R

P +R
. (3.2)

Figure 3.2: Examples of anomaly detection model outputs and their resulting F1, F1pa and FC scores.

One can argue that the F1 score is not an optimal metric for anomaly detection, as it
tends to produce low scores, even though the anomaly was detected (G. Y. Kim et al.,
2022). This can be seen in Figure 3.2, where the F1 score for anomaly detection model 3
is only 0.29, although the anomaly was detected. For this reason, a new metric has been
introduced by (Hundman et al., 2018): the F1 point adjust (F1pa). An in-depth definition
and description can be found in (S. Kim et al., 2022). The basic idea behind it is that if at
least one moment in a contiguous anomaly segment is detected as an anomaly, the en-
tire segment is then considered to be correctly predicted as an anomaly. This is referred
to as event-based scoring. The F1 point adjust score is then calculated with the adjusted
predictions.

However, also the F1pa does not come without criticism. (S. Kim et al., 2022) point
out that it overestimates the quality of anomaly detection models. Anomaly detection
model 2 in Figure 3.2, for example, receives an F1pa score of 0.8 while predicting an
anomaly where none occurred. In order to compensate for this behaviour, the compos-
ite F1 score (FC) has been introduced by (Garg et al., 2021). The FC score is calculated
similarly to the F1 score by taking the harmonic mean of precision and recall. The recall
is event-based calculated instead of instance-based, whereas the precision is calculated
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instance-based.

As it becomes clear from our line of argumentation, no single metric is able to capture
the quality of diagnostic models to a full extent. No metric is flawless; suitable metrics
should be chosen carefully. Of course, such a choice should be made application specific
and with the purpose of the anomaly detection model output in mind. Because we aim
to provide an adaptive framework, which is not application specific, we do not pick a
single metric but instead optimise towards all three presented metrics, F1 score, F1pa
score and FC score. This is explained in more detail in the next Section 3.3.2.

3.3.2. THE GENERIC DIAGNOSTIC FRAMEWORK

The GDF, visually represented in Figure 3.3, outputs for given system data and, in terms
of pre-defined metrics, an ’optimal’ anomaly detection model for the system. We as-
sume that the underlying system data is time series data and comes in the form of sen-
sor readings/ telemetry values, which are continuously recorded over a certain period of
time. An example of what such data could look like can be found in Sections 3.4.2 and
3.4.4. The GDF includes a range of data pre-processing techniques, anomaly detection,
and thresholding techniques. The choice of the respective techniques is approached as a
multi-objective optimisation problem, simultaneously allowing to optimise towards all
three selected metrics, F1 score, F1pa score and FC score. To be more precise, the prob-
lem of finding the respective combination of techniques can be formulated as the fol-
lowing optimisation problem: The objective function is to maximize the F1, F1pa and FC
scores of the anomaly detection algorithm together with data pre-processing and thresh-
olding techniques on the system data set. The output of such an optimisation is a Pareto
front, which consists of multiple individuals outperforming the remaining individuals
in terms of the chosen metrics. A detailed explanation of the workings and dynamics of
the framework and the multi-objective optimisation problem can be found in (Bieber &
Verhagen, 2022), in which the Generic Prognostic Framework is presented, which is the
basis for the GDF presented here. In the following, we go into more detail concerning
the genetic algorithm which is used to solve the optimisation problem in Section 3.3.2,
the data pre-processing in Section 3.3.2, the anomaly detection methods in Section 3.3.2
and the thresholding techniques in Section 3.3.2 included in the framework.

MULTI-OBJECTIVE GENETIC ALGORITHM

Genetic Algorithms are based on the concepts of natural selection and genetics (Hol-
land, 1992). Due to their flexibility, Genetic algorithm (GA)s are able to solve large op-
timisation problems. In addition, since GAs are a population-based approach, they are
well-suited for multi-objective optimisation problems, like in our case, simultaneously
optimizing towards three different metrics (F1 score, F1pa and FC score) (Stanovov et al.,
2017). This is what makes them good candidates for our optimisation problem. A popu-
lation of solutions are created, and their respective fitness values are computed in every
generation (Konak et al., 2006). We make use of the Non-dominated Sorting Genetic
Algorithm II (NSGA-II, introduced in (Deb et al., 2002)). It ranks candidate solutions
with the fast non-dominated sorting method and uses a crowding distance as a diversity
mechanism. The algorithm is well-tested, has been used in many applications and is
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Figure 3.3: Elements of the Generic Diagnostic Framework.

efficient.

Algorithm 1: Genetic Algorithm

start;
t ← 0;
initialize population P (t );
evaluate fitness of each individual in P (t );
while termination condition not fulfilled do

t ← t +1;
s1, s2 ← select individuals from P (t );
x1, x2 ← create offspring by crossover operation on s1, s2;
x̂1, x̂2 ← mutate x1, x2;
evaluate fitness of x̂1, x̂2 if fitness of x̂1, x̂2 higher than least fittest individuals

in P (t ) then
replace least fittest individuals with x̂1, x̂2;

else
pass;

end
end

A GA consists of several steps as presented in Algorithm 2. The process is as follows:

- A population is initialised, composed of a set of individuals (i.e., solutions to the
optimization problem).

- The best-fitted individuals are selected based on a fitness metric which represents
the objective.

- In the following step, the selected individuals undergo a cross-over and mutation
process to produce new children for a new generation of individuals.
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- This process is repeated over a number of generations until the algorithm con-
verges or a stopping criterion is achieved.

Figure 3.4: GDF individual.

The Multi-objective Genetic Algorithm (MOGA) takes as an input the system data and
outputs the set of Pareto optimal solutions. A solution combines a data re-balancing
technique, an anomaly detection method and a thresholding technique. Therefore, an
individual of the MOGA takes the form as shown in Figure 3.4.

DATA PRE-PROCESSING

Data pre-processing is an essential step in the application of data-driven diagnostic method-
ologies. Commonly used data pre-processing methods for time series data are data
standardization or normalization and signal-processing methods, such as time-domain
analysis, frequency-domain analysis, time–frequency analysis and sliding windows to
de-noise data (R. Liu et al., 2018). Furthermore, machine learning algorithms are often
combined with a feature extraction or feature selection algorithms. Since the framework
is supposed to be adaptive to different systems and data pre-processing heavily depends
on the nature of the data and the underlying system. In addition, failure behaviour dy-
namics and the way system degradation is represented in the underlying data influence
the selection of those methods. In order to make the framework as adaptive as possi-
ble, we only include the minimum amount of required data pre-processing techniques.
However, data normalisation and standardisation are necessary steps when applying ML
algorithms, especially when the input data is multi-dimensional like in our case. There-
fore, the two included methods for the data scaling are ’Standardization’ and ’MinMaxS-
caler’, or normalisation. Standardization, or also Z-Score normalisation, results in vari-
ables with the properties of a standard normal distribution. Normalisation, or the Min-
Max scaler, scales the input data to a pre-defined range, in this case, [0,1]. Note that the
cost of having this bounded range - in contrast to standardization - is that we can end up
with smaller standard deviations, which can suppress the effect of anomalies. We also
include the option ’None’, in which no scaling method is chosen.

ANOMALY DETECTION

The anomaly detection methodologies represented in the framework should capture as
many different techniques with different underlying dynamics as possible. For this rea-
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son, we based the selection of the methods on the taxonomy of AI-based anomaly detec-
tion methods in Section 3.2. In Figure 3.1 we differed four categories of anomaly detec-
tion methods, namely proximity-based, ensemble-based, domain-based and reconstruction-
based methodologies. In the framework one representative method of each of the four
categories is included. Those are

• k-Nearest Neighbors (KNN) as presented in (Angiulli & Pizzuti, 2002), which mea-
sures the distance between data points and classifies the points with the highest
distance from the other instances as anomalous,

• Isolation Forests (iF) as introduced by (F. T. Liu et al., 2008), which build tree struc-
tures to isolate data points (which are considered as anomalies),

• Principal component analysis (PCA), which performs a linear dimensionality re-
duction into a lower dimensional space to compute outlier scores and

• One Class-Support Vector Machines (OC-SVM), which estimate the support of a
high-dimensional distribution and thereby define non-linear boundaries around
the region of the normal data (separating the remaining points as anomalies).

In order to define initial settings for each of the four techniques, as a first step the hyper-
parameters are tuned for each. Table 3.2 contains the respective parameters and tested
values.

Note that all our experiments are conducted in Python and for the anomaly detection
methods, the PyOD toolbox is used (Y. Zhao et al., 2019).

THRESHOLDING

As highlighted in Section 3.2, thresholding methods can help improve the quality of
anomaly detection methods. In the PyOD toolbox, every anomaly detection method
returns outlier scores but also has an integrated thresholding method calculating the la-
bels. We include both the default threshold setting provided by the PyOD algorithms
and additional thresholding techniques in the framework. In a MOGA individual, see
Figure 3.4, the default threshold methods are represented by the float options for the
threshold settings (0.1 to 0.5). This is because PyOD calculates the thresholds based on
the contamination rate, which is the rate of expected anomalies in a dataset. In the op-
timisation process of the MOGA, this can be regarded as an additional hyperparameter
for the anomaly detection methods used being tuned. In order to provide a truly un-
supervised and adaptive framework, several thresholding methods apart from the pre-
implemented ones are included in the framework. Those are

• the AUCP,

• a clustering-based method (CLUST),

• the MAD,

• the MTT and

• the Z-Score (Z-Score).
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Table 3.2: The hyperparameters and tested values for the four anomaly detection methods.

Method Hyper parame-
ter

Description Tested Values

Isolation Forest

max_samples Size of the tree, number of samples to
draw from X to train each base estima-
tor

100, 300, 500,
700

n_estimators number of trees in the ensemble (de-
fault is 100 trees)

100, 200, 300,
400, 500

max_features number of features to draw from X
to train each base estimator (default
value is 1.0)

5, 10, 15

KNN

n_neighbors Number of neighbors to use for k
neighbors queries

1,4,8,12,16

p Parameter for Minkowski metric 1,2,3

method
• ’largest’: use the distance to

the kth neighbor as the outlier
score

• ’mean’: use the average of all k
neighbors as the outlier score

• ’median’: use the median of the
distance to k neighbors as the
outlier score

‘largest’, ‘mean’,
‘median’

algorithm Algorithm used to compute the near-
est neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘auto’ will attempt to decide
the most appropriate algorithm
based on the values passed to
fit method

’auto’, ’ball_tree’,
’kd_tree’

PCA n_components number of components to keep Np.arrange(1,20,2)

OC-SVM

kernel Specifies the kernel type to be used
in the algorithm used to pre-compute
the kernel matrix.

’rbf’, ’poly’, ’sig-
moid’, ’linear’

nu upper bound on the fraction of train-
ing errors and a lower bound of the
fraction of support vectors

0.1, 1, 10, 100,
1000

gamma Kernel coefficient for ’rbf’, ’poly’ and
’sigmoid’.

np.arange(0,1,0.2)
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The AUCP makes use of the area under the curve (AUC) to calculate the outlier labels
using the outlier scores (Ren et al., 2018). The AUC is defined as

AUC = l i mx→i n f

n∑
i=1

f (x)δx, (3.3)

with f (x) the curve, δx the incremental step size of rectangles whose areas are summed
up and n the number of points in the outlier scores. The curve is obtained by calculating
the probability density function of the outlier scores (values between 0 and 1) is calcu-
lated using a kernel density estimation. The incremental step size δx is set to 1

2n . Then
the AUC is continuously calculated in steps from left to right of the data range starting
from 0 and arriving at a number of AUCs, namely AUC0, · · · , AUCk . To obtain the thresh-
old, another variable, l i m is introduced as follows:

l i m = x̄ +|x̄ − x̃|, (3.4)

where x̄ is the mean outlier score and x̃ the median outlier score. The threshold is de-
fined as:

thr es = AUC j , with j = mi n{k ∈ {1, · · · ,n}|AUCk > l i m · AUC }, (3.5)

with l i m as defined in Equation 3.4 and AUC as defined in Equation 3.3. In other words,
the threshold is set to the first AUC that is greater than the total AUC of the pdf multiplied
by the l i m.

The clustering-based method used in this study creates clusters of the outlier scores us-
ing hierarchical clustering and classifies objects within clusters as "normal" and objects
outside as "outliers" (Lara et al., 2020).

The MAD introduced in (Archana et al., 2015) is motivated by the fact that the median is
more robust against outliers than the mean. The threshold in this case is calculated as
follows:

Tmi n = medi an(X )−a ∗M AD (3.6)

Tmax = medi an(X )+a ∗M AD, (3.7)

with M AD = 1.4826∗medi an(|X −medi an(X |), a a user variable, set to 3 in our case
and X the outlier scores.

The Modified Thompson Tau test is a modified univariate t-test that eliminates outliers
that are more than a number of standard deviations away from the mean (Sonneveld,
1997). The Tau critical value is defined as

τ= t · (n −1)
p

n
p

n −2+ t 2
, (3.8)

with n the number of outlier scores and t the student t-value. The method works itera-
tively and recalculates the Tau critical value after each outlier removal until the dataset
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no longer has data points that fall outside the criterion, which is set to 3 standard devia-
tions in this case.

Finally using the Z-Score as thresholding technique (see (Bagdonavicius & Petkevicius,
2019) for further details) is based on the assumption that the outlier scores, x, are nor-
mally distributed with a mean µ and variance σ2, i.e. x ∼ N (µ, σ2). In this case the
underlying Z-Score can be calculated as

Z = x −µ

σ
. (3.9)

Data is then labelled as "normal" if the following criterion holds:

|Z Scor e| ≤ a, (3.10)

with a an input variable, set to a = 3 in our case.

The above mentioned methods are implemented using the PyThres library, a toolkit for
thresholding outlier detection.

3.4. CASE STUDIES AND RESULTS
The GDF presented in Section 3.3 is applied to three satellite and spacecraft system
datasets: The first two, presented in Section 3.4.2 and Section 3.4.3 are publicly available
and commonly used datasets in literature and the third, presented in Section 3.4.4 is a
real-life satellite system dataset provided by ESA. We try to understand whether the GDF
provides a robust diagnostic assessment for all the datasets by comparing the results to
baseline machine learning algorithms. A thorough assessment of the dynamics of the
framework and the way the metrics influence choices is given by comparing the multi-
objective optimisation framework to a single-objective approach. The single-objective
optimization problem can be formulated as follows: The objective function is to maxi-
mize the F1 score (respectively the F1pa score) of the anomaly detection algorithm to-
gether with data pre-processing and thresholding techniques on the system data set. We
argue (see Section 3.3) that including thresholding methodologies makes the GDF more
adaptive and provides significantly better results, which is shown by comparing two ver-
sions of the GDF: One including thresholding methods and one without them. First, in
Section 3.4.1, we give an overview of the settings used within the GDF and how it was
applied to the three datasets.

3.4.1. APPLICATION OF THE GDF TO THE DATASETS

Several hyperparameters need to be set for the MOGA (see (Bieber & Verhagen, 2022) for
more details). In Algorithm 2, it can be seen that cross-overs from two other individuals
create new individuals. The cross-over rate is the probability with which two individu-
als are crossed and is set to 0.5. Furthermore, individuals can be mutated to evolve over
time. The mutation rate is the probability of mutating an individual and is set to 0.1. The
algorithm is run either until it converges to an optimal solution or a stopping criterion
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is achieved, and we set the maximum number of generations to 20. The number of indi-
viduals in the population is set to 50.

Each of the below-presented datasets consists of multiple subsets corresponding to com-
ponents. The subsets are split into train and test data, respectively. An anomaly detec-
tion model is trained on each of the train datasets and tested on each of the test datasets,
and the final score is computed using the mean of all the scores on each sub-dataset. The
results are compared to baseline models. The four baseline models are PCA, iF, KNN and
OC-SVM trained on the dataset without applying any prior hyperparameter tuning. In
other words, they are obtained using the four anomaly detection algorithms with the
default settings as implemented in the Python PyOD package.

3.4.2. SMAP DATASET

The data from the NASA Soil Moisture Active Passive (SMAP) satellite is a publicly avail-
able expert-labelled telemetry anomaly data set (Hundman et al., 2018). It contains 54
multidimensional time-series sub-datasets. Each sub-dataset is split into a train and test
set. An example of telemetry values can be seen in Figure 3.5.

Figure 3.5: Example telemetry values of sub-dataset A-1 in the SMAP dataset.
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As a first step, the initial diagnostic algorithms are determined by performing hyperpa-
rameter tuning as presented in Section 3.3.2. This results in initial anomaly detection
models with settings presented in Table 3.3.

Table 3.3: Hyper parameter settings of initial anomaly detection methods for SMAP dataset.

Algo Hyperparam Chosen value

PCA n_components 5

iF n_estimators 100

max_samples 100

max_features 10

KNN n_neighbors 13

p 1

method ‘median’

algorithm ‘auto’

OC-SVM nu 0.1

Gamma 0.6

kernel ‘sigmoid’

RESULTING PARETO FRONT COMPARED AGAINST BASELINE

The output of the GDF is a Pareto front consisting of multiple individuals with different
settings for the data pre-processing, anomaly detection and thresholding techniques.
Table 3.4 contains the Pareto front for the SMAP dataset.

Table 3.4: Pareto front individuals and scores for SMAP dataset.

settings F1 F1pa FC

normalization KNN MAD 0.213 0.588 0.319

normalization KNN 0.04 0.249 0.582 0.34

normalization KNN ZSCORE 0.19 0.676 0.364

standardization KNN MAD 0.21 0.598 0.317

standardization KNN 0.04 0.249 0.582 0.34

Figure 3.6 shows the range of the three different scores (F1, F1pa and FC) for all individu-
als and the individuals in the pareto front. It can be seen in Table 3.4 that for this dataset,
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the choice of the anomaly detection method is KNN as it beats the other anomaly detec-
tion methods in all cases. Furthermore, the individuals in the Pareto front are in terms of
all metrics very close to each other. For example, the F1 scores range from 0.19 to 0.249
and the FC scores from 0.317 to 0.364. This can also be seen in Figure 3.6. One more
notable thing is that it seems as if the threshold setting has the biggest influence on the
scores. E.g. the F1pa score for using normalization together with KNN and MAD is 0.588
while the F1pa score for the same settings but using the ZSCORE is 0.676. We will go into
more detail on this in Section 3.4.2.

Figure 3.6: Scores of all individuals and Pareto front individuals for SMAP dataset.

Table 3.5: Baseline models and scores for the SMAP dataset.

Algorithm F1 F1_pa FC

ocsvm 0.183 0.565 0.276

KNN 0.239 0.427 0.301

if 0.095 0.457 0.175

PCA 0.0 0.0 0.0

Table 3.5 shows the results of the baseline models. For a better assessment, a comparison
of the baseline models to the best-performing individuals of the Pareto front in terms of
the respective scores can be found in Table 3.6. When looking closer at Table 3.5 and the
results in terms of F1 score, it becomes clear why the KNN was chosen. The performance
of other algorithms is much worse. While the OC-SVM outperforms the other algorithms
in terms of F1pa score, Table 3.6 reveals that apparently, the thresholding improves the
results in terms of F1pa score, resulting in the performance of all individuals of the Pareto
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front outperforming all baseline models in terms of F1pa score. For the FC score, the
results are similar to those of the F1pa score, but here the KNN baseline model already
outperforms the OC-SVM model.

Table 3.6: Comparison of baseline models to respective best performing Pareto front individuals for SMAP
dataset.

Baseline GDF

Settings KNN KNN 0.04

F1 0.239 0.249

Settings OC-SVM Normalization KNN ZSCORE

F1pa 0.565 0.676

Settings
OC-SVM Normalization KNN ZSCORE

FC
0.276 0.364

COMPARING MULTI-OBJECTIVE OPTIMISATION WITH SINGLE-OBJECTIVE OPTIMIZATION

Performing single-objective optimisation and setting the metrics to both F1 score and
F1pa, results in the following individuals chosen by the GDF:

• When optimising towards an F1 score, the best individual has the following set-
tings: normalisation, KNN, 0.04 with an F1 score of 0.249.

• When optimising towards the F1pa score, the best individual has the following set-
tings: normalisation, KNN, and ZSCORE with an F1pa score of 0.676.

In this case, Figure 3.6 already shows that the resulting scores within the Pareto front do
not cover a wide range (e.g. the lowest FC score is 0.317, which is quite close to 0.364, the
top score). Following this observation, we expect the results of single-objective optimi-
sation to be very close to those of the MOGA, which they are. In most cases, increasing
F1pa causes the F1 score to decrease. So, all in all, while in this case, single objective op-
timisation would form a formidable alternative to using the MOGA, optimising towards
a single metric always means a compromise in terms of another metric. Therefore, the
metric should be chosen with care.

