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Generalized Positive Energy Representations of Groups of Jets
Niestijl, M.

November 7, 2023

Abstract
Let V be a finite-dimensional real vector space and K a compact simple Lie group with Lie algebra k.
Consider the Fréchet-Lie group G := J∞

0 (V ; K) of ∞-jets at 0 ∈ V of smooth maps V → K, with Lie
algebra g = J∞

0 (V ; k). Let P be a Lie group and write p := Lie(P ). Let α be a smooth P -action on G. We
study smooth projective unitary representations ρ of G ⋊α P that satisfy a so-called generalized positive
energy condition. In particular, this class captures representations that are in a suitable sense compatible
with a KMS state on the von Neumann algebra generated by ρ(G). We show that this condition imposes
severe restrictions on the derived representation dρ of g ⋊ p, leading in particular to sufficient conditions
for ρ|G to factor through J2

0 (V ; K), or even through K.

1 Introduction

This paper is concerned with projective representations of groups and Lie algebras of jets. Let K denote a
compact simple Lie group with Lie algebra k and let V be a finite-dimensional real vector space. Then we
consider the Fréchet-Lie group G := J∞

0 (V ;K) with Lie algebra g := J∞
0 (V ; k) ∼= RJV ∗K⊗ k. These consist of

∞-jets at 0 ∈ V of smooth K- and k-valued functions, respectively. We are interested in smooth projective
unitary representations of G which satisfy either a so-called positive energy, or a KMS condition.

To describe these, let P be a finite-dimensional Lie group with Lie algebra p. Assume that there is a smooth
action α of P on G. A continuous projective unitary representation ρ : G ⋊α P → PU(Hρ) is of positive
energy at the cone C ⊆ p if for every p ∈ C, there is a strongly continuous homomorphic lift t 7→ eitH of
t 7→ ρ(etp) whose generator H satisfies Spec(H) ≥ 0. We say that ρ is KMS at p ∈ p if there is a normal state
ϕ on the von Neumann algebra M := ρ(G)′′ generated by ρ(G) such that ϕ satisfies the KMS condition for
the one-parameter group R → Aut(M), t 7→ Ad(ρ(etp)). As we shall see, these two seemingly very different
classes of representations exhibit similar behavior in certain respects. In particular, they both give rise to
so-called generalized positive energy representations, a notion which relaxes the positive energy condition and
is introduced in Section 4 below. We study these generalized positive energy representations and thereby also
those which satisfy either the positive energy or the KMS condition.

The motivation for looking at the positive energy and KMS representations of the group G⋊α P originates in
prior work by B. Janssens and K.-H. Neeb, who studied in [JN21] a class of projective unitary representations
of the group of compactly supported gauge transformations G := Γc(M ; Ad(K)) of a principal K-bundle K over
M , where Ad(K) denotes the corresponding adjoint bundle. Suppose that the Lie group P acts smoothly on
K by automorphisms of the principal bundle K. This induces a smooth action of P on the infinite-dimensional
Lie group G. Their main result is:

Theorem 1.1. ([JN21, Theorem 7.19]):
Let (ρ,H) be a projective unitary representation of G ⋊ P which has a dense set of smooth rays and is of
positive energy at the cone C ⊆ p. If the cone C has no fixed points in M , then there exists a 1-dimensional P -
equivariantly embedded submanifold S ⊆M s.t. on the connected component G0 of the identity, the projective
representation ρ factors through the restriction map r : G0 → Γc(S; Ad(K)).

Thus, if there are no fixed points in M for C, then the problem of classifying the projective unitary positive
energy representations of G ⋊ P is essentially reduced to the one-dimensional case, which has been exten-
sively studied, see for example [PS86, Was98, Tan11, Kac90, KR87, GW84, TL99]. Moreover, if there are no
one-dimensional P -equivariantly embedded submanifolds in M , one is essentially reduced to the case where ρ
factors through the germs at the fixed point set Σ ⊆ M of the cone C ⊆ p. In the present paper, we address
the setting where fixed points do exist and where ρ actually factors through the germs at a single fixed point.
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Thus, let a ∈ M be a fixed point of the P -action on M and let V := Ta(M). If a smooth projective unitary
representation ρ of G factors through the germs at a ∈M , then the continuity of ρ implies that it must further
factor through the ∞-jets J∞

a (Ad(K)) ∼= J∞
0 (V ;K) = G at a ∈M , as is shown in Section A of the appendix.

This brings us to groups of jets and motivates the study of smooth projective unitary representations of
G ⋊α P . Clearly, any smooth projective unitary representation of G ⋊α P defines one of G ⋊ P via the jet
homomorphism j∞

a : G → J∞
a (Ad(K)) ∼= G. In this way, the present paper contributes to the understanding

of positive energy and KMS-representations of gauge groups.

In [Sim23], KMS-representations were very recently studied in the context of finite-dimensional Lie groups,
leading to complete characterization of such representations that generate a factor of type I. In relation to
the unitary representation theory of gauge groups, let us also mention the papers [GGV77, AHK78, PS76]
and [Ism76], in which unitary representations of gauge groups C∞

c (M ;K) are constructed which are non-
local in the sense that they do not factor through the restriction map C∞

c (M ;K) → C∞
c (N ;K) for some

proper submanifold N ⊆ M . When dim(M) ≥ 3, these are irreducible ([Wal87] and [AHKT81]). They
are also considered in [ADGV16] and [AHKM+93]. Unitary representations of groups of jets have also been
considered in [GG68] and [AT94].

Structure of the paper

The paper is divided in two parts. In Part I, we introduce both the (generalized) positive energy and the
KMS condition. We start in Section 2 by briefly recalling the relation between continuous projective unitary
representations, central extensions and the second Lie algebra cohomology H2

ct(g,R). We move on to consider
positive energy representations in Section 3 and discuss some of their properties. In Section 4 we relax the
positive energy condition and introduce the so-called generalized positive energy condition. We show that for
a projective unitary representation which of is generalized positive energy, its kernel is related to a particular
quadratic form canonically associated to the corresponding class in H2

ct(g,R). This observation will play a key
role in Part II. In Section 5, we briefly recall the modular theory of von Neumann algebras and then proceed
to define KMS representations. We consider a number of examples and discuss some of their properties, in
particular making the important observation that KMS representations give rise to generalized positive energy
ones. To some extent, this unifies the positive energy and KMS conditions, allowing their simultaneous study.
We remark also that Part I is formulated in the general context of possibly infinite-dimensional locally convex
Lie groups, which is the appropriate context within the larger program that studies the projective unitary
representations of gauge groups.

In Part II, we return to the Fréchet-Lie group G := J∞
a (V ;K) of∞-jets at 0 ∈ V . After fixing our notation, we

discuss in Section 7 a normal-form problem for the p-action on g = J∞
a (V ; k). Using the general observations

made in Part I together with the normal-form results obtained in Section 7, we proceed in Section 8 with the
study of (generalized) positive energy representations of the Lie algebra g⋊D p, where D : p→ der(g) denotes
the p-action on g corresponding to α.

Overview of main results

Let us describe the main results of Section 8. We will first need to introduce some notation. We write XI for
the Lie algebra of formal vector fields on V vanishing at the origin. The p-action D splits into a horizontal
and a vertical part according to D(p) = −Lv(p) + adσ(p), for some Lie algebra homomorphism v : p → X op

I

and a linear map σ : p→ g satisfying the Maurer-Cartan equation

−Lv(p1)σ(p2) + Lv(p2)σ(p1)− σ([p1, p2]) + [σ(p1), σ(p2)] = 0, ∀p1, p2 ∈ p.

For any p ∈ p, the formal vector field v(p) splits further as v(p) = vl(p) + vho(p), into its linearization
vl(p) and its higher order part vho(p), which is a formal vector field on V vanishing up to first order at the
origin. Let σ0(p) be the constant part of the formal power series σ(p). Let Σp ⊆ C denote the additive
subsemigroup of C generated by Spec(vl(p)). Let V C

c (p) denote the span in VC of all generalized eigenspaces
of vl(p) corresponding to eigenvalues with zero real part. Set Vc(p) := V C

c (p) ∩ V . If C ⊆ p is a subset,
define Vc(C) :=

⋂
p∈C Vc(p), which we call the ‘center subspace of V associated to C’, in analogy with the

center manifold of a fixed point of a dynamical system. Let Vc(C)⊥ ⊆ V ∗ be its annihilator in V ∗. If π is a
continuous projective unitary representation of g ⋊D p, let C(π) be the set of all points p ∈ p for which π is
of generalized positive energy at p. Write R := RJV ∗K :=

∏∞
n=0 P

n(V ) for the ring of formal power series on
V , where Pn(V ) denotes the set of degree-n homogeneous polynomials on V .
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The first main result concerns positive energy representations. It states that unless the spectrum of vl(p) and
σ0(p) happens to intersect non-trivially, any smooth projective unitary representation ρ of G ⋊α P which is
of positive energy at p ∈ p factors through the 2-jets J2

0 (V ;K) ⋊α P :

Theorem 8.1. Let ρ be a smooth projective unitary representation of G⋊α P which is of positive energy at
p ∈ p. Assume that Spec(adσ0(p)) ∩ Spec(vl(p)) = ∅. Then ρ factors through J2

0 (V ;K) ⋊α P . Moreover the
image of −Lvl(p) + adσ0(p) in P 2(V )⊗ k ⊆ J2

0 (V ;K) is contained in ker ρ.

The second main result determines restrictions imposed by the generalized positive energy condition. If
p ∈ C(π), then unless possibly when the “non-resonance condition” Spec(adσ0(p)) ∩ Σp = ∅ is violated, it
suffices to consider the case where all eigenvalues of vl(p) are purely imaginary. The precise statement is:

Theorem 8.3. Let π be a continuous projective unitary representation of g⋊D p. Let C ⊆ C(π). Assume that
Spec(adσ0(p))∩Σp = ∅ for all p ∈ C. Then RVc(C)⊥⊗ k ⊆ kerπ, and hence π|g factors through RJVc(C)∗K⊗ k.

Since RJVc(C)∗K⊗ k = k whenever Vc(C) = {0}, Theorem 8.3 in particular gives sufficient conditions for π to
factor through k, that depend only on the spectrum of σ0 and vl(p). For the third main result, we consider
the special case where p is non-compact and simple:

Theorem 8.6. Assume that p is non-compact and simple. Suppose that vl defines a non-trivial irreducible
p-representation on V . Let π be a continuous projective unitary representation of g⋊D p. Let C ⊆ C(π) be a
P -invariant convex cone. Either C is pointed or π|g factors through k.

Remark 1.2. If ρ is a smooth projective unitary representation of G ⋊α P which is of generalized positive
energy at the cone C ⊆ p, then its derived representation dρ on the space of smooth vectors H∞

ρ is so,
too. Moreover, as we shall see in Lemma 6.3 below, the exponential map of G = J∞

0 (V ;K) restricts to a
diffeomorphism from the pro-nilpotent ideal ker

(
ev0 : J∞

0 (V ; k)→ k
)

onto ker
(

ev0 : J∞
0 (V ;K)→ K

)
. Thus,

the above results all have immediate analogous consequences on the group level.
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Part I

Positive Energy and KMS Representations
2 Projective Representations and Central Extensions
In the following, the category of infinite-dimensional manifolds and smooth maps between them is defined in
the Michal-Bastiani sense [Bas64, Mil84, Nee06]. This also defines the notion of a locally convex Lie group.
Throughout the section, let G denote a locally convex Lie group which is regular in the sense of [Nee06, Def.
II.5.2]. Then G in particular admits an exponential map expG : g→ G, see e.g. [Nee06, Rem. II.5.3].

Definition 2.1.

— A (projective) unitary representation of G is said to be continuous if it is so w.r.t. the strong operator
topology on U(Hρ).

— Let (ρ,Hρ) be a unitary representation of G on Hρ. A vector ψ ∈ Hρ is called smooth if the orbit
map G → Hρ, g 7→ ρ(g)ψ is smooth. Denote by H∞

ρ ⊆ Hρ the subspace of smooth vectors. The
representation ρ is called smooth if H∞

ρ is dense in Hρ.

— Let (ρ,Hρ) be a projective unitary representation of G on Hρ. A ray [ψ] ∈ P(Hρ) is called smooth if
the orbit map G → P(Hρ), g 7→ ρ(g)[ψ] is smooth. Denote by P(Hρ)∞ the subspace of smooth rays.
The projective representation ρ is called smooth if P(Hρ)∞ is dense in P(Hρ).
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Definition 2.2. If D is a complex vector space, denote by L(D) the Lie algebra of linear operators on D.
If D is a pre-Hilbert space with Hilbert space completion H, we also write

L†(D) := {X ∈ L(D) : D ⊆ dom(X∗) and X∗D ⊆ D } .

For X ∈ L†(D) set X† := X∗|D. Then (X†)† = X and (−)† endows L†(D) with an involution [Sch90, Ch. 2].
If D is a pre-Hilbert space, define the Lie algebra

u(D) := {X ∈ L†(D) : X† +X = 0 } .

Definition 2.3. Let D be a complex pre-Hilbert space.

— A unitary representation of the Lie algebra g on D is a Lie algebra homomorphism π : g → u(D). A
projective unitary representation is a Lie algebra homomorphism π : g→ pu(D) := u(D)/iRI.

— A unitary representation π of g is called continuous if ξ 7→ π(ξ)ψ is continuous for any ψ ∈ D. A
projective unitary representation π is continuous if ξ 7→ π(ξ)[ψ] is continuous for every [ψ] ∈ P(D).

