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A B S T R A C T

Through molecular dynamics simulations, we demonstrate the possibility of internal resonances
in single-walled carbon nanotubes. The resonant condition is engineered with a lack of
symmetry in the boundary condition and activated by increasing the energy exchange with
a coupled thermal bath. The critical temperature threshold for initiating modal interaction is
found to be chirality-dependent. By applying the proper orthogonal decomposition algorithm
to molecular dynamics time responses, we show how the thermal fluctuations influence the
vibrational behaviour of the nanotube leading to both flexural–flexural and flexural–longitudinal
resonances. Understanding the interaction between nanotube resonators and the thermal bath is
crucial for designing and optimizing their performance for various nanoscale sensing, actuation,
and signal processing applications.

. Introduction

Modern technologies hinge on tiny vibrating structures [1]. Concealed within every product that enables our creation, commu-
ication, sensation, and healing, micro- and nanomechanical systems play a ubiquitous role in various transduction and sensing
evices. Beside impacting market products fulfilling breadth of applications [2], fundamental research strongly pursues nanoscale
ystems [3,4]. Ultra miniaturized systems deploy exceptional capabilities, e.g. highly sensitive sensors provide great resolution at
he atomic scale, weigh cells and gas molecules [5,6], measure force between single biomolecules and perform single-protein mass
pectrometry [7–9].

Among ultraminiaturized resonators, carbon nanotube (CNT) have demonstrated their superiority [10,11]. A carbon nanotube
s a remarkable structure made up solely of carbon atoms. It can be thought of as a graphene sheet rolled up into a cylinder [12].
utstanding accomplishments originate from a small mass and a high coherence, i.e. very large quality factors offering new
pportunities for ultra-sensitive detection schemes [13,14].

Nonetheless, the engineering of these sophisticated devices is far from being straightforward. As the geometric dimensions
ecrease, it becomes essential to consider the granular nature of matter, and nonlinearities become a crucial factor in the design.
omplex phenomena in carbon nanostructures arise from the intricate interplay between binding energy and lattice dynamics. The
ynamic characteristics of the phonon spectrum, or phonon modes, offer crucial insights into atomic interactions within the material.
hermal fluctuations influence mechanics unless resonators are adequately cooled to achieve significantly low temperatures. The
hermal environment leads to anomalous heat conduction processes within anharmonic systems of such small dimension [15].
owever, comprehending the impact of thermal lattice dynamics on stiffness and damping in individual nanoscale systems has
roven elusive thus far, primarily due to the experimental complexities associated with manipulating and measuring objects of
uch diminutive size. Considerable endeavor has been dedicated to analytically and numerically elucidate the mechanics of carbon
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Fig. 1. The nanotube resonator. (a) Constrained-free CNT with a cartesian reference system attached to its constrained edge. The CNTs have length of 20 nm.
(b) Boundary conditions: full clamping restraining all the atoms for a length of 0.5 nm (top); tangential clamping (bottom).

nanotubes, including approaches via molecular mechanics [16,17], energy approach [18], tight-binding formalism [19], generalized
local quasicontinuum method [20]. Molecular dynamics (MD) simulations play a decisive role, since they provide a platform to
investigate the mutual relation between thermal and mechanical properties in carbon nanotubes [21]. By simulating temperature
changes and mechanical deformations, it is possible to study how the lattice vibrations (phonons) affect the thermal conductivity of a
nanotube, which in turn influences its mechanical response under thermal stress [22]. MD investigations have exposed a pronounced
temperature-related variation in the elastic threshold of single-walled carbon nanotubes across a wide spectrum of diameters [23],
anisotropic and temperature-dependent properties [24] as well as lattice relaxation and bonds flip [25]. Furthermore, nonlinear
effects resulting from lattice dynamics are able to trigger an unprecedented quantity of resonant responses [22] that extend to the
macroscopic nonlinear structural vibrating phenomena. The onset of nonlinear regime, i.e. the nonlinear critical amplitude [26],
drops dramatically with dimensions while the thermomechanical noise increases. The useful linear dynamic range of nano resonators
is severely limited, which means the need to operate in the nonlinear regime [27].