THE EFFECT OF INCLUDING THRESHOLDING METHODS

Table 3.7 shows the results of using the GDF just using the default settings of the PyOD
algorithms (which set the contamination rate to 0.1) for the label computation.
To make the effect of this clearer, Table 3.8 shows the best individual output by the GDF
with default thresholding and when including the selected thresholding techniques.
While in terms of F1 score, the thresholding techniques have little effect on the quality
of the results (see Table 3.8), including more elaborate thresholding methods improves
the scores quite a bit in terms of F1pa and FC score.



3

40 3. A GENERIC FRAMEWORK FOR DIAGNOSTICS OF COMPLEX SYSTEMS

Table 3.7: Pareto front when default thresholding techniques are included for SMAP dataset.

settings F1 F1pa FC

normalization PCA 0.136 0.49 0.221

normalization KNN 0.242 0.427 0.302

standardization KNN 0.242 0.427 0.302

standardization ocsvm 0.103 0.522 0.206

Table 3.8: Comparison of best individuals when using default thresholding vs using selected thresholding for
SMAP dataset.

no thresholding GDF incl thresholding

Settings standardization/
normalization KNN

KNN 0.04

F1 0.242 0.249

Settings Standardization OC-SVM Normalization KNN ZSCORE

F1pa 0.522 0.676

Settings
standardization/

normalization KNN
Normalization KNN ZSCORE

FC
0.302 0.364

3.4.3. MSL DATASET
Another publicly available spacecraft telemetry dataset that contains expert-labelled anoma-
lous data is data from the Mars Science Laboratory (MSL) rover, Curiosity. Similarly, the
SMAP dataset consists of 27 sub-datasets, each containing telemetry values of 25 sen-
sors (Challu et al., 2022). The hyperparameter tuning to arrive at the initial diagnostic
algorithms results in the settings listed in Table 3.9.

RESULTING PARETO FRONT COMPARED AGAINST BASELINE

The Pareto front for the MSL dataset is presented in Table 3.10.
Figure 3.7 shows the range of the three different scores (F1, F1pa and FC) for all individ-
uals and the individuals in the Pareto front.
The performance of individuals in the Pareto front for the MSL data, as can be seen in
Figure 3.7, covers a wider range than for those for the SMAP dataset. For example, the F1
ranges from 0.107 to 0.259 and the F1pa from 0.524 to 0.734. In addition, in this case, it
is less clear which anomaly detection method is the best since three of the four anomaly
detection techniques, iF, PCA and KNN are represented in the Pareto front. Using KNN
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Table 3.9: Hyper parameter settings of initial anomaly detection methods for MSL dataset.

Algo Hyperparam Chosen value

PCA n_components 1

iF n_estimators 500

max_samples 100

max_features 5

KNN n_neighbors 13

p 1

method ‘largest’

algorithm ‘auto’

OC-SVM nu 0.1

Gamma 0

kernel ‘linear’

Table 3.10: Pareto front individuals and scores for MSL dataset.

settings F1 F1pa FC
normalization PCA AUCP 0,107 0,734 0,313
normalization if AUCP 0,184 0,626 0,306
normalization if MAD 0,184 0,626 0,306
normalization if 0,08 0,184 0,626 0,306
normalization KNN CLUST 0,233 0,620 0,36
normalization KNN ZSCORE 0,249 0,553 0,346
normalization KNN MAD 0,259 0,524 0,338

results in the highest scores in terms of F1 but the lowest in terms of F1pa. The IF models
receive medium scores in terms of both F1 and F1pa but score lowest in terms of FC, and
the PCA models score highest in terms of F1pa but lowest in F1.

Table 3.11 shows the results of the baseline models. A comparison of the baseline models
to the best-performing individuals of the Pareto front in terms of the respective scores
can be found in Table 3.12.

Again, we see that in terms of F1 score, there is no significant improvement, but the
individuals in the Pareto front score much higher in terms of F1pa score and FC score.
The F1pa score, as can be seen in Table 3.12, is improved from 0.559 (for the baseline
model IF) to 0.734 (when using normalization, PCA and AUCP).
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Figure 3.7: Scores of all individuals and pareto front individuals for MSL dataset.

Table 3.11: Baseline models and scores for the MSL dataset.

Algorithm F1 F1_pa FC

ocsvm 0.208 0.53 0.324

KNN 0.251 0.488 0.324

if 0.144 0.559 0.238

PCA 0.166 0.554 0.261

Table 3.12: Comparison of baseline models to respective best performing Pareto front individuals for MSL
dataset.

Baseline GDF

Settings KNN Normalization KNN MAD

F1 0.251 0.259

Settings IF Normalization PCA AUCP

F1pa 0.559 0.734

Settings
OCSVM and KNN Normalization KNN

CLUST/MAD/ZSCORE

FC
0.324 0.36
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COMPARING MULTI-OBJECTIVE OPTIMISATION WITH SINGLE-OBJECTIVE OPTIMISATION

Performing single-objective optimisation and setting the metrics to both F1 score and
F1pa results in the following individuals chosen by the GDF:

• When optimising towards an F1 score, the best individual has the following set-
tings: normalisation, KNN, and MAD with an F1 score of 0.259.

• When optimizing towards an F1pa score, the best individual has the following set-
tings: normalisation, PCA, and AUCP with an F1pa score of 0.734.

In the case of the single objective optimisation for the MSL dataset, it can be observed
that the GA outputs normalisation, KNN and MAD when optimising towards the F1
score, which results in the lowest scoring individual contained in the Pareto front (see
Table 3.10) in terms of F1pa score. The same is true and vice versa: The best-performing
individual in terms of F1pa score is the lowest-scoring individual in terms of F1 score.
Therefore, it becomes visible here that optimising towards a single metric comes at the
cost of a lowered score in terms of another metric.

THE EFFECT OF INCLUDING THRESHOLDING METHODS

Table 3.13 shows the results of using the GDF with the default settings of PyOD for the
label computation.

Table 3.13: Pareto front when default thresholding techniques are included for MSL dataset.

settings F1 F1pa FC
normalization if 0.184074 0.596667 0.282963
normalization KNN 0.255185 0.503333 0.325185
standardization if 0.181481 0.587407 0.291852

Table 3.14 shows the best individuals output by the GDF with default thresholding and
when including the selected thresholding techniques.
Similarly, as for the SMAP dataset, in Table 3.14 it can be seen that the biggest differ-
ence by including elaborate thresholding methods is achieved in terms of F1pa and FC
score. Compared to the results of the baseline models (see Table 3.12), the scores im-
prove slightly when including data pre-processing techniques.

3.4.4. SATELLITE REACTION WHEEL DATASET
The third dataset used in this study contains telemetry data from reaction wheels (RWL)
operated on ESA Earth Observation satellites in a two-satellite constellation. Each of the
two satellites carries four reaction wheels. A substantial amount of health related RWL
data has so far been collected during this mission, which can be utilised for anomaly
detection. In the operation time, however, only six anomalies occurred, which, together
with anomaly reports, were used to create the test dataset for this study. Each RWL is
equipped with 10 sensors recording health-related telemetry values. An example of such
telemetry sensor readings can be seen in Figure 3.8.
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Table 3.14: Comparison of best individuals when using default thresholding vs using selected thresholding for
MSL dataset.

GDF no thresholding GDF incl thresholding

Settings Normalization KNN Normalization KNN MAD

F1 0.255 0.259

Settings Normalization IF Normalization PCA AUCP

F1pa 0.597 0.734

Settings
Normalization KNN Normalization KNN

CLUST/MAD/ZSCORE

FC
0.325 0.36

Figure 3.8: Example telemetry values for the ESA dataset.

The hyperparameter tuning to arrive at the initial diagnostic algorithms results in the
settings listed in Table 3.15.

RESULTING PARETO FRONT COMPARED AGAINST BASELINE

Table 3.16 contains the output of the GDF applied to the ESA dataset, i.e. the individuals
in the Pareto front. Figure 3.9 shows the range of the three different scores (F1, F1pa and
FC) for all individuals and the individuals in the Pareto front.
Applying the GDF to the ESA dataset results in the largest Pareto front of the three datasets.
It is not so surprising, therefore, that the range of performance of individuals in the
Pareto front is quite high (see Figure 3.9), e.g. the F1 score ranges from very close to 0
to 0.623. It can also be seen that the highest performance in terms of F1pa score results
in a very poor F1 score: For example, the individual KNN MAD has an F1 score of 0.0314
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Table 3.15: Hyper parameter settings of initial anomaly detection methods for ESA dataset.

Algo Hyperparam Chosen value

PCA n_components 1

iF n_estimators 100

max_samples 400

max_features 10

KNN n_neighbors 5

p 1

method ‘mean’

algorithm ‘auto’

OC-SVM nu 0.1

Gamma 0.8

kernel ‘rbf’

Table 3.16: Pareto front individuals and scores for ESA dataset.

settings F1 F1pa FC
normalization PCA 0,02 0.459 0.971 0.841
normalization PCA 0,04 0.489 0.949 0.8
normalization PCA ZSCORE 0.113 0.983 0.903
normalization if 0,02 0.476 0.939 0.817
normalization KNN MAD 0.031 1.0 1.0
normalization KNN ZSCORE 0.079 0.983 0.921
normalization KNN 0,06 0.607 0.839 0.794
normalization KNN 0,08 0.616 0.827 0.78
normalization KNN 0,14 0.621 0.791 0.741
standardization PCA 0,04 0.489 0.949 0.8
standardization PCA ZSCORE 0.113 0.983 0.903
standardization KNN 0,06 0.607 0.837 0.79
standardization KNN 0,08 0.617 0.826 0.776
standardization KNN 0,12 0.619 0.804 0.754
standardization KNN 0,18 0.623 0.77 0.724
standardization KNN ZSCORE 0.059 1.0 0.994
standardization ocsvm MAD 0.531 0.933 0.897
standardization ocsvm CLUST 0.601 0.907 0.841

and the individual using KNN with the ZSCORE an F1 score of 0.059, while both of these
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Figure 3.9: Scores of all individuals and Pareto front individuals for ESA dataset.

individuals have an F1pa score of 1.0. It can be said that, in general, increasing the F1pa
score comes at the cost of lowering the F1 score (see Table 3.16). Similarly, increasing
the FC score results in lower F1 scores. Furthermore, the thresholding techniques do
not seem to have a particularly strong effect on the scores when using KNN for anomaly
detection (see Table 3.16). Table 3.17 shows the results of the baseline models. The com-
parison of the baseline models to the best-performing individuals of the Pareto front in
terms of the respective scores can be found in Table 3.18. When comparing the Pareto
front individuals to the baseline models, we again see that in terms of F1, there is not
much improvement in the results. Still, significant improvement is visible in terms of
F1pa and FC scores.

Table 3.17: Baseline models and scores for the ESA dataset.

Algorithm F1 F1_pa FC

ocsvm 0.54 0.849 0.736

KNN 0.613 0.814 0.766

if 0.539 0.841 0.737

pca 0.336 0.597 0.499

COMPARING MULTI-OBJECTIVE OPTIMISATION WITH SINGLE-OBJECTIVE OPTIMISATION

Performing single-objective optimisation and setting the metrics to both F1 score and
F1pa results in the following individuals chosen by the GDF:

• When optimising towards an F1 score, the best individual has the following set-
tings: normalisation, KNN, 0.14 with an F1 score of 0.621.
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Table 3.18: Comparison of baseline models to respective best performing Pareto front individuals for ESA
dataset.

Baseline GDF

Settings KNN Standardization KNN 0.18

F1 0.613 0.623

Settings OC-SVM KNN MAD/ZSCORE

F1pa 0.849 1.0

Settings
KNN KNN MAD

FC
0.766 1.0

• When optimising towards the F1pa score, the best individual has the following set-
tings: normalisation, KNN MAD with an F1pa score of 1.0.

Here, the effect of including multiple metrics in the optimisation is visible because many
individuals score high F1pa scores in the Pareto front. Therefore, considering the F1
score in addition to the F1pa gives a good insight into performance (see the previously
pointed out very poor performing individuals in terms of F1 score). Again, the FC score
is mostly in alignment with the F1pa score, i.e. increasing the F1pa score usually simul-
taneously increases the FC score.

THE EFFECT OF INCLUDING THRESHOLDING METHODS

Table 3.19 presents the results of using the GDF including default thresholding tech-
niques. Again, to give a clearer insight into the results, Table 3.20 shows the best individ-
uals returned by the GDF with default thresholding and with the additional thresholding
techniques.

Table 3.19: Pareto front when default thresholding techniques are included for ESA dataset.

settings F1 F1pa FC

normalization PCA 0.536 0.879 0.744

normalization if 0.547 0.839 0.747

normalization KNN 0.617 0.816 0.769

normalization ocsvm 0.54 0.841 0.74

standardization PCA 0.536 0.879 0.744

standardization if 0.547 0.839 0.747
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Table 3.20: Comparison of best individuals when using default thresholding vs using selected thresholding for
ESA dataset.

GDF no thresholding GDF incl thresholding

Settings Normalization KNN Standardization KNN 0.18

F1 0.617 0.623

Settings PCA KNN MAD/ZSCORE

F1pa 0.879 1.0

Settings
Normalization KNN KNN MAD

FC
0.768 1.0

Compared to Table 3.17, we see that using pre-processing data methods on the ESA
dataset does not improve the results as much as for the MSL and SMAP datasets. Fur-
thermore, we see that again, in terms of F1pa and FC scores, including thresholding tech-
niques result in much better anomaly detection models. In contrast, in terms of F1 score,
the effect is less significant.

3.4.5. DISCUSSION

In this section, we present the findings of the results regarding the three main objectives
as highlighted in Section 3.1 and at the beginning of Section 3.4 based on the results. The
results show that the framework is adaptive to different datasets and outperforms the
baseline algorithms in all three case studies (see Tables 3.6, 3.12 and 3.18). Furthermore,
the framework indicates as to which methods to focus further on and which methods
perform well for a given dataset. For the SMAP dataset, the results presented in Section
3.4.2, a single anomaly detection method (KNN) can be singled out from the four input
techniques. For the MSL dataset, presented in Section 3.4.3, this is not so clear, both iF
and KNN could be considered and similarly for the ESA dataset (see Section 3.4.4), the
Pareto front is much bigger, which makes it harder to choose the ’best’ set of methods.
This points out the importance of choosing suitable metrics for evaluating the models.

Including three different metrics in the framework makes it more robust, which is espe-
cially visible in the results on the ESA dataset (see Table 3.16). In this case the best results
in terms of F1pa score receive the lowest score in terms of F1 score. In general, higher
F1pa and FC scores result in lower F1 scores. Mostly the FC score is aligned with the F1pa
score, but that is not always true. For example, for the MSL dataset in Table 3.10, we see
that the highest scoring individual in terms of F1pa score (normalisation PCA and AUCP)
reaches an F1pa score of 0.734 and an FC score of 0.313. In contrast, the highest-scoring
individual in terms of FC score (KNN and ZSCORE) with an FC score of 0.346 has an F1pa
score of only 0.553.
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Finally, including thresholding techniques improves the results significantly. Through-
out all three datasets, which becomes visible in Tables 3.8, 3.14 and 3.20, both the F1pa
and FC score can be improved by a margin when using thresholding techniques. For ex-
ample, in the ESA dataset (Table 3.20), the FC score is improved from 0.768 to 1.0 and the
F1pa score from 0.876 to 1.0 by including thresholding techniques in the framework.

3.5. CONCLUSION
A Generic Diagnostic Framework has been presented with the capability to automati-
cally chose optimal data pre-processing, anomaly detection and thresholding techniques
simultaneously given system data. Overall, thresholding methods play an important role
in anomaly detection and can significantly influence the quality of resulting models. In
addition, the optimisation metrics affect the choice of methods, and the optimisation
towards a single metric is always a trade-off. Therefore particular care should be taken
when choosing suitable metrics to evaluate the anomaly detection models.

A next step in the development of the GDF could be to include more metrics in the model
assessment or even perform a more thorough assessment towards applications. What
could also be an interesting direction for further research is to look into systems oper-
ated in different operating conditions. Especially for satellite systems, for which failures
or even anomalies are scarce, it would be an asset to be able to train models on sys-
tems in different satellite constellations, operated in similar conditions. Furthermore,
the framework could be extended to include a wider range of techniques, e.g. by in-
cluding more elaborate data pre-processing methods, deep learning anomaly detection
methods or statistical algorithms.

All in all, the framework offers a quick way to assess system data of complex systems to-
wards their suitability for anomaly detection approaches. Based on the outputs, further
decisions can be taken, and development and expertise can be streamlined in fruitful
directions.





4
A GENERIC FRAMEWORK FOR

PROGNOSTICS OF COMPLEX

SYSTEMS

While in Chapter 3, a generic framework is developed for diagnostics, in this chapter the
focus lies on prognostics. Similarly as in the previous chapter, the underlying requirements
introduced in Chapter 2 are used to develop such a generic prognostic framework. The
framework incorporates steps necessary for prognostics, including data pre-processing,
feature extraction and machine learning algorithms for remaining useful life estimation.
It is applied to two systems; a simulated turbofan engine dataset and an aircraft cooling
unit dataset. The results show that the obtained accuracy of the remaining useful life es-
timates are comparable to what has been achieved in literature and provide insights into
the adaptivity and generalizability of the framework, especially with respect to real air-
craft data.

This chapter is based on on the publication: Bieber, Marie, and Wim JC Verhagen. "A Generic Framework for
Prognostics of Complex Systems." Aerospace 9.12 (2022): 839. (Bieber & Verhagen, 2022).
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4.1. INTRODUCTION
Over the last few years the field of prognostics has undergone substantial growth as evi-
denced by advances in algorithms, models and their applications (M. Scott et al., 2022).
Prognostics is the process of estimating a system’s Remaining useful life (RUL) (Elattar
et al., 2016), usually following fault detection and/or diagnosis, and is usually considered
part of a condition-based maintenance strategy. Prognostics enables operators to react
to faults before failures occur, leading to a minimization of systems downtime, lowered
operational cost and increased reliability (Lei et al., 2018; Zio, 2022).

Prognostic approaches can be classified into three types: Physics-based, data-driven and
hybrid approaches (Peng, Dong, et al., 2010). Physics-based approaches can be applied
in cases in which the underlying degradation phenomenon can be mathematically mod-
elled. There are quite some examples of physics-based models that were successfully ap-
plied in practical cases, such as Li-Ion batteries (J. Zhang & Lee, 2011) and other struc-
tures subject to fatigue degradation (Brownjohn et al., 2011). Data-driven approaches
are used when it is difficult to obtain a degradation model or when there is no knowledge
about the system physics. And finally hybrid approaches combine available information
about underlying physical knowledge and data. Examples for such approaches are (M.
Baptista et al., 2019) combining Kalman Filtering with data-driven methods, (Downey
et al., 2019) integrating a physical model and the least square method to estimate RUL of
industrial equipment or (Lyathakula et al., 2022) using a physics-based fatigue damage
degradation model and combining it with an neural network-based to model the dam-
age progression in bonded joints. When considering complex systems which are subject
to multiple degradation mechanisms, fault modes and operating conditions, accurate
physics-based models are often not available (Zio, 2022). Therefore, data-driven prog-
nostic techniques making use of monitored system condition data and failure data can
be applied in such a case. They are mostly based on statistical or artificial intelligence
(AI) methods. The requirement for such algorithms is the availability of data characteriz-
ing system behaviour that covers all phases of normal and faulty operation and all degra-
dation scenarios under different operating conditions. Recent developments in sensing
technologies, data storage, data processing, IT systems and computational power have
been major drivers of data-driven prognostic approaches, leading to an increase in avail-
able methods and algorithms in the state of the art.

Most of the existing literature on data-driven prognostics focuses on the development of
more advanced and more accurate models and algorithms. For this purpose, standard
data sets are often used as these enable comparative evaluation of multiple models. This
is a valid approach when the aim is the development of better-performing methods for
those specific data sets. However, it also makes the approaches application- and system-
specific. When applying those methodologies on ’real’ systems, it can be the case that
simple algorithms outperform very complex ones. Furthermore, tuning a complex al-
gorithm to reach a better performance generally takes a lot of time and skill, which is
often not available. Consider, for example, an airline operating different types of aircraft
and aiming to introduce prognostics on a broad basis. Each aircraft can be considered
as a complex system with multiple subsystems and components. For each of these sub-
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systems or components a dedicated prognostic model is needed and the costs for the
airline to hire data scientists that develop, test and validate a single model for each of the
components would be immense. Therefore, what would be more desirable is a generic
prognostic framework that chooses the most accurate prognostic approach from a set of
algorithms given component data.

