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ABSTRACT: Bilayer graphene (BLG) was recently shown to host
a band-inverted phase with unconventional topology emerging from
the Ising-type spin−orbit interaction (SOI) induced by the
proximity of transition metal dichalcogenides with large intrinsic
SOI. Here, we report the stabilization of this band-inverted phase in
BLG symmetrically encapsulated in tungsten diselenide (WSe2) via
hydrostatic pressure. Our observations from low temperature
transport measurements are consistent with a single particle
model with induced Ising SOI of opposite sign on the two
graphene layers. To confirm the strengthening of the inverted
phase, we present thermal activation measurements and show that
the SOI-induced band gap increases by more than 100% due to the
applied pressure. Finally, the investigation of Landau level spectra reveals the dependence of the level-crossings on the applied
magnetic field, which further confirms the enhancement of SOI with pressure.
KEYWORDS: bilayer graphene, WSe2, spin−orbit interaction, band inversion, pressure, transport measurements

Van der Waals (VdW) engineering provides a powerful
method to realize electronic devices with novel

functionalities via the combination of multiple 2D materials.1

An exciting example is the case of graphene connected to
materials with large intrinsic spin−orbit interaction (SOI),
which allows the generation of an enhanced SOI in graphene
via proximity effect.2−26 This, on the one hand, is compelling
in the case of spintronics devices since the large spin diffusion
length in graphene heterostructures27−29 could be comple-
mented with electrical tunability30−32 or charge-to-spin
conversion effects.33 Moreover, it is also interesting from a
fundamental point of view since graphene with intrinsic SOI
was predicted to be a topological insulator.34 The observation
of increased SOI was demonstrated in the past few years in
both single layer12−20 and recently in bilayer graphene
(BLG).14,21−26 It was found that one of the dominating
spin−orbit terms is the Ising-type valley-Zeeman term which is
an effective magnetic field acting oppositely in the two valleys,
and could enable such exciting applications as a valley-spin
valve in BLG.35 Recent compressibility measurements21 have
shown that BLG encapsulated in tungsten-diselenide (WSe2)
from both sides hosts a band-inverted phase if the sign of
induced SOI is different for the two WSe2 layers. In practice,
this can be achieved if the twist angle between the two WSe2
layers is, for example, 180°.7,11,36
In this article, we experimentally investigate the SOI induced

in BLG symmetrically encapsulated in WSe2 (WSe2/BLG/

WSe2) via transport measurements. We present resistance
measurements as a function of charge carrier density (n) and
the transverse displacement field (D) at ambient pressure and
demonstrate the appearance of the inverted phase (IP). In
order to stabilize this phase, we employ our recently developed
setup37,38 to apply a hydrostatic pressure (p), which allows us
to decrease the distance between the WSe2 layers and bilayer
graphene and to boost the SOI as we have recently
demonstrated on single layer graphene.39 The sample is placed
in a piston−cylinder pressure cell, where kerosene acts as the
pressure mediating medium. More details about this can also
be found in Methods. To confirm the increased SOI, we
present thermal activation measurements where the evolution
of the SOI-induced band gap can be estimated as a function of
D and p. Finally, we further investigate the induced SOI with
quantum Hall measurements by tracking the Landau level
crossings as a function of the magnetic field.
To reveal the band-inverted phase arising from the Ising SOI

in BLG, we show the low-energy band structure of WSe2/
BLG/WSe2 in Figure 1, calculated using a continuum model
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by following in the footsteps of ref.7 The effect of the WSe2
layers in the proximity of BLG can be described by the Ising
SOI terms λIt and λIb that couple only to the top or bottom layer
of BLG and act as a valley-dependent effective magnetic field.
For WSe2 layers rotated with respect to each other with 180°,
the induced SOI couplings will have opposite sign.7,11,36 This is
taken into account by the opposite signs of λIt and λIb. The
transverse displacement field (D) in our measurements can be
modeled by introducing an interlayer potential difference

=u Ded

0 BLG
, where e is the elementary charge, ϵ0 is the vacuum

permittivity, d = 3.3 Å is the separation of BLG layers, and ϵBLG
is the effective out-of-plane dielectric constant of BLG.
Figure 1a−c shows the calculated band structure around the