One notable aspect under scrutiny is the distinctive capability of nonlinearities in enabling the transfer of energy between
different vibrational modes, even when their resonant frequencies exhibit considerable separation [28–32]. Resonant modal
interactions have been a subject of research within the domain of micro and nano resonators [33], with observed phenomena
of coherent energy transfer [34] and energy-dependent paths of dissipation [35]. Interaction between mechanical modes brings
enhancement in the thermal responsivity of micro-electromechanical resonators [36] and it founds application in RF MEMS
filters [37]. Beside the presence of coupled vibrational modes in microbeam resonators, e.g. 1:3 internal resonance was reported in
Ref. [38,39], internal resonances have been also investigated in single-walled carbon nanotubes connecting a radial breathing mode
(RBM) with a circumferential flexural mode (CFM). This phenomenon is similar to the resonance observed in continuous shells [40].

In this work MD is employed to investigate the interaction between mechanical modes and the thermal environment in the
presence of imperfect boundary conditions. The imperfection is introduced to demonstrate how well-engineered small geomet-
rical variations can lead to significant resonant interactions between the nanotube modes of vibration. The Proper Orthogonal
Decomposition (POD) algorithm is employed to obtain the orthogonal modes of the vibrations of the single-walled nanotube while
accounting for different thermal conditions. For the first time, it is shown a resonant coupling between the longitudinal and flexural
modes as well as between higher flexural vibrations in carbon nanotube resonators. The resonant states are demonstrated to be
triggered by adjusting the thermal environment. Our POD-based analysis highlights the occurrence of internal resonant behaviours
that are responsible for anomalies in the thermoelastic response. This investigation is challenging for inherent complexities such as
size-dependence and the interactions with thermal environments [41,42]. Predicting and harnessing resonant interactions becomes
especially significant when pursuing applications with ultralow noise requirements (see [26]) and multimode sensing (as discussed
in [43]), where modal interactions offer advantages for the nano-mechanical system.

2. Molecular dynamics method and simulation results

Here, our goal is to investigate how Brownian motion varies with temperature in a monolayer carbon nanotube resonator. The
device is shown in Fig. 1(a). The dynamics is simulated in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
software [44]. To account for atom–atom interactions, we use the Tersoff potential [45] with optimized parameters for lattice
dynamics and phonon thermal transport [46]. This potential is commonly used for simulating atomic interactions and predicting
mechanical properties of carbon-based nanomaterials [23,47]. In order to monitor the Brownian motion of the nanotube, the atomic
model undergoes an initial relaxation process to establish equilibrium at a state of minimal potential. The Polak–Ribiere conjugate
gradient algorithm [48] is employed to minimize the total potential energy.

Starting with the initial arrangement of atoms, the minimization process seeks to achieve a local energy minimum, defined as an
energy below 1 × 10−10 eV or forces below 1 × 10−10 eV/Å. Following relaxation, constraints are applied to the translational degrees
of freedom at one end, determined by the specific clamping configuration. Two different sets of boundary conditions are considered
as showcased in Fig. 1(b): (i) The nanotube is free at one end and fully perfectly clamped on the other. This condition restrain all
the lattice degrees of freedom for a length of 0.5 nm; (ii) the nanotube is free at one end and tangentially clamped on the other for
2
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Fig. 2. Frequency spectrum at 𝑇 = 50 K. (a) Averaged FFT of the time response of all atoms for the fully-clamped-free configuration. The first 3 flexural
eigenmodes are highlighted. The 𝑥, 𝑦, 𝑧 components of the spectrum are detailed in the insets with blue, dark red and green lines, respectively. (b) Averaged
FFT for the tangential clamping. The degenerate flexural modes are zoomed in the insets. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

0.5 nm. In this case, the degrees of freedom are restricted only for the few atoms close to the support, i.e. at a distance from the
lying surface less than 1 Å. The constraint mimics the CNT lying upon a structure such an electrode [13].