Prior studies proposing such frameworks have yielded promising results. An autonomous
diagnostics and prognostics framework (DPF) is suggested by (Baruah et al., 2006). It
consists of several steps, including data pre-processing, clustering to distinguish oper-
ating conditions and finally diagnostics and prognostics steps. A limitation of the ap-
proach is the fact that some parameters, including the number of observations for initial-
isation and optimization of cluster adaption rates have to be set manually and it can be
tricky to tune the algorithm in an optimal way. Another limitation is the fact that a classi-
fication is performed (i.e. at any time it is determined if the component is faulty or not),
rather then a remaining useful life estimation. To account for this, (Voisin et al., 2010)
provide a generic prognostic framework that can be instantiated to various applications.
However, their approach is very formal and no specific machine learning algorithms are
used in this framework. Again, this is a limitation, as it is up to the user to define proper
techniques. To overcome this problem, (An et al., 2015) provide guidelines to help with
the selection of appropriate prognostic algorithms depending on the application. An-
other way to address this is by using ensembles of machine learning approaches that
combine multiple prognostic algorithms with an accuracy-based weighted-sum formu-
lation (Hu et al., 2010). Still, a problem remains: this addresses only prognostics but not
the steps needed before, namely the data pre-processing and diagnostics. This is over-
come by (Trinh & Kwon, 2020), who suggest a prognostics method based on an ensemble
of genetic algorithms that includes all the steps, from the data pre-processing until the
RUL estimation. With this it provides a truly generic framework for prognostics. The au-
thors of the paper validated their framework by applying it to three commonly used and
available data sets and comparing its performance to other existing approaches. How-
ever, their findings are limited to simulated data sets.

This development makes sense, especially when one considers the problems and chal-
lenges arising with using real-life data: As (Zio, 2022) points out, often collected sensor
signals are collected under changing operational and environmental conditions. On top
of that they are often incomplete, unlabeled, data are missing or scarce. Therefore, ex-
tracting informative content for the diagnostics and prognostics can be a challenging
task. Still, this points towards a problematic trend: Many prognostic method develop-
ments in recent literature are not tested on real-life industrial cases. While many meth-
ods show highly promising results (M. Scott et al., 2022), they may face significant limita-
tions when applied towards real-life cases. However, it is not often that these limitations
are identified and addressed in literature. Nevertheless, several studies using real aircraft
data have been published. Fault messages of an aircraft system have been used in (M.
Baptista et al., 2017) to compare data-driven approaches for aircraft maintenance to the
more classically used experience-based maintenance. An anomaly detection method
for condition monitoring for an aircraft cooling system unit is presented in (Basora et
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al., 2021b). On the same dataset, two more studies have been conducted on remaining
useful life estimation: First, a clustering approach was used to determine degradation
models and failure thresholds and together with a particle filter algorithm this results in
RUL estimates (Mitici & De Pater, 2021). Second, a HI construction approach integrating
physics based and data-driven methods was applied to the same data set to estimate the
systems RUL (Rosero et al., 2022).

Still, applications for generic prognostic frameworks are limited to simulated data sets.
We therefore present a generic framework and apply it to both a simulated dataset as
well as a ’real’ data set of operating aircraft within an airline. The aim is to provide for
both a guidance in the choice of prognostic methodologies for a given dataset and a sys-
tems data suitability analysis from a prognostics perspective. We thereby also address
the challenge of applying prognostic methodologies in real practice of complex systems
and provide an assessment of whether or not a system is prognosable given the system
data. A genetic algorithm is used to find the optimal combination of methodologies and
associated hyperparameter settings for each step in the process of generating prognos-
tics. With respect to the current academic state of the art, our novel contributions in-
clude:

• The presentation of a generic prognostic framework with the capability to not only
estimate a system’s RUL, but also give an assessment towards the ability to perform
prognostics on such a system. A system is defined to be ’prognosable’ if meaning-
ful and accurate data-driven prognostic models can be developed based on avail-
able operational, contextual and failure data. Meaningful refers to the fact that the
models are able to capture degradation trends and learn failure behaviour, while
the term accurate pertains to the prediction quality in terms of one or multiple
defined prognostic metrics.

• The implementation of the framework on both real aircraft data as well as a simu-
lated data set.

• An identification of the challenges faced with using prognostic approaches on a
real aircraft data set opposed to using simulated data.

The remainder of this paper is organized as follows. Section 4.2 introduces the generic
prognostic framework. In Section 4.3, the aircraft systems, underlying data and failure
modes are described and the results of the case study are presented. Subsequently, the
adaptivity of the framework, the difficulties with applying it to a real dataset and the
question of how to determine the ability to perform prognostics on a system are dis-
cussed. Finally, in Section 4.4 we conclude by highlighting the most important findings
and limitations and providing directions for further research.

4.2. THE GENERIC PROGNOSTIC FRAMEWORK
In essence, the Generic prognostic framework (GPF) as shown in Figure 4.1 - originally
introduced by (Trinh & Kwon, 2020) and extended here - takes as an input system data
and outputs a trained prognostic model with the capability of predicting system remain-
ing useful life at any time of operation. To be more precise, we define the GPF to be a tool
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Figure 4.1: The Elements of the Generic Prognostic Framework.

that contains modelling techniques covering multiple aspects of a data-driven prognos-
tics approach and, given a system data set, selects the best techniques for each case.
This means that in addition to incorporating different methodologies, the framework
includes a selection step in which the best set of techniques is chosen relative to prog-
nostic performance.

There are multiple steps that have to be implemented in a prognostics framework (such
as data pre-processing methods or feature engineering techniques) before the actual
prognostics algorithm that performs the remaining useful life prediction on the data set
is executed. Therefore, a generic prognostic framework does not only need to provide the
flexibility of choosing the ‘best’ prognostic algorithm, but also it has to incorporate the
previous steps. Note that we distinguish prognostic algorithms from prognostic models:
when using the term ’prognostic algorithm’ we refer to a certain selected technique used
to perform prognostics, e.g., Random forest (RF) or neural networks, and by ’prognos-
tic model’ we indicate the derived predictor (as output of the prognostic algorithm and
feature engineering methodologies) that takes system data as an input and outputs the
RUL estimate.

The GPF treats the selection of the according techniques as an optimization problem:
The objective is to select the optimal methodology (in terms of Mean squared error
(MSE), defined in Equation 5.1) with the optimal hyper parameter settings for each el-
ement of prognostics included in the framework (such as data rebalancing). We imple-
ment this in four steps shown in Figure 4.1. In step 1 the selected system data is pre-
processed. As the GPF is a generic framework that is adaptive by nature to different data
sets, the data pre-processing techniques applied are kept to a minimum. Further details
about the pre-processing applied are given in Section 4.2.1. In step 2 the hyper param-
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eters for prognostic algorithms are tuned by grid search as further explained in Section
4.2.2. Step 3 aims to solve the optimization problem that can be formulated as follows:
find the optimal combination to generate predictions for a given dataset, where opti-
mality is evaluated through minimisation of the MSE, given a set of re-balancing, feature
engineering techniques and prognostic algorithms. A detailed explanation of this pro-
cess and the according techniques is given in Section 4.2.3. Finally, in step 4, the settings
are used to build the prognostic model to output the RUL estimate. The framework as
suggested in this paper can be used in multiple ways, two of which are of primary im-
portance in the context of our research: Either it can provide a quick assessment of the
ability to perform prognostics based on the input data or it can be used to perform an
automatic selection of feature engineering settings. This is further explained in Section
4.2.4. To guide through the following sections and make the dynamics of the GPF clearer,
we make use of a small example dataset. It is split in a training and test set as it would
for a machine learning application as considered in this paper. The example training set
is presented in Table 4.1 and the respective test set can be found in Table 4.2.

Table 4.1: Sample train data set.

Current
mean

current
min

current
max

speed
mean

speed
min

speed
max

high
current
count

RUL id

0.00 0.0 0.0 0.00 0 0 751 0 11
1.19 0.0 2.1 4035 0 5024 967 1 11
2.15 2.1 2.2 4998 4976 5024 42 2 11
2.11 2.1 2.2 4997 4976 5016 83 3 11
2.18 1.8 2.4 4822 4472 5024 2223 4 11
2.15 1.8 2.4 4516 4448 5024 39267 5 11
1.84 1.6 2.2 4547 4456 4840 1693 6 11
2.13 2.1 2.2 4996 4976 5008 12 7 11
1.49 0.0 2.4 4564 0 5032 1910 0 3
2.43 2.4 2.5 4639 4576 4720 39 1 3
2.43 2.4 2.5 4557 4536 4584 9 2 3
2.40 2.4 2.5 4497 4472 4552 104 3 3
2.24 2.1 2.4 4493 4464 4528 846 4 3
2.13 1.9 2.2 4493 4456 4528 1017 5 3

4.2.1. STEP 1: DATA PRE-PROCESSING
We make the following assumptions for the system data:

• The system is operated until failure.

• System data is related to operational properties of the system, captured e.g. through
sensors and is available from the begin of operations until failure.

• The remaining useful life (RUL) of the system is known at any time of operations,
i.e. in machine learning terms, a labelled data set is available.
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Table 4.2: Sample test data set.

Current
mean

current
min

current
max

speed
mean

speed
min

speed
max

high
current
count

RUL id

1.08 0.0 2.2 3225 0 5024 567 0 25
2.11 2.1 2.2 4996 4968 5032 41 1 25
2.12 2.1 2.2 4998 4984 5008 10 2 25

• In addition, the data must represent all phases of operation, i.e. normal as well as
faulty behaviour and degradation under different operating conditions.

This results in data sets similar to those presented in Table 4.1 and 4.2 consisting of sev-
eral trajectories, identified by ids (in the example, ids 11, 3 and 25) each representing a
single system. The systems are operated until failure, i.e., until their RUL has reached 0.
In each time step, several operational conditions are given, such as current and speed in
the example data set. To evaluate and validate the prognostic models, the data is split
into training and test data. The splits are such that trajectories are kept in the same data
sets and 10% of the trajectories (ids) are used for testing. This is demonstrated in the ex-
ample data sets, in which ids 11 and 3 are used for training and id 25 is used for testing.
Further data pre-processing steps depend on the underlying data sets. For those used in
our case studies, we explain the steps in Section 4.3.

4.2.2. STEP 2: GRID SEARCH TO TUNE PROGNOSTIC ALGORITHMS
Once the system data has been selected for the prognostic framework, the first step in
the proposed GPF is to select the prognostic algorithms. Note, that the strength and
the focus of the framework lies in providing a quick prognostic assessment rather than
providing the ’best’ possible prognostic assessment. Therefore, it suffices to use simple
and easily implementable machine learning techniques, acknowledging that such algo-
rithms may often provide first insights in the nature of the predictions.

In this paper, for this purpose we choose two different machine learning methodologies,
a RF regression and a Support vector machine (SVM). Random Forests were introduced
by (Breiman, 1996), (Breiman, 2001) and are based on the concept of bagging, where
ensemble trees are grown by a random selection (without replacement) from the exam-
ples in the training set. Support vector machines, introduced by (Vapnik, 1995), make
use of basis functions that are centred on the training data points and then selecting a
subset of these during training. The two selected algorithms are well-established and
offer potential advantages in terms of interpretability and explainability, which is neces-
sary to understand systems retrospectively and prospectively (Ward & Habli, 2020). This
may assist in the adoption of these algorithms for a variety of applications, potentially
even covering safety-critical components. They thereby also provide the possibility to
establish first baseline models for a quick prognostic assessment. Those two method-
ologies are chosen as representative machine learning algorithms. Both RF and SVMs
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have shown to be adaptive to different datasets even without applying a thorough hy-
per parameter selection and are therefore good candidates to establish a first baseline.
However, the framework can easily be extended to include further methodologies or al-
gorithms.

For the chosen algorithms on a validation set, a grid search is performed to find the opti-
mal hyper parameter settings. Since the aim of the grid search in this case is to establish
quick baseline models that can consequently be used as in input in the following step of
the framework, we only search a limited set of parameters. The according hyper parame-
ters and their possible settings explored during the grid search are given in Table 4.3. The
found settings are the ones then used as initial settings for the prognostic algorithms in
the genetic algorithm that is presented in the next section.

Table 4.3: The hyper parameters and combination of settings explored during the grid search for each of the
prognostic algorithms.

Prognostic
algorithm

Hyper parameter Description Possible settings

rf

n estimators number of trees {200, 800, 1400}

max features maximum number of fea-
tures to consider when
looking for the best split

{’auto’, ’sqrt’, ’log2’}

min samples leaf minimum number of sam-
ples required to be at a leaf
node

{1, 2, 4}

SVM
C learning rate {0.001, 0.01, 0.1, 10}

gamma kernel coefficient {0.001, 0.01, 0.1, 1}

4.2.3. STEP 3: GENETIC ALGORITHM
As highlighted before, we treat the problem of finding the prognostic settings as an op-
timization problem: The objective function is to minimize the MSE (Equation 5.1) of
the prognostic algorithm together with data re-balancing and feature engineering tech-
niques on the pre-processed data set. The MSE at time t is defined as

MSE(t ) = 1

t

t∑
i=1

(RU Li − ˆRU Li )2, (4.1)

with RU Li the true RUL value and ˆRU Li the predicted RUL value at timestep i .

The reason we chose the MSE for the evaluation of the prognostics is twofold: First, as
a score which captures accuracy, the MSE gives a good indication over how well the al-
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gorithms perform with respect to predicting the RUL. Second, despite the fact that it
is important to not rely on one metric to evaluate predictions (Lewis & Groth, 2022a),
we found that the majority of the literature considering the simulated turbofan engine
dataset uses the MSE or Root mean squared error (RMSE) to evaluate RUL predictions.
For this reason, it makes sense for us to apply it in this case study as well to have results
that are comparable with the state of the art and thereby can be validated against exist-
ing approaches.

The concepts of natural selection and genetics inspired the field of evolutionary strate-
gies and genetic algorithms. Genetic algorithms are based on the concepts of natural se-
lection and genetics (Holland, 1992). Due to their flexibility, GAs are able to solve global
optimization problems and optimize several criteria at the same time, like in our case
the simultaneous selection of data re-balancing, feature engineering and prognostic al-
gorithm techniques (Stanovov et al., 2017). This is what makes them good candidates for
our optimization problem.

A GA consists of several steps as presented in Algorithm 2 and Figure 4.2. The process is
as follows:

- A population is initialized, composed by a set of individuals (i.e., solutions to the
optimization problem).

- The best fitted individuals are selected based on a fitness metric which represents
the objective.

- In a following step, the selected individuals undergo a cross-over and mutation
process to produce new children for a new generation of individuals.

- This process is repeated over a number of generations until the algorithm con-
verges or a stopping criterion is achieved.

A population consists of individuals, which in turn consists of a set of chromosomes.
Each individual represents a solution to the optimization problem and is associated
with a fitness. In our case, an individual consist of three chromosomes corresponding
to choices of methodologies for data re-balancing, feature engineering and prognostic
algorithms as it is shown in Figure 4.3. The details of the setup for each of the respective
steps are given in the following subsections. For the example included in this section,
the solution space of the optimization problem corresponds to 32 possible solutions.
The fitness of each individual is given by the MSE at time t (Equation 5.1) resulting from
the prognostics performed with the individual settings on the underlying data set.

In the following subsections we give an overview of the multiple techniques considered
by the GA for the data re-balancing, feature engineering, and prognostic algorithm. To
guide through the process, we make use of the example introduced in Section 4.2.1.

DATA RE-BALANCING

Data pre-processing or data manipulation is usually done as a step previous to applying
data-driven approaches for two reasons: first, to reduce the number of features in order



4

60 4. A GENERIC FRAMEWORK FOR PROGNOSTICS OF COMPLEX SYSTEMS

Figure 4.2: Genetic Algorithm process.

Algorithm 2: Genetic Algorithm

start;
t ← 0;
initialize population P (t );
evaluate fitness of each individual in P (t );
while termination condition not fulfilled do

t ← t +1;
s1, s2 ← select individuals from P (t );
x1, x2 ← create offspring by crossover operation on s1, s2;
x̂1, x̂2 ← mutate x1, x2;
evaluate fitness of x̂1, x̂2 if fitness of x̂1, x̂2 higher than least fittest individuals

in P (t ) then
replace least fittest individuals with x̂1, x̂2;

else
pass;

end
end

to achieve a more efficient analysis and second, to adapt the dataset to suit the selected
method (Jović et al., 2015). Steps typically involved are data cleaning, normalization and
feature engineering (Elattar et al., 2016). In cases of imbalanced datasets, oversampling
can be introduced in addition (Branco et al., 2019). A comprehensive overview of feature
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Figure 4.3: The prognostic steps and methodologies included in the Genetic Algorithm.

engineering steps and according methodologies is given by (Jović et al., 2015). In the
generic prognostic framework two steps of data pre-processing are addressed, namely
data re-balancing and feature engineering, including feature extraction and selection
methods.

The data re-balancing step is done first, to address the problem of imbalanced distri-
butions in prognostic datasets. In this framework, three methodologies to address this
issue, introduced by (Branco et al., 2019) are included, namely

• Random Over-Sampling (RO),

• Introduction of Gaussian Noise (GN),

• Weighted relevance-based combination strategy (WERCS).

The presented methodologies are suiting for regression problems, such as RUL estima-
tion. While we do not go into details about them and refer interested readers to (Branco
et al., 2019), we introduce the underlying basic concepts in the following paragraph. The
main idea behind re-balancing methods for continuous target variables is the construc-
tion of bins based on a relevance function. The relevance function maps the values of the
target variable into a range of importance, where 1 corresponds to maximal importance
and 0 to minimum relevance. With this, the bins classify the data in normal (B I NN ) and
relevant samples (B I NR ). In our setup, we use a sigmoid relevance function as defined in
(Gado et al., 2020) and shown in Figure 4.4 with a relevance threshold, tr of 0.5. Further-
more, we set all values with a RUL of less then the threshold cl = 10 to be of importance,
set the oversampling rate to 0.9 and the undersampling rate to 0.1.

• Random oversampling: Random oversampling is often used to deal with imbal-
anced classification tasks. Samples from the rare class are randomly selected and
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Figure 4.4: Example of a sigmoid relevance function similar to the one used for the rebalancing task.

replicated in a new updated data set. In (Branco et al., 2019) this strategy is adapted
to regression tasks in the following way: The bins are constructed as above and
while the samples in B I NN remain unchanged a number of replicas of samples
is added in B I NR . The number of replicas is determined by the variable over ,
specifying the added percentage. While no information is discarded this way, the
likelihood of overfitting increases.

• Gaussian Noise: Here, the re-balancing is done in two ways, under-sampling the
normal cases and generating new cases based on the relevant target variable.

• WEighted Relevance-based Combination Strategy (WERCS): The idea behind this
method is to combine over- and under-sampling strategies dependent only on the
relevance function to avoid the definition of bins of relevance or the need of setting
a relevance threshold, but it only uses the information of the relevance function.

Figure 4.5 shows the resulting dataset sizes on the demonstration dataset presented in
Table 4.1 with the relevance threshold cl = 1.

Figure 4.5: The dataset sizes for the different rebalancing strategies when applied to the demonstration exam-
ple.
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FEATURE ENGINEERING

In case of feature engineering the field of available literature and proposed methodolo-
gies is much wider and more diverse. Often, the terms feature selection and feature ex-
traction are used in this context meaning various things. To be clear on this, we use the
definitions used by (Jović et al., 2015). In feature extraction, either the entire set of fea-
tures or a subset of features are transformed by mapping the original feature space to a
new feature space with lower dimensions. Examples of feature extraction methodolo-
gies are Principle component analysis (PCA), kernel PCA, or techniques based on hier-
archical clusterings, such as feature agglomeration (FAG). The scope of this analysis are
RUL estimation models for mechanical or electrical systems with run-to-failure data, it
is assumed that underlying signals come in the form of time-series data. A widely used
feature extraction technique for time-series data is PCA which projects the data into a
lower dimensional space through its singular value decomposition. Due to the fact that
it has been so widely and successfully applied to prognostic approaches for time-series
data, PCA is included in the GPF.

On the other hand, in feature selection a subset of features is chosen from the original
feature set without transformation. Feature selection methods can be classified into four
types (Hoque et al., 2014),

• filter-based approaches, selecting a subset of features without using a learning al-
gorithm,

• wrapper approaches, evaluating the accuracy produced by use of the selected fea-
tures in regression or classification,

• embedded approaches, performing feature selection during the process of train-
ing and sepcific to applied learning algorithms, and

• hybrid approaches, combining filter and wrapper methods.

In the GPF, we include a filter and an embedded approach. The filter approach is a cor-
relation based approach, which chooses the best features based on univariate statistical
tests. The embedded approach is based on the random forest importance, i.e., it chooses
the features identified as most important by a random forest estimator.

PROGNOSTIC ALGORITHMS

Finally, the according prognostic algorithm needs to be chosen and applied to the data
transformed by the previous steps. The underlying set of algorithms with according hy-
per parameters consists of a RF regression and a SVM for which the hyper parameters
were found during the grid search step as presented in Section 4.2.2.