K-point for different values of u, using the parameter values λIt
= −λIb = 2 meV. Details of the modeling can be found in the
Supporting Information. First of all, for |u| > |λIt| = |λIb|, we can
see the opening of a band gap (Figure 1a), as expected for BLG
in a transverse displacement field.40,41 On the other hand, as
opposed to pristine BLG, the bands are spin-split, and the
direction of this spin splitting is opposite for the valence and
conduction bands. This is a direct consequence of the opposite
sign of λIt and λIb as the valence and conduction bands are
localized on different layers due to the large u. The band
structure in the K′-valley is similar except that the spin-splitting
is reversed due to time reversal symmetry. For |u| = |λIt,b|
(Figure 1b), the u-induced band gap approximately equals the
spin splitting induced by the Ising SOI and the bands touch.
Finally, for |u| < |λIt,b| (Figure 1c), a band gap reopens and we
observe spin-degenerate bands for u = 0, separated by a gap
comparable in size to the Ising SOI terms (Δ ≈ |λIt − λIb|/2).
This gapped phase is distinct from the band insulating phase at
large u in that the valence and conduction bands are no longer
layer polarized, hence it is usually referred to as inverted phase
(IP). It is worth mentioning that the IP at |u| < |λIt| is weakly
topological unlike the trivial band insulating phase.42,43

Our device consists of a BLG flake encapsulated in WSe2
and hexagonal boron nitride (hBN) on both sides, as
illustrated in Figure 2a. To enable transport measurements,
we fabricated NbTiN edge contacts in a Hall bar geometry.
The device also features a graphite bottomgate and a metallic
topgate that allow the independent tuning of n and D. See the
Supporting Information for more details about sample
fabrication and geometry. The results on similar devices with
very similar findings are also shown in the Supporting
Information.

Figure 2c shows the resistance measured in a four-terminal
geometry as a function of n and D at ambient pressure at 1.4 K
temperature. As expected for BLG, we observe the opening of a
band gap at large displacement fields along the charge
neutrality line (CNL) at n = 0, indicated by an increase of
resistance. In accordance with the theoretical model and
previous compressibility measurements,21 we also observe two
local minima separated by a resistance peak at D = 0 in
agreement with the closing and reopening of the band gap
signaling the transition between the band insulator and the IP.
This observation is further emphasized in Figure 2b, where a
line trace (blue) of the resistance is shown as a function of D,
measured along the CNL. It is important to note that during
the fabrication process the rotation of WSe2 layers was not
controlled. However, from theoretical predictions,7,11,36 we
only expect to observe signatures of the IP for a suitable range
of rotation angles between the two WSe2 layers (e.g., ∼180°).
This is further supported by the fact that not all devices
fabricated showed the IP. An example for this case is shown in
the Supporting Information, where only the band insulating
regime can be observed in the resistance map.
To boost the induced SOI and stabilize the IP, we applied a

hydrostatic pressure of p = 1.65 GPa and repeated the previous
measurement. Figure 2d shows the n−D map of the resistance
after applying the pressure. Although the basic features of the
resistance map are similar, two consequences of applying the
pressure are clearly visible. First, as also illustrated in Figure 2b,
the peak resistance in the IP at D = 0 increased by ∼25%.
Second, the displacement field required to close the gap of the
IP increased significantly, by about 70%. Both of these
observations can be accounted for by an increase in the Ising
SOI term that results in a larger gap at D = 0 and subsequently

Figure 1. (a−c) Calculated band structure around the K-point for
different values of the interlayer potential difference u. Color scale
corresponds to the spin polarization of the bands.

Figure 2. (a) Schematic representation of the measured device.
Bilayer graphene is symmetrically encapsulated in WSe2 and hBN. (b)
Line trace of the four-terminal resistance along the CNL for ambient
pressure (blue) and p = 1.65 GPa (red). (c, d) Four-terminal
resistance map as a function of charge carrier density n and
displacement field D measured at (c) ambient pressure and (d) an
applied pressure of 1.65 GPa. The alternating low and high resistance
regions along the CNL indicate the closing and reopening of a band
gap in the bilayer graphene.
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in a larger displacement field needed to close the gap. Although
the shift of resistance minima could be explained by the
increase of ϵBLG or the decrease of interlayer separation d, these
altogether are not expected to have greater effect than
∼20%.44,45 It is also worth mentioning that the lever arms
also change due to the applied pressure, changing the
conversion from gate voltages to n and D; however, we have
corrected for this effect by experimentally determining them
from quantum Hall measurements (see the Supporting
Information).
To quantify the increase in the SOI gap due to hydrostatic