Once the equilibrium position is reached, the variations in atomic position and velocity are determined by integrating Newton’s
equations using the velocity-Verlet algorithm. The integration employs a time step of 0.1 fs. To incorporate thermal effects, the
system is equilibrated within a constant volume and temperature ensemble. The temperature is initially adjusted to a specific value
and then maintained at a constant level through the application of the Nose–Hoover algorithm, which acts as a thermostat for the
translational velocities of the atoms [49]. This thermalization process is applied over a duration of 10 ns to ensure the attainment of
a stable temperature. Upon reaching thermal equilibrium, the analysis of vibration response takes place within an energy-conserving
ensemble. In this context, the thermal fluctuations of the CNT are observed over a 50 ns period, with an initial transient response
of 10 ns being discarded. The coordinates of all atoms are saved at intervals of 2.5 ps.

To determine the resonance frequencies of the CNT, we perform Fast Fourier Transform (FFT) analysis on the extracted time
signals obtained from molecular dynamics simulations. An illustrative example of the FFT, averaged over all atoms, is displayed
in Fig. 2 for a (8, 8) CNT at 50 K. The chiral index pair, (n, m), defines the structural and electronic properties of a single-walled
carbon nanotube [50]. In the fully-clamped configuration the inherent symmetry of the system results in a perfect degeneracy of
the flexural modes. As depicted in Fig. 2(a), each flexural mode corresponds to a single peak. It is important to note that every
flexural eigenfrequency is connected to two identical eigenmodes oriented in orthogonal directions. Conversely, in the tangential
clamping condition (Fig. 2(b)) the axisymmetry is not preserved and each flexural mode is split into two separate flexural eigenmodes
(with two different associated eigenfrequencies) in orthogonal transversal directions. The modes are identified by employing proper
orthogonal decomposition of the time traces from MD (Appendix A provides a detailed description of this protocol).

3. Effect of temperature

We conduct multiple molecular dynamics simulations involving distinct carbon nanotubes, specifically (5, 10), (8, 8), and (10,
10) configurations. These simulations incorporate a thermal bath covering a temperature range spanning from 5 to 330 K. For
each temperature, modal analysis is carried out to monitor the eigenfrequencies. Fig. 3 displays the thermal sensitivity of the third
flexural mode of the resonator. Notably, the first and second flexural modes demonstrate the same consistent behaviour, despite
the noticeably lower resolution in the thermal shift acquired from molecular dynamics simulations (see Fig. 7 in Appendix A.1).
In Fig. 3 we denote by C the complete clamped case and by 𝑇 the tangentially clamped one. It is illustrated that for temperatures
below 200 K there is no discernible impacts between both complete and partial tangential clamping. Indeed, in the tangential
configuration, all flexural eigenfrequencies exhibit a thermal dependence comparable to that of the fully clamped tubes across a
broad temperature spectrum. This finding underscores the minimal influence of the clamping condition on thermal behaviour. In
all the examined geometries the flexural resonance frequencies experience a similar decrease as temperature rises, as depicted in
Fig. 3. This phenomenon is described by the Watchman equation [51],

𝐸 = 𝐸0 − 𝑎𝑇 𝑒−𝑏∕𝑇 (1)

which is employed to fit the data, and determine the variation of Young’s modulus 𝐸 with temperature from the absolute zero
modulus 𝐸0.1 The temperature independent parameters for data fitting 𝑎 and 𝑏 relate to the Grüneisen parameter and the Debye

1 Naively, the nanotube vibration frequency 𝑓 is related to the Young’s modulus 𝐸 via 𝑓 ∝
√

𝐸.
3
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Fig. 3. Eigenfrequencies thermal behaviour. Relative change in frequency with respect to temperature. Estimated coefficients for the Watchman models:
𝑎 = 7.805 × 10−5, 𝑏 = 13.18.