Remark 2.4. Any unitary G-representation on Hρ defines a unitary g-representation dρ : g → u(H∞
ρ ) on

H∞
ρ by dρ(ξ)ψ := d

dt

∣∣
t=0 ρ(etξ)ψ. We will always consider elements of dρ(g) as unbounded operators de-

fined on the invariant domain H∞
ρ . Projective unitary G-representations similarly define projective unitary

g-representations on P(H∞
ρ ) by differentiation at the identity. If G is finite-dimensional, then H∞

ρ is dense in
Hρ for any continuous unitary representation ρ of G, by a result of G̊arding [War72, Prop. 4.4.1.1].

A continuous projective unitary representation ρ : G→ PU(Hρ) is equivalently given by a continuous central
T-extension

◦
G together with a unitary representation ρ :

◦
G → U(Hρ) which satisfies ρ(z) = zI for z in the

central T component. Of course,
◦
G is the pull-back of the central T-extension U(Hρ)→ PU(Hρ) along ρ. We

say that ρ lifts ρ. Suppose ρ1 and ρ2 are two projective unitary representations, inducing by pull-back the lifts
ρ1 :

◦
G1 → U(Hρ1) and ρ2 :

◦
G2 → U(Hρ1) of ρ1 and ρ2, respectively. Then ρ1 and ρ2 are unitarily equivalent

if and only if there is an isomorphism Φ :
◦
G1 →

◦
G2 of central G-extensions and a unitary U : Hρ1 → Hρ2

such that ρ2(Φ(x)) = Uρ1(x)U−1 for all x ∈
◦
G1. Analogously, any projective unitary g-representation π with

domain D can be lifted to a unitary representation π : ◦
g→ u(D) of some central R-extension ◦

g of g. The con-
tinuous central extensions of g by R are up to isomorphism classified by H2

ct(g,R), the continuous second Lie
algebra cohomology with trivial coefficients [JN19, Def. 6.2, Prop. 6.3]. Thus, to study the projective unitary
representations of g up to equivalence, one may first determine H2

ct(g,R), choose for each class [ω] ∈ H2
ct(g,R)

a representative ω and then proceed to determine the equivalence classes of unitary representations π of the
central extension R⊕ωg satisfying π(1, 0) = iI. We will also write c := (1, 0) ∈ R⊕ωg for the central generator.

Remark 2.5. In the literature, one encounters the notion of the level of a unitary representation π of Rc⊕ω g,
which is the number l ∈ R such that π(c) = ilI (see e.g. [PS86, sec. 9.3]). Let us briefly clarify how
such representations are included in the program outlined above, even though π(c) = iI is always assumed.
Simply notice that such a representation of level l factors through the map Rc⊕ω g→ Rc⊕l·ω g induced by
multiplication by l on the central factor. The corresponding representation π2 of Rc⊕l·ω g satisfies π2(c) = iI.
Notice that Rc⊕ω g→ R⊕l·ω g is an isomorphism of Lie algebras whenever l ̸= 0, but not as central extensions
unless l = 1, because a morphism of central extensions is required to be the identity on the central component.
For 1 ̸= l ∈ R, the cocycles ω and l · ω are not equivalent unless [ω] = 0 in H2

ct(g,R).
Remark 2.6. If a projective unitary representation ρ ofG is smooth, then the corresponding central T-extension

◦
G is again a locally convex Lie group [JN19, Thm. 4.3]. Moreover, there is a similar correspondence between
smooth projective unitary representations ρ of G and their lifts ρ :

◦
G→ U(Hρ), which are then again smooth

[JN19, Cor. 4.5, Thm. 7.3]. We furthermore have P(Hρ)∞ = P(H∞
ρ ) by [JN19, Thm. 4.3].

3 Positive Energy Representations
Let us introduce the class of positive energy representations. After defining the notion, some immediate
consequences are considered that will be relevant in Part II. Let G be a regular locally convex Lie group
with Lie algebra g. If c ∈ R, D is a pre-Hilbert space and X ∈ L†(D) satisfies X† = X, we write X ≥ c if
⟨ψ,Xψ⟩ ≥ c∥ψ∥2 for every ψ ∈ D.
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Definition 3.1. Let C ⊆ g be a convex cone and D be a pre-Hilbert space.

— A continuous unitary representation π of g on D is said to be of positive energy (p.e.) at ξ ∈ g if
−iπ(ξ) ≥ 0. It is of p.e. at C if it is of p.e. at every ξ ∈ C. Write C(π) = { ξ ∈ g : π is of p.e. at ξ }.

— Let π be a continuous projective unitary representation of g on D with lift π : ◦
g→ u(D). Then π is of

p.e. at ξ if there exists
◦
ξ ∈ C(π) ⊆ ◦

g covering ξ. Write D(π) for the set of all such ξ. We say that π is
of p.e. at C if C ⊆ C(π).

— A smooth (projective) unitary representation of G onHρ is said to be of p.e. at ξ ∈ g if the corresponding
derived (projective) unitary representation of g on H∞

ρ is so. It is said to be of p.e. at C if it is so at
every ξ ∈ C.

Remark 3.2. Let ρ be a smooth unitary representation of G. Then C := C(dρ) is always a closed, G-invariant
convex cone. Consequently, C ∩ −C and C − C are ideals in g, called the edge and span of C, respectively. If
ξ ∈ C ∩−C then ξ ∈ ker dρ, so by passing to the quotient g/ ker dρ one may always achieve that C is pointed.

Next, we define the notion of a semibounded representation.

Definition 3.3. Let ρ : G→ U(H) be a smooth unitary G-representation. Define its momentum set by:

Iρ := conv { ξ 7→ ⟨ψ,−idρ(ξ)ψ⟩ : ψ ∈ H∞
ρ , ∥ψ∥ = 1 } ⊆ g∗.

The representation ρ is said to be semibounded if Wρ contains an interior point, where

Wρ := { ξ ∈ g : inf Spec(−idρ(ξ)) > −∞} .

Remark 3.4. For finite-dimensional Lie groups, the class of semibounded representations has been subject to
detailed study in [Nee00]. In particular, they are highest weight representations [Nee00, Def. X.2.9, Thm.
X.3.9]. For a consideration of semibounded representations in the context of infinite-dimensional Lie groups,
we refer to [Nee17] and [Nee10b].
In the finite-dimensional context, the semiboundedness condition turns out to be extremely restrictive, which
in turn has consequences for arbitrary positive energy representations. The following result, Theorem 3.5, is
based on the results in the monograph [Nee00].

Theorem 3.5. Assume that G is connected and locally exponential. Take d ∈ g and let a = ⟨d⟩ ◁ g be the
closed ideal in g generated by d. Assume that dim(a) <∞ and that a is stable, in the sense that AdG(a) ⊆ a.
Let A◁G be a connected normal Lie subgroup integrating a. Let (ρ,Hρ) be a smooth unitary G-representation
which is of p.e. at d ∈ g. Write h := a/ ker dρ. The following assertions hold:

1. a = C − C, where C ⊆ g is the closed G-invariant convex cone in g generated by d.

2. The closure of C + ker dρ in h is a pointed, closed, generating and G-invariant convex cone. Thus
C ∩ −C ⊆ ker dρ.

3. ρ|A is semibounded.

4. Let hn denote the maximal nilpotent ideal of h. Then [hn, hn] ⊆ z(h). Moreover, there exists a reductive
Lie algebra l such that h ∼= hn ⋊ l.

5. Let an denote the maximal nilpotent ideal of a. Then [a, [an, an]] ⊆ ker dρ.

Proof. For the first point, let a′ be the closure of C − C in g. As a′ is a closed ideal in g containing d, we
have a ⊆ a′. On the other hand, we know that AdG(d) ⊆ a because a is stable. Thus C ⊆ a and hence
a′ ⊆ a. So a′ = a. In particular dim(a′) < ∞ and so C − C = a′ = a. Next we prove the second statement.
Take ξ ∈ (C + ker dρ) ∩ −(C + ker dρ). Then dρ(ξ) ≥ 0 and dρ(ξ) ≤ 0, in view of Remark 3.2, and hence
Spec(dρ(ξ)) = {0}. As dρ(ξ) is essentially skew-adjoint, it follows that ξ ∈ ker dρ. Thus C + ker dρ is pointed
in h. As C is G-invariant and convex, it is clear that the same holds for the cone C + ker dρ in h. The latter
is also generating in h because a = C − C. Next we show that ρ|A is semibounded. As a is spanned by C and
dim a < ∞, it follows that C ⊆ a has interior points. As C ⊆ Wρ, this implies that Wρ has interior points.
Hence ρ|A is semibounded. For the remaining points, we use the results in [Nee00]. We first show that h is
admissible, in the sense of [Nee00, Def. VII.3.2]. Using the second point, the convex cone (C + ker dρ)⊕ R≥0
in h ⊕ R is closed, pointed, generating and Inn(h)-invariant. By [Nee00, Lem. VII.3.1, Def. VII.3.2] this
implies that h is admissible. By [Nee00, Thm. VII.3.10], it follows that [hn, hn] ⊆ z(h) and that h contains
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a compactly embedded Cartan subalgebra t (where as in [Nee00, Def. VII.1.1], a subalgebra t ⊆ h is called
compactly embedded if ⟨ead(t)⟩ is compact in Aut(h)). Using [Nee00, Lem. VII.2.26(iv)], we obtain that there
exists some reductive Lie algebra l with h ∼= hn ⋊ l. Since [h, [hn, hn]] = 0 and h = a/ ker dρ, it follows in
particular that [a, [an, an]] ⊆ ker dρ.

For projective p.e. representations, this leads to:

Corollary 3.6. Let G, d, a and an be as Theorem 3.5. Let (ρ,Hρ) be a smooth projective unitary represen-
tation of G. Suppose that ρ is of p.e. at d ∈ g. Then [a, [an, an]] ⊆ ker dρ.

Proof. Let ρ :
◦
G→ U(Hρ) be the lift of ρ to a central T-extension

◦
G of G. Let ◦

g := Lie(
◦
G). There exists some

◦
d ∈ ◦

g s.t. dρ is of p.e. at
◦
d ∈ ◦

g. Let ◦
a denote the ideal in ◦

g generated by
◦
d and let ◦

an denote the maximal
nilpotent ideal in ◦

a. Then dρ([◦
a, [◦

an,
◦
an]]) = {0} by Theorem 3.5. Thus dρ([a, [an, an]]) = {0}, where we used

that the quotient map ◦
g→ g projects ◦

a and ◦
an onto a and an, respectively.

The following simple lemma will also be useful.

Lemma 3.7. Assume that dim(G) < ∞. Let ρ : G → PU(Hρ) be a continuous projective unitary repre-
sentation of G which is of p.e. at every element of g. Then ρ is continuous w.r.t. the norm-topology on
U(Hρ).

Proof. Let dρ : ◦
g → u(H∞

ρ ) be the lift of dρ. Identify ◦
g ∼= R ⊕ω g for some 2-cocycle ω : g × g → R. The

assumptions imply that for every ξ ∈ g there exists Eξ ∈ R s.t. −idρ(ξ) ≥ Eξ. As this holds in particular for
both ξ and −ξ, dρ(ξ) is a bounded operator for any ξ ∈ g. As dim(g) < ∞, one finds by choosing a basis
(eµ) of g that there exists C > 0 s.t. ∥dρ(ξ)∥ ≤ C∥ξ∥ where ∥ξ∥ := supµ|ξµ| if ξ =

∑
µ ξµeµ. Thus ξ 7→ dρ(ξ)

is norm-continuous. This implies norm-continuity of ρ because B(Hρ)→ B(Hρ), T 7→ eT is norm-continuous
and ρ(exp(ξ)) = [edρ(ξ)] ∈ PU(Hρ) for ξ ∈ g.

4 Generalized Positive Energy Representations
Let G denote a regular locally convex Lie group with Lie algebra g. The class of p.e. representations can
be generalized by relaxing the condition −idρ(ξ) ≥ 0 in Definition 3.1. We define a suitable relaxed notion,
the generalized positive energy condition, and show that it can still be very restrictive. In Section 5, we will
encounter a class of representations which are not of p.e. but are of generalized positive energy.

Definition 4.1. Let D be a pre-Hilbert space with Hilbert space completion H. Let h be a locally convex
topological Lie algebra.

— A continuous unitary representation π : h → u(D) is of generalized positive energy (g.p.e.) at ξ ∈ h if
there exists a 1-connected Lie group H with Lie algebra h and a dense subspace D0 ⊆ D such that

∀ψ ∈ D0 : Eψ(π, ξ) := inf
h∈H
⟨ψ,−iπ(Adh(ξ))ψ⟩ > −∞. (1)

We write C(π) := { ξ ∈ g : π is of g.p.e. at ξ }. If C ⊆ g, we say that π is of g.p.e. at C if C ⊆ C(π).

— Let π : h → pu(D) be a continuous projective unitary representation of h on D with lift π :
◦
h → u(D).

Let C(π) ⊆ h denote the image of C(π) ⊆
◦
h under the quotient map

◦
h → h. Then π is said to be of

generalized positive energy at ξ ∈ h if ξ ∈ C(π). Similarly, we say it is of g.p.e. at C ⊆ h if C ⊆ C(π).

— Let ρ : G → U(Hρ) be a smooth unitary representation of G. Then ρ is said to be of g.p.e. at ξ ∈ g if
its derived representation dρ on H∞

ρ is so.

— Let ρ : G → PU(Hρ) be a smooth projective unitary representation of G with lift ρ :
◦
G → U(Hρ). Let

◦
g be the Lie algebra of

◦
G. Then ρ is of g.p.e. at ξ ∈ g if ρ is of g.p.e. at some

◦
ξ ∈ ◦

g covering ξ.