GENETIC ALGORITHM PARAMETERS

The previous paragraphs gave an overview over the form of an individual of the GA. Of
course, also for the GA hyper parameters need to be set. The termination condition is
chosen as the maximal number of generations. The probability with which an individ-
ual is mutated is set to 0.1, the probability for cross-over to 0.5 and the population size
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to 20 as presented in (Trinh & Kwon, 2020). With this, we are ready to run the GA and ap-
ply it to system data to find the ’optimal’ settings of feature engineering methodologies
and according hyper parameters. Now the next step is to use those settings to build the
prognostic model.

4.2.4. STEP 4: TRAINING THE PROGNOSTIC MODEL
The output of the GA is the ’best individual’, i.e. the set of methodologies and hyper pa-
rameter settings that lead to the best performance on the data set in terms of MSE. This
individual is now used to build a prognostic model. As an input this model takes a new
data set of according system data and it outputs the RUL estimation.

All the models are implemented in Python. For the implementation we use the skikit-
learn package in Python (Pedregosa et al., 2011). For the re-balancing techniques, the
resreg python package is used (Gado et al., 2020).

4.3. CASE STUDY AND RESULTS
In Section 4.1, we pointed out that our aim is to provide a generic prognostic frame-
work with the capability of providing RUL estimation models and determine the ability
to perform prognostics on a system based on given operational and failure data. To un-
derstand if the framework is adaptive to different systems and to get insights into how
the results can be used towards determining if a system is prognosable, the following
steps are taken:

• The GPF is implemented in two different case studies involving a simulated and a
real aircraft system, respectively.

• The results of the GPF are compared to two baseline machine learning algorithms,
RF and SVM.

• The observed values are used in a comparative evaluation of the GPF and its capa-
bility to assess if a system is prognosable is analyzed.

In Section 4.3.1, the framework is implemented and validated on a simulated turbofan
engine dataset. Section 4.3.2 presents the results of applying the framework to an aircraft
cooling unit. Finally, in Section 4.3.3 the results of the case studies are discussed and the
generalizability and adaptivity of the GPF are assessed.

4.3.1. SIMULATED TURBOFAN CASE STUDY
The first case study is conducted on a simulated turbofan engine dataset widely used for
prognostic approaches in literature. We introduce the dataset in more detail in Section
4.3.1. Subsequently, we explain how we applied the GPF on the dataset in Section 4.3.1,
after which we go into details of how the verification and validation was conducted using
this dataset in Section 4.3.1 and finally we present the results in Section 4.3.1.

SIMULATED TURBOFAN ENGINE DATASET

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data consists
of four data sets, each containing simulated run-to-failure data for turbofan engines
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(Frederick et al., 2007) (Saxena, Goebel, et al., 2008a). The data sets differ mainly in
the number of fault modes (’modes’) and operating conditions (’conditions’) as listed in
Table 5.1. Each engine is considered to be from a fleet of engines of the same type and
each time series, also often referred to as trajectory, is from a single unit. The engines are
operated until failure, i.e. the time series capture the operations of each unit until it fails.
In the test set, the time series ends at some point before the failure and the objective is
to estimate the RUL, or in other words the number of remaining operational cycles be-
fore failure. There are 21 sensor measurements and each row in the data set contains the
measurements corresponding to operations during one time cycle for a certain unit.

Table 4.4: Characteristics of the four turbofan engine data sets, note that the difference between the four data
sets lies within the number of fault modes (’modes’) and operating conditions (’conditions’)

Data set#modes#conditions#Train units#Test units

#1 1 1 100 100

#2 1 6 260 259

#3 2 1 100 100

#4 2 6 249 248

APPLICATION OF THE GPF TO THE DATASET

In order to train the prognostic models we require a labelled data set, i.e., we assume
that the RUL is known at any time. In the C-MAPSS data set the units are operated until
failure, which means that the RUL can simply be calculated as the time to failure. In
this case study, we set the maximum number of generations of the GA to 10 and vary the
number of individuals in a population between 20, 30 and 50.

VERIFICATION AND VALIDATION OF THE GPF
Due to fact that it has been so extensively studied and there is a lot of material, espe-
cially on the C-MAPSS dataset FD001 in literature, we use it to conduct a validation of
the GPF. Furthermore, we take this opportunity to mention that every element and step
of the GPF was verified using unit tests and testing of the entire blocks of the GPF. The
validation is done for each of the methodologies included in the GPF, to be more precise
data rebalancing methods, feature engineering techniques and prognostic algorithms.
What we present in the following is an extract of the validation of the feature engineer-
ing and prognostic algorithms.

In Section 4.3.1 we already mentioned that there are 21 features, corresponding to sensor
readings. Seven of those are constant all the component life, leaving us with 14 features
of interest, namely sensors 2,3,4,7,8,9,11,12,13,14,15,17,20,21. It has been found that
of those 14 the sensors 7,8,9,12,16,17 and 20 are the most valuable ones for RUL es-
timations (Wang et al., 2008), which is mostly in alignment with what (Jia et al., 2019)
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Figure 4.6: The features selected by the PCA and their relevance scores (the higher the more relevant).

Figure 4.7: The most relevant features selected based on two different relevance scores by (Jia et al., 2019).

Table 4.5: The selected most relevant features of the C-MAPSS FD001 dataset by the methodologies included
in the GPF and in existing literature.

Generic prognostic framework Literature

PCA
Correlation-

based

Importance-

based

Paper #1

(Wang et al., 2008)

Paper #2

(Jia et al., 2019)

s2, s3, s4, s7,
s11, s12, s15,
s17, s20, s21

s4, s7, s11,
s12, s15, s21

s4, s9, s11,
s12

s7, s8, s9, s12, s16,
s17, s20

s2, s3, s4, s7, s11,
s12, s15, s17, s20, s21

found. They pointed out that sensors 2,3,4,7,11,12,15,17,20 and 21 are the most rele-
vant for RUL predictions as shown in Figure 4.7. In the GPF we include three basic fea-
ture engineering methodologies as explained in Section 4.2.3: PCA, correlation-based
and importance-based feature engineering. Table 4.5 gives an overview over the result-
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ing selected features and shows that all the three methodologies included in the GPF are
aligned and also select the same features as in the two selected papers.

Table 4.6: Reference papers to validate the output of the prognostic algorithms in the GPF.

Paper ID Reference

1 (C. Zhang et al., 2017)

2 (Babu et al., 2016)

3 (Jia et al., 2019)

Table 4.7: Comparision of the GPF performance to three selected papers in literature.

Dataset Metric Paper #1 Paper #3 RF in the GPF

FD001 RMSE 20.23 17.91 18.16

Score 802.23 479 578.20

FD002 RMSE 30.01 29.59 29.15

Score 84068 70465 65114

FD003 RMSE 22.34 20.27 20.76

Score 1000.51 711.13 743.03

FD004 RMSE 29.62 31.12 30.00

Score 22250 46567 26247.53

In order to validate the outputs of the prognostic algorithms and the GPF itself, we se-
lect three papers from literature presented in Table 4.6 to compare the metrics reached
when using the SVM and RF of the GPF to the results reached in the respective papers
on all four C-MAPSS datasets. Note that all of those papers use a piecewise linear RUL
function (well explained in (Heimes, 2008)), which has been shown to result in much
better predictions and in order to make the results comparable we do so too. Therefore
the results presented in the following are not comparable with the results reached using
the linear RUL function as presented in Section 4.3.1. Furthermore, two metrics are used
to compare the results, the root mean-squared error (RMSE) which is simply the square
root of the MSE and the score function as defined in (Saxena, Goebel, et al., 2008c). The
resulting metrics of the three selected papers (in case of using the RF only two selected
papers) and of the GPF are summarized in Tables 4.7 and 4.8. On all four datasets the
results reached by the RF and SVM of the GPF in terms of RMSE and the score function
are in the same range as the algorithms presented in the three papers in literature.
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Table 4.8: Support vector machine RMSE and score on the three papers of literature and using the GPF.

Dataset Metric Paper #1 Paper #2 Paper #3 SVM in the GPF

FD001 RMSE 20.58 20.96 40.72 24.25

Score 852.07 1381.5 7703 2312.64

FD002 RMSE 36.27 42 52.99 30.15

Score 521461 589900 316483 19827.94

FD003 RMSE 23.3 21.05 46.32 23.69

Score 1108.68 1598.3 22541 2472.71

FD004 RMSE 40.77 45.35 59.96 32.24

Score 46611 371140 141122 10248.59

Table 4.9: A comparison of applying different rebalancing methodologies and the resulting MSEs on dataset
FD001.

Settings MSE
rebalancing feature engineering prognostic algorithm
RO None rf 1657,90
None None rf 1650,41
GN None rf 1656,45
WERCS None rf 1658,01

COMPARATIVE STUDY ON DATASET FD001
In this section we present a short comparative study to show the effect of the different re-
balancing, feature engineering and prognostic algorithm settings on dataset FD001. The
aim is to understand what impact the different settings have on the resulting prognostic
model in terms of MSE. In Tables 4.9, 4.11 and 4.13 the resulting MSEs for the different
rebalancing, feature engineering and prognostics algorithm settings are presented. A vi-
sual representation of the scores is given in Figure 4.8 a) to c).

It can be seen that the rebalancing methodologies do not really affect the prognostic
models in terms of MSE. As Table 4.9 and Figure 4.8 a) show the MSE varies only be-
tween 1650,41 when using no rebalancing and 1658,01 when using WERCS as rebal-
ancing methodology. Different feature engineering settings together with no rebalanc-
ing have a higher impact on the MSE as Table 4.11 and Figure 4.8 b) show. The worst
performing method is using PCA together with a RF, while correlation and importance
based methods perform similarly with an MSE of 1769,25 and 1775,82 respectively. The
prognostic algorithms presented in Table 4.13 and Figure 4.8 c) impact the resulting
scores as well: While the RF based model achieves an MSE of 1650,99, the SVM based
model only reaches an MSE of 1775,05. All in all, the results are surprising on first sight,
because one would expect applying rebalancing or feature engineering techniques to
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Table 4.10: A comparison of applying different feature engineering methodologies and the resulting MSEs on
dataset FD001.

Settings MSE
rebalancing feature engineering prognostic algorithm
None correlation rf 1769,25
None importance rf 1775,82
None None rf 1650,88
None PCA rf 2105,58

Table 4.11: A comparison of applying the different prognostic algorithms and the resulting MSEs on dataset
FD001.

Settings MSE
rebalancing feature engineering prognostic algorithm
None None rf 1650,88
None None SVM 1775,05

improve the prognostic models. However, it seems as if increasing the complexity of
prognostic models does not necessarily lead to an improvement in terms of MSE. Ran-
dom forests are known to be adaptive themselves. Therefore it is not too astonishing that
simply using a RF on the unaltered dataset outperforms the methods in which we make
changes to the dataset in terms of size or dimensionality. Especially, since the underlying
models are trained and tested on dataset FD001, which is considered the simplest of the
C-MAPSS datasets since it only contains one failure mode and operating conditions (see
Table 5.1).

Figure 4.8: A comparison of applying the different prognostic settings on dataset FD001.

RESULTS SIMULATED TURBOFAN DATA

The GPF is applied to all four datasets and to evaluate how the performance, it is com-
pared to pure RF and SVM models. "Pure" here refers to the models obtained by train-
ing the RF and SVM algorithms with the settings found in the grid search (see step 2 in
Section 4.2.2) directly, i.e. skipping step 3, applying the GPF. The resulting metrics are
summarized in Table 4.13 and Figure 4.9. Unsurprisingly the GPF outperforms methods
in almost every case. Only for dataset FD004 the GPF makes the choice to use RF di-
rectly without including a data rebalancing or a feature engineering method and there-
fore reaches the same MSE as simply using RF. In general, choices in rebalancing/ fea-
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ture engineering do not seem to have a big impact on the quality of resulting predictions
(in terms of MSE), as can be seen from Table 4.13. The MSEs are all very close to each
other.

Table 4.12: The resulting MSEs of using the GPF versus purely using RF or SVM.

Dataset Algorithm

GPF (50 individuals) RF SVM

FD001 1649.92 1650.41 1775.05

FD002 1877.882809 1974.466387 2152.961399

FD003 4170.12 4239.47 4650.67

FD004 4559.05 4559.05 5238.34

Figure 4.9: The MSE of GPF versus purely using RF or SVM for the four CMAPSS datasets.

More insight in the quality of predictions can be gained by observing Figures 4.10, 4.11,
4.12 and 4.13 showing the resulting predictions and the ground truth on six randomly
selected trajectories of the test set for the GPF, the RF and the SVM models. Note that
the Figures show six randomly selected trajectories of the test set and they might not be
a representative choice as the performance varies between different trajectories. Still,
the Figures give some insight into how well the models are able to capture degradation.
By and large, the trends are captured quite well. Throughout all four datasets FD001 -
FD004 it can be observed that the true RUL is better approximated by predictions for
longer trajectories, i.e. trajectories operating for longer than 100 time cycles. For shorter
trajectories throughout all datasets the algorithm is not able to predict RUL accurately
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or capture degradation trends. For dataset FD001, the least complex dataset, the trends
are in most cases very close to ground truth. For most trajectories the RF outperforms
SVM (see Figure 4.10 a), d) and e)). Although for trajectories 15 and 87, shown in Figure
4.10 b) and f), this is not the case, those are also the cases with the trajectories only
running for a bit more than 70, respective 30 time cycles. In dataset FD002 for trajectories
7, 15 and 46 represented in Figure 4.11 a), b) and e) the RUL prediction is very close
to the ground truth and for most of the other trajectories the RUL towards the end of
the component life is predicted quite accurately. In dataset FD003 the predictions seem
more unstable. Still the degradation is captured quite well, especially towards the end
of life. As mentioned before for dataset FD004, the GPF chose as the optimal prognostic
settings RF without any feature engineering or rebalancing method, therefore only two
lines visible in the plots. On the chosen trajectories it seems as if the SVM outperforms
RF quite often, although most of the trajectories are quite short (none is longer than 175
time cycles), so the set of trajectories might not be a good representation of the overall
performance.

Figure 4.10: True and predicted value on dataset FD001 for six different trajectories when using the GPF, RF
and SVM.

Table 4.13 shows the chosen prognostic settings when running the GPF on the four C-
MAPSS data sets with 20, 30 and 50 individuals. We see a consistency of the choices
of the GPF over the population size. Furthermore in those cases where the choices of
methodologies differ, than it is only minor changes in the settings, e.g. a different selec-
tion of rebalancing method for datasets FD001 and FD003. Furthermore, we note that
the GPF consistently chooses the RF over the SVM, only for dataset FD003 it selects the
SVM, which together with the suiting feature engineering and data rebalancing meth-
ods even outperforms the RF. This shows the importance of including such steps when
developing prognostic models. While the differences in terms of MSE in this case are
minor, it can be the case that they are bigger for a different dataset.
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Figure 4.11: True and predicted value on dataset FD002 for six different trajectories when using the GPF, RF
and SVM.

Figure 4.12: True and predicted value on dataset FD003 for six different trajectories when using the GPF, RF
and SVM.

All in all, on the C-MAPSS dataset even simple methodologies, such as applying RF and
SVM without any feature engineering or data rebalancing yield quite promising results
and although the GPF improves performance, it does not significantly add to the predic-
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Figure 4.13: True and predicted value on dataset FD004 for six different trajectories when using the GPF, RF
and SVM.

Table 4.13: The resulting prognostic settings when running the GPF with populations of 20, 30 and 50 individ-
uals on the four C-MAPSS datasets.

Dataset
Population

size
Rebalancing

Feature
engineering

Prognostic
Algorithm

20 WERCS None RF
30 RO None RFFD001
50 RO None RF
20 GN None RF
30 GN None RFFD002
50 GN None RF
20 None importance SVM
30 None importance SVMFD003
50 GN importance SVM
20 None None RF
30 None None RFFD004
50 None None RF

tion quality.

4.3.2. AIRCRAFT SUPPLEMENTAL COOLING UNITS
As a second case study, we consider cooling units (CUs) installed on aircraft operated
in a modern and widely-used airline. They are part of the cooling system, which cools
the aircraft galleys. On each considered aircraft, four CUs are installed in the cooling
system and each consists of a condenser, a flash tank, an evaporator and a compressor.
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During flights, one or more CUs can be in operation at the same time, but in general the
aircraft tries to spread loads equally over the four CUs. The system is maintained in a
run-to-failure way, in the sense that if one of the CUs fails, the entire system is repaired
and replaced.

COOLING UNITS DATASET

The dataset provided by the airline contains both, sensor data and contextual data. On
each cooling unit nine sensors are installed (i.e. 36 sensors in total for the four CUs)
measuring different system properties continuously during flights at a rate of 1Hz, re-
sulting in 26.4 GB of sensor data for two and a half years of operation corresponding to
18295 flights. In addition to the sensor measurements, the data contains information
such as a flight ID, the plane tail (a unique identifier for each aircraft), the departure date
and time, the flight phase and the row number specifying the exact time of the measure-
ment. Note that every flight cycle consists of 14 flight phases from departure to landing.
The contextual data contains information about failures and replacements, document-
ing when failures, each identified by a failure ID, on which cooling unit happened. More
information about how maintenance is performed on the CUs and how the dataset was
constructed can be found in (Basora et al., 2021b).

APPLICATION OF THE GPF TO THE DATASET

In order to apply the GPF to the cooling unit dataset provided by the airline, several ba-
sic data pre-processing steps were conducted. First of all, the sensor measurements to-
gether with the information about failures have to be translated into run-to-failure tra-
jectories, similarly as those contained in the C-MAPSS dataset. For each aircraft (iden-
tified by plane tail), based on the contextual datasets containing replacement time and
date for each failure ID, the trajectories can be constructed using the flight IDs, depar-
ture date and time, flight phase and row number. As a next step, the nine sensor mea-
surements for each CU are aggregated per flight phase by their mean, minimum and
maximum value. This is done on the one hand for smoothing the dataset and reduce the
noise and on the other hand to reduce the size of the dataset to make it more applicable
for the GPF. The aim is, after all, to provide a quick prognostic assessment rather than
a perfect prognostic model. In Table 4.14 the resulting 24 trajectories are listed includ-
ing the number of data points (after the aggregation) and the number of flight cycles of
operation until failure.
Using the resulting trajectories, for each the RUL is calculated in the same way as on the
C-MAPSS dataset in Section 4.3.1 as a linear function of time, in this case measured in
flight cycles until failure. Figure 4.14 shows the mean RUL for the 24 trajectories of the
CU dataset. For some sensors there are nans or missing values in the dataset. Since they
account for only 2.12% of data, we simply remove them from the dataset. The last step
which has to be performed to apply the GPF to the cooling unit dataset is to split the data
into a train and test set. Now, with only 24 trajectories it seems a natural choice to apply
cross validation. What we use in this work is a leave-one-out cross validation approach
and with a number of test set size of roughly 10% of the train set size, this corresponds to
selecting 2-3 random trajectories for the test set and keeping the others in the train set.
To be more precise, for the selection of the prognostic methodologies, i.e. step 3 of the
GPF as described in Section 4.2.3, we use the following approach: For each generation
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Table 4.14: The 24 trajectories of the CUs, the number of flight cycles in operation and the number of data
points after aggregation.

Failure ID Plane Tail # data points Flight Cycles

111 dlkzncgy 24593 2236
18 wnjxbqsk 16623 1511
114 enwslczm 12877 1170
116 iefywfmy 11845 1077
115 iefywfmy 11746 1068
118 dlkzncgy 10519 957
112 dlkzncgy 10244 932
108 trmblwny 8998 818
109 tjyjdtaf 8921 811
113 lbhkyjhi 8836 803
105 dlkzncgy 7119 648
31 iefywfmy 6770 616
22 iilvtkok 13440 611
110 iilvtkok 6255 569
107 ibauqnxj 5403 491
117 cntxlxyh 5391 490
23 iilvtkok 4966 452
25 lbhkyjhi 3358 305
26 tjyjdtaf 2751 250
28 tjyjdtaf 2192 199
24 lbhkyjhi 1763 160
2 ibauqnxj 1661 151
11 rgwwyqtt 517 47
17 wnjxbqsk 88 8

of the genetic algorithm, when the next population of individuals is selected, the genetic
algorithm also creates a new train and test set - based on the above described leave-one-
out cross validation approach. In addition to that, during training the prognostic models
in step 3 of the GPF, the trajectories are cut n flight cycles before failure, where n is set
to 50,100,200 or 500. This means that only the last n flight cycles before failure are used
for the training, which is useful for two reasons: First, this reduces the dataset size and
therefore also the computational time needed. Second and more importantly though,
this reduces noise introduced by long running trajectories that do not contain much
information about degradation behaviour and condenses the information on the failure
dynamics. Note that in step 4 of the GPF (Section 4.2.4), when training the prognostic
model using the by the GPF chosen settings, as opposed to using cross-validation the
train and test sets are fixed and the test set consists of the three trajectories with failure
IDs 108, 113 and 116.
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Figure 4.14: The mean RUL for all trajectories of the cooling unit dataset.