Fig. 4. Internal resonance of higher modes. (a) Density plot of the spectrum showing the thermal shift of the eigenfrequencies. (b) Detailed evolution of the
two third flexural and the first longitudinal mode. Region of coinciding eigenfrequencies are highlighted with a grey background. The arrows indicate selected
sudden variation of the flexural modes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

temperature, respectively [52]. The rationale behind Eq. (1) lies in the softening of Young’s modulus that arises from bond
expansion [53]. Considering only the effect of the bond energy weakening due to vibration we have

𝐸(𝑇 )
𝐸0

≅ 1 −
∫ 𝑇
0 𝐶𝑣(𝑡)𝑑𝑡
𝙴𝙱(0)

, (2)

in which 𝐶𝑣 is the Debye specific heat and 𝙴𝙱(0) the atomic bond energy at 0 K. The functional dependence of the elastic modulus
is detailed in Appendix B.

This consistent behaviour persists until a certain thermostat temperature is reached (200 K for the (8, 8) configuration), beyond
which a notable alteration in the mechanical response becomes apparent for the tangentially-clamped device. This effect manifests
as a deviation from the observed trend in the eigenfrequency-temperature relation, and indicative of a distinct nonlinear regime
coming into play. The anomalies materialize at distinct temperatures for various nanotubes, with the specific temperature points
and interactions being contingent on the tube’s chirality. Such insight is worth since it links to local material parameters responsible
for anomalies in the stiffness and damping [42]. In what follow, we delve into the thermally-induced nonlinear mechanisms.

4. Internal resonant behaviour

In order to understand the root cause of the significant deviation from the Watchman estimation of Fig. 3, we conduct an analysis
encompassing the complete spectrum of modes contributing to the motion of the structure. We show in Fig. 4(a) the entire set of
eigenfrequencies evolving while varying the bath temperature for the (8, 8) geometry in the tangential clamping configuration. The
density plot shows lines with both positive and negative slopes indicating the potential presence of intersections. Occurrence of
modal crossing for low-energy modes, i.e. local modes with very low amplitudes, does not bring to significant changes in the global
mechanics of the device. Arrows in Fig. 4(a) point to intersections at 60, 70 and 120 K that do not lead to variations in the main
modes of the tube (dark red lines).

Interestingly, at 200 K we observe a massive shift in the entire spectrum line. Upon closer examination of the peak trends, it
becomes evident that a significant intersection transpires in the vicinity of 155 GHz, which is magnified in Fig. 4(b). The intersection
involves the third Y flexural mode and the first longitudinal mode, whose frequencies coincide at the exact temperature of 200 K.
A second occurrence for the resonance between the third flexural and the longitudinal modes is also observed at 230 K. The
4
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Fig. 5. 3:1 Internal resonance. The thermally-induced resonance between the third and second flexural modes both in Y (left) and X direction (right).

Table 1
Stiffness Ratio (𝑘bending

𝑖 ∕𝑘axial
1 ). The ratio is normalized over the

geometrical ratio 𝐼
𝐴𝐿2

.

𝑖 1 2 3

Tangential 7.04 × 10−4 0.0285 0.3527
Clamped 9.19 × 10−4 0.0402 0.3663

deviation from the trend depicted in Fig. 3, thus can be attributed to interactions between higher modes of vibrations induced
by the system’s asymmetry. This special condition at which the ratio of the resonance frequencies of the coupled modes is a rational
number is a system internal resonance [54]. This 1:1 internal resonance brings to a sharp downshift for all the flexural modes
whereas sudden increase the eigenfrequencies of the longitudinal modes. It manifests as a direct consequence of the opposite thermal
behaviour upon flexural and elongating modes of vibration. While flexural eigenmodes soften consequently the bond relaxation,
longitudinal modes stiffness with temperature [55]. The phenomenon of thermal behaviour in solids has been comprehensively
explained through Grüneisen theory. The expansion or contraction of a solid upon heating hinges on the equilibrium between phonon
modes characterized by positive and negative Grüneisen parameters. Transverse acoustic modes, which entail atomic vibrations out
of the crystal lattice plane, might manifest negative Grüneisen parameters leading to a negative coefficient of thermal expansion in
the axial direction for single-walled carbon nanotubes (−0.9 × 10−6 K−1 [56]).