Remark 4.2. If π is a (projective) continuous unitary representation of g, then the set C(π) ⊆ g is always an
AdG-invariant cone.
An important observation for the class of g.p.e. representations is the following one:
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Lemma 4.3. Let π : g → u(D) be a continuous unitary representation of g on the pre-Hilbert space D. Let
ξ ∈ C(π). Suppose that η ∈ g satisfies [[ξ, η], η] ∈ Z(g). Then for every ψ in some dense subspace D0 we have:

0 ≤ ⟨ψ,−iπ([[ξ, η], η])ψ⟩,

⟨ψ,−iπ([ξ, η])ψ⟩2 ≤ 2⟨ψ,−iπ([[ξ, η], η])ψ⟩
(
⟨ψ,−iπ(ξ)ψ⟩ − Eψ(π, ξ))

)
.

(2)

In particular, if [[ξ, η], η] = 0 then π([ξ, η]) = 0.

Proof. Let D0 ⊆ D be a dense subspace for which (1) is valid. Let ψ ∈ D0. Then ⟨ψ,−iπ(etadηξ)ψ⟩ ≥ Eψ(π, ξ)
for all t ∈ R. As [[ξ, η], η] ∈ Z(g), the third derivative γ(3) : R→ g of the smooth path γ : R→ g, t 7→ etadηξ
vanishes. From Taylor’s formula (which holds for smooth maps between locally convex vector spaces by
[Nee06, Prop. I.2.3]), it follows that etadηξ = ξ + t[η, ξ] + t2

2 [[ξ, η], η] for all t ∈ R. Thus〈
ψ,−iπ(ξ)ψ⟩+ t⟨ψ,−iπ([η, ξ])ψ⟩+ t2

2 ⟨ψ,−iπ([[ξ, η], η])ψ⟩ ≥ Eψ(π, ξ), ∀t ∈ R

The equations (2) follows from the fact that at2 + bt+ c ≥ 0 for all t ∈ R if and only if a, c ≥ 0 and b2 ≤ 4ac.
In particular, if [[ξ, η], η] = 0 then ⟨ψ,−iπ([ξ, η])ψ⟩ = 0 for all ψ ∈ D0. As D0 is a complex vector space, this
implies by the polarization identity that π([ξ, η]) = 0.

In the projective context, this sets up a relation between kerπ and the class [ω] ∈ H2
ct(g;R) defined by the

corresponding central R-extension ◦
g of g. This is exploited in Section 8.

Proposition 4.4. Let π be a continuous projective unitary g-representation on the pre-Hilbert space D with
lift π : ◦

g → u(D) for some continuous central R-extension ◦
g of g. Let ω represent the corresponding class in

H2
ct(g,R). Let ξ ∈ C(π). Suppose that η ∈ g satisfies [[ξ, η], η] = 0. Then ω([ξ, η], η) ≥ 0 and

ω([ξ, η], η) = 0 ⇐⇒ π([ξ, η]) = 0.

Proof. Identify ◦
g with R ⊕ω g. Let

◦
ξ ∈ C(π) and ◦

η ∈ ◦
g be lifts of ξ and η, respectively. We have that

[[
◦
ξ,

◦
η], ◦
η] = ω([ξ, η], η) ∈ Z(◦

g), because [[ξ, η], η] = 0. Using Lemma 4.3 it follows that ω([ξ, η], η) ≥ 0.
If ω([ξ, η], η) = 0, then [[

◦
ξ,

◦
η], ◦
η] = 0 and so Lemma 4.3 implies that π([

◦
ξ,

◦
η]) = 0. Hence π([ξ, η]) = 0.

Conversely, if π([ξ, η]) = 0, then iω([ξ, η], η) = [π([ξ, η]), π(η)]− π([[ξ, η], η]) = 0, because [[ξ, η], η] = 0.

Remark 4.5. Notice in the setting of Proposition 4.4 that whenever [[ξ, η], η] = 0, the value of ω([ξ, η], η) does
not depend on the choice of representative ω of the class [ω] ∈ H2

ct(g,R).
In Part II, a particular special case of Proposition 4.4 is used extensively:

Corollary 4.6. Let p and g be locally convex Lie algebras. Let D : p → der(g) be a homomorphism for
which the corresponding action p × g → g is continuous. Let D be a complex pre-Hilbert space and let
π : g⋊D p→ pu(D) be a continuous projective unitary representation of g⋊D p on D. Let [ω] ∈ H2

ct(g⋊D p;R)
be the corresponding class in H2

ct(g ⋊D p;R). Let η ∈ g, p ∈ C(π) ∩ p and assume that [D(p)η, η] = 0. Then
ω(D(p)η, η) ≥ 0 and ω(D(p)η, η) = 0 ⇐⇒ π(D(p)η) = 0.

5 KMS Representations
In the following, we introduce the class of KMS representations. We will see in particular that these give
rise to generalized positive energy representations. Consequently, they can be studied using the results of
Section 4. Its definition makes use of the modular theory of von Neumann algebras, which we recall first.

5.1 Modular Theory of von Neumann Algebras
Let us recall the modular condition and the notion of a KMS state on a von Neumann algebra M, whilst
fixing our conventions and notation. We refer to [Tak03a, Ch. VIII], [BR87, Ch. 2.5] and [BR97, Ch. 5.3] for
a detailed consideration of the modular theory of von Neumann algebras and of KMS states.

If M is a von Neumann algebra, write M∗ for its pre-dual, equipped with the σ(M∗,M)-topology. Write
S(M) ⊆ M∗ for the set of normal states on M. Further, if ϕ ∈ S(M), write πϕ : M → B(Hϕ) for the
GNS-representation of M relative to ϕ. Write Mϕ := πϕ(M)′′. Let Ωϕ ∈ Hϕ denote the canonical cyclic
vector satisfying ϕ(x) = ⟨Ωϕ, πϕ(x)Ωϕ⟩ for all x ∈M. Whenever Ωϕ is separating for Mϕ, let Sϕ denote the
unique closed conjugate-linear operator satisfying SϕxΩϕ = x∗Ωϕ for all x ∈ Mϕ. Let Sϕ = Jϕ∆

1
2
ϕ be its

polar decomposition, where the operators ∆ϕ and Jϕ are positive and anti-unitary, respectively.
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Definition 5.1. A map σ : R → Aut(M) is said to be σ(M∗,M)-continuous if for every x ∈ M, the map
R→M, t 7→ σt(x) is continuous w.r.t. the σ(M∗,M)-topology on M.

Definition 5.2. Let ϕ ∈ S(M) be a normal state. Let σ : R → Aut(M) be a one-parameter group of
automorphisms of M. Define St := { z : z ∈ C, 0 < Im(z) < 1 }.

— ϕ is said to satisfy the modular condition for σ if the following two conditions are satisfied:

1. ϕ = ϕ ◦ σt for all t ∈ R.
2. For every x, y ∈M, there exists a bounded continuous function Fx,y : St→ C which is holomorphic

on St and s.t. for every t ∈ R:

Fx,y(t) = ϕ(σt(x)y),
Fx,y(t+ i) = ϕ(yσt(x)).

— ϕ is said to be KMS w.r.t. σ at inverse temperature β > 0 if it satisfies the modular condition for
t 7→ σ−βt. In that case, we also say that ϕ is σ-KMS at inverse-temperature β. If β = 1 we simply say
that ϕ is a σ-KMS state.

Remark 5.3.

1. Suppose that ϕ ∈ S(M) is faithful. Then there exists a unique automorphism group σϕ : R →
Aut(M) for which ϕ satisfies the modular condition [Tak03a, Thm. VIII.1.2], [BR87, Thm. 2.5.14].
The automorphism group σϕ is σ(M∗,M)-continuous. As ϕ is faithful, πϕ :M→Mϕ is injective and
hence a ∗-isomorphism between M and Mϕ [BR87, Thm. 2.4.24]. Thus one may identify M with Mϕ

via πϕ : M → Mϕ ⊆ B(Hϕ). Finally, there is a unique conditional expectation E : M → MR s.t.
ϕ = ϕ0 ◦ E , where MR := {x ∈M : σϕt (x) = x ∀t ∈ R } and ϕ0 := ϕ|MR [Tak03a, Thm. IX.4.2].

2. If ϕ is not necessarily faithful, then ϕ satisfies the modular condition for some σ(M∗,M)-continuous
1-parameter group σ : R→ Aut(M) of ∗-automorphisms of M if and only if Ωϕ ∈ Hϕ is separating for
Mϕ = πϕ(M)′′ ⊆ B(Hϕ). In that case, there is a central projection p ∈ Z(M) such that ϕ(1− p) = 0
and ϕ is faithful on Mp. Moreover, σt(p) = p for all t ∈ R and σ|Mp is uniquely determined by the
modular condition for ϕ [BR97, Thm. 5.3.10].

3. In particular, ifM is a factor and ϕ is KMS w.r.t. σ : R→ Aut(M), then necessarily p = I and whence
ϕ must be faithful. Consequently σ = σϕt is necessary.

4. In the converse direction, given a σ(M∗,M)-continuous automorphism group σ : R → Aut(M), there
may be no, precisely one, or multiple states in S(M) that are KMS w.r.t. σ. The set of σ-KMS states
in S(M) is considered in [BR97, Ch. 5.3.2]. In particular, if ϕ ∈ S(M) is a faithful σ-KMS state and
ψ ∈ S(M), then ψ is σ-KMS if and only if there is a (necessarily unique) positive operator T affiliated
to Z(M) such that ψ(x) = ϕ(T 1

2xT
1
2 ) for all x ∈ M [BR97, Prop. 5.3.29]. In [BEK80] and [BEK86],

the set Kβ of normal σ-KMS states at inverse temperature β is studied in the setting of C∗-dynamical
systems.

5. As a consequence of the previous points, ifM is a factor and ϕ, ψ ∈ S(M) are both σ-KMS, then ϕ = ψ,
so that two distinct normal states can not share the same modular automorphism group.

Remark 5.4. Suppose ϕ ∈ S(M) is KMS w.r.t. σ : R → Aut(M). Let σϕ : R → Aut(Mϕ) denote the
modular automorphism group defined by the faithful state ⟨Ωϕ, • Ωϕ⟩ on Mϕ = πϕ(M)′′. It then holds true
that σϕt (πϕ(x)) = πϕ(σ−t(x)) for any x ∈M and t ∈ R. Indeed, by [BR97, Cor. 5.3.4], the state ⟨Ωϕ, • Ωϕ⟩ on
Mϕ is KMS w.r.t. the unique automorphism group τ : R→ Aut(Mϕ) satisfying τt(πϕ(x))Ωϕ = πϕ(σt(x))Ωϕ
for all t ∈ R. Then σϕt = τ−t by uniqueness of the modular automorphism group (and the minus sign in the
definition of KMS states). As Ωϕ is separating for Mϕ, it follows that σϕt (πϕ(x)) = πϕ(σ−t(x)).

Example 5.5 (Gibbs States). Let M = B(H) and σt(x) = eitHxe−itH for some self-adjoint operator H
satisfying Zβ := Tr(e−βH) < ∞ for some β > 0. Consider the normal state ϕ(x) = 1

Zβ
Tr(e−βHx) on M.

The modular automorphism group corresponding to ϕ is given by σϕt (x) = e−iβtHxeiβtH = σ−βt(x) [BR87,
Example 2.5.16]. Thus ϕ satisfies the modular condition for σ−βt and is therefore KMS at inverse-temperature
β w.r.t. σt.

Gibbs states ϕ(x) = 1
Zβ

Tr(e−βHx) constitute the simplest class of examples of KMS states. We will encounter
a variety of different KMS states in Section 5.2.2 below.
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5.2 KMS Representations
In the following, let G be a regular locally convex Lie group with Lie algebra g. Let N ⊆ G be an embedded
Lie subgroup.

Definition 5.6. Let (ρ,Hρ) be a continuous unitary G-representation. Let N := ρ(N)′′ ⊆ B(Hρ) be the von
Neumann-algebra generated by ρ(N). For ϕ ∈ N∗, define the function ϕ̂ : N → C by ϕ̂(n) := ϕ(ρ(n)). Write
N∞

∗ := {ϕ ∈ N∗ : ϕ̂ ∈ C∞(N ;C) } and set S(N )∞ := S(N ) ∩N∞
∗ .

— Let ξ ∈ g and ϕ ∈ S(N ). We say that ϕ is KMS-compatible with (ρ, ξ,N) if etξNe−tξ ⊆ N for all t ∈ R
and ϕ is KMS w.r.t. the automorphism group R→ Aut(N ) defined by t 7→ Ad(ρ(etξ)).

— Define KMS(ρ, ξ,N) := {ϕ ∈ S(N ) : ϕ is KMS-compatible with (ρ, ξ,N) }.
Similarly, let KMS(ρ, ξ,N)∞ := KMS(ρ, ξ,N) ∩ S(N )∞.

— ρ is said to be KMS at ξ ∈ g relative to N if KMS(ρ, ξ,N) ̸= ∅.
It is called smoothly-KMS at ξ relative to N if KMS(ρ, ξ,N)∞ ̸= ∅.

If the subgroup N is clear from the context, we drop N from the notation and simply write KMS(ρ, ξ) and
KMS(ρ, ξ)∞. We then also say that ρ is KMS at ξ if it is so relative to N .

Remark 5.7. For any fixed ξ ∈ g satisfying Ad(etξ)N ⊆ N for all t ∈ R, one may as well consider the semidi-
rect product N⋊αR, where α : R→ Aut(N) is defined by αt := Ad(etξ)

∣∣
N

. Definition 5.6 additionally allows
for the situation where ρ is KMS at multiple ξI ∈ g, relative to possibly distinct subgroups NI ⊆ G, where
I ∈ I for some indexing set I. We will see an example of this in Example 5.21 below.