RESULTS COOLING UNIT DATASET

Table 4.15 and Figure 4.15 show the resulting MSE of using the GPF, compared to us-
ing purely RF and purely SVM on the cooling unit dataset for different cut settings. We
can see that the GPF always outperforms the RF and SVM by margins, i.e. including
feature engineering and/ or rebalancing methods seems to have a significant impact on
the prediction quality. Table 4.16 showing the resulting prognostic settings found by the
GPF and the results below introduce further details and make this even clearer. The best
results in terms of MSE are achieved when cutting 500 FC before failure. This is not sur-
prising, since the dataset behind it contains the most information. The cutting can be
seen as some kind of classification of the data in healthy and faulty behaviour. Therefore,
they do have quite some influence on the quality of predictions as can be clearly seen in
Figure 4.15. However, while the MSE is lower when cutting 50 Flight cycles (FC) before
failure (see Table 4.15), this is not really comparable to the slightly higher MSEs when
cutting 100 or 200 FC before failure, since the MSE punishes false predictions closer to
the end of life of a component less than false predictions at the beginning.

Table 4.15: MSE of using GPF, only RF or SVM for different cut settings (cut 50, 100, 200 or 500 FC before failure)

Settings MSE
Population
size

cut GPF SVM RF

20 50 121133 252559 256327
20 100 160608 228725 235180
20 200 176610 191486 186678
20 500 12818 43626 75002

Table 4.16 contains the by the GPF chosen prognostic settings for different cut settings
and the corresponding MSEs. In all cases rebalancing methods are chosen and in most
cases, feature engineering methods are also included by the GPF to arrive at the opti-
mal prognostic output. Still, the MSE is remarkably high in all cases even when it is low
compared to using only RF or SVM.
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Figure 4.15: MSE of using GPF, only RF or SVM for different cut settings (cut 50, 100, 200 or 500 FC before
failure)

Table 4.16: Chosen prognostic settings and MSE for different cut settings (cut 50, 100, 200 or 500 FC before
failure)

Population
size

cut Rebalancing
Feature
engineering

Prognostic
Algorithm

MSE
percentage

of data
20 50 RO importance SVM 169933 7,15
20 100 GN importance SVM 160608 12,74
20 200 GN PCA SVM 119626 27,40
20 500 WERCS None rf 12818 55,98

The resulting predictions and the ground truth on three trajectories of the test set for
the GPF, using only the RF and only the SVM for predictions when using different cut
settings (cutting 50, 100, 200 and 500 FC before failure) are displayed in Figures 4.16,
4.17,4.18 and 4.19. Cutting 50 FC before failure results in quite unstable predictions,
which do not depict any degradation trends at all. When including a bit more points
and cutting 100 FC before failure this changes. In fact, using Gaussian Noise to do re-
balancing and applying the random forest importance feature selection methodology,
improves the prediction quality in such a way that now a trend is captured compared
to the RF and SVM models predictions (see 4.17). Table 4.15 reflects this behaviour in
the lowered MSE of using the GPF as compared to using only RF or SVM. For cutting 200
FC before failure, the predictions seem to be less stable, perhaps due to the additional
noise introduced through the data. This changes again when cutting 500 FC before fail-
ure as displayed in Figure 4.19. In this case the predictions become more stable again
and especially the GPF captures the degradation trend quite well.

All in all, the two main points we find when applying the GPF to the cooling unit dataset
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Figure 4.16: True and predicted values for three different trajectories of the SCU test set when using the GPF,
RF and SVM (cut 50 FC before failure).

Figure 4.17: True and predicted values for three different trajectories of the SCU test set when using the GPF,
RF and SVM (cut 100 FC before failure).

Figure 4.18: True and predicted values for three different trajectories of the SCU test set when using the GPF,
RF and SVM (cut 200 FC before failure).

can be summarized as follows: First, the GPF outperforms using simple machine learn-
ing methods by margins (in terms of MSE). Second, the impact of when to ’cut’ the data
before failure in the train set is high, which can be seen as the impact of labelling data as
’healthy’/ ’faulty’. A next step can be to use a piecewise linear function similarly to ex-
isting approaches on the C-MAPSS dataset, like the one presented in (Jayasinghe et al.,
2018), or to use a health indicator flagging data as ’healthy’ or ’faulty’.
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Figure 4.19: True and predicted values for three different trajectories of the SCU test set when using the GPF,
RF and SVM (cut 50 FC before failure).

4.3.3. COMPARATIVE EVALUATION AND DISCUSSION OF THE RESULTS
In Section 4.1 we put forward the idea of applying the GPF to assess the ability to perform
prognostics on a system, i.e., to find out whether it makes sense to put more time into
training prognostic models and applying more advanced prognostic methodologies on
the system data. Now that we have the results of applying the framework to both a simu-
lated prognostic dataset, which is known to be suitable for RUL estimation models, and
a real aircraft cooling unit dataset, we can compare and draw some conclusions. First, in
section 4.3.3 we highlight the similarities and differences between prognostics on sim-
ulated and real data sets. Second, we go into details on using the GPF to determine the
ability to perform prognostics on a system based on the underlying data in Section 4.3.3
and thirdly, we discuss limitations and directions for further research in Section 4.3.3.

SIMILARITIES AND DIFFERENCES BETWEEN SIMULATED AND REAL DATA

The GPF was applied to both a simulated aircraft turbofan dataset and a cooling unit
dataset provided by an airline. The results presented for the C-MAPSS dataset in Section
4.3.1 and for the cooling unit dataset in Section 4.3.2 highlighted some of the challenges
that arise when using prognostics on a real aircraft data set opposed to using prognos-
tic approaches on simulated data. Three main points can be discerned. First, the much
smaller number of failures leads to a smaller dataset. When using data-driven prognostic
methodologies this can lead to less stable predictions and in some cases to models that
are not able to predict RUL reliably at all. This can be seen when comparing e.g. Figure
4.11 to Figure 4.18 showing the true and predicted values for trajectories of the test set
of the C-MAPSS dataset FD002 and the cooling unit dataset when cut 200 FC before fail-
ure respectively. Not only this, but throughout Figures 4.10 to 4.13 the degradation trend
is much better captured than for the cooling unit dataset (Figures 4.16- 4.19). Second
- and this point is closely linked to the previous one - including additional steps such
as data pre-processing, data rebalancing or feature engineering to predict RUL can im-
prove the quality of the predictions. This is true even when the methodologies are not
tailored towards the dataset, but only applied in a basic way as it is done through the
GPF. The impact of including such methodologies is much higher for the cooling unit
dataset compared to the turbofan dataset. This becomes clear from the optimal choice
of methodologies presented in Table 4.16 for the cooling unit and in Table 4.13 for the
C-MAPSS dataset. And this leads to the third point we noticed when applying the GPF to
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both datasets: While the GPF outperforms the basic machine learning models in every
case for both simulated and real data (see Table 4.13 and Figure 4.9, respectively Table
4.15 and Figure 4.15), it still has much higher potential for improvement for the cooling
unit dataset.

USING THE GPF TO DETERMINE THE ABILITY TO PERFORM PROGNOSTICS ON A SYSTEM

As noted in the previous section, especially applying the GPF to real data seems to result
in predictions of much better quality for the cooling unit dataset. This indicates the GPF
provides a more thorough prognostic assessment as simply applying a RF or SVM would
do. Since it is straightforward to apply the framework, it can not only give an indication
over which prognostic methodologies might be the most effective on a given dataset, but
also it can give an indication of the ability to perform prognostics on a system. In Section
4.1 we defined the ability to perform prognostics on a system to mean that meaningful
and accurate data-driven prognostic models can be developed based on given under-
lying operational and failure data for a system. To be more precise, the assessment of
whether or not a system is prognosable is approached from a data suitability point of
view. The aim is to understand if, based on the system data, we are able to retrieve first
simple prognostic models. If this is not the case, the system data might not be of suffi-
cient quality and size to train a prognostic model. It is not very surprising that the sim-
ple prognostic methodologies included in the GPF result in quite accurate predictions
in terms of MSE and visually compared against the true RUL on all four simulated data
sets. The C-MAPSS datasets are after all created for prognostics and it has been shown
over the past decade multiple times in literature that even with simple methodologies
the RUL of the underlying turbofan engine can be accurately estimated. For the cooling
unit dataset this is a bit more complicated. There are several additional challenges when
working with a real dataset, as covered in the previous Section 4.3.3. Other authors who
have worked on the cooling unit dataset noticed the same: In their paper in which they
present an anomaly detection method and apply it to the dataset, (Basora et al., 2021b)
point out that the prediction of fault occurrences proved a challenge, especially due to
the fact that fault dynamics are different from one case to another. This situation is not
improved by the small number of faults and the lack of knowledge of failure modes. Still,
other authors found that applying prognostic methodologies to the same dataset results
in quite accurate RUL predictions (see (de Pater & Mitici, 2021) and (Rosero et al., 2022)).

All in all, we would therefore from previous works in literature conclude that the system
based on the collected data is prognosable. The only remaining challenge is to extend the
dataset and especially collect more data concerning faults. This is in alignment with the
results presented in Section 4.3.2 and becomes especially visible in Figures 4.17 and 4.19.
Based on this and our findings in the previous Sections 4.3.1 and 4.3.2, the output of the
GPF can be used to tell if a system is prognosable when keeping the following in mind:
Even if the MSE does contain some information on the ability to perform prognostics on
a system, this information does not suffice to make real implications. Depending on the
dataset the resulting MSE can differ significantly and it does not give a real indication if
the degradation trend is captured or not. E.g. Table 4.15 shows that the GPF results in a
lower MSE than the classic machine learning algorithms, but Figure 4.16 shows us that
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exactly like the RF and SVM models, it doesn’t seem to capture any trends at all on the
test dataset. For this purpose, visual representations of the predictions can be helpful.

LIMITATIONS AND FURTHER RESEARCH

The findings of this research are subject to several limitations, which point out directions
for further research.

• As mentioned in the previous section, the use of the MSE in isolation does not give
a sufficient insight into the performance of prognostics. In addition to visualisa-
tion of trajectories, several other metrics can be used to given additional insight
into prognostic performance, such as the prediction horizon.

• Only a limited amount of methods are included in this application of the GPF,
which limits the assessment of the ability to perform prognostics on a system.
Nevertheless, the GPF can easily be extended to include alternative methods such
as neural networks and their myriad variations. This will however have implica-
tions on the computational runtime of the GPF; careful balancing might be re-
quired between prognostic performance and computational performance in view
of organisational objectives (i.e., obtaining a first assessment of a dataset or ob-
taining the best performing model).

• For now we apply hyperparameter tuning only to determine initial settings for the
prognostic algorithms. However, further research could go into the investigation
of using different hyperparamter selection methodologies or pre-select them ac-
cording to the selected prognostic algorithm.

• The amount of available data is an important consideration when considering the
applicability of data-driven methods and by extension the GPF. While this frame-
work has the capability to work with large amounts of input data, a lack of (la-
belled) failure data may lead to difficulties in accurately predicting future failure
events.

While the data availability and quality, especially of failure related data, is one of the
biggest challenges when applying prognostics to real system data (Zio, 2022), this is also
one of the main points we aim to address with the presented framework. Applying the
GPF to system data results in an assessment of the suitability of the underlying data for
prognostics. While such an assessment can help in the decision of further prognostic
development effort, it also can provide insights into possible arising requirements for
further or more dense failure related or sensor data.

4.4. CONCLUSION
We have presented a generic prognostic framework with two major aims: 1) provide an
approach capable of identifying a suiting prognostic model given related system data;
2) provide a way to assess system data in terms of the ability to perform prognostics
on a system. To substantiate both points, we have applied the framework towards two
datasets: the synthetic C-MAPPS dataset and a real aircraft system dataset, enabling a
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comparative evaluation. This is in contrast to existing literature, which focuses exclu-
sively on either synthetic or real data, with the latter being much less prevalent. Addi-
tionally, as pointed out in the introduction, recent advances in prognostic method devel-
opments lack convincing proof regarding generalizibility, i.e., suitability for application
beyond synthetic datasets such as C-MAPSS towards real-life industrial cases.

The results of our study suggest that the generic prognostic framework can be adapted
to various systems and provides potential towards valid remaining useful life estimates
for aircraft systems. Furthermore, the framework provides a means to quickly assess the
ability to perform prognostics based onsystem data. In addition to that, we highlight the
limitations and challenges with applying prognostics to real-life datasets.

Future research will focus on expanding and testing the methods included in the frame-
work. Furthermore, the influence of a variety of metrics on prognostic performance will
be assessed more thoroughly.



5
THE IMPACT OF METRICS ON THE

CHOICE OF PROGNOSTIC

METHODOLOGIES

In Chapter 1, the introduction of the thesis, the main research objective is formulated as to
"provide a framework to assess the application of diagnostic and prognostic methodolo-
gies for failure detection and prediction based on system data". This is reflected in the in
Chapter 2 defined requirements for such a framework. Chapter 3 and Chapter 4 introduce
frameworks for diagnostics and prognostics. Through applying the respective frameworks
in case studies to both, simulated and real world data, the frameworks are proven to be
generalizable, adaptive and applicable. What remains now is to address the word ’as-
sess’ in the main objective. Or put in other words: In this chapter we aim to understand
how the in Chapter 4 presented generic prognostic framework can be translated towards
a prognostic assessment. Note, that we focus on prognostics here, but the shown method-
ologies can be adapted towards diagnostics as well. First, the impact of metrics on the
choice of prognostic methodologies is characterized. Then, several representative metrics
are used within the prognostic framework to guide the decision whether system data is
suitable for prognostics or not. The thereby adapted framework is applied in three case
studies to complex systems with different underlying data quality, i.e. while some of the
systems have data of high quality that can be used to build prognostics models, others do
not. The results show two interesting findings: First, the choice of optimization metric has
an impact on the output of the generic prognostic framework and on the overall prognos-
tic performance. Second, such a first prognostic assessment can give a rough indication of
whether or not it makes sense to use system data to train prognostic models.

83
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5.1. INTRODUCTION
Within the framework of Condition-Based Maintenance, prognostics enable assessment
of equipment health and prediction of the RUL (Elattar et al., 2016). Using prognostics
in such a context requires properly assessing the quality of predictions (Brunton et al.,
2021; Zio, 2022). An effort to standardize prognostic metrics has been made by (Saxena,
Celaya, et al., 2008), (Saxena et al., 2010). The metrics commonly used in prognostics
are highlighted, and several ways to classify them are presented as ways to interpret and
use the metrics. A comprehensive overview of existing metrics to evaluate prognostic
performance is given by (Ochella & Shafiee, 2021). A single metric, such as the MSE,
can arguably not characterize the quality of RUL predictions sufficiently for a thorough
assessment within a CBM framework (Saxena et al., 2014). Instead, the design of prog-
nostic metrics has to be linked to the application and decision-making process (Bi et al.,
2017; Sankararaman et al., 2014). In addition, as highlighted in Figure 5.1, metrics are
needed to define requirements and thoroughly evaluate prognostic performance (Sax-
ena, Celaya, Saha, Saha, & Goebel, 2009).

Figure 5.1: Prognostic metrics are needed to define requirements and evaluate performance (Saxena, Celaya,
Saha, Saha, & Goebel, 2009)

(Goebel et al., 2017) state that a meaningful prediction has three attributes, namely cor-
rectness, timeliness, and confidence (see Section 5.2.1). Performance evaluation of prog-
nostic methodologies should enhance all three of those aspects. However, the vast ma-
jority of literature published in the field of prognostics uses only a single metric, which is
often one linked to the correctness of the method (Saxena, Celaya, Saha, Saha, & Goebel,
2009). Still, previous works on including more advanced metrics or defining more ad-
vanced metrics have been done in the literature. For example, (Amigó et al., 2011) intro-
duce a measurement to combine several metrics and indicate how robust the measured
differences are to changes in the relative weights of the individual metrics. (M. L. Baptista
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et al., 2022) show that prognostic metrics correlate with a SHapley Additive exPlanations
(SHAP) model’s explanation. A performance metric to assess performance, effectiveness
and efficiency of health monitoring models of complex engineering systems is suggested
by (Lewis & Groth, 2022b).

In addition to a suitable prognostic assessment technique, the question remains of how
to translate this towards a prognostic assessment. Such an assessment is and must be
application dependent. This study focuses on applying prognostics within a CBM frame-
work for aircraft maintenance. A number of publications have been made on the topic
of integrating prognostic models in aircraft maintenance planning (de Pater & Mitici,
2021; Pater et al., 2022). A framework for aircraft maintenance design with reliability
and cost-efficiency objectives has been provided in (Lee & Mitici, 2022). To use prog-
nostic models as input for maintenance planning, those models need to be developed,
which is time-consuming and requires expertise. However, what would be desirable was
if, instead of spending months on developing prognostic models, there was a way to as-
sess system data towards their suitability for prognostics relatively quickly. One of the
main guiding works in the literature on this topic is perhaps the work by (Coble & Wes-
ley Hines, 2009), in which prognostic parameters are retrieved from the system data to
do a prognostic assessment before applying actual prognostic methodologies. A method
to evaluate data quality before the modelling by clustering the data into different system
conditions is suggested in (Y. Chen et al., 2013). (Omri et al., 2021) propose a set of data
quality requirements, especially for health assessment and fault detection. They propose
a ’detectability’ metric to assess the suitability of data for fault detection. (Atamuradov
et al., 2020) present a hybrid feature evaluation with a combined metric. A framework
for RUL prediction, including a physics-informed failure mode recognition model that
can be applied to different systems with different failure modes, is presented first in (Jiao
et al., 2020) and extended by (Xiong et al., 2023).

Two challenges arise from the above-presented literature: One, tuning prognostic algo-
rithms without understanding which metrics are needed to assess the algorithm is diffi-
cult. Similarly, it is tricky to understand the full impact of choosing prognostic metrics
without considering the prognostic algorithm. Two, while the presented data suitability
methodologies are demonstrated in several case studies, they are lacking the link toward
prognostic algorithms. Furthermore, often statistical methodologies and pre-defined
metrics are used to assess the data quality. This is problematic for several reasons: First,
data suitability for prognostics can only truly be assessed when attempting to train a
model capable of predicting the system’s RUL. Second, AI-based methodologies are in
some cases able to detect failures even though the underlying data degradation is not
visible or statistically traceable, i.e., statistical methods might not really give us insight
into the data suitability for prognostics (Braglia et al., 2012). Third, in order to go beyond
a statistic-based data assessment, prognostic performance metrics should be translated
toward a data suitability assessment.

To address the challenges listed above, we, therefore, in this paper, investigate the impact
of metrics on the choice of prognostic methodologies. On top of that, we explore how
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the performance of prognostic methodologies can be translated to an assessment of the
suitability of the system for prognostics. Therefore, the following novel contributions to
state of the art are made:

1. An integrated framework is presented that selects the optimal prognostic settings,
where optimality is assessed in terms of three selected prognostic metrics, repre-
senting: correctness, confidence, and timeliness of predictions.

2. A study on the impact of different metrics on the choice of prognostic methodolo-
gies is conducted.

3. The resulting outcome is used to define the term ’system data suitability’ for prog-
nostics such that it not only includes the data characteristics but also takes into
account the data suitability in a CBM framework.

4. An example of the data suitability assessment for aircraft data sets of different
quality is given.

The remainder of the paper is structured as follows: Section 5.2 explains the generic
prognostic framework used in this study and how it can be used to assess the prognostic
suitability of system data. To investigate the impact of prognostic metrics and validate
the presented data suitability assessment, in Section 5.3 two case studies are conducted:
One on a simulated turbofan dataset and one on a real aircraft system. In Section 5.4
the two research questions are addressed based on the results obtained in the two case
studies, and the limitations and directions for further research are highlighted. Section
5.5 concludes the paper and highlights the main findings.

5.2. METHODOLOGY
To select the optimal set of prognostic methodologies, a Generic Prognostic Framework
(GPF) as presented in (Bieber & Verhagen, 2022) is used, which contains three steps of
prognostics and according to representative techniques. This means that in addition to
incorporating different methodologies, the framework includes a selection step in which
the best set of techniques is chosen. Note that the essence of the work presented in this
paper lies in assessing and optimizing the set of prognostic techniques. The way we
measure and evaluate the chosen techniques defines the prognostic settings and, fur-
ther consequences, the quality of the predictions. In order to evaluate the prognostic
performances, we, therefore, use different prognostic metrics to account for different
aspects of prediction evaluation. Those metrics integrated into the GPF give us insight
into the quality of predictions and thereby help to choose appropriate prognostic meth-
ods.