Furthermore, our POD reveals the presence of a radial mode, also referred to as breathing, with thermal stiffening behaviour
similar to that of the axial mode (see Fig. 8). In the present study we do not report significant influence of this mode into the
dynamics of the tube. However, when activated with an initial phonon velocity sufficiently large, could have an impact bringing
2:1 internal resonances with circumferential flexural modes [40].

Fig. 4(b) presents additional anomalies, indicated by black arrows. These frequency shifts are not associated with longitudinal–
transversal resonances, but with transversal–transversal resonances. At 220 and 270 K the third and second flexural modes are in a
3:1 ratio as presented in Fig. 5.

To provide a connection to the mechanics, we analyse the eigenmode shapes computed via the POD. We look at the impact of
the boundary condition to the nanotube stiffness. Fig. 6 shows the mode shapes of the first three flexural modes in the tangential
clamping configuration. The eigenmodes do not alter with temperature as shown in panels (a)–(c). However, the tangential clamping
eigenmodes differs from the usual cantilever shapes and recurring in the fully clamped configuration, as it is showcased in Fig. 6(d)–
(f). The calculated eigenmodes are valuable for quantifying the influence of tangential clamping on the mechanical response. To
assess this impact, we determine the change in relative stiffness due to imperfect clamping. The equivalent stiffness for flexural and
axial eigenmodes are given by [57],

𝑘bending
𝑖 = 𝐸𝐼

𝐿3 ∫

1

0

[

𝛷′′
𝑖 (𝑥)

]2 𝑑𝑥 (3)

and

𝑘axial
𝑖 = 𝐸𝐴

𝐿 ∫

1

0

[

𝛹 ′
𝑖 (𝑥)

]2 𝑑𝑥, (4)

respectively. In Eqs. (4) and (3), the functions 𝛷𝑖(𝑥) and 𝛹𝑖(𝑥) denote the 𝑖th flexural and longitudinal eigenmode of the nanotube
computed via the POD, 𝐸 is the Young’s modulus, 𝐴 the cross section area, 𝐼 is the moment of inertia and 𝐿 the length of the
nanotube. Table 1 summarizes the stiffness ratio between flexural and the first longitudinal modes in the two configurations.

In the context of the tangential clamping scenario, we observe a decrease in the stiffness ratio. This leads to an inherent pathway
for energy exchange within the lattice of the unit cell, subsequently enabling the observed internal resonant behaviour.
5
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Fig. 6. Eigenmodes and effect of boundary condition. (a)–(c) Mode shapes of the first three flexural modes in the tangential clamping configuration. Eigenmodes
at 125 and 200 K are reported in red and black and almost overlap. The undeformed geometry is reported for reference (black lines). (d)–(f) Effect of the
boundary condition for the first three flexural modes. The mode shapes are normalized such that max𝛷 = 1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

5. Conclusions

Based on molecular dynamics, it is shown that internal resonance in single-walled CNTs can be induced via imperfect boundary
conditions. The geometry controls nonlinear coupling between the longitudinal and flexural modes as well as between higher flexural
vibrations. The initiation of this internal resonances is controlled by tuning the thermal environment. Although further numerical
and experimental verifications are necessary, the idea of thermal activation of modal interaction opens up a promising route towards
the engineering of nanotube resonating sensors.

Finally we underline that understanding how local mechanisms by which kinetic energy reallocate among different vibrating
modes is a necessity to harness anomalous decay processes and unexpected energy transfers. In this context, the use of classical
models are prone to significant errors since thermoelastic parameters become size- and temperature dependent. The enigmatic
characterization of nanomechanical resonators still requires an in depth study of the dynamical properties of phonon spectrum and
its link to the global dynamics. Essential information of the atomic interactions within the material are the key to unveil particular
vibration morphology of the flexural modes and their connection to strong thermal stress effects.
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Fig. 7. Relative change of the square of frequency with temperature for the first three flexural modes of the CNT from 5 K to 330 K with a temperature
increment of 5 K. The staircase behaviour of the first flexural mode is due to the insufficient resolution in frequency.