In the following, let (ρ,Hρ) be a continuous unitary G-representation and let N := ρ(N)′′ ⊆ B(Hρ) be the von
Neumann-algebra generated by ρ(N). If ϕ ∈ S(N ), write πϕ : N → B(Hϕ) for the GNS-representation of N
relative to ϕ. Let Ωϕ ∈ Hϕ denote the canonicalN -cyclic vector satisfying ϕ(x) = ⟨Ωϕ, πϕ(x)Ωϕ⟩ for all x ∈ N .
Write ρϕ := πϕ ◦ ρ : N → U(Hϕ) for the unitary N -representation on Hϕ. Define Nϕ := ρϕ(N)′′ ⊆ B(Hϕ).

Lemma 5.8. Let ϕ ∈ S(N ). Then ϕ̂ is smooth on N if and only if Ωϕ ∈ H∞
ρϕ

. In this case H∞
ρϕ

is dense, so
ρϕ is smooth.

Proof. Assume that ϕ̂ is smooth on N . Then n 7→ ⟨Ωϕ, ρϕ(n)Ωϕ⟩ is smooth. By [Nee10a, Thm. 7.2], it follows
n 7→ ρϕ(n)Ωϕ is smooth N → Hϕ. The converse direction is trivial. Assume that Ωϕ ∈ H∞

ρϕ
. As H∞

ρϕ
is

N -invariant and Ωϕ is cyclic for N , it follows that H∞
ρϕ

is dense in Hϕ.

Consider the left action of G on S(N ) defined by (g.ϕ)(x) := ϕ(ρ(g)−1xρ(g)) for x ∈ N . Notice that this
action leaves S(N )∞ invariant.

Lemma 5.9. Let g ∈ G and ξ ∈ g. Then ϕ ∈ KMS(ρ, ξ,N) ⇐⇒ g.ϕ ∈ KMS(ρ,Adg(ξ), gNg−1).

Proof. Write Ng := ρ(g)Nρ(g)−1. Let ϕ ∈ KMS(ρ, ξ,N). As etξNe−tξ ⊆ N it follows that etAdg(ξ) normalizes
gNg−1 for every t ∈ R. Define the following automorphism groups:

σξ : R→ Aut(N ), σξ := Ad(ρ(etξ)),
ηξ : R→ Aut(Ng), ηξ := Ad(ρ(etAdgξ)).

In order to show g.ϕ ∈ KMS(ρ,Adg(ξ), gNg−1), we must verify that g.ϕ satisfies the modular condition for
the automorphism group ηξ−t of Ng. Notice that as isomorphisms Ng → N we have

σξt ◦Ad(ρ(g)−1) = Ad(ρ(g)−1) ◦ ηξt , ∀t ∈ R. (3)

As ϕ ∈ KMS(ρ, ξ,N), we know that ϕ ◦ σξt = ϕ for all t ∈ R. It then follows immediately from (3) that

(g.ϕ) ◦ ηξt = ϕ ◦Ad(ρ(g)−1) ◦ ηξt = ϕ ◦ σξt ◦Ad(ρ(g)−1) = ϕ ◦Ad(ρ(g)−1) = g.ϕ, ∀t ∈ R.

Next, take x, y ∈ Ng. Then x = ρ(g)x′ρ(g)−1 and y = ρ(g)y′ρ(g)−1 for some x′, y′ ∈ N . Let the function
Fx′,y′ : St → C be continuous and bounded, holomorphic on St and satisfy Fx′,y′(t) = ϕ(σξ−t(x′)y′) and
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Fx′,y′(t+ i) = ϕ(y′σξ−t(x′)) for all t ∈ R. Define F̃x,y : St→ C by F̃x,y(z) := Fx′,y′(z). Then F̃x,y satisfies the
conditions of Definition 5.2 for ηξ−t. Indeed, notice using Equation (3) that σξt (x′) = ρ(g)−1ηξt (x)ρ(g). Thus

F̃x,y(t) = Fx′,y′(t) = ϕ(σξ−t(x′)y′) = ϕ

(
ρ(g)−1ηξ−t(x)yρ(g)

)
= (g.ϕ)(ηξ−t(x)y),

F̃x,y(t+ i) = Fx′,y′(t+ i) = ϕ(y′σξ−t(x′)) = ϕ

(
ρ(g)−1yηξ−t(x)ρ(g)

)
= (g.ϕ)(yηξ−t(x)).

Thus g.ϕ ∈ KMS(ρ,Adg(ξ), gNg−1).

Let ϕ ∈ KMS(ρ, ξ,N). Let α denote the smooth R-action on N defined by αt(n) := etξne−tξ. We extend ρϕ
to N ⋊α R by setting ρϕ(n, t) = ρϕ(n)∆−it

ϕ . Define

N∞,ϕ := {x ∈ N : (n, t) 7→ ρϕ(n, t)πϕ(x)Ωϕ is smooth N ⋊α R→ Hϕ } ,
Dϕ := πϕ(N∞,ϕ)Ωϕ ⊆ H∞

ρϕ
.

(4)

Notice that N∞,ϕ and Dϕ are invariant under the left N - and N ⋊α R-actions, respectively.

Lemma 5.10. If ϕ ∈ KMS(ρ, ξ,N)∞, then N∞,ϕ is SOT-dense in N and Dϕ is dense in Hϕ.
In particular, ρϕ is smooth when considered as representation of N ⋊α R.

Proof. Since ϕ ∈ S(N )∞, the vector Ωϕ is smooth for the N -action ρϕ by Lemma 5.8. Let m ∈ N . Then

ρϕ(n, t)ρϕ(m)Ωϕ = ρϕ(n)∆−it
ϕ ρϕ(m)∆it

ϕΩϕ = ρϕ(n)σϕ−t(ρϕ(m))Ωϕ = ρϕ(netξme−tξ)Ωϕ, ∀n ∈ N, t ∈ R,

where the last equality follows by Remark 5.4. Thus (n, t) 7→ ρϕ(n, t)ρϕ(m)Ωϕ is smooth N ⋊α R→ Hϕ and
so ρ(m) ∈ N∞,ϕ. Thus ρ(N) ⊆ N∞,ϕ and ρϕ(N)Ωϕ ⊆ Dϕ. Since ρ(N)′′ = N and ρϕ(N)Ωϕ is total for
Hϕ, it follows that N∞,ϕ is SOT-dense in N and that Dϕ is dense in Hϕ. As Dϕ is contained in the set of
N ⋊α R-smooth vectors by definition, the final observation follows.

5.2.1 Restrictions Imposed by the KMS Condition

Let us next determine some consequences of the KMS condition. Most notably, we will show that representa-
tions ρ which are smoothly-KMS give rise to generalized positive energy representations ρϕ on the GNS-Hilbert
space Hϕ of the corresponding state ϕ.

We continue in the notation of Section 5.2. Fixing a Lie subgroup N ⊆ G and some element ξ ∈ g satisfying
Ad(etξ)N ⊆ N for all t ∈ R, we may as well suppose that G = N ⋊α R for some smooth R-action α on N
by automorphisms. Let g := Lie(G), n := Lie(N) and write D ∈ der(n) for the derivation on n corresponding
to α. Thus g = n ⋊D Rd, where d := 1 ∈ R denotes the standard basis element. Assume that ρ is KMS
at d relative to N , and let ϕ ∈ KMS(ρ,d, N). We extend the N -representation ρϕ = πϕ ◦ ρ on the GNS-
Hilbert space Hϕ to G = N⋊αR by setting ρϕ(n, t) = ρϕ(n)∆−it

ϕ . Define further Hϕ := − log ∆ϕ = −idρϕ(d).

A first observation is the following:

Proposition 5.11. Let A be an Abelian Lie subgroup of N such that αt(A) ⊆ A for all t ∈ R.
Then ρϕ(αt(a)) = ρϕ(a) for every t ∈ R and a ∈ A. In particular, if N is a factor then ρ(αt(a)) = ρ(a) for
every t ∈ R and a ∈ A.

Proof. Let Aϕ := ρϕ(A)′′. Write again ϕ for the vector state ⟨Ωϕ, • Ωϕ⟩ on Nϕ. Let ψ := ϕ|Aϕ
denote its

restriction to Aϕ. As A is R-invariant, so is Aϕ ⊆ Nϕ. Thus, the modular automorphism group σϕ of Nϕ
leaves Aϕ invariant. As ϕ satisfies the modular condition for σϕ, so does ψ for the automorphism group
t 7→ σϕt

∣∣∣
Aϕ

. Recall from Remark 5.3(2) that Ωϕ is separating for Nϕ. Hence it is so for Aϕ. In view of

Remark 5.3(1) this implies that the modular automorphism group σψ on Aϕ is uniquely determined by the
modular condition. Thus σψt = σϕt

∣∣∣
Aϕ

for all t ∈ R. As Aϕ is Abelian, we know by [BR97, Prop. 5.3.28] that

σψt = idAϕ
. Thus σϕt

∣∣∣
Aϕ

= idAϕ
. We know from Remark 5.4 that ρϕ ◦α−t = σϕt ◦ ρϕ. Thus ρϕ(αt(a)) = ρϕ(a)

for all a ∈ A and t ∈ R. If N is a factor, then ϕ is faithful and πϕ is injective by Remark 5.3(1,3). Thus
ρ(αt(a)) = ρ(a) follows from ρϕ(αt(a)) = ρϕ(a).
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Let us illustrate Proposition 5.11 with the following noteworthy consequence for loop groups:

Corollary 5.12. Let K be a compact 1-connected simple Lie group with Lie algebra k. Define LK :=
C∞(S1;K) and Lk := C∞(S1; k). Let α denote the T-action on LK by rotations, with corresponding derivation
D := d

dθ on Lk. Consider the Lie group G := LK ⋊α T with Lie algebra g := Lk ⋊D Rd, where d := 1 ∈ R.
Suppose that the smooth unitary G-representation ρ is KMS at d ∈ g relative to LK. Assume that ρ(LK)′′ is
a factor. Then LK ⊆ ker ρ.

Proof. Suppose T ⊆ K is a maximal torus with Lie algebra t. Then LT ⊆ LK is an Abelian α-invariant
subgroup. By Proposition 5.11 it follows that dρ(DLt) = {0}. As any X ∈ k is contained in a maximal torus,
it follows that dρ( dfdθ ⊗ X) = 0 for any f ∈ C∞(S1) and X ∈ k. Consequently dρ(Dg) = {0} and hence
DgC ⊆ ker dρ, where we have extended dρ : g → L†(H∞

ρ ) C-linearly to the complexification gC. As ker dρ is
an ideal in gC and LkC = DLkC + [DLkC, DLkC], it follows that LkC ⊆ ker dρ. Notice that LK is connected
because K is 1-connected. It is also locally exponential by [Nee01, Thm. II.1]. It follows that LK ⊆ ker ρ.

Thus, one necessarily has to pass to a non-trivial central T-extension
◦

LK of LK ⋊α T to allow for interesting
KMS-representations of

◦
LK that are smoothly-KMS at some

◦
d ∈

◦
Lk covering d ∈ Lk⋊DRd, as one may have

expected from the positive energy analogue (which follows from [PS86, Thm 9.3.5]).

We now proceed with the observation that KMS representations give rise to generalized positive energy
representations on the GNS-Hilbert space corresponding to the KMS state:

Theorem 5.13. Let ϕ ∈ KMS(ρ,d, N)∞. Let x ∈ N ϕ,∞ and assume ψ := πϕ(x)Ωϕ ∈ Dϕ has unit norm.
Then

⟨πϕ(x)Ωϕ,−idρϕ(Adn(d))πϕ(x)Ωϕ⟩ ≥ − log
(
∥πϕ(x)∥2)

∀n ∈ N. (5)
In particular the representation ρϕ of N ⋊α R on Hϕ is of generalized positive energy at d ∈ n⋊D Rd.

Lemma 5.14. Let x ∈ N be such that 0 ̸= ψ := πϕ(x)Ωϕ ∈ dom(Hϕ). Then

⟨ψ,Hϕψ⟩
∥ψ∥2 ≥ − log

(
∥Sϕψ∥2

∥ψ∥2

)
. (6)

Proof. In view of the correlation lower bounds satisfied by KMS states, see e.g. [BR97, Thm. 5.3.15 (1) =⇒
(2)] or [FV77, Thm. II.4, (i) =⇒ (iii)], we have

⟨πϕ(x)Ωϕ, [Hϕ, πϕ(x)]Ωϕ⟩ ≥ −∥πϕ(x)Ωϕ∥2 log
(
∥πϕ(x)∗Ωϕ∥2

∥πϕ(x)Ωϕ∥2

)
.

Since HϕΩϕ = 0, it follows that ⟨πϕ(x)Ωϕ, [Hϕ, πϕ(x)]ΩΦ⟩ = ⟨πϕ(x)Ωϕ, Hϕπϕ(x)Ωϕ⟩. The assertion follows.

Proof of Theorem 5.13:
Recall that Dϕ ⊆ H∞

ρϕ
and that Dϕ ⊆ dom(Sϕ), because the stronger condition NϕΩϕ ⊆ dom(Sϕ) is satisfied.

Let n ∈ N . Notice that ∥Sϕρϕ(n)ψ∥ = ∥πϕ(x∗)ρϕ(n)−1Ωϕ∥ ≤ ∥πϕ(x)∥. Recalling that Dϕ is N -invariant, we
can apply equation (6) to the vector ρϕ(n)ψ. Using −idρϕ(d) = − log ∆ϕ = Hϕ it follows that

⟨ψ,−idρϕ(Adn−1(d))ψ⟩ = ⟨ρϕ(n)ψ,−idρϕ(d)ρϕ(n)ψ⟩ ≥ − log
(
∥Sϕρϕ(n)ψ∥2)

≥ − log
(
∥πϕ(x)∥2)

.