The generic prognostic framework consists of three phases (coloured blocks in Figure
5.2). In phase one, which is highlighted in green, a Genetic algorithm is applied to find
the optimal prognostic settings. This is done using multi-objective optimization based
on three different metrics, which are explained in more detail in Section 5.2.1. In phase
two, highlighted in red and further explained in Section 5.2.2, a prognostic model is
trained, which then has the capability to output RUL estimates. In the final step of the
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framework, phase three, highlighted in blue, a data suitability assessment is performed.
Based on the resulting accuracies in terms of the selected prognostic metrics, thresh-
olds are defined to determine if the system data is suitable for prognostics. A detailed
explanation is given in Section 5.2.3.

Figure 5.2: The generic prognostic framework flow.

5.2.1. GENERIC PROGNOSTIC FRAMEWORK
The framework used in this work is a modified version of the Generic Prognostic Frame-
work (GPF) presented in (Bieber et al., 2021; Bieber & Verhagen, 2022). It differs from the
original framework mainly in optimizing three different prognostic metrics simultane-
ously. Therefore, we only give a short overview of the elements and functionalities of the
generic prognostic framework and refer the reader to the previous work for more details
about the GPF. The GPF consists of three blocks corresponding to three selected steps in
prognostics: data rebalancing, feature engineering, and the prognostic algorithm itself,
as displayed in Figure 5.3. The three blocks each contain several representative method-
ologies for each of the selected steps in prognostics. Imbalanced data occurs when one
class of data (e.g., faulty behaviour) is under-represented when compared to the other
class(es) (e.g., healthy behaviour). Data rebalancing methods make use of the concepts
of undersampling and oversampling: the former consists in removing majority exam-
ples while the latter replicates the minority examples (Santos et al., 2018). Three data
rebalancing methodologies as introduced in (Branco et al., 2019) are included:

• Random Over-Sampling (RO),

• Introduction of Gaussian Noise (GN) and

• Weighted relevance-based combination strategy (WERCS).

The feature engineering methodologies in the framework are PCA, correlation-based
feature, and importance-based feature selection representing, respectively, feature ex-
traction, filter-based feature selection, and embedded feature selection techniques. In
order to get a first prognostic assessment through the framework, the prognostic algo-
rithms included are a Random Forest Regression (RF) and a Support Vector Regression
(SVM). The two selected algorithms are well-established and offer potential advantages
in terms of interpretability and explainability (Ward & Habli, 2020). However, they will
generally not offer performance on the level of bespoke, advanced models developed for
specific applications.
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Figure 5.3: The elements of the generic prognostic framework

The GPF selects optimal sets of methodologies for each of the three steps in the prog-
nostic framework. Here, ’optimal’ refers to the best in terms of the mean-squared error
(MSE), Prognostic Horizon (PH), and α−λ score. In other words, we treat the problem of
finding the prognostic settings as a multi-objective optimization problem: The objective
function is to simultaneously minimize the MSE, maximize the PH, and maximize the
α−λ score of the prognostic algorithm together with data re-balancing and feature en-
gineering techniques on the pre-processed data set. To solve the optimization problem,
we use a genetic algorithm (GA). These algorithms are based on the concepts of natural
selection and genetics (Holland, 1992). Due to their flexibility, GAs can solve global op-
timization problems and optimize several criteria at the same time, like in our case, the
simultaneous selection of data re-balancing, feature engineering, and prognostic algo-
rithm techniques (Stanovov et al., 2017).

Basically, there are two approaches to multi-objective optimization: The first is to cre-
ate a single optimization objective by combining the individual objective functions. The
second is to move all but one objective to the constraint set (Konak et al., 2006). This
approach results in a set of solutions, each of which satisfies the objectives at an accept-
able level without being dominated by another solution. Due to the fact that GAs are a
population-based approach, they are well-suited for multi-objective optimization prob-
lems. Sets of solutions are returned in every generation; therefore, multiple solutions
can easily be returned (Konak et al., 2006). In fact, a majority of the multi-objective opti-
mization problems in current literature are solved using evolutionary approaches (Jones
et al., 2002). Several multi-objective approaches for GAs have been suggested in the lit-
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erature, and a comprehensive overview can be found in (Konak et al., 2006). We use
the Non-dominated Sorting Genetic Algorithm II (NSGA-II, introduced in (Deb et al.,
2002)). It ranks candidate solutions with the fast non-dominated sorting method and
uses a crowding distance as a diversity mechanism. The algorithm is well-tested, has
been used in many applications and is efficient, which makes it a good candidate for
this study.

The NSGA-II, in our case, takes the system data as input and outputs the set of Pareto
dominant solutions. A solution is Pareto dominant if there does not exist any other fea-
sible solution that dominates it (Hua et al., 2021). In this case, a solution is a combination
of a data re-balancing technique, a feature engineering methodology, and a prognostics
algorithm. If the algorithm identifies that applying no re-balancing or feature engineer-
ing technique results in better prognostic outputs, the GPF returns ’None’ for the ac-
cording to the block. The three different metrics integrated into the framework are the
mean squared error (MSE), prognostic horizon (PH), and the α−λ metric. The metrics
account for the three attributes of meaningful predictions, i.e., correctness (MSE), time-
liness (PH), and confidence (α−λ metric) (Saxena, Celaya, et al., 2008; Saxena, Celaya,
Saha, Saha, & Goebe, 2009).

The MSE at time t it is given as

MSE(t ) = 1

t

t∑
i=1

(RU Li − ˆRU Li )2, (5.1)

where RU Li is the true RUL value and ˆRU Li the predicted RUL value at timestep i .

The prognostic horizon (PH) is defined as

PH(t ,α) = RU L(tiα ), (5.2)

with RU L(tiα ) the true RUL at time tiα and iα := mi n{k ∈ p|∀ j ≥ k :α−
j ≤ ˆRU L(t j ) ≤α+

j },

where

• p is the set of all time indices where predictions are made,

• ˆRU L(t j ) is the prediction at time index j ∈ p

• and the a bounds are defined as α−
j := RU L(t j )−α and α+

j := RU L(t j )+α.

, The prognostic horizon is the smallest RUL in which the predicted RUL is still within
the specified α bounds. The best score for the PH is obtained when the predicted RUL
always falls within the specified accuracy zone, while the worst score is obtained when
the predicted RUL is never within the accuracy zone. The PH indicates whether the pre-
dicted estimates are within the specified limits, especially towards the end of life (EoL),
so that predictions can be considered trustworthy during a specified time span before
the system’s EoL is reached. It becomes clear that the longer the PH is, the more time
becomes available to act based on a prediction. It, therefore, gives an indication of the
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timeliness of an algorithm, in the sense that during a time span before the system’s EoL,
the predictions can be used to plan according to actions. In the case studies presented
in Section 5.3, we set α= 40 flight cycles, which is the time needed to schedule mainte-
nance for an aircraft in case it is needed.

Figure 5.4: Example of calculating the Prognostic Horizon for two prognostic algorithms ((Saxena, Celaya,
Saha, Saha, & Goebe, 2009)).

Figure 5.4 gives an example of two prognostic algorithms, Algorithm 1 (represented in
red) and Algorithm 2 (represented in blue). The shaded area is the desired accuracy zone,
i.e., the condition checked through Equation 5.2 (and more precisely when finding ia).
It can be seen that Algorithm 2 exhibits a poorer performance in terms of the prognostic
horizon than Algorithm 1, which has a longer prognostic horizon, i.e., PH 1 > PH 2.

And finally, the α−λ metric is as in (Biggio et al., 2021) defined as

α−λ :=
{

1, if (1−α)λ∗ ≤λp ≤ (1+α)λ∗

0, other wi se,
(5.3)

with λ∗ = RU L(tλ) the ground truth, λp = RU L(tλp ) the prediction and α an arbitrary
chosen accuracy. The two input parameters for the metrics are α, which determines the
required level of confidence for the predictions, and λ, which represents a fraction of
time between the point when the algorithm starts predicting (tP ) and the actual failure
or End of Life (EoL).

The α−λ metric, therefore, measures the prediction quality by determining whether the
prediction falls within specified limits at particular times, which -as mentioned above-
are presented as a percentage of the total ailing life of the system. To be more precise, the
question it seeks to answer is whether the prediction accuracy of the RUL model is within
α·100% of the actual RUL at a specified time instance tλ (depending on λ). The output is
binary (true or false), stating if the desired condition (Equation 5.3) is met at the specific
time instance. It is more stringent than the PH because it requires the predictions to stay
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within a cone of accuracy, i.e., bounds that shrink as time passes. This is also visible in
the presented examples when comparing Figure 5.5 to Figure 5.4).

Figure 5.5: Example of calculating the α−λ metric for two prognostic algorithms (modified from (Saxena,
Celaya, Saha, Saha, & Goebe, 2009)).

To demonstrate how the α−λ metric is calculated, Figure 5.5 shows an example of cal-
culating it for two different prognostic algorithms, Algorithms 1 (represented in red) and
Algorithm 2 (represented in blue). The black line shows the true RUL and the dotted
lines show the specified α bounds, i.e., (1−α)λ∗ and (1+α)λ∗. When now calculating
the α−λ metric for λ1, as becomes visible in Figure 5.5, for Algorithm 1, it would be 1,
while for Algorithm 2, which predicts an RUL outside theα bounds, it would be 0. Forλ2,
i.e., at tλ2 , both Algorithms yield predictions within the bounds, and therefore the α−λ

metric is 1 for both.

The α−λ metric can be evaluated and averaged over the whole trajectory with N time
steps (i.e., for the entire interval [tP ,EoL]), arriving at α−λ, which lies between 0 and
1. It, therefore, returns the confidence that the predictions fall into the α bounds over
the entire period of time. This is why it is a good candidate to represent prediction con-
fidence. In the example in Figure 5.5, for Algorithm 1, which performs visibly better in
terms of α−λ metric than Algorithm 2, α−λ(Al g o1) = (6∗1+1∗0)/7 = 0.857, whereas
for Algorithm 2 the metric over the entire time interval isα−λ(Al g o2) = (3∗1+4∗0)/7 =
0.429.

5.2.2. TRAINING PHASE

The output of the GA is the ’best individual’, i.e., the set of methodologies and hyperpa-
rameter settings that lead to the best performance on the dataset. Note that in order to
save computational power and arrive at a solution more quickly, the GPF only takes a
reduced dataset as an input for the optimization (Bieber & Verhagen, 2022). In this step,
the prognostic model is trained on the full dataset using the optimal settings returned by
the GPF. Therefore, the output of this step is a trained prognostic model, which takes as
input system data and outputs the remaining useful life (RUL).
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5.2.3. DETERMINING IF A SYSTEM IS SUITABLE FOR PROGNOSTICS
Once the GPF has identified a set of optimal prognostic models in terms of MSE, PH and
α−λ score and outputs the according scores, phase three (indicated in blue in Figure 5.2)
starts. Based on the output models, this phase aims to identify whether the system data
are suitable for prognostics. Of course, the question of whether it makes sense to apply
prognostic approaches for given data highly depends on the user, the application, and
the underlying requirements. As highlighted in Section 5.1 we aim to assess data suit-
ability in a prognostic context. This means we go beyond a simple statistical assessment
and instead translate prognostic metrics of basic prognostic machine learning models
trained on the underlying system data into a data suitability assessment. The definition
of ’system data suitability for prognostics’ depends on user inputs, which can be adapted
accordingly. The user needs to set bounds for each of the criteria measured:

• In terms of correctness, MSEmax , the upper MSE limit,

• in terms of timeliness, PHmi n(a), the minimum number of time steps before fail-
ure at which the failure needs to be known to take according to actions, which is
based on a, the maximum value (measured in time steps) that the prediction is
allowed to deviate from the true value,

• and in terms of confidence, (α−λ)mi n , where 0 < (α−λ)mi n < 1, the minimum
ratio of predictions within the α bounds.

System data is defined to be suitable for prognostics if

MSE(t = end of life) ≤ MSEmax (5.4)

∧ PH(t j ) ≥ PHmi n(a) ∀ j ∈ p and specified a (5.5)

∧ α−λ≥ (α−λ)mi n . (5.6)

Only when all three of the conditions are met for a given prognostic model does that
model satisfies the data suitability criteria. This can be applied to each model in the set
of optimal models returned by the GPF. If a single prognostic model is found that fulfils
the above requirements (Equations (5.4)-(5.6)), then the system data is assumed to be
suitable for prognostics.

5.3. RESULTS
There are two main aims of the conducted study: First, we want to understand the im-
pact of prognostic metrics on the methodology selection in the different steps of the
prognostic framework. Second, an example evaluation is performed for different input
system data to understand if the systems are suitable for prognostics. For this purpose,
two case studies were conducted: The first case study in Section 5.3.1 is conducted on
a simulated turbofan dataset commonly used in literature and known to be suitable for
prognostics. The second case study in Section 5.3.2 uses a real-world aircraft dataset.

5.3.1. CASE STUDY: SIMULATED TURBOFAN DATASET
The C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) data set con-
tains simulated run-to-failure data for turbofan engines (Frederick et al., 2007). Using
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this tool, 4 data sets were created (Saxena, Goebel, et al., 2008a). The data sets differ
mainly in the number of fault modes and operational conditions simulated in the ex-
periments. An overview is given in Table 5.1. For our purpose, we use two of the four
datasets: First, dataset FD001, is considered the simplest one as it only contains one
fault mode and operating condition. And second dataset FD002, is considered to be
more complex due to the different operating conditions. Each engine is considered to
be from a fleet of engines of the same type, and each time series, also often referred to as
trajectory, is from a single unit. The engines are operated until failure, i.e., the time se-
ries captures the operations of each unit until it fails. In the test set, the time series ends
at some point before the failure, and the objective is to estimate the RUL, or, in other
words, the number of remaining operational cycles before failure. There are 21 sensor
measurements, and each row in the data set contains the measurements corresponding
to operations during a one-time cycle for a certain unit.

The framework is applied to both datasets and in the following, the according results are
presented. We compare the resulting prognostic models to baseline models, namely us-
ing only RF and SVM, respectively, without any data rebalancing or feature engineering.
In all cases, we run the genetic algorithm for 20 generations with a population of 30 in-
dividuals.

Table 5.1: Characteristics of the four turbofan engine data sets (Ramasso & Saxena, 2014)

Data set #Fault
modes

#Conditions #Train
units

#Test
units

relative
#Train
units

relative
#Test
units

#1 1 1 100 100 0.485% 0.485%

#2 1 6 260 259 0.484% 0.762%

#3 2 1 100 100 0.405% 0.603%

#4 2 6 249 248 0.407% 0.602%

RESULTS ON DATASET FD001
First, we present the output of the genetic algorithm, i.e. the Pareto front for dataset
FD001. Table 5.2 contains the set of individuals in the Pareto front, with their respective
choices of methodologies for the data rebalancing, feature engineering and prognostic
algorithm. In addition, the according metrics (MSE, PH and alpha-lambda score) for the
trained prognostic models are given.

The results in Table 5.2 show that most of the Pareto optimal solutions use SVM as a
prognostic algorithm. Note that the SVM-based solutions outperform RF-based solu-
tions when using feature engineering or rebalancing techniques together with SVM. At
the same time, the RF performs well without using any data rebalancing or feature en-
gineering methodologies. The term ’outperforms’ here refers to in the sense of a lower
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Table 5.2: The resulting best prognostic settings and metrics when running the MOGA GPF with 30 individuals
for data set FD001.

rebalancing feature engi-
neering

prognostic algo-
rithm

MSE PH α−λ

None None rf 1647,10 144.34 0.524206

GN PCA SVM 1774,21 129.47 0.536729

None PCA SVM 1759,08 132.25 0.536652

RO None SVM 1757,86 132.68 0.529704

WERCS None SVM 1755,32 130.92 0.531689

α−λ score in terms of best MSE and PH, using only RF proves to be the optimal tech-
nique for FD001. Furthermore, the α−λ scores are all very close to each other. Finally,
it can be seen that increasing the performance in terms of MSE also, in most cases, in-
creases the performance in terms of PH, while it usually results in lower α−λ scores.

Figure 5.6: A 2D representation of the resulting scores for individuals in the Pareto front and dominated indi-
viduals found when running the MOGA GPF with 30 individuals for data set FD001.

Figure 5.6 shows a two-dimensional representation of both individuals in the Pareto
front and dominated individuals. The following is observed:

• In Figure 5.6 a) it can be seen that a good score in terms of MSE can be reached
without decreasing the performance in terms of alpha-lambda score too much
(only from around 0.54 to 0.42)

• Figure 5.6 b) shows that this comes at the cost of reducing the PH to almost 0.

• Therefore, in Table 5.2, only individuals with an MSE of around 1750 are in the
Pareto front.
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• In this case, when using only the MSE as an optimization metric it would result in
models with a poor score in terms of timeliness.

Figure 5.7: Predictions of best-found settings vs. the two baseline scenarios (only RF and only SVM) on example
trajectories for a population size of 30 on data set FD001.

Figure 5.7 shows for six randomly selected trajectories in the test set, the true RUL and
the predicted values for the individuals in the Pareto front and the baseline models (us-
ing purely RF and SVM). For the selected trajectories of dataset FD001 the resulting prog-
nostic models seemingly all perform very well, as do the baseline models. This is espe-
cially true for Trajectories 5 (Figure 5.7 a)), 24 (Figure 5.7 c)), 46 (Figure 5.7 e)) and 92
(Figure 5.7 f)). Only in Figure 5.7 a) for Trajectory 5, it can clearly be seen that the GPF-
based models outperform the baseline algorithms, especially towards the end-of-live.

RESULTS ON DATASET FD002
Similarly, the results for the runs on data set FD002 are shown in Table 5.3, which con-
tains both the choice of methodologies and the scores in terms of the selected metrics.
What can clearly be seen is that the Pareto front contains more individuals than the one
for FD001 (10 respectively, 5 individuals). Again, similarly to dataset FD001, in most
cases, SVM results in better solutions than RF. While adding a resampling or feature en-
gineering step can improve the predictions in single metrics, the Pareto front contains
both the baseline scenarios, using purely RF and SVM.

Figure 5.8 shows a two-dimensional representation of both individuals in the Pareto
front and dominated individuals. In the figure, it can clearly be seen that increasing
the performance in terms of MSE (decreasing the MSE) results in a better lambda-alpha
score (Figure 5.8 a)), but a lower PH (Figure 5.8 b)), which can also be observed in Table
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Table 5.3: The best prognostic settings and metrics when running the MOGA GPF with 30 individuals for data
set FD002.

rebalancing feature engi-
neering

prognostic algo-
rithm

MSE PH α−λ

None None rf 1873,40 117,11 0.463387

RO None rf 1865,68 116,50 0.460887

WERCS None rf 1872,08 118,64 0.462034

GN correlation SVM 2241,46 122,10 0.439204

None importance SVM 2262,72 124,53 0.430084

None None SVM 2152,96 120,97 0.452355

RO importance SVM 2557,72 134,95 0.400665

RO None SVM 2188,97 122,18 0.438469

WERCS importance SVM 2510,06 132,32 0.404166

WERCS None SVM 2189,37 122,00 0.442205

5.3.

Figure 5.8: A 2D representation of the resulting scores for individuals in the Pareto front and dominated indi-
viduals found when running the MOGA GPF with 30 individuals for data set FD002.

Figure 5.9 shows six randomly selected trajectories in the test set, the true RUL, and the
predicted values for the individuals in the Pareto front and the baseline models. Here, as
opposed to in FD001, the quality of results varies much more between the different se-
lected trajectories. For Trajectories 5 (Figure 5.9 a)), 46 (Figure 5.9 e)) and 92 (Figure 5.9
f)), the models predict the RUL quite accurately, especially towards the end of life. This
is not true for Trajectories 18 (Figure 5.9 b)) and 28 (Figure 5.9 d)), for which the prog-
nostic models are not able to accurately predict RUL. Note that the baseline algorithms
(only RF and only SVM) are contained in the Pareto front. Therefore, it is no surprise
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that their predictions’ quality is relatively high compared to the other chosen settings of
Pareto front individuals.

Figure 5.9: Predictions of best-found settings vs the two baseline scenarios (only RF and only SVM) on example
trajectories for a population size of 30 on data set FD002.

5.3.2. CASE STUDY: AIRCRAFT SYSTEM DATA
In the second case study, the GPF is applied to an aircraft pump package installed close
to the landing gear. The pump package consists of two redundant pumps: pump 1 and
pump 2. The assumption is made that pump 1 and pump 2 failures are independent.
Failures happen on the two power boards, presumably due to short circuits.

On each of the pumps, sensors have been installed that measure the following proper-
ties:

• The motor current,

• the motor speed,

• the motor temperature,

• the reservoir fluid level and

• the junction temperature (of the liquid).