pressure, we performed thermal activation measurements along
the CNL for several values of D. Figure 3a demonstrates the

evolution of resistance as a function of 1/T for selected values
of D at ambient pressure. From this, we extract the band gap
using a fit to the high-temperature, linear part of the data
where thermal activation−ln(R) ∝ Δ/2kBT − dominates over
hopping-related effects.46 Figure 3b shows the extracted gap
values as functions of D with and without applied pressure.
First of all, a factor of 2 increase is clearly visible in the gap at
D = 0 for p = 1.65 GPa, which is consistent with the observed
increase of resistance. Second, the higher D needed to reach
the gap minima is also confirmed. We also note that the band
gap cannot be fully closed which we attribute to spatial
inhomogeneity in the sample.
The experimentally determined band gaps allow us to

quantify the SOI parameters. By adjusting the theoretical
model to match the positions of the gap minima and the
opening of the trivial gap for p = 0, we extract λIt = −λIb = 2.2 ±
0.4 meV. Similarly, we can extract the SOI parameters at p =
1.65 GPa. For these, we obtain λIt = −λIb = 5.6 ± 0.6 meV. The
SOI parameters extracted from the minima give the same order
of magnitude estimate as the gaps at D = 0 extracted from
thermal activation directly. A more detailed discussion of the
extraction and possible errors is given in the Supporting
Information. We expect that all layer distances (e.g., hBN-hBN,
BLG-WSe2, and d) change due to the applied pressure as it is
also reflected in the change of lever arms. The extracted
increase of SOI strength due to the change of BLG-WSe2
distances is consistent with theoretical predictions in ref 37,
where almost a factor of 3 increase was predicted for an applied
pressure of 1.8 GPa. Importantly, we have found similar results
in two further devices shown in the Supporting Information.
The quantum Hall effect in BLG provides us another tool to

investigate the Ising SOI induced by the WSe2 layers. The 2-
fold degeneracy of valley isospin (ξ = +, − ), the first two

Figure 3. Thermal activation measurements along the charge
neutrality line. (a) Arrhenius plot of the resistance at ambient
pressure for selected values of D. Solid lines are fits to the linear parts
of the data from which the band gap values were obtained. (b) Gap Δ
as a function of displacement field at ambient pressure (blue) and an
applied pressure of 1.65 GPa. Arrows indicate the D values for which
the activation data are shown in a.

Figure 4. (a) Low energy Landau level spectrum at B = 8.5 T obtained from single-particle continuum model with λIt = −λIb = 2 meV. (b) Four-
terminal resistance as a function of n and D measured at B = 8.5 T out-of-plane magnetic field and ambient pressure. Resistance plateaus
correspond to different ν filling factors. Abrupt changes in resistance at a given ν value as a function of D indicate the crossings of LLs. (c, e)
Measurements of LL crossings as a function of B for ν = 0 and ν = 1, respectively, for p = 0. Symbols denote LL crossings shown in a. (d, f) Critical
displacement field D* corresponding to LL crossings for ν = 0 and ν = 1 extracted from D − B maps measured at p = 0 (blue, see c, e) and p = 1.65
GPa (red).
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orbitals (N = 0, 1) and spin (σ = ↑, ↓) give rise to an 8-fold
degenerate Landau level (LL) near zero-energy.47−49 This
degeneracy is weakly lifted by the interlayer potential
difference, Zeeman energy, coupling elements between the
BLG layers50 and the induced Ising SOI.22 We can obtain the
energy spectrum of this set of eight closely spaced sublevels,
labeled by |ξ, N, σ⟩, by introducing a perpendicular magnetic
field in our continuum model, as detailed in.50 This is shown in
Figure 4a for B = 8.5 T as a function of the interlayer potential
(u). LLs with different ξ reside on different layers of the BLG,
and therefore u induces a splitting between these levels.
Second, the finite magnetic field causes the Zeeman-splitting of
levels with different σ. Finally, the Ising SOI induces an
additional effective Zeeman field associated with a given layer,
further splitting the levels. The key feature that should be
noted here is that for a given filling factor ν, crossings of LLs
can be observed and the position of crossing points along the u
axis depend on SOI parameters as well as on the magnetic
field. These level crossings manifest as sudden changes of
resistance in our transport measurements as is illustrated in
Figure 4b. Here, the n−D map of the resistance is shown as
measured at B = 8.5 T with fully developed resistance plateaus
(due to the unconventional geometry, see the Supporting
Information) corresponding to the sublevels of ν ∈ [−4,4].
For a given filling factor ν, we observe 4 − |ν| different D values
where the resistance deviates from the surrounding plateau
corresponding to the crossing of LLs, as expected from the
model.
The evolution of LL crossings with B can be observed by