As a consequence of Theorem 5.13, we find that the observations of Section 4 impose restrictions on KMS
representations. Let us illustrate this with the following immediate consequence:

Corollary 5.15. Let ρ be a smooth projective unitary representation of G on Hρ. Assume that N := ρ(N)′′

is a factor. Let ρ :
◦
G → U(Hρ) be the lift of ρ, for some central T-extension

◦
G of G with Lie algebra ◦

g. Let
◦
N ⊆

◦
G cover N . Let ω represent the class in H2

ct(g,R) corresponding to ◦
g. Let ξ ∈ g and suppose

◦
ξ ∈ ◦

g

covers ξ. Let ϕ ∈ KMS(ρ,
◦
ξ,

◦
N)∞. Assume that η ∈ n satisfies [[ξ, η], η] = 0. Then ω([ξ, η], η) ≥ 0 and

ω([ξ, η], η) = 0 ⇐⇒ dρ([ξ, η]) = 0.

Proof. Consider the representation ρϕ of
◦
N⋊R on the GNS Hilbert spaceHϕ, where R acts on

◦
N by Ad(et

◦
ξ)

∣∣∣ ◦
N

and where ρϕ(1, t) = ∆−it
ϕ for t ∈ R. Let ρϕ be the corresponding projective unitary representation of N⋊R on

Hϕ, where R acts on N by Ad(etξ)
∣∣
N

. By Theorem 5.13, ρϕ is of g.p.e. at d ∈ ◦
n⋊Rd and so ρϕ is of g.p.e. at d.

It follows from Proposition 4.4 that ω([ξ, η], η) ≥ 0 and ω([ξ, η], η) = 0 ⇐⇒ dρϕ([ξ, η]) = 0. As N is a factor,
the KMS state ϕ ∈ S(N ) is faithful and the corresponding GNS-representation πϕ : N → B(Hϕ) is injective,
by Remark 5.3(1,3). This implies that ker dρϕ = ker dρ. Thus ω([ξ, η], η) = 0 ⇐⇒ dρ([ξ, η]) = 0.
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Remark 5.16. A related notation is that of a passive state, which is usually considered in the context of
a C∗-dynamical system (A, σ), where A is a C∗-algebra and σ : R → Aut(A) is a strongly continuous
homomorphism. If δ is the generator of σ with domain D(δ) ⊆ A, a state ϕ on A is said to be passive if

−iϕ(u∗δ(u)) ≥ 0, ∀u ∈ U0(A) ∩ D(δ), (7)

where U0(A) denotes the identity component of the group U(A) of unitary elements in A. In this case, ϕ
is necessarily σ-invariant [PW78, Thm. 1.1], so that σ is canonically implemented by a strongly-continuous
unitary 1-parameter group t 7→ eitHϕ on the GNS-Hilbert space Hϕ. Let πϕ : A → B(Hϕ) be the GNS-
representation of A associated to ϕ and let Ωϕ ∈ Hϕ be the corresponding cyclic vector. Then (7) becomes

−i⟨Ωϕ, πϕ(u)−1Hϕπϕ(u)Ωϕ⟩ ≥ 0, ∀u ∈ U0(A) ∩ D(δ),

which is similar to equation (1). It was moreover shown in [PW78] that any ground- or σ-KMS state is
necessarily passive (cf. [BR97, Thm. 5.3.22]), which is analogous to the observation that both positive energy
and KMS representations provide examples of generalized positive energy ones, in view of Theorem 5.13. We
refer to [PW78] and [BR97] for more information on (completely) passive states.

5.2.2 Some Examples of KMS Representations

Let us consider a variety of examples of KMS representations, thereby showing in various situations that a
well-known σ-KMS state ϕ on a von Neumann algebra N admits some underlying smooth structure. More
precisely, we construct a continuous unitary representation ρ of a (typically infinite-dimensional) Lie group
G such that N = ρ(N)′′, ϕ ∈ KMS(ρ, ξ,N)∞ and σt = Ad(ρ(etξ)) for some ξ ∈ g and Lie subgroup N of G.
In particular, in this case the 1-parameter group σ on N implements the R-action t 7→ Ad(etξ)

∣∣
N

on the Lie
subgroup N of G.

Let us begin with the simplest class of examples, which correspond to Gibbs states, as in Example 5.5:

Example 5.17. Take for N simply N = G. Let (ρ,H) be a continuous irreducible unitary G-representation.
Then N = B(H). Let ξ ∈ g and define the self-adjoint operator H := −i d

dt

∣∣
t=0 ρ(etξ). Let β > 0 and assume

that Zβ := Tr(e−βH) <∞. Define the Gibbs state ϕ(x) := 1
Zβ

Tr(e−βHx) for x ∈ N . As in Example 5.5, we
have σϕ−t(x) = eitβHxe−itβH = ρ(etβξ)xρ(e−tβξ) for any x ∈ N . Consequently, ϕ ∈ KMS(ρ, βξ) and so ρ is a
KMS representation at βξ ∈ g. If in addition ϕ̂ : G → C is smooth, then ρ is smoothly-KMS at βξ ∈ g. By
Lemma 5.9, ρ is also KMS at any element in the adjoint orbit of βξ. In view of Example 5.5, the representation
ρϕ of G⋊R on Hϕ := B(Hρ)

⟨−,−⟩ϕ is given by ρϕ(g, t)xΩϕ = ρ(g)ρ(etβξ)xρ(e−tβξ)Ωϕ = ρ(g)σϕ−t(x)Ωϕ, where
Ωϕ := I ∈ B(Hρ) ⊆ Hϕ denotes the cyclic vector.

In fact, Proposition 5.18 below entails that any KMS representation ρ for which N is a factor of type I is of
the form described in Example 5.17. Moreover a complete characterization of such representations was very
recently obtained in the context where N is a finite-dimensional Lie group [Sim23].

Proposition 5.18. Let ξ ∈ g and β > 0. Suppose that ρ|N is irreducible and that ϕ ∈ KMS(ρ, βξ,N). Let
H := −i d

dt

∣∣
t=0 ρ(etξ). Then Zβ := Tr(e−βH) <∞ and ϕ(x) = 1

Zβ
Tr(e−βHx).

Proof. As ρ|N is irreducible, it follows that N = B(Hρ). Thus ϕ(x) = Tr(δx) for some δ ∈ L1(Hρ)+
satisfying Tr(δ) = 1, where L1(Hρ) denotes Banach space of trace-class operators on Hρ. Moreover, in view
of Remark 5.3(3), we know that ϕ is faithful on N . By assumption, ϕ satisfies the modular condition for
the automorphism group t 7→ Ad(ρ(e−tβξ)) =: σ−βt. On the other hand, as ϕ is faithful, there exists by
Remark 5.3(1) a unique automorphism group σϕt of N for which ϕ satisfies the modular condition. It follows
that σ−βt = σϕt . When N = B(Hρ) and ϕ(x) = Tr(δx), the modular automorphism group σϕt corresponding
to ϕ is σϕt (x) = δitxδ−it. In view of σϕt = σ−tβ , it follows that δitxδ−it = ρ(e−tβξ)xρ(etβξ) for every x ∈ N .
As Z(N ) = CI and both t 7→ δit and t 7→ ρ(etβξ) are strongly continuous unitary 1-parameter groups, it
follows that there is some continuous homomorphism c : R→ T such that δit = c(t)ρ(e−tβξ) = c(t)e−itβH for
all t ∈ R. Thus there exists µ ∈ R such that δit = e−it(βH+µI) for all t ∈ R. So log δ = −(βH + µI). Since
Tr(δ) = 1, we have Zβ = Tr(e−βH) = Tr(e−(βH+µ)eµ1) = Tr(δeµ1) = eµϕ(1) = eµ <∞. It follows that

1
Zβ

Tr(e−βHx) = e−µ Tr(e−βHx) = Tr(e−(βH+µ)x) = Tr(δx) = ϕ(x), ∀x ∈ B(H).

For more interesting examples, one has to consider a Lie subgroup N of G which is not of type I, so that the
von Neumann algebra N need not be type I.
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Example 5.19 (Powers’ factors). Define Gn :=
∏n
k=1 SU(2) and let ηn : Gn ↪→ Gn+1 be defined by

ηn : Gn
id×1−−−→ Gn × SU(2) = Gn+1.

Write gn := Lie(Gn) and L(ηn) := Lie(ηn). The direct limit G := lim−→n
(Gn, ηn) consists of sequences (uk) in

SU(2) with uk = 1 for all but finitely many values of k. It can be equipped with the structure of a regular
Lie group that is modeled on the locally convex inductive limit g := lim−→n

(gn, L(ηn)) [Glö05, Thm. 4.3] and

has the exponential map expG = lim−→n
expGn

[Glö05, Prop. 4.6]. Let H :=
(

1 0
0 −1

)
and ξ := iH ∈ su(2).

Consider the following R-action α on G defined by (αt(u))k := etξuke
−tξ for u ∈ G. The corresponding action

R×G→ G is smooth. Indeed, the restriction of α to R×Gn yields a smooth action α(n) : R×Gn → Gn for
every n ∈ N. It follows from [Glö05, Thm. 3.1] that lim−→n

α(n) : lim−→n
(R×Gn)→ G is smooth. By [Glö05, Prop.

3.7] we further have lim−→n
(R×Gn) = R×G as smooth manifolds. This shows that α : R×G→ G is smooth.

Consider the Lie group G♯ := G⋊α R with Lie algebra g♯ := g⋊D Rd, where d := (0, 1). Using the so-called
Powers’ factors, we define unitary representations ρ of G♯ which are smoothly-KMS at d relative to G ◁ G♯

and for which ρ(G)′′ is a factor of type IIIλ for arbitrary λ ∈ (0, 1). Define the finite-dimensional C∗-algebra
Mn :=

⊗n
k=1 B(C2) for every n ∈ N. Let β > 0. Define the state ϕ(x) := 1

Z Tr(e−βHx) on B(C2), where
Z := Tr(e−βH) = 2 cosh(β). Let ϕn be the state onMn defined by ϕn(x1⊗· · ·⊗xn) =

∏n
k=1 ϕ(xk). The GNS-

representation of B(C2) defined by ϕ is Hϕ := B(C2) equipped with left B(C2)-action and the inner product
⟨a, b⟩ := 1

Z Tr(e−βHa∗b). Similarly the GNS-representation of Mn corresponding to ϕn is Hϕn :=
⊗n

k=1Hϕ.
The isometric inclusions Hϕn

↪→ Hϕn+1 , x 7→ x⊗1 define a directed system of Hilbert spaces, and the algebraic
direct limit lim−→n

Hϕn
becomes naturally a pre-Hilbert space. Let H denote its Hilbert space completion. Let

ιn : Hϕn
↪→ H denote the canonical inclusion. For every n ∈ N, there is a ∗-representation πn of Mn on H

defined for x = x1 ⊗ · · · ⊗ xn ∈Mn by

πn(x)ιm(ψ1 ⊗ · · · ⊗ ψm) := ιm(x1ψ1 ⊗ · · ·xnψn ⊗ ψn+1 ⊗ · · · ⊗ ψm), m ≥ n.

Let M∞ :=
( ⋃

n∈N πn(Mn)
)′′

. The vector Ω := 1⊗ 1⊗ · · · ∈ H is cyclic and separating for M∞ [Tak03b,

XIV, Prop. 1.11], so H may be identified with the GNS-representation ofM∞ w.r.t. the state ϕ∞ := ⟨Ω, • Ω⟩
on M∞. Observe that ϕ∞ satisfies ϕ∞(ιn(x)) = ϕn(x) for all n ∈ N and x ∈ Mn. The von Neumann
algebra (M∞, ϕ∞) =:

⊗∞
k=1(B(C2), ϕ) is the so-called Powers’ factor with parameter a := e−β

2 cosh(β) ∈ (0, 1
2 ),

which is a factor of type IIIλ with λ = e−2β = a
1−a ∈ (0, 1) [Tak03b, XVIII, Theorem 1.1]. The modular

automorphism group σϕ∞
t on M∞ defined by ϕ∞ is given by σϕ∞

t =
⊗∞

k=1 Ad(e−βtξ) [Tak03b, XIV, Prop.
1.11], where

⊗∞
k=1 Ad(eβtξ) ∈ Aut(M∞) satisfies

⊗∞
k=1 Ad(eβtξ) ◦ ιn = ιn ◦

⊗n
k=1 Ad(eβtξ) for all t ∈ R and

n ∈ N and is defined from this condition by continuity, where we used [Tak03b, XIV, Thm. 1.13] and that
ϕ ◦Ad(eβtξ) = ϕ for all t ∈ R. Consider the unitary representation ρ : G⋊α R→ U(H) defined by

ρ(u, βt) :=
( ∞⊗
k=1

uk

)
◦∆−it

ϕ∞
, u ∈ G, t ∈ R

which is well-defined because u = (uk) ∈ G is a sequence in SU(2) with uk = 1 for all k sufficiently large.
Since ρ(βt) = ∆−it

ϕ∞
and ρ(G)′′ = M∞, it follows that ρ is KMS at βd ∈ g♯ relative to G ◁ G♯. To see that

ϕ̂∞ : G → C is smooth, it suffices to show that its restriction to Gn is smooth for every n ∈ N, using the
universal property of the smooth manifold structure on G = lim−→n

Gn [Glö05, Thm. 3.1]. This is the case, as
⟨Ω, ρ(u)Ω⟩ =

∏n
k=1 ϕ(uk) for any u ∈ Gn, which is smooth Gn → C. Thus Ω ∈ H∞

ρ and so ρ is smoothly-KMS
at βd ∈ g♯ relative to G ◁ G♯.