Next to those sensors, the static air temperature (sat) and the calibrated airspeed (cas)
reported on the aircraft level are used as input. The sensor measurements are made ev-
ery second. The per-second data is aggregated per flight phase by mean, maximum, and
minimum to remove noise from the raw sensor data. A flight consists of twelve flight
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Table 5.4: The resulting best prognostic settings and metrics when running the MOGA GPF with 30 individuals
for the aircraft Pump dataset.

rebalancing feature engi-
neering

prognostic algo-
rithm

MSE PH α−λ

GN None rf 4,64E+07 29,94 0,1417

GN correlation rf 4,59E+07 11,25 0,1606

None None rf 4,63E+07 16,64 0,1507

None PCA rf 6,24E+07 191,61 0,0556

None correlation rf 4,56E+07 10,23 0,1725

None importance rf 5,46E+07 223,75 0,0523

RO None rf 4,85E+07 32,00 0,1985

WERCS None rf 4,82E+07 22,17 0,2147

WERCS PCA rf 6,52E+07 58,33 0,1253

WERCS correlation rf 4,66E+07 10,48 0,2104

WERCS importance rf 6,20E+07 57,88 0,0893

phases, from taxi-out until taxi-in. The aggregated data set contains around 35000 flight
phases in total. Of those data, 10% are maintained in the test set, and the rest forms the
train set.

The results for the runs on the Pump data set are presented in Table 5.4. It contains
both the choices of methodologies for the three selected steps in prognostics and the ac-
cording scores. Again, in this case, the Pareto front contains more individuals than the
one of FD001. With its 11 individuals, the size is comparable to that of dataset FD002.
As opposed to the simulated aircraft turbofan dataset, in this case, using RF results in
better solutions than SVMs. In fact, no SVM solution is contained in the Pareto front.
For the RF, almost every combination of rebalancing, feature engineering, and the prog-
nostic algorithm is contained, resulting in very similar scores in terms of MSE. However,
differences can be seen in terms of the other metrics. The PH ranges from 10.48 when
using WERCS, correlation-based feature selection and RF to 223,75 when using no rebal-
ancing, importance-based feature selection, and RF. The α−λ ranges from 0.0523 when
using the previous settings to 0.2104 when using WERCS, correlation-based feature se-
lection, and RF.

Figure 5.10 shows a two-dimensional representation of individuals in the Pareto front
and their according scores in relation to each other. In Figure 5.10 a), it can be seen that
optimizing towards a low MSE simultaneously results in a lower PH but increases the
α−λ score. Figure 5.10 b) shows the link between the α−λ score and PH in a clearer
way: Increasing the PH at the same time decreases the α−λ score. This can also be ob-
served in Table 5.4: The highest scoring solution in terms of PH is also the lowest scoring
in terms of α−λ score.
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Figure 5.10: A 2D representation of the resulting scores for individuals in the Pareto front found when running
the MOGA GPF with 30 individuals for the Pump data set.

5.4. DISCUSSION
The aim of the conducted case studies was to explore the two main research questions
introduced in Section 5.1:

• What impact do metrics have on the choice of methodologies?

• How can the performance of prognostic methodologies be translated to an assess-
ment of the system’s suitability for prognostics?

Section 5.4.1 analyses the impact of metrics on the choice of prognostic methodologies.
In Section 5.4.2 the system data of the two conducted case studies is analysed using the
definition of data suitability given in Section 5.2.3. Finally, in Section 5.4.3 addresses the
limitations of the presented study, and directions for further research are given.

5.4.1. THE IMPACT OF METRICS ON THE CHOICE OF PROGNOSTIC METHOD-
OLOGIES

The results of applying the GPF to the simulated turbofan datasets FD001 and FD002 are
presented in Section 5.3.1. When trying to understand the impact of the metrics on the
choice of prognostic methodologies, it is of interest to take a closer look at both Tables
5.2 and 5.3 listing the chosen methodologies in the Pareto front and Figures 5.6 and 5.8
showing the links between the different metrics. It can be seen that using a different
optimization metric can have an impact as big as a different choice of the prognostic
algorithm used. For example, for FD001 in Table 5.2 we see that optimizing towards
confidence results in using SVM for the prognostic model while optimizing towards cor-
rectness results in using RF for this purpose. In FD002 the dynamics are a bit different.
Still, the underlying outcome is the same: When optimizing towards confidence, the GPF
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chooses RF as the optimal prognostic algorithm while optimizing towards timeliness re-
sults in the GPF choosing SVM. Those dynamics are visualized in Figures 5.11 and 5.12.
This can also be observed in the aircraft Pump data case study: In Table 5.4, we see that
instead of in the choice of prognostic algorithm, the impact metrics have on the selec-
tion of techniques is reflected in the rebalancing and feature engineering settings. An
example of this effect is given in the example in Section 5.3.2 for the selection the GPF
makes to reach the highest PH or highest α−λ score.

Figure 5.11: Comparison of the alpha-lambda score vs MSE in the 2D representation of the Pareto points for
datasets FD001 and FD002.

Figure 5.12: Comparison of the alpha-lambda score vs PH in the 2D representation of the Pareto points for
datasets FD001 and FD002.

Therefore, increasing the performance in terms of a single metric comes at the cost of
decreasing the performance in terms of another metric, i.e. the metrics do have an in-
fluence on the chosen prognostic settings. With the term ’prognostic settings’ we refer
to the combination of data rebalancing, feature engineering, and prognostic algorithm
that is used to arrive at a prognostic model. This means that, when making choices for
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prognostic methodologies, it is important to consider which metric to use for evaluation.
To summarize, the following main points are raised:

• The choice of the optimal metric depends on the underlying data set and objective
of prognostics, for example in what context they are used.

• A single metric is often not enough to make fully informed choices regarding which
prognostic methodology to use.

• Optimizing towards different prediction attributes, i.e. correctness, timeliness, or
confidence, results in different prognostic models and is often a trade-off.

5.4.2. EVALUATION OF THE SYSTEMS SUITABILITY FOR PROGNOSTICS
In this section, we answer the question of how to assess data suitability for prognostics
using the GPF. This is achieved by applying the in Section 5.2.3 introduced definition and
methodology in both the case studies to assess the according systems data suitability. Be
aware that in the following, we provide a suggestion of how to set the boundaries, which
is tailored to this case study. We put the focus on aircraft and look at it from the per-
spective of an MRO/ airline/ aircraft maintenance provider. Such a stakeholder uses the
output of the prognostic models to plan and schedule maintenance tasks. Furthermore,
we assume that the airline operates short-haul flights mainly with an average aircraft us-
age of 4 FC per day. As mentioned in Section 5.2.1, the assumption is made that a failure
needs to be known at least 40 Flight cycles (FC) in advance (for the case studies on sim-
ulated turbofan engine data, we assume that FCs correspond to time cycles) in order to
schedule maintenance. Based on this assumption, we set the following bounds for the
criteria specified in Section 5.2.3:

• The upper MSE limit, MSEmax = 2000 FC.

• The minimum number of time steps before failure at which the failure needs to be
known to take according to actions, PHmi n(a) = 40 FC, which corresponds to 10
days of operation, with a = 40 FC.

• It is assumed that for this case it is sufficient that 45% of the predictions lie within
the α bounds. Therefore, the minimum ratio of predictions within the α bounds,
(α−λ)mi n = 0.45.

Based on the definition introduced in Section 5.2.3, we observe that for all solutions con-
tained in the Pareto front for dataset FD001, the three conditions (Equations 5.8- 5.9)
hold, i.e.:

MSE(t = end of life) ≤ 2000 (5.7)

∧ PH(t j ) ≥ 40 ∀ j ∈ p and a = 40 (5.8)

∧ α−λ≥ 0.45. (5.9)

And since all the conditions are fulfilled, according to the definition given in Section
5.2.3, dataset FD001 proves to be suitable for prognostics. Figure 5.7 underlines this
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visually as it can be seen that the predicted value of almost all the models is close to
the true RUL. For dataset FD002, Table 5.3 shows that there are three individuals in the
Pareto front, satisfying all three above criteria (Equations 5.8-5.9). Those three individ-
uals are the ones using RF as a prognostic algorithm, together with no rebalancing and
feature engineering, together with random oversampling as a rebalancing methodology,
and together with WERCS as a rebalancing technique respectively. The definition of data
suitability in Section 5.2.3 states that only a single solution in the Pareto front is required
to fulfill the conditions in order for the system data to be suitable for prognostics. As a
result, also dataset FD002 turns out to be suitable for prognostics. Visually an indication
of this can be seen in Figure 5.9.
For the aircraft pump dataset, however, both the MSE and the α−λ score are too high,
respectively too low for all solutions in the Pareto front. Therefore, the pump dataset is
not suitable for prognostics according to the here presented definition.

5.4.3. LIMITATIONS AND FURTHER RESEARCH

The presented definition of data suitability is only dependent on prognostic metrics,
meaning that the assessment of suitability is based merely on the quality of the prog-
nostic model. Of course, as a stakeholder, one could be interested in metrics not just
linked to the prognostic model itself. Therefore, a possible direction for further research
would be to extend the data suitability assessment towards a more thorough assessment
based on stakeholder needs. This could, for example, be to include a calculation of costs
associated with wrong predictions. Depending on how ’wrong’ the predictions are (in
terms of selected prognostic metrics) this can then further be reflected in setting the
thresholds for the data suitability assessment presented in Section 5.2.3.

In addition, the GPF only includes a limited set of methodologies and steps integrated
into prognostics. Of course, those were carefully chosen to represent the most impor-
tant groups of methodologies and be relatively simple, while still powerful. The frame-
work could be extended to include more advanced methodologies, such as deep learning
techniques or even diagnostic approaches.

The prognostic horizon (PH) used in the data suitability assessment depends on the pa-
rameter a, which we treat as a user constraint in this study and set to 40FC, representing
the time needed to schedule and plan maintenance. In a further study, a range of val-
ues for a could be tested to see the effect on the prognostic model assessment. Such a
sensitivity analysis could be conducted taking scheduling approaches into account, i.e.,
assessing a range of parameters and their effect on prognostic performance not only in
terms of prognostic algorithms but also in terms of, e.g., costs for re-scheduling main-
tenance. Such an analysis would produce a more thorough assessment of the according
values, model qualities, and implications for subsequent CBM use.
Finally, the user is required to specify boundaries for each metric. This can be a chal-
lenging task. A way to overcome this could be to implement, as mentioned above, a
more thorough assessment, e.g., in terms of costs. Having said that, the approach pre-
sented here still goes beyond what has been done in literature so far, adding a novelty
here. So far, as highlighted in Section 5.1, most studies regarding data suitability focused
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merely on the system data and their structure and statistical properties. However, when
using machine learning approaches, it can be the case that even without trends being
visible in the system data, the models can detect or even predict anomalies (R. Liu et al.,
2018). The approach presented here does not only provide an integrated way of assessing
data suitability by taking into account prognostic machine learning algorithms. It also
integrates metrics to capture the three aspects of prognostics namely correctness, time-
liness, and confidence and thereby enables a more thorough assessment of the model
quality.

5.5. CONCLUSION
The objective of the presented study is twofold: The first aim is to investigate the im-
pact metrics have on prognostics. The second aim is to provide the means for a data
suitability assessment for prognostics. To account not only for different prognostic al-
gorithms but also for other steps involved in prognostics, such as data rebalancing and
feature engineering, we use a generic prognostic framework that chooses the optimal
settings for the three steps of data rebalancing, feature engineering, and prognostic al-
gorithm. A multi-objective optimization is conducted to reflect a selection of metrics,
which account for all the aspects of prediction evaluation, including correctness (MSE),
timeliness (PH), and confidence ( α−λ score). The results show the following: First, the
choice of optimization metric has a big impact on the output of the generic prognostic
framework. This means that depending on the objective and motivation of using prog-
nostics, a suitable metric should be carefully chosen. It can also make sense to use a
combination of metrics to reflect multiple prediction evaluation aspects. Especially the
Prognostic horizon can play an important role for airlines that want to schedule main-
tenance time and are dependent on predictions arriving early enough to schedule a cor-
rective action. Therefore this should be taken into consideration when developing and
evaluating prognostic methodologies. Second, the framework presented can be used to-
gether with a definition we provided to assess a system’s suitability for prognostic based
on the system data. All in all, this study both highlights the importance of choosing
proper prognostic metrics and their impact on the prognostic outputs and gives direc-
tions for practitioners as to whether or not it makes sense to invest time and money in
the development of prognostic systems based on the available system data.





6
CONCLUSION

The previous chapters guided through the development, use and deployment of a generic
diagnostic and prognostic framework, which takes as an input aerospace system data
and outputs diagnostic or prognostic models for the underlying system.

In this Chapter we draw an overall conclusion based on the findings in the previous
chapters, provide answers to the research questions in Section 6.1, perform a compli-
ance check to see if the presented GDPF is in alignment with the requirements (pre-
sented in Chapter 2) in Section 6.2, point out the limitations and indicate directions for
further research in Section 6.3 and provide an overview over our contributions in Section
6.4.

6.1. RESEARCH QUESTIONS AND ANSWERS
In Chapter 1 we identified two gaps in existing literature with regards to diagnostic and
prognostic approaches in aerospace applications. First, data suitability approaches are
often focused on the data rather than on the data within a CBM framework. Second,
many of the existing approaches are tailored to specific systems. Based on those gaps,
the main research question is:

How can system data be used to assess the application of diagnostic and prognostic
methodologies for failure detection and prediction?

From the main research question (RQ) the following sub questions are derived:

• RQ 2: What are the requirements for a generic diagnostic and prognostic frame-
work that is applicable to different components in various applications?

• RQ 3: In what way can anomaly detection methodologies be integrated into such
an adaptive framework that, when applied to given system data, provides a di-
agnostic assessment?
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RQ2 RQ3 RQ4 RQ5

Primary
research
activity

Define re-
quirements
for a generic
diagnostic and
prognostic
framework
using SE meth-
ods

Case study
on satellite
system data

Case study on
AC system data

Sensitivity
analysis with
respect to
different prog-
nostic metrics

ContributionThe formal
definition of
a GDPF and
its limitations
and scope

A generic
diagnostic
framework

A generic
prognostic
framework

A data suitabil-
ity assessment
for prognostic
solutions in a
PHM context

Primarily
addressed in

Chapter 2 Chapter 3 Chapter 4 and
5

Chapter 5

Table 6.1: Summary of research activities and contributions with regards to each research question in this
dissertation

• RQ 4: How can prognostic methodologies estimate a systems remaining useful
life be integrated into such an adaptive framework that, when applied to given
system data, it provides an assessment of the prognosability?

• RQ 5: How can the quality of prognostics on a system be evaluated within a CBM
strategy?

Table 6.1 summarizes how each of the research questions was addressed in this thesis,
what underlying research has been conducted and where to find the according results.

Before we started developing a generic framework, in Chapter 2, we set according scopes
and limitations for such a framework and defined underlying requirements in a system-
atic way. Note, that the identified stakeholder for the framework as presented in this
thesis, is a developer, such as a data scientist, who can further use it as a data suitability
assessment or as guidance for decisions on choices of diagnostic and prognostic tech-
niques. The identified requirements can be found in Figure 6.1. In Section 6.2 we provide
a summary of the requirements and go into detail on if and how the presented generic
framework is compliant with the requirements.

In Chapter 3, the generic prognostic framework presented in Chapter 4 was extended to
a generic diagnostic and prognostic framework (GDPF) and applied to real-life satellite
data. Given the nature of the input data and the fact that most satellite systems have a
very high reliability and very rarely fail or anomalies or failures occur rarely, we decided
to focus specifically on anomaly detection. The framework contains different anomaly
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Figure 6.1: Functional Requirements for the Generic Diagnostic and Prognostic Framework.

detection methods together with data pre-processing and thresholding techniques and
outputs -given system data as input- an anomaly detection model. The choice as to
which methods are used to train the model is approached as a multi-objective optimiza-
tion problem in which three different metrics are included to assess the models. This
does not only make the framework more robust and adaptive towards multiple applica-
tions, but also enables its application for a wider range of users who can put emphasize
or choose the metric which suits their use case best.

Research question 4 is very similar to RQ3 - the difference being that it puts the focus on
prognostics instead on diagnostics/ anomaly detection. In Chapter 4 the GPF is intro-
duced. It is verified and validated on simulated data sets and applied to both, simulated
and commonly used data for prognostics and a real-life aircraft data set. The results
showed the frameworks potential towards valid remaining useful life estimates for air-
craft systems. Furthermore, two main challenges when using the GPF on real-life sys-
tem data were identified: First, the much smaller number of failures leads to a smaller
dataset, which makes predictions less stable and models hard to train and assess. Second
including additional steps next to the prognostic algorithm, such as data pre-processing,
data rebalancing or feature engineering can improve the quality of the predictions. This
is true for all datasets, but we found that the impact of including such methodologies
is much higher for real-life datasets compared to simulated data. We noticed that this
point is closely linked to the first point and has to do with the stability of machine learn-
ing models when trained and assessed on smaller datasets. Still, or even more so, it is
important to have the capability to assess system data towards prognostics. The frame-
work provides exactly that: A means to quickly assess the ability to perform prognostics
based on system data.

What we have not mentioned so far is the question of system data suitability or, as we
refer to it in RQ4 "assessment of prognosability". While in Chapter 4 we presented the
GPF, i.e. the tool itself, in Chapter 5 we highlighted the data suitability aspect. In a study
presented in Chapter 5, we found that using only single-objective optimization for the
choice of prognostic methodologies limits the ability of the framework to make proper
decisions on the choice of algorithms and in addition, makes the framework less adap-
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tive to different systems. Therefore, to provide a complete assessment, multiple metrics
for prognostics were included in the framework, representing different aspects of predic-
tions, namely correctness, timeliness and confidence. First, the impact of those metrics
on the choice of prognostic methods (the output of the GPF) was studied. We found that
the choice of metrics plays an important role in this and suiting metrics have to be cho-
sen with care. In order to answer RQ5 (which is closely linked to RQ4), we provided a
definition for a system’s data suitability for prognostics based on system data. This def-
inition was applied for a data suitability assessment of three different aircraft systems.
The strength of the provided definition lies in the fact that it is embedded in the GPF
and thereby is an evaluation of system prognosability within a CBM strategy. This is
even more emphasized by integrating multiple metrics for the assessment of prognostic
models.

6.2. REQUIREMENTS COMPLIANCE OF THE GENERIC DIAGNOS-
TIC AND PROGNOSTIC FRAMEWORK

Figure 6.1 gives an overview over the top-level functional requirements for the frame-
work an the more detailed breakdown of those. In summary, the requirements cover the
following aspects: System data, diagnostic capability, prognostic capability, assessment
within a PHM/ CBM application.

Figure 6.2: Detailed Functional Requirements for the Generic Diagnostic and Prognostic Framework.

In the following, we will look at each top level requirement and the derived sub-requirements
separately, link them to the conducted studies, point out if and how they were met and
how the presented framework is compliant with them.

Top level requirement R1.0 states that "The framework should be able to process time-
series telemetry and sensor data related to aerospace systems health." It was broken
down into three sub requirements as presented in Figure 6.3. Table 6.2 summarizes how
each of the requirements was met or not and how both, the diagnostic and the prognos-
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Req. # Requirement Diagnostics Prognostics Overall

R1.1 handle miss-
ing/incomplete
or incorrect
data

not addressed missing data
removed

no overall strat-
egy to handle
missing data

R1.2 handle imbal-
anced data

through
anomaly detec-
tion

multiple meth-
ods included to
handle imbal-
anced data

overall ad-
dressed in the
GDPF

R1.3 handle multi-
variate time
series data

methods included in the framework can handle
multi-variate and multi-dimensional data as an
input

Table 6.2: Requirements related to top level requirement 1.0 and compliance check.

tic part of the framework are compliant with each requirement.

Figure 6.3: Requirements derived from top level requirement 1.0 for the Generic Diagnostic and Prognostic
Framework.

Requirement R1.1 requires the framework to "include solutions to identify and pre-process
missing, incomplete or incorrect data". Such solutions have overall not been included
in the GDPF. However, in Chapter 4, for the case studies conducted, missing data was
simply removed. The reason for this was that no solutions to handle missing data were
included in the framework at that stage and apart from the in the framework included
data pre-processing methods, the aim was to leave the data as untouched as possible.

Requirement R1.2 concerns the capability to handle imbalanced data, which is espe-
cially important for aerospace systems, which are designed to be reliable resulting in
a relatively small number of failures or anomalies. Anomaly detection methods them-
selves are a way to handle imbalanced data - the input data set is usually expected to
only contain a small number of failures. Accordingly, in the case studies conducted in
Chapter 3, the majority of the data was healthy data and the methods are tuned to be
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trained on healthy data only. For prognostics, the situation is different. Using imbal-
anced data to train a prognostic model can result in either an overfitted or underfitted
model and lower model accuracy. Therefore, in the prognostic part of the framework
multiple methods are included to handle imbalanced data. More details on this can be
found in Section 4.2.3 in Chapter 4.