Appendix A. Proper orthogonal decomposition

The MD simulations provide the time response in a vector 𝐮 comprising the position of 𝑀−atoms. The time history consists of
𝑁 snapshots of the motion as

[

𝐮(𝑡1),𝐮(𝑡2),… ,𝐮(𝑡𝑁 )
]

. We remove the time average (mean values) of the responses by obtaining the
time-varying part, 𝐱(𝑡𝑖) = 𝐮(𝑡𝑖) − mean(𝐮). To extract the proper orthogonal modes of vibrations, a discrete matrix 𝐗 is first built
such that each row corresponds to a time response of one atom and each column corresponds to a snapshot of the CNT at a specific
time as:

𝐗 =
[

𝐱(𝑡1) 𝐱(𝑡2) ⋯ 𝐱(𝑡𝑁 )
]

=
⎡

⎢

⎢

⎣

𝑥1(𝑡1) ⋯ 𝑥1(𝑡𝑁 )
⋮ ⋱ ⋮

𝑥𝑀 (𝑡1) ⋯ 𝑥𝑀 (𝑡𝑁 )

⎤

⎥

⎥

⎦

, (5)

where 𝑥𝑖(𝑡𝑗 ) is the response of the 𝑖th atom at time 𝑡𝑗 . Once matrix 𝐗 is constructed, the orthogonal modes are obtained by using
the singular-value decomposition (SVD) of the discrete matrix. The SVD operator decomposes 𝐗 as:

𝐗 = 𝐔𝛴𝐕∗, (6)

where 𝐔 is an 𝑀 ×𝑀 real or complex unitary matrix, 𝛴 is a 𝑀 ×𝑁 rectangular diagonal matrix with non-negative real diagonals
𝜎𝑖 that are the singular values of 𝐗, and 𝐕 is an 𝑁 ×𝑁 real or complex unitary matrix, with 𝐕∗ being its conjugate transpose. The
columns of 𝐔 and 𝐕 are the so-called left-singular and right-singular vectors of 𝐗, respectively. Among these matrices, 𝐔 corresponds
to proper orthogonal modes of vibration that can linearly obtain all the snapshots of the motion with minimum error. Using this
matrix we can identify the modes corresponding to the peaks observed in Fig. 2.

A.1. Frequency resolution

The first three flexural modes highlight the same reduction with respect to the variation of the thermal bath as shown in Fig. 7.
The staircase behaviour of the first flexural mode is due to the insufficient resolution in frequency (i.e. 20 MHz).

A.2. Stiffening modes

The thermal stiffening for radial and longitudinal modes is showcased in Fig. 8.

Appendix B. Functional dependence of the elastic modulus

At low temperatures (𝑇 ≪ 𝑇𝐷2), Debye’s approach results in a specific heat expression [59],

𝐶𝑣 = 12𝜋4

5
𝑁𝐴𝑘

(

𝑇
𝑇𝐷

)3
. (7)

By accounting for the electron contribution to specific heat, Eq. (7) modifies in the Einstein–Debye Specific Heat

𝐶𝑣 =
𝜋2𝑁𝐴𝑘2

2𝐸𝐵(0)
𝑇 + 12𝜋4

5
𝑁𝐴𝑘

(

𝑇
𝑇𝐷

)3
. (8)

in which 𝑁𝐴 is the Avogadro’s number and 𝑘 the Boltzmann constant. When performing the integral of Eq. (1) it gives a polynomial
expression for the Young’s modulus variation in the temperature 𝑇 .

2 the Debye temperature 𝑇 has been approximately estimated in 2000 K for single-walled CNT [58]
7
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Fig. 8. Relative change of frequency with temperature for the first RBM (breathing) and the longitudinal mode (elongation) for the (8, 8) CNT in the fully
clamped configuration. Frequency at 5 K: 34.9 GHz (radial), 127.1 GHz (longitudinal).
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