Example 5.20 (Standard real subspaces and Heisenberg representations). Let H be a complex Hilbert space.
Consider the real Heisenberg group G := H(H, ω), where ω(v, w) = Im⟨v, w⟩. An R-linear closed subspace
K ⊆ H is called cyclic if K + iK is dense in H. It is called separating if K ∩ iK = {0}. A standard subspace
is a closed R-linear subspace K ⊆ H which is both cyclic and separating. We show that any standard real
subspace gives rise to a smooth KMS representation. Let K ⊆ H be a standard real subspace. Write δK for
the corresponding modular operator on H, which is generally unbounded, positive and self-adjoint, see e.g.
[NO17, Sec. 3]. Then t 7→ δitK is a strongly-continuous unitary 1-parameter group on H satisfying in particular
δitKK ⊆ K. We first pass to the R-smooth vectors K∞ to obtain a regular Lie group H(K∞, ω) ⋊ R. We then
construct a KMS representation thereof using second-quantization. The details are given below.

Let K∞ denote the set R-smooth vectors in K. Then K∞ is dense in K and R-invariant. It moreover
carries a Fréchet topology which is finer than the one inherited as a subspace of K and for which the action
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R × K∞ → K∞ is smooth [Nee10a, Thm. 4.4, Lem. 5.2]. As ω : K∞ × K∞ → R is bilinear and continuous
w.r.t. this topology, it is smooth. Thus the generalized Heisenberg group N := H(K∞, ω) is a Lie group.
(Notice that ω|K∞ may be degenerate.) It is as a subgroup of G generated by K∞. As K∞ is a Frèchet space,
it is Mackey complete by [KM97, Thm. I.4.11], which implies using [Nee06, Thm. V.1.8] that N is regular.
Write n := Lie(N). By construction R acts smoothly on N by δitK, so that N ♯ := N ⋊ R is a regular Lie
group. Let n♯ := n⋊Rd denote its Lie algebra. We construct a representation of N ♯ which is smoothly KMS
at d ∈ n♯ relative to N ◁N ♯. Let us recall the standard representation of H(H, ω) on the Bosonic Fock space
F(H). Equip the symmetric algebra S•(H) with the inner product

⟨v1 · · · vn, w1 · · ·wn⟩ =
∑
σ∈Sn

n∏
j=1
⟨vj , wσj

⟩. (8)

Let F(H) denote the Hilbert space completion of S•(H) and let Ω := 1 ∈ H denote the vacuum vector.
Then H contains (and is generated by) the vectors ev :=

∑∞
n=0

1
n!v

n ∈ H for v ∈ H. There is a continuous
irreducible unitary representation W of H(H, ω) on F(H) satisfying W (z, v)ew = ze− 1

2 ∥v∥2−⟨v,w⟩ev+w for
v, w ∈ H and z ∈ T [PS86, Sec. 9.5]. Moreover, any unitary u ∈ U(H) extends canonically to a unitary
F(u) ∈ U(F(H)). We further have:

W (uv) = F(u)W (v)F(u)−1, ∀u ∈ U(H), v ∈ H (9)

In view of (9), W and F together define a representation ρ of the Lie group N ♯ by ρ(n, t) := W (n)F(δitK).
Let N := W (N)′′. As K is a standard real subspace and K∞ is dense in K, it follows that Ω is cyclic and
separating for N [NO17, Lem. 6.2]. Let ϕ denote the faithful vector state on N defined by ϕ(x) = ⟨Ω, xΩ⟩.
Using [NO17, Prop. 6.10] we have ∆it

ϕ = F(δitK) for all t ∈ R. Consequently ρ is KMS at −d ∈ n♯ relative
to N ◁ N ♯ (notice the minus sign in Definition 5.2). To see it is smoothly KMS, observe that ϕ̂ : N → C is
smooth because it is given by

ϕ̂(z, v) = ⟨Ω,W (z, v)Ω⟩ = ze− 1
2 ∥v∥2

. (10)

The following provides an example where ρ is smoothly-KMS at various ξI ∈ g, relative to distinct subgroups
NI ⊆ G, where I ∈ I for some indexing set I:

Example 5.21 (Bisognano-Wichmann and SU(1, 1)-covariant nets).

Recall that SU(1, 1) acts on S1. Explicitly, for g =
(
α β

β α

)
∈ SU(1, 1) with α, β ∈ C satisfying |α|2−|β|2 = 1,

define g(z) := αz+β
βz+α

for z ∈ C with |z| = 1. With g as above, define the unitary action of SU(1, 1) on the
complex Hilbert space L2(S1;C) by (u(g)f)(z) := (α− βz)−1f(g−1(z)) for f ∈ L2(S1;C). Let H2

+(S1;C) be
the closed subspace of L2(S1;C) spanned by the non-negative Fourier modes. Let H2

−(S1;C) be its orthog-
onal complement in L2(S1;C). Notice that SU(1, 1) leaves these subspaces invariant. Consider the complex
Hilbert space V := H2

+(S1;C) ⊕ H2
−(S1;C), where H2

−(S1;C) denotes the Hilbert space complex-conjugate
to H2

−(S1;C). Let VR = L2(S1;C) denote the real vector space underlying V . Define the real Fréchet
space V ∞

R := C∞(S1;C) and consider the symplectic vector space (V ∞
R , ω), where ω(v, w) := Im⟨v, w⟩V for

v, w ∈ V ∞
R . Let H(V ∞

R , ω) be the corresponding real Heisenberg group. Consider the regular Fréchet-Lie

group G := H(V ∞
R , ω) ⋊ SU(1, 1). Let r := i

2

(
1 0
0 −1

)
and d := 1

2

(
0 1
1 0

)
denote the generators in su(1, 1)

of the rotation and the dilation subgroups in SU(1, 1), respectively. By an interval of S1, we mean a con-
nected, open, non-empty and non-dense subset of S1. Write I for the set of intervals of S1, on which SU(1, 1)
acts naturally, and let I0 denote the upper-semicircle. For I ∈ I, define ξI ∈ su(1, 1) by ξI := Adg(d), where
g ∈ SU(1, 1) is any element satisfying g.I0 = I. Notice that ξI is well-defined. Define further the closed real
subspace VI := L2(I;C) of VR and set V ∞

I := VI ∩V ∞
R . Let NI := H(V ∞

I , ω) ⊆ G be the corresponding closed
subgroup of G. We construct a unitary representation ρ of G which is of p.e. at r ∈ su(1, 1) and which is
KMS at ξI ∈ su(1, 1) relative to NI , for every I ∈ I. The details are given below.

As the SU(1, 1)-action u on L2(S1;C) leaves both H2
+(S1;C) and H2

−(S1;C) invariant, we obtain a unitary
representation ũ of SU(1, 1) on V = H2

+(S1;C)⊕H2
−(S1;C) which is by construction of p.e. at r ∈ su(1, 1).

As in Example 5.20, let W denote the standard representation of the real Heisenberg group H(V, Im⟨−,−⟩)
on the Fock space F(V ). Letting SU(1, 1) act on F(V ) by second quantization, we obtain a smooth unitary
representation ρ of G on F(V ) which is of p.e. at r ∈ su(1, 1). Explicitly, ρ is given by ρ(v, g) = W (v)F(ũ(g))
for v ∈ H(V ∞

R , ω) and g ∈ SU(1, 1). It follows from [Was98, Sec. II.14] that VI ⊆ V is a standard real subspace
for any interval I ∈ I. Let δitI denote the corresponding modular 1-parameter group, as in Example 5.20.
The assignment I 7→ VI , called a net of standard subspaces, satisfies I1 ⊆ I2 =⇒ VI1 ⊆ VI2 (isotony),
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Vg.I = ũ(g)VI for g ∈ SU(1, 1) (SU(1, 1)-covariance) and I1 ∩ I2 = ∅ =⇒ VI2 ⊆ V ⊥ω

I1
(locality). It moreover

follows from [Was98, Sec. II.14] that δitI = ũ(e−2πtξI ) for all t ∈ R and I ∈ I (cf. [Lon08, Thm. 3.3.1]
and [Bor92, Thm. II.9]). Passing to the second quantization, let NI := ρ(NI)′′ = W (V ∞

I )′′ denote the von
Neumann algebra generated by W (V ∞

I ) for I ∈ I. By Example 5.20, we obtain that

ρ(e−2πtξI ) = F(ũ(e−2πtξI )) = F(δitI ) = ∆it
I ,

where ∆I denotes the modular operator on F(V ) defined from NI using the cyclic and separating vector
Ω := 1 ∈ F(V ). Let ϕ = ⟨Ω, • Ω⟩ be the corresponding state on NI . Then (10) shows that ϕ̂ : NI → C is
smooth. Thus ρ is smoothly-KMS at 2πξI ∈ su(1, 1) relative to NI ⊆ G, for any I ∈ I. For more details on
the Bisognano-Wichmann property and nets of standard subspaces, see e.g. [Mor18] or [Mun01].

Part II

Generalized Positive Energy Representations
of Jet Lie Groups and Algebras
We now depart from the general context of Part I. Using the observations made in Part I, we study projective
unitary representations of jet Lie groups and algebras that are of generalized positive energy. Let us first fix
our notation, which is kept throughout Part II.

6 Notation
Let V be a finite-dimensional real vector space and K a 1-connected compact simple Lie group with Lie
algebra k. For any n ∈ N≥0, we denote by Pn(V ) ⊆ R the space of homogeneous polynomials on V of degree
n. Let R := RJV ∗K :=

∏∞
n=0 P

n(V ) denote the ring of formal power series on V with coefficients in R,
equipped with the product topology. Let I = (V ∗) be the maximal ideal of R, containing those elements with
vanishing constant term. We write ev0 : R → R ∼= R/I for the corresponding quotient map. Let g be the
R-module g := R ⊗ k of formal power series on V with coefficients in k. Then g is a topological Lie algebra
with the Lie bracket defined by

[f ⊗X, g ⊗ Y ] := fg ⊗ [X,Y ], f, g ∈ R, X, Y ∈ k.

We also write fX instead of f ⊗ X for f ∈ R and X ∈ k. Define Rk := R/Ik+1, Ik := I/Ik+1 and
gk := g/(Ik+1.g) for k ∈ N≥0. Then R = lim←−Rk and g = lim←− gk as topological vector spaces and Lie al-
gebras, respectively. For k ∈ N≥0, let Gk = Jk0 (V ;K) be the unique 1-connected Lie group integrating the
finite-dimensional Lie algebra gk. Let G := J∞

0 (V ;K) := lim←−Gk be the corresponding projective limit, which
is a pro-Lie group with topological Lie algebra g = lim←−k gk. (See e.g. [HM07] for a detailed consideration
of pro-Lie groups). Write XI for the Lie algebra of formal vector fields on V vanishing at the origin. Iden-
tify XI ∼= der(I) using the Lie derivative v 7→ Lv. Notice further that der(I) ∼= I ⊗ V . Define similarly
XIk

:= XI/(Ik+1XI) ∼= der(Ik).

Let p be a finite-dimensional Lie algebra acting on g by the homomorphism D : p → der(g). Using the fact
that all derivations of k are inner, by Whitehead’s first Lemma [Jac79, III.7. Lem. 3], it follows from [Kac90,
Ex. 7.4] that D(p) splits into a horizontal and vertical part according to D(p) = −Lv(p) + adσ(p), where
v : p→ X op

I is a homomorphism of Lie algebras and where σ : p→ g is a linear map that necessarily satisfies
the following Maurer-Cartan equation:

−Lv(p1)σ(p2) + Lv(p2)σ(p1)− σ([p1, p2]) + [σ(p1), σ(p2)] = 0, ∀p1, p2 ∈ p. (11)

Remark 6.1. As we shall see in Section 7.3 below, Equation (11) can be written as δσ + 1
2 [σ, σ] = 0 in the

differential graded Lie algebra (
∧•

p∗)⊗g, whose differential is that of the Chevalley-Eilenberg complex, where
g is considered as p-module according to p 7→ −Lv(p).

We will refer to D as a lift of the p-action on R to g and we call σ the vertical twist of the lift D. We remark
also that D(p) satisfies the following Leibniz rule:

D(p)(fξ) = −Lv(p)(f)ξ + fD(p)ξ, f ∈ R, ξ ∈ g, ∀p ∈ p. (12)
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We will denote by jk various k-jet projections R → Rk, g → gk and XI → XIk
. It should be clear from the

context which map is being used. Also, we will freely identify the quotient g0 ∼= k with the Lie subalgebra k ⊆ g
of formal power series having only a non-trivial constant term. Similarly, we identify j1XI = XI1

∼= gl(V )
with the subalgebra gl(V ) ⊆ XI of linear vector fields on V .

A first observation is the fact that G = J∞
0 (V ;K) is not just a pro-Lie group, but actually a regular Lie group

modeled on the Fréchet space g = J∞
0 (V ; k).

Proposition 6.2. Both G and G⋊α P are regular Fréchet-Lie groups.

Proof. It is clear that the Lie algebras g and g⋊Dp are Fréchet. For every n ∈ N, the Lie group Gn = Jn0 (V ;K)
is 1-connected, because K is so. Then also G is 1-connected, since πk(G) = πk

(
lim←−nGn

)
= lim←−n πk(Gn) for

every k ∈ N, see e.g. [Hat02, Prop. 4.67]. Thus G is the unique 1-connected pro-Lie group with Lie(G) = g,
which is locally contractible by [HN09, Theorem 1.2]. Then [HN09, Theorem 1.3, Prop. 5.7] entails that G is
a regular Lie group. As the action α : P ×G→ G is smooth, also G⋊α P is a Lie group and it is regular by
[Nee06, Thm. V.I.8], because both G and P are so.