performing measurements at fixed filling factors, as shown in
Figure 4c and e for ν = 0 and ν = 1, respectively. During the
latter measurement, carrier density n was tuned such that the
filling factor given by ν = nh/eB was kept constant. On both
panels, we can observe 4 − ν LL crossings that evolve as B is
tuned, until they disappear at low magnetic fields where we can
no longer resolve LL plateaus. This B-dependent behavior
enables us to investigate the effect of SOI on the LL structure.
Figure 4d and f shows the critical displacement field D* values,
where LL crossings can be observed, extracted from Figure 4c
and e and similar maps measured at p = 1.65 GPa (see the
Supporting Information). For ν = 0 (Figure 4d), the most
important observation is that the crossing points do not
extrapolate to zero as B → 0 T, which is a direct consequence
of the induced Ising SOI. It is also clearly visible that due to
the applied pressure, |D*| is generally increased, especially at
lower B-fields, indicating that the Ising SOI has increased, in
agreement with our thermal activation measurements. For ν =
1 (Figure 4f), similar trends can be observed. The two LL
crossings at finite D saturate for small B, while the third
crossing remains at D = 0. We note that the D*(B) curves for p
= 1.65 GPa cannot be scaled down to the p = 0 curves, which
confirms that our observations cannot simply be explained by
an increased ϵBLG or decreased interlayer separation distance,
but are the results of enhanced SOI. We also point out that
some lines which extrapolate to D = 0 can also be observed
(e.g., Figure 4e, gray arrow). This could also be explained by
sample inhomogeneity. It is also important to note that our
single-particle model fails to quantitatively predict the B-
dependence of the LL crossings indicating the importance of
electron−electron interactions (see the Supporting Informa-
tion).
In conclusion, we showed that the IP observed in BLG

symmetrically encapsulated between twisted WSe2 layers can

be stabilized by applying hydrostatic pressure, which enhances
the proximity induced SOI. We presented thermal activation
measurements as a means to quantify the Ising SOI parameters
in this system and showed an increase of approximately 150%
due to the applied pressure. In order to gain more information
on the twist angle dependence of the SOI, a more systematic
study with several samples with well-controlled twist angles is
needed. The enhancement of Ising SOI with pressure was
further confirmed from quantum Hall measurements. How-
ever, to extract SOI strengths from these measurements, more
complex models are needed that also take into account
interaction effects. Our study shows that the hydrostatic
pressure is an efficient tuning knob to control the induced
Ising SOI and thereby the topological phase in WSe2/BLG/
WSe2.
The IP has a distinct topology from the band insulator phase

at large D, and the presence of edge states are expected.42 The
presence of these states should be studied in better defined
sample geometries51,52 or using supercurrent interferome-
try.53,54 Opposed to the weak protection of the edge states in
this system, a strong topological insulator phase is predicted in
ABC trilayer graphene.43,55 Furthermore, pressure could also
be used in case of magic-angle twisted BLG, in which
topological phase transitions between different Chern insulator
states are expected as a function of SOI strength.56

■ METHODS
Sample Fabrication. The dry-transfer technique with PC/

PDMS hemispheres is employed to stack hBN (35 nm)/WSe2
(19 nm)/BLG/WSe2 (19 nm)/hBN (60 nm)/graphite. To
fabricate electrical contacts to the Hall bar, we use e-beam
lithography patterning followed by a reactive ion etching step
using CHF3/O2 mixture and finally deposit Ti (5 nm)/NbTiN
(100 nm) by dc sputtering. We deposit Al2O3 (30 nm) using
ALD which acts as the gate dielectric and isolates the ohmic
contacts from the top gate. Finally, the top gate is defined by e-
beam lithography and deposition of Ti (5 nm)/Au (100 nm).

Transport Measurements. Transport measurements were
carried out in an Oxford cryostat equipped with a variable
temperature insert (VTI) at a base temperature of 1.4 K
(unless otherwise stated). Measurements were performed
using the lock-in technique at 1.17 kHz frequency.