Finally, Requirement R1.3 declares that "the framework needs to be able to handle and
pre-process time-series data containing multiple features and variables that are contin-
uously measured over time." This requirement is met as all the machine learning algo-
rithms used in the framework are capable of handling such data. We particularly put our
focus on methods suitable for time-series and all the input data used in the case studies
are multi-variate and multi-dimensional time-series data.

Top level requirements R2.0 and R3.0 state that "The framework should provide the ca-
pability to perform diagnostics/ prognostics." We will handle the two blocks in parallel
since they are related to each other and the derived sub requirements are in essence the
same. Again there are three sub requirements, which are further broken down to in-
clude a more detailed list of requirements as presented in Figure 6.4. Table 6.3 gives an
overview over the compliance of the requirements with regards to the diagnostics and
prognostics part of the GDPF and how they were overall met.

Figure 6.4: Requirements derived from top level requirements 2.0 and 3.0 for the Generic Diagnostic and Prog-
nostic Framework.

Requirement 2/3.1 says that "The framework needs to be capable to pre-process the pro-
vided system data in a way that it can further be used by the diagnostic and prognostic
models contained in the framework." It is further divided in the following requirements:

• R2/3.1.1 The framework is able to handle different failure modes and operating
conditions: This point has not been addressed yet, the framework neither differs
between failure modes nor between operating conditions. However, it indicates
also a direction for further research as it is an addition to such a framework that
has great potential for improvement of the diagnostic/ prognostic methods.

• R2/3.1.2 It needs to be capable to split the data in train, validation and test set:
The framework is capable to split data in train, validation and test sets. This is
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Req. # Requirement Diagnostics Prognostics Overall

R2/3.1.1 handle dif-
ferent failure
modes and
operating con-
ditions

not addressed yet

R2/3.1.2 split the data
in train, vali-
dation and test
set

framework is capable to split data in train, vali-
dation and test sets

R2/3.1.3 provide and
include other
state of the art
pre-processing
solutions

normalization
and standard-
ization

only data re-
balancing
techniques
included

should be
addressed in
further devel-
opment step of
the framework

R2/3.2.1 automatically
load train, test
and validation
data

the GDPF is able to automatically load train,
test and validation data

R2/3.2.2 automatically
train the di-
agnostic and
prognostic
models

the GDPF automatically trains diagnostics and
prognostics models together with the chosen
techniques

R2/3.2.3 save the mod-
els and results
in a standard-
ized format

models saved in a standardized way

R2/3.3.1 provide a verifi-
cation and vali-
dation solution

unit test, several additional
verification tests and valida-
tion done against existing al-
gorithms on standard data
sets

overall imple-
mented, but
new/ addi-
tional methods
need to be
verified and
validated

R2/3.3.2 identify rele-
vant/ health
related features

choice of ML
methods

feature en-
gineering
methods

overall suiting
methods in-
cluded in the
framework

R2/3.3.3 range of di-
agnostic/
prognostic
algorithms
reflecting the
state of the art

only anomaly
detection
methods in-
cluded and
there only ML

only ML based
methods in-
cluded

framework
could be ex-
tended to
include a wider
range of algo-
rithms

Table 6.3: Requirements related to top-level requirement 2/3.0 and compliance check.
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done as a separate step before the optimization algorithm is applied to find the
optimal set of methodologies.

• R2/3.1.3 It needs to provide and include other state of the art pre-processing so-
lutions: For the anomaly detection methods, data standardization and normal-
ization are used as standard data pre-processing techniques for machine learning.
For prognostics, other than the re-balancing techniques, no pre-processing solu-
tions for prognostics are included yet. However, this could be addressed in a fur-
ther development step of the framework, considering the vast amount of existing
pre-processing techniques for time series data.

Requirement R2/3.2 affirms that "the framework needs to perform the required func-
tionalities in an automated way" and is further split into the following requirements:

• R2/3.2.1 it needs to be able to automatically load train, test and validation data:
The framework is capable to automatically load train, test and validation data.

• R2/3.2.2 automatically train the diagnostic and prognostic models: The frame-
work automatically trains anomaly detection and prognostic models. It builds a
pipeline consisting of the chosen methods and than automatically performs all the
steps, from loading train, test and validation data until saving the trained model.

• R2/3.2.3 save the models and results in a standardized format, so that in a fur-
ther step the evaluation metrics can be automatically calculated and extracted:
The framework saves the models as ’.json’ files, which is a standardized format to
save machine learning models.

Requirement R2/3.3 says that "the framework needs to be able to output diagnostic/
prognostic models." The according sub requirements are:

• R2/3.3.1 It should provide a verification and validation solution for the diag-
nostic and prognostic models: For both, diagnostic and prognostic methodolo-
gies and according data pre-processing methods as well as feature engineering
methodologies included in the framework, the following verification and valida-
tion procedures are included: Unit tests are implemented, several tests for the
verification process are conducted and the methods are validated against existing
algorithms (on standard data sets). So overall, verification and validation proce-
dures are included, but whenever a new method should be included in the frame-
work it has to be verified and validated separately as well as within the framework.

• R2/3.3.2 It needs to be capable to identify relevant/ health related features: For
the anomaly detection part of the framework this is done by including suiting ma-
chine learning methods (such as PCA). In the prognostics part of the framework
feature engineering methods are included for this purpose as presented in Chap-
ter 4, Section 4.2.3.

• R2/3.3.3 The framework should include a range of diagnostic/ prognostic algo-
rithms reflecting the state of the art and different model types (such as machine
learning based methods, or statistical algorithms): In case of diagnostics only
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anomaly detection methods included. However, anomaly detection covers only a
part of diagnostics. In addition, only machine learning based methods are repre-
sented for both, diagnostics and prognostics approaches. The advantage of those
is that they are easily adaptable and do not take a long time to train. All in all,
it could be a step in further research to extend the framework to include a wider
range of algorithms, both for diagnostics and prognostics.

Finally, in Figure 6.5, the requirements derived from top level requirement R4.0, related
to the assessment within a PHM framework, are shown. Table 6.4 gives an overview over
the compliance of the requirements.

Figure 6.5: Detailed list of requirements derived from top level requirement 4.0 for the Generic Diagnostic and
Prognostic Framework.

Requirement R4.1 is related to the algorithmic performance and states that "the frame-
work needs to be able to assess the diagnostic and prognostic model performance in a
comprehensive and suiting manner". To make this clearer it is split into the following
requirements:

• R4.1.1 It needs to be able to measure and output model accuracy: The model
accuracy is measured using three different metrics (F1, F1pa and FC score) in case
of anomaly detection methods and using the MSE for prognostic techniques. So
overall the model accuracy is captured in the according metrics.

• R4.1.2 It needs to be able to assess whether the predictions are produced far
enough in advance for subsequent use in PHM applications (e.g. for schedul-
ing maintenance): This point only effects the prognostics part of the framework,
as diagnostic models do not predict anything. For the prognostics, the prognos-
tic horizon is used as metric, which gives an indication of how far in advance the
prediction is reliable. The metric can further be adapted within the framework to
reflect the time needed to plan maintenance, i.e. it even includes a user parameter
that can be set individually- depending on the underlying application.

• R4.1.3 The framework should measure and return the prediction uncertainty:
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Req. # Requirement Diagnostics Prognostics Overall

R4.1.1 measure and
output model
accuracy

measured us-
ing F1 score,
F1pa and FC
score

measured in
MSE

overall model
accuracy cap-
tured in metrics

R4.1.2 predictions
timely for PHM
action

- PH used as
metric

PH can be
adapted to
reflect time
needed to plan
maintenance

R4.1.3 prediction un-
certainty

- α − λ metric
used

uncertainty
measured
through α − λ

metric

R4.2.1 run within
specified time
limit

no such check implemented so
far

next step:
track running
times of entire
framework
and separate
methods

R4.2.2 generalizability,
adaptive,
generic and
robust

methods used overall adaptive
and robust

generic hard to
get (consider
the scale of the
problem)

R4.2.3 outputs inter-
pretable to be
used within
PHM setting

anomaly de-
tection outputs
straightforward

figures pro-
duced

more advanced
methods could
be used for this
purpose

R4.3.1 set of perfor-
mance metrics

as discussed
above, F1, F1pa
and FC score

MSE, PH and
alpha lambda
metric

overall several
performance
metrics for
both, diagn and
progn included

R4.3.2 embedded in
PHM solution

capability to both, load data from various for-
mats and save the models in a standardized for-
mat makes this possible

R4.3.3 guidelines for
further model
development
and use

not done yet done, see
Chapter 5

overall, done
for prognos-
tics, could be
extended for
diagnostics

Table 6.4: Requirements related to top level requirement 4.0 and compliance check.
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Again, this point only effects the prognostics part of the framework, for which the
uncertainty is captured through the α−λ metric (see Chapter 5, Section 5.2.1).

Requirement R4.2 states that "the framework should meet performance requirements,
which are mostly linked to constraints set by the stakeholder". Examples for such re-
quirements are

• R4.2.1 The framework needs to run within a specified time limit: So far, no run
time tracker is implemented in the framework. As a next step, the run time of the
entire framework as well as run times for separate methods could be tracked and
used as user input or set as requirement.

• R4.2.2 The framework needs to be generalizable, i.e. it needs to be adaptive
(applicable to various aerospace systems), generic (include a thorough set of
methodologies) and robust (produce reliable and consistent results): In general,
the choice of methods included in the framework was based on this requirement:
For anomaly detection as well as for prognostics machine learning methods which
are well known, can easily be adapted and are relatively robust towards hyper pa-
rameter settings were chosen. Therefore, overall the framework is compliant with
this requirement. However, as we pointed out in the Introduction (Chapter 1) as
well as the introductions of Chapters 3 and 4, creating a truly "generic" framework
is an impossible task, especially when considering the scale of the problem.

• R4.2.3 The outputs of the framework need to be interpretable to be used within a
PHM setting: For the anomaly detection methods the interpretation of the outputs
is relatively straight forward. For the prognostic methodologies, figures are pro-
duced by the framework which can help in interpreting the results. However, there
is still work to be done in this regards and several more advanced methods have
been developed in the past years, which could help towards the interpretability of
the outputs of the framework. One example for such an approach are TrajecNets,
suggested by (Shahid & Ghosh, 2019), making use of RNN based autoencoders to
create trajectories, which represent the evolution of data from healthy to failure
states. Baptista et al. (M. L. Baptista et al., 2022) make use of the SHAP (SHapley
Additive exPlanations) model to show that prognostics metrics correlate with the
SHAP model’s explanations. Another commonly used technique for explainable
AI, LIME (Local Interpretable Model-agnostic Explanations) is applied by Protopa-
padakis et al. (Protopapadakis et al., 2022) to estimate the RUL of an aeroengine
and interpreted the results of DNN in an explainable way.

Requirement R2/3.3 says that "the framework should provide an assessment of the sys-
tem data with regards to whether or not they are suitable for diagnostics or prognostics
in PHM". The according sub-requirements are:

• R4.3.1 It therefore needs to include a thorough set of performance metrics: As
already pointed out above, for the anomaly detection methods, three metrics are
used to assess performance, namely F1, F1pa and FC score. For the prognostic
methods MSE, PH and α−λ score are used. So overall, several performance met-
rics are included for both, diagnostics and prognostic approaches.
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• R4.3.2 It should be capable to be embedded in a PHM solution: Because the
framework is capable to load data in an automated way and saves models in a
standardized format, it should be possible to embedd it within a PHM solution.
However, it could be a direction for further research to actually test the framework
within a PHM solution.

• R4.3.3 It should provide guidelines for further diagnostic/ prognostic model de-
velopment and deployment: Guidelines for further model development are pro-
vided through a data suitability analysis as presented in Chapter 5. Those guide-
lines are obtained from the prognostics framework in particular and could as a
next step be extended to include diagnostics methods as well.

6.3. LIMITATIONS AND FURTHER RESEARCH
The presented framework has three main limitations, all of those raising directions for
further research. First, limitations on the range of algorithms and methodologies in-
cluded in the framework. Second, data related limitations, such as the assumption that
failure or anomaly related data is available. Third, limitations related to the assessment
of the models within a PHM framework. The following paragraphs give an overview over
each of the three limitations and point out in what way they could be addressed in fur-
ther research.

The task we set ourselves of creating a truly generic framework is challenging in multiple
ways. For one, the amount of available machine learning methods is big and growing,
as it is still a widely researched field. Even when only considering methods used for sys-
tems diagnostics or prognostics, as we pointed out in the Introduction, Chapter 1, the
scale of the problem is massive. When looking at the amount of available diagnostic al-
gorithms (see Chapter 3) or prognostic algorithms (see Chapter 4), it becomes clear that
choices as to which methods are represented in a generic framework have to be made.
This is not necessarily a limitation: The aim of the framework is to provide a relatively
quick first diagnostic or prognostic assessment. Including a huge amount of machine
learning methods in the optimization problem the framework solves, does not help it to
arrive at an assessment quickly. Furthermore, we argue that for a first assessment simple
and instead more adaptive methods are more effective. Having said this, there are still
limitations related to the "generic" in the GDPF. Most of those were already identified
in the previous Section 6.2. Related to requirement R1.1, the framework is not capable
of dealing with missing or incomplete data in an automated way. A next step in the de-
velopment of the framework could therefore be to include techniques for this purpose.
Requirement 2/3.1.1 showed that the framework is does not include methodologies to
handle different failure modes and operating conditions. However, in aerospace ap-
plications, in which systems are operated under extreme environments and in various
conditions, such a distinction is expected to improve the quality of underlying diagnos-
tic and prognostic models. Therefore, a future research direction could be to identify
suiting methodologies, to include those in the framework and to assess their impact on
the resulting models. Requirement 2/3.1.3 revealed that, while there are several data pre-
processing methods implemented in the GDPF, they do not cover the full range of possi-



6.3. LIMITATIONS AND FURTHER RESEARCH

6

117

ble methods and more techniques could be included in further framework development.
Finally, the diagnostic and prognostic algorithms included in the framework do not yet-
as stated in requirement R2/3.3.3 - truly "reflect the state of the art". For example, no
statistical and no deep learning based methodologies, as well as no denoising, health
indicator construction or elbow/knee point indication, were included in the framework.
The drawback would be that such methods tend to be less tune-able and adaptive, how-
ever, it is worth looking into this direction of framework advancement. In addition, for
the diagnostics part of the framework, only anomaly detection methods were consid-
ered, which -as fault detection methods are only part of a complete diagnostics solution.
Techniques to represent fault isolation and identification could be included in a further
step.

Next to the challenge of making the framework more generic, there remains the chal-
lenge of having an "adaptive" framework. By adaptive we refer to the capability of ap-
plying the framework to different aerospace system data sets. Again, we demonstrated
the adaptivity of the GDPF in various case studies for both satellite (see Chapter 3) and
aircraft systems (Chapter 4 and 5). So to a certain degree we proved it to be adjustable to-
wards different aerospace systems. Nonetheless, there are certain requirements towards
input data and assumptions made. For the diagnostic part of the framework, e.g. we
assumed that even though most of the data is related to healthy system behaviour that
anomalies are available - if only for validation and testing purposes. This is a strict re-
quirement, especially when working with systems which are supposed to have an avail-
ability of around 99.9%. Furthermore, it limits the application of the framework to sys-
tems where historical data are available. For the prognostics part of the framework, the
assumptions were even stricter, see Section 4.2.1. The systems are assumed to be oper-
ated until failure, the data is assumed to be labelled and the data represents all phases
of operation, to give a few examples. Again, while it is challenging to meet those as-
sumptions, this also opens the door to new research directions: For example, one could
consider using federated learning, a methodology leaving training data distributed at the
original location and learning a shared model through a central server by aggregating lo-
cally computed results (Konečný et al., 2016). At the moment, the value of federated
learning is still being explored and infrastructures to enable it are created. For appli-
cations within the aerospace, or perhaps especially the airline industry this might be
a way to both, ensure that data remain with the operator and do not have to be shared
with other operators, but also train models with data from multiple operators to improve
the amount of failures contained in the data set and in the end improve model quality.
Another question one could ask is: Is it possible to transfer existing solutions from one
system to another? Or how similar do systems have to be in order to be used as input
data to train the same diagnostic or prognostic underlying models? Such a development
could have the potential to enable diagnostics or prognostics for systems experiencing
only a low number of failures. Over the past view years there has been a growing interest
in "digital twins", a concept with the underlying idea that each aircraft or satellite has a
digital twin, in which sensor values, operational data and all digitally available informa-
tion is represented and used, e.g. for maintenance purposes. This raises the question of
system inter dependability and how it should be represented in diagnostic or prognostic
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models. Another aspect of the adaptivity of the framework is the extend to which it is ex-
tendable towards novel methods and techniques. This does not only include emerging
techniques for already existing steps included in the framework but also an extension
towards generalizable sub steps, such as health indicator construction or the identifica-
tion of an elbow/knee point.

Finally, the central question of this thesis was the question of how to assess the appli-
cation of diagnostic and prognostic methods based on system data, or in other words,
how system data can be translated into a meaningful diagnostic or prognostic assess-
ment. We already pointed out how we provided an answer to this question through the
framework and a data suitability assessment as presented in Chapter 5. Still, the aim
is also to integrate such an assessment within a PHM framework, i.e. to look beyond
the diagnostic or prognostic models themselves. We addressed this in part by providing
a data suitability assessment based on diagnostic and prognostic algorithms instead of
statistical properties of the data and by integrating multiple diagnostic and prognostic
metrics in the framework for the model assessment. What we did not do yet, though, is
to assess models within a PHM framework. Requirement R4.3.2, which asks for a frame-
work embedded in a PHM solution goes a bit into this direction. What impact, e.g. does
a lower diagnostic or prognostic model quality have on maintenance scheduling/ plan-
ning? A first study on this has been conducted (see (Tseremoglou et al., 2022)) in which
we studied the question of how uncertainty in prognostic outputs translates back to the
scheduling within a PHM framework when applied to an airline. Integrating the GDPF
within a PHM framework would also enable a more thorough assessment from different
stakeholders perspectives, such as cost-based assessments. This is also linked to Re-
quirement R4.2.1, which asks for the framework to run within a specified time limit. The
positive thing is that, as we pointed out in the previous Section 6.2, the adaptive nature
of the framework and the way it is built makes it ready to be integrated within a PHM
solution.

6.4. CONTRIBUTIONS
Before we start summarizing the contributions of the conducted research, we refer back
to Table 6.1 in which the research questions asked as a basis for the thesis are linked to
contributions and the respective chapters in which those can be found. In the Introduc-
tion, Chapter 1 in Section 1.3.3, we listed five main contributions. In the following, we
link each of those contributions with the results and main findings of the conducted re-
search. Furthermore, we mention bigger implications of those contributions and point
out their societal impacts.

As the first contribution, a set of requirements for a generic diagnostic and prognostic
framework is systematically derived and presented. Such a set of requirements can be
used as a formal baseline for the further development and implementation of diagnostic
or prognostic frameworks.

Second, a generic diagnostic and prognostic framework is developed within the set scope
and based on the defined requirements. Not only can such a framework provide guide-
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lines as to where further development should go to, but it also can help in understanding
if we are able to provide diagnostic or prognostic models at all. In further consequence
this can help airlines and satellite operators in the application of data-driven diagnostic
and prognostic methodologies and in this setting in the decision making process. It can
guide in the choice as to which systems to include in a PHM/ CBM solution, which sys-
tem data are suitable to train machine learning based models and for which systems we
do not have sufficient or suiting data available yet. It also helps understand whether we
are in principle able to capture anomalies or failures within the available data.

Third the framework is adapted and used on various system data, including simulated
and real data, fault-related and component run-to-failure data, and satellite and aircraft
systems case studies. The case studies not only helped in the validation of the frame-
work but also brought to light the challenges faced with when using real-life data: Among
those are the data labelling, the low number of failures/ anomalies leading to less stable
predictions, the big differences of performance that can be seen when including addi-
tional steps in building diagnostic or prognostic models, such as data pre-processing
techniques or the impact of the choice of underlying evaluation metrics.

The fourth contribution is closely linked to the third and lies in the comparison of re-
sults not just over different systems, but also over different applications (such as aircraft
systems and satellite systems). The value and limitations of the generalizability of the
framework are underlined, giving further insight into the challenges of diagnostic and
prognostic methodologies, especially when applying them to real system data.

Fifth, a system data suitability assessment is presented based on the generic framework
and tested on real-life aircraft data sets. It was found that the definition of whether or not
data is suitable for prognostics highly depends on the chosen metrics used to evaluate
the resulting models. Therefore, those metrics should be chosen with care, depending on
the application, the system and especially how the model output is subsequently used
within the PHM solution.
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