Moreover, we have the following useful fact:

Lemma 6.3. The exponential map expG : g→ G restricts to a diffeomorphism from I⊗ k = ker
(

ev0 : g→ k
)

onto ker
(

ev0 : G→ K
)
.

Proof. For k ∈ N≥0, let Hk := ker
(

ev0 : Gk → K
)
◁ Gk be the maximal nilpotent normal subgroup of

Gk. Then hk := Lie(Hk) = ker
(

ev0 : gk → k
)

= (Ik ⊗ k) ◁ gk. Write H := lim←−kHk for the corresponding
normal subgroup of G and h = lim←− hk for its Lie algebra. Let k ∈ N. Notice that Hk is nilpotent and
1-connected. Consequently, its exponential map is a diffeomorphism expHk

: hk → Hk [CG90, Thm. 1.2.1].
Write logHk

: Hk → hk for its inverse. If m ≥ k, then expHk
◦jk = jk ◦ expHm

: hm → Hk and consequently
logHk

◦jk = jk ◦ logHm
: Hm → hk. Passing to the projective limit, we obtain the inverse logH := lim←−k logHk

of expH . It is smooth because H = lim←−kHk carries the projective limit topology and logHk
is smooth for

every k ∈ N. Thus expH : h→ H is a global diffeomorphism.

7 Normal Form Results
By choosing suitable local coordinates, one may attempt to simplify the vector fields v(p) and the vertical
twist σ(p) of the lift D(p) = −Lv(p) + adσ(p) simultaneously. One might for example try to show that there
are local coordinates in which the formal vector fields v(p) are linear for every p ∈ p simultaneously, thereby
linearizing the formal p-action. Similarly, one might aim to show that in suitable coordinates, σ(p) ∈ k ⊆ R⊗k
is constant for all p ∈ p, so that σ is a Lie algebra homomorphism p→ k. In the following, this ‘normal form
problem’ is considered. The results of Section 8 will depend on the availability of suitable normal forms,
whose existence we study in the present section.

In Section 7.1, we briefly recall the transformation behavior of v and σ under suitable automorphisms of g.
We proceed in Section 7.2 to recollect some known results regarding normal forms for Lie algebras of vector
fields with a common fixed point. Finally, we consider in Section 7.3 the vertical twist σ.

7.1 Transformation Behavior
Definition 7.1.

— A formal diffeomorphism of V is an automorphism h of R. An automorphism of g is said to be horizontal
if it is of the form h⊗ idk for some h ∈ Aut(R). We write h.ξ or h(ξ) instead of (h⊗ idk)(ξ) for ξ ∈ g.

— A gauge transformation is an automorphism of g of the form eadξ for some ξ ∈ g.

Remark 7.2. Any formal diffeomorphism h ∈ Aut(R) preserves the maximal proper ideal I and is determined
by its restriction h|V ∗ , which can be regarded as an element h̃ of I ⊗ V for which j1h̃ ∈ V ∗ ⊗ V ∼= gl(V ) is
invertible. It is then a consequence of Borel’s Lemma [Hör03, Thm. 1.2.6] and the Inverse Function Theorem
that for any automorphism h of R, there exist 0-neighborhoods U,U ′ ⊆ V and a diffeomorphism h0 : U → U ′

satisfying h0(0) = 0 such that h(j∞
0 (f)) = j∞

0 (f ◦ h−1
0 ). Similarly, for ξ ∈ g there exists η ∈ C∞

c (V ; k) s.t.
j∞

0 (η) = ξ, where we have identified g ∼= J∞
0 (V ; k). We then have eadξ ◦ j∞

0 = j∞
0 ◦ eadη .
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To determine the transformation behavior of D : p→ der(g), we have to consider the adjoint action of Aut(g)
on der(g). Instead of considering arbitrary automorphisms of g, we will specialize to horizontal ones and to
gauge transformations. For h ∈ Aut(R) and v ∈ X op

I , we write h.v for the action of Aut(R) on X op
I obtained

from the adjoint action of Aut(R) on der(R) ∼= XI ∼= X op
I . The following two proofs are due to K.-H. Neeb

and B. Janssens. They appear in the presently unpublished article [JN].

Lemma 7.3 ([JN]). Let D ∈ der(g) and ξ ∈ g. Then

eadξ ◦D ◦ e−adξ = D + ad
(
F (adξ)Dξ

)
,

where F (w) = −
∫ 1

0 e
twdt = −

∑∞
n=0

1
(n+1)!w

n.

Proof. Let k ∈ N be arbitrary. Consider the continuous path γ : I → der(g) defined by γ(t) = etadξDe−tadξ .
Notice that jk ◦ γ : I → der(gk) is smooth for all k and consequently so is γ. Moreover

γ′(t) = etadξ [adξ, D]e−tadξ = −etadξ adDξe−tadξ = −ad
(
etadξDξ

)
,

where the last step uses that α ◦ adη = adα(η) ◦ α for any α ∈ Aut(g). Thus

eadξ ◦D ◦ e−adξ −D =
∫ 1

0
γ′(t)dt = −

∫ 1

0
ad

(
etadξDξ

)
dt = −ad

( ∫ 1

0
etadξdt

)
(Dξ) = ad

(
F (adξ)Dξ

)
.

Proposition 7.4 ([JN]). Let h ∈ Aut(R) ⊆ Aut(g), σ, ξ ∈ g and v ∈ XI .
Consider the derivation D := −Lv + adσ ∈ der(g). Then

h ◦D ◦ h−1 = −Lh.v + ad(h.σ),

eadξ ◦D ◦ e−adξ = −Lv + ad
(
eadξσ + F (adξ)(−Lvξ)

)
.

(13)

Proof. It is trivial that h◦Lv ◦h−1 = Lh.v. Moreover, h◦adσ ◦h−1 = adh.σ is valid because α◦adσ = adα(σ)◦α
for any α ∈ Aut(g). Notice next that F (adξ)([σ, ξ]) =

∑∞
n=1

1
n! adξnσ = eadξσ−σ. It follows from Lemma 7.3:

eadξ ◦D ◦ e−adξ − Lv + adσ + ad
(
F (adξ)(−Lvξ)

)
+ ad

(
F (adξ)[σ, ξ]

)
= −Lv + ad

(
eadξσ + F (adξ)(−Lvξ)

)
.

Definition 7.5.

— Two homomorphisms v,w : p → X op
I are said to be formally-equivalent if there is a formal diffeomor-

phism h ∈ Aut(R) such that h.v(p) = w(p) for all p ∈ p.

— Two linear maps σ, η : p→ R⊗ k satisfying the Maurer-Cartan equation (11) are called gauge-equivalent
if there is some ξ ∈ g such that

η(p) = eadξσ(p) + F (adξ)(−Lv(p)ξ), ∀p ∈ p. (14)

In this case, we write σ ∼ η and say that σ and η are related by the gauge transformation eadξ .

7.2 Lie Algebras of Formal Vector Fields with a Common Fixed Point
The normal form problem for vector fields near a fixed point has been subject to extensive study. Let us first
gather some relevant known results.

The case of a single vector field

Naturally, the special case which has been considered most is the case where p is simply R, in which case
one is looking for normal forms of dynamical systems near a fixed point, in the formal context. This case is
already quite interesting. Let us recollect some relevant results. For more information, we refer to [Arn88].

Let v be a vector field on V . Write v = vl + vho, where vl = j1
0(v) ∈ gl(V ) ⊆ XI is the linearization of v at

0 ∈ V and vho ∈ XI2 is a vector field vanishing up to first order at 0 ∈ V . Let vl = vl,s + vl,n be the Jordan
decomposition of vl over C, where vl,s is semisimple and vl,n is nilpotent. Write VC := V ⊗R C. Let (ej)dj=1
be a basis of eigenvectors of vl,s in VC with dual basis (xj)dj=1 of V ∗. Let (µj)dj=1 denote the corresponding
eigenvalues.
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Definition 7.6. Let n ∈ Nd≥0 be a multi-index. A monomial vector field xn∂xj
with |n| ≥ 2 is called resonant

if ⟨n,µ⟩ = µj , where ⟨n,µ⟩ :=
∑d
i=1 niµi. Identifying vl,s with the linear vector field

∑d
j=1 µjxj∂xj

on Cd,
this is equivalent to [vl,s, x

n∂xj
] = 0.

Theorem 7.7 (Poincaré-Dulac Theorem [Dul04] [Arn88, ch.5]).
There exists who ∈ XI2 which is a C-linear combination of resonant monomials s.t. v is formally equivalent
to w = vl + who ∈ XI . In particular [vl,s, who] = 0 in XI .

Corollary 7.8 (Poincaré [Poi79]). If there are no resonances, that is to say, if ⟨n,µ⟩ ≠ µj for all n ∈ Nd≥0
with |n| ≥ 2 and j ∈ {1, · · · , d}, then the vector field v can be formally linearized, so that v is formally
equivalent to the linear vector field vl.

The case of actions by a compact Lie group

For actions of compact Lie groups there is the following well-known result, see also [DK00, Ch. 2.2].

Theorem 7.9 (Bochner’s Linearization Theorem [Boc45]).
Let G ×M → M be a smooth action of compact Lie group on a smooth manifold which has a fixed point
a ∈M . Then, in suitably chosen smooth local coordinates around the fixed point, the action is linear.

The case of actions by semisimple Lie algebras

Next, we move to Lie algebra representations by formal vector fields of semisimple Lie algebras. As nicely
explained in [FM04] and first observed by Hermann in [Her68], in the formal setting the obstructions to being
able to linearize a Lie algebra of vector fields simultaneously lie in various first Lie algebra cohomology groups
H1(p,W ) for suitable finite-dimensional p-modules W . In view of Whitehead’s First Lemma [Jac79, III.7.
Lem. 3], this results in:

Theorem 7.10 ([Her68]). Let p be a semisimple Lie algebra and v : p→ X op
I be a Lie algebra homomorphism.

Then v is formally equivalent to its linearization j1v : p→ gl(V ) ⊆ X op
I around the origin.

Remark 7.11. Corresponding statements of Theorem 7.10 in the setting of germs of smooth/analytic vector
fields and diffeomorphisms have been proven in [GS68] and [FM04] under additional assumptions. They are
false in general without suitable extra conditions, as was shown in [GS68].

7.3 Normal Form Results for the Vertical Twist
Let us next consider the vertical twist σ : p→ g of the lift D(p) = −Lv(p) + adσ(p) to g of the p-action −Lv(p)
on R, which has to satisfy the Maurer Cartan equation (11). We fix the horizontal part v : p → X op

I and
act by gauge transformations. The main results of this section are the following two theorems, whose proof
comprises the remainder of the section. The reader who is eager to consider the projective unitary g.p.e.
representations of g can proceed to Section 8 after reading Theorem 7.12 and Theorem 7.13 below.

Let us also remark that the methods used in this section to prove Theorem 7.12 and Theorem 7.13 were
communicated to the author by B. Janssens and K.H. Neeb and appear in similar form in their presently
unpublished work [JN], albeit in a more specific context. The author has placed their approach in a more
general context and extracted the two theorems below.

Theorem 7.12. Assume that p is semisimple. Let the linear map σ : p → g satisfy the Maurer-Cartan
equation (11). Then σ is gauge-equivalent to σ0 := ev0 ◦σ : p → k. If p has no non-trivial compact ideals,
then σ is gauge-equivalent to 0.

The next result concerns the case p = R, in which case we identify v with v(1) ∈ XI and σ with σ(1) ∈ g. In
this case, the Maurer-Cartan equation (11) is trivially satisfied for any σ ∈ g and v ∈ XI .

Theorem 7.13. Assume that p = R. Let σ ∈ g and v ∈ XI . Let vl := j1v ∈ gl(V ) be the linearization of v
at 0 ∈ V . Assume w.l.o.g. that σ0 := ev0(σ) ∈ t for some maximal torus t ⊆ k. The following assertions hold:

1. Assume that ⟨n,µ⟩ ≠ α(σ0) for any root α ∈ it∗ of k and n ∈ Nd≥0 with |n| ≥ 1.
Then σ is gauge-equivalent to some σ′ ∈ R⊗ t.

2. If vl is semisimple, then σ is gauge-equivalent to some ν ∈ R⊗ k satisfying −Lvlν + [σ0, ν] = 0.

3. Suppose that v = vl is linear. Assume that D = −Lv+adσ integrates to a continuous T = R/2πZ-action
on g. Then σ is gauge-equivalent to σ0 ∈ t. Moreover Spec(vl) ∪ Spec(adσ) ⊆ 2πiZ.
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Remark 7.14. Suppose that K →M is a principal fiber bundle with compact simple structure group K. Let
α : T → Aut(K) be a smooth action on K by bundle automorphisms. Suppose that a ∈ M is a fixed point
of the induced T-action on M and set V := Ta(M). By Theorem 7.9, the T-action on M is linear in suitable
local coordinates around a ∈ M . Passing to J∞

a (M) ∼= R and J∞
a (Ad(K)) ∼= g, one obtains a T-action on

both R and g. The corresponding derivations are given by −Lv and D = −Lv + adσ respectively, for some
linear semisimple vector field v on V and some σ ∈ g. This is the setting of the third item in Theorem 7.13,
according to which we may further assume that σ ∈ t, where t ⊆ k is a maximal torus, by acting with gauge
transformations.
The remainder of this section is devoted to the proof of Theorem 7.12 and Theorem 7.13.