Pressurization. The sample is first bonded to a high
pressure sample holder and placed in a piston−cylinder
pressure cell, where kerosene acts as the pressure mediating
medium. To change the applied pressure, the sample is
warmed up to room temperature where the pressure is applied
using a hydraulic press and the sample is cooled down again.
Our pressure cell is described in more detail in ref.39
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(27) Ingla-Aynés, J.; Guimaraẽs, M. H. D.; Meijerink, R. J.; Zomer,
P. J.; van Wees, B. J. 24−μm spin relaxation length in boron nitride
encapsulated bilayer graphene. Phys. Rev. B 2015, 92, 201410.
(28) Drögeler, M.; Franzen, C.; Volmer, F.; Pohlmann, T.;
Banszerus, L.; Wolter, M.; Watanabe, K.; Taniguchi, T.; Stampfer,
C.; Beschoten, B. Spin Lifetimes Exceeding 12 ns in Graphene
Nonlocal Spin Valve Devices. Nano Lett. 2016, 16, 3533−3539.
(29) Singh, S.; Katoch, J.; Xu, J.; Tan, C.; Zhu, T.; Amamou, W.;
Hone, J.; Kawakami, R. Nanosecond spin relaxation times in single
layer graphene spin valves with hexagonal boron nitride tunnel
barriers. Appl. Phys. Lett. 2016, 109, 122411.
(30) Yang, B.; Tu, M.-F.; Kim, J.; Wu, Y.; Wang, H.; Alicea, J.; Wu,
R.; Bockrath, M.; Shi, J. Tunable spin−orbit coupling and symmetry-
protected edge states in graphene/WS2. 2D Materials 2016, 3,
031012.
(31) Dankert, A.; Dash, S. P. Electrical gate control of spin current in
van der Waals heterostructures at room temperature. Nat. Commun.
2017, 8, 16093.

(32) Omar, S.; van Wees, B. J. Spin transport in high-mobility
graphene on WS2 substrate with electric-field tunable proximity spin-
orbit interaction. Phys. Rev. B 2018, 97, 045414.
(33) Garcia, J. H.; Cummings, A. W.; Roche, S. Spin Hall Effect and
Weak Antilocalization in Graphene/Transition Metal Dichalcogenide
Heterostructures. Nano Lett. 2017, 17, 5078−5083.
(34) Kane, C. L.; Mele, E. J. Quantum Spin Hall Effect in Graphene.

Phys. Rev. Lett. 2005, 95, 226801.
(35) Gmitra, M.; Fabian, J. Proximity Effects in Bilayer Graphene on
Monolayer WSe2: Field-Effect Spin Valley Locking, Spin-Orbit Valve,
and Spin Transistor. Phys. Rev. Lett. 2017, 119, 146401.
(36) David, A.; Rakyta, P.; Kormányos, A.; Burkard, G. Induced
spin−orbit coupling in twisted graphene-transition metal dichalcoge-
nide heterobilayers: Twistronics meets spintronics. Phys. Rev. B 2019,
100, 085412.
(37) Fülöp, B.; Márffy, A.; Zihlmann, S.; Gmitra, M.; Tóvári, E.;
Szentpéteri, B.; Kedves, M.; Watanabe, K.; Taniguchi, T.; Fabian, J.;
et al. Boosting proximity spin-orbit coupling in graphene/WSe2
heterostructures via hydrostatic pressure. npj 2D Materials and
Applications 2021, 5, 82.
(38) Szentpéteri, B.; Rickhaus, P.; de Vries, F. K.; Márffy, A.; Fülöp,
B.; Tóvári, E.; Watanabe, K.; Taniguchi, T.; Kormányos, A.; Csonka,
S.; Makk, P. Tailoring the Band Structure of Twisted Double Bilayer
Graphene with Pressure. Nano Lett. 2021, 21, 8777−8784.
(39) Fülöp, B.; Márffy, A.; Tóvári, E.; Kedves, M.; Zihlmann, S.;
Indolese, D.; Kovács-Krausz, Z.; Watanabe, K.; Taniguchi, T.;
Schönenberger, C.; et al. New method of transport measurements
on van der Waals heterostructures under pressure. J. Appl. Phys. 2021,
130, 64303.
(40) McCann, E. Asymmetry gap in the electronic band structure of
bilayer graphene. Phys. Rev. B 2006, 74, 161403.
(41) Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M.
R.; dos Santos, J. M. B. L.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto,
A. H. C. Biased Bilayer Graphene: Semiconductor with a Gap
Tunable by the Electric Field Effect. Phys. Rev. Lett. 2007, 99, 216802.
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