Reformulation using differential graded Lie algebras

In order to classify the equivalence classes of vertical twists σ : p→ g, we interpret equation (11) as the Maurer
Cartan equation in the differential graded Lie algebra (DGLA) L := LR := (

∧•
p∗)⊗g. As a cochain complex,

L is the Chevalley-Eilenberg complex associated to the p-module g, where p acts on g by p.ψ = −Lv(p)ψ.
Explicitly, the differential δ is given by

δ(α)(p1, · · · , pk+1) =
∑
i

(−1)i+1pi.α(p1, · · · , p̂i, · · · , pk+1)+
∑
i<j

(−1)i+jα([pi, pj ], p1, · · · , p̂i, · · · , p̂j , · · · , pk+1),

where as usual, the arguments with a caret are to be omitted. The graded Lie bracket on L is the unique
bilinear map [−,−] : L×L→ L satisfying [α⊗σ, β⊗ψ] := (α∧β)⊗ [σ, ψ] for α, β ∈

∧•
p∗ and σ, ψ ∈ g. Write

Lk :=
( ∧k

p∗)
⊗ g for the degree k-elements in L. Interpreting σ as a degree-1 element of L, equation (11)

can now equivalently be written as the usual MC-equation δσ + 1
2 [σ, σ] = 0 in L.

Let us next reformulate the gauge-action (14) of g on the set of vertical twists, using the DGLA L. Consider
the extended DGLA L ⋊ RD, where D is a degree-1 element satisfying [D,σ] = δ(σ) for any σ ∈ L. Notice
for ξ ∈ g = L0 that δ(ξ)(p) = −Lv(p)ξ. We define the gauge-action of L0 = g on L by

ξ.σ = ead(ξ)(D + σ)−D = eadξ (σ) + F (adξ)(δ(ξ)), ξ ∈ g, (15)

considered as an expression in L ⋊ RD, where F (w) = −
∑∞
n=0

1
(n+1)!w

n = −
∫ 1

0 e
twdt. Let us check that

the above is indeed well-defined, even though L is not a nilpotent DGLA. Since G = lim←−kGk is a regular Lie
group, it has an exponential map and so the automorphism eadξ := Ad(eξ) on g is defined. Consequently, so
is

F (adξ)(−Lv(p)ξ) =
∫ 1

0
etadξ (Lv(p)ξ)dt

for any p ∈ p. Thus the expression in equation (15) makes sense. Notice further that for σ ∈ L1, the above
reduces precisely to the transformation behavior (14) of the vertical twist. In accordance with Definition 7.5,
we say that the MC-elements σ, σ′ ∈ L1 are gauge-equivalent if they satisfy σ′ = ξ.σ for some ξ ∈ L0, in
which case we write σ ∼ σ′. Our goal is to study the MC-elements in L1 up to gauge-equivalence.

Let n ∈ N≥0. Define analogously the following DGLAs, where we consider Pn(V ) as p-module by identifying
Pn(V ) with In/In+1 for n ∈ N≥0, so that p.f = −Lvl(p)f for p ∈ p and f ∈ Pn(V ):

LI :=
∧•

p∗ ⊗ (I ⊗ k), LRn :=
∧•

p∗ ⊗ (Rn ⊗ k),
LIn :=

∧•
p∗ ⊗ (In ⊗ k), LPn :=

∧•
p∗ ⊗ (Pn(V )⊗ k).

Shifted DGLAs

It will be beneficial to split off the constants terms of the k-valued formal power series, because contrary to
LR, LI is a projective limit of nilpotent DGLAs. We discuss next how this can be done.

For any MC-element χ ∈ L1
R0

= p∗ ⊗ k ⊆ LR of degree 1, define the ”shifted” DGLA LχR, which agrees with
LR as a graded Lie algebra but has a shifted differential given by δχ(σ) := δ(σ) + [χ, σ]. The differential
δχ agrees with the Chevalley-Eilenberg differential of

( ∧•
p∗)
⊗ g if g is considered as p-module with the

twisted action p.σ := −Lv(p) + [χ,−]. In particular, δ2
χ = 0. Let us write R⊗χ k for this module structure to

distinguish it form the usual one on g = R ⊗ k, which was given by p.ξ = −Lv(p)ξ. Define also the extended
DGLA LχR⋊RDχ, where [Dχ, σ] = δχ(σ). Define in analogous fashion LχIn

, LχI and LχPn , where we have used
that the p-action on R ⊗χ k leaves In ⊗ k invariant for every n, so that Pn(V ) ⊗ k ∼= (In ⊗ k)/(In+1 ⊗ k) is
naturally a p-module. The following is a standard result:
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Lemma 7.15.

1. Let σ ∈ L1
R. Then χ+ σ is a MC-element in LR if and only if σ is a MC-element in LχR.

2. Let σ, σ′ ∈ LχR be degree-1 MC-elements. Then χ+ σ ∼ χ+ σ′ in LR if and only if σ ∼ σ′ in LχR.

3. Let ψ ∈ L1
R be a MC-element. Then ψ = χ+ σ for some degree-1 MC-elements σ ∈ LχI and χ ∈ LR0 .

Proof.

1. As χ is a MC-element and [σ, χ] = [χ, σ] we have

δ(χ+ σ) + 1
2 [χ+ σ, χ+ σ] = δ(σ) + 1

2 [σ, σ] + [χ, σ] = δχ(σ) + 1
2 [σ, σ].

2. Observe that −F (adξ)([ξ, χ]) = eadξ (χ)− χ. Consequently

F (adξ)(δχ(ξ)) = F (adξ)(δ(ξ)) + F (adξ)([χ, ξ]) = F (adξ)(δ(ξ)) + eadξ (χ)− χ. (16)

Thus, for any ξ ∈ g we have

eadξ (χ+ σ) + F (adξ)(δ(ξ)) = χ+
(
eadξ (σ) + F (adξ)(δχ(ξ))

)
.

3. Since R = R0⊕ I as a vector space, we can write ψ = χ+σ, where χ = j0(ψ) ∈ LR0 and σ ∈ LχI . As j0

is a morphism of DGLAs, it is clear that χ = j0(ψ) is a MC-element in LR0 ⊆ LR. By the first point it
follows that σ is a MC-element in LχI ⊆ L

χ
R.

Study of MC-elements

In view of Lemma 7.15, let us first study the classification problem of gauge-orbits of MC-elements in L1
R0

and then, for each MC-element χ ∈ L1
R0

consider the orbits in LχI under the gauge-action.

Lemma 7.16.

1. Let χ : p→ k be linear. Then χ is a MC-element in L1
R0

if and only if it is a Lie algebra homomorphism.
Thus if there are no homomorphisms p→ k, then any MC-element χ ∈ L1

R0
= p∗ ⊗ k is trivial.

2. The gauge-action of X ∈ k = L0
R0

on LR0 is given by X.χ = eXχ.

Proof. Notice that δ(X) = 0 for any X ∈ k ⊆ g, because −Lv(p)X = 0 for any p ∈ p. So p acts trivially on
k = g0 = j0g. Thus the Maurer-Cartan condition reads simply χ([p1, p2])− [χ(p1), χ(p2)] = 0 for all p1, p2 ∈ p,
proving the first statement. The second statement follows at once from the definition (15), using once more
that the p-action on k is trivial.

Next, we fix a homomorphism χ : p → k and turn to the MC-elements of the twisted DGLAs LχI . Consider
the following diagram of DGLAs:

LχI

· · · LχIk+1
LχIk

· · · LχI0
= {0}

Any MC-element in LχI projects to one in LχIk
for any k ∈ N, and all maps in the above diagram are equivariant

w.r.t. the gauge-actions. Notice further that each LχIk
is nilpotent. To study the MC-elements in LχI , we

consider lifts of MC-elements from LχIk
to LχIk+1

, so as to solve the problem step-by-step. This can be done
using the following central extension of nilpotent DGLAs, where LχI0

= {0} is trivial:

0→ Lχ
Pk → LχIk

→ LχIk−1
→ 0, k ∈ N (17)

in combination with the following known result from deformation theory (cf. [Man04, Sec. V.6]):
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Lemma 7.17. Let 0 → K → L → M → 0 be a central extension of nilpotent DGLAs. Let σM ∈ M1 be a
MC-element.

1. Suppose that σL ∈ L projects to σM . Then h := δσL + 1
2 [σL, σL] ∈ K2 is closed and [h] ∈ H2(K) is

independent of the lift σL of σM . Moreover, there is some η ∈ K1 such that σL + η is a MC-element in
L1 if and only if [h] = 0 in H2(K).

2. If σL and σ′
L are two lifts of σM that are both MC-elements in L1, then ∆ := σ′

L − σL ∈ K1 is closed.
Conversely, if ∆ ∈ K1 is closed and σL is a lift of σM which is a MC-element, then σ′

L := σL + ∆ is
also a lift of σM which is a MC-element. Moreover, the class [∆] ∈ H1(K) vanishes if and only if σL
and σL′ are related by a gauge transformation of some element ξ ∈ K0.

3. If σL is any lift of σM which is a MC-element, then the map ∆ 7→ σL + ∆ induces a bijection between
H1(K) and K0-orbits of MC-elements in L1 lifting σM .

Proof.

1. It is clear that h ∈ K2 as it projects to zero in M2. Since δh = [δσL, σL] (by the graded Leibniz rule),
we find using δσL = h− 1

2 [σL, σL] that

δh = [h, σL]− 1
2 [[σL, σL], σL] = 0,

where the second term vanishes by the graded Jacobi identity and the first term vanishes because h ∈ K is
central. Thus h is closed. Suppose that σ′

L is some other lift of σM and define h′ := δσ′
L+ 1

2 [σ′
L, σ

′
L] ∈ K2.

Then ∆ := σ′
L − σL ∈ K lies in the center, so that h′ = h + δ∆. It follows that [h] ∈ H2(K) does not

depend on the lift. If there is some η ∈ K1 such that σL + η is a MC-element in L1, then

0 = δ(σL + η) + 1
2 [σL + η, σL + η] = δη + h.

Hence [h] = 0. Conversely, if [h] = 0 ∈ H2(K), then there exists η ∈ K1 such that h + δη = 0. Then
σL + η is a MC-element, by the same computation.

2. Let σ′
L and σL be MC-elements in L1 lifting σM . We have already noticed that h′ = h + δ∆, where

∆ := σ′
L − σL ∈ K1. Since h = h′ = 0 by assumption, it follows that δ∆ = 0. Conversely, suppose

∆ ∈ K1 is closed and that σL is a MC-element projecting to σM . Then σ′
L := σL + ∆ projects to σM

as well. Also, σ′
L is a MC-element, because δσ′

L + 1
2 [σ′

L, σ
′
L] = δσL + 1

2 [σL, σL] + δ∆ = 0. To see that
[∆] = 0 in H1(K) if and only if σL and σ′

L = σL + ∆ are related by a gauge transformation by some
element ξ ∈ K0, observe that if ξ ∈ K0, then as ξ is central we have

ξ.σL = eadξ (σL +D)−D = σL − [D, ξ] = σL − δξ.

3. This is immediate from the previous point.

Next, we apply Lemma 7.17 to the exact sequences (17).

Lemma 7.18. For every sequence (ξk)k∈N of degree-0 elements in LχI with ξk ∈ P k(V )⊗χ k for every k ∈ N,
there exists η ∈ I ⊗χ k such that jn(η.σ) = ξn.ξn−1. · · · .ξ1.σ for every σ ∈ LχI and n ∈ N.

Proof. Consider the Lie subgroup H := ker
(

ev0 : G→ K
)
◁G with Lie algebra h := ker

(
ev0 : g→ k

)
= I⊗k.

Similarly, for n ∈ N let Hn := ker
(

ev0 : Gn → K
)

and hn := Lie(Hn). Recall that the exponential
map exp : h → H is a global diffeomorphism, by Lemma 6.3. Write log : H → h for its inverse. From
jn ◦exp = exp ◦jn : h→ Hn we obtain that log ◦jn = jn ◦ log : H → hn for any n ∈ N. As [ξk, I⊗k] ⊆ Ik+1⊗k

and the ξk are of increasing order, we claim that the limit η := limN→∞ log
( ∏N

k=1 e
ξk

)
exists in I ⊗ k w.r.t.

the projective limit-topology, where k increases from right to left in the expression. Indeed, to see this it
suffices to show that for each n ∈ N the sequence (jnηN )∞

N=1 stabilizes for large enough values of N , where
ηN := log

( ∏N
k=1 e

ξk
)
. This is the case because for N ≥ n we have

jnηN = jn log
( N∏
k=1

eξk

)
= log

( N∏
k=1

ej
n(ξk)

)
= log

( n∏
k=1

ej
n(ξk)

)
= jnηn

21



where it was used that jn(ξk) = 0 for all k > n, because ξk ∈ Ik. Thus η = limN ηN is well-defined and
satisfies jnη = jnηn for all n ∈ N. Let σ ∈ LχI . Using the fact that

ξn+1.ηn.σ = eadξn+1 (ηn.σ +Dχ)−Dχ

= eadξn+1 eadηn (Dχ + σ)−Dχ = eadηn+1 (Dχ + σ)−Dχ = ηn+1.σ,

it follows by induction that for any n ∈ N, the equality ηn.σ = ξn.ξn−1 · · · ξ1.σ is valid. We thus get:

jn(η.σ) = jn(ηn.σ) = jn(ξn.ξn−1 · · · ξ1.σ), ∀n ∈ N.

Proposition 7.19. Assume that H1(p, P k(V ) ⊗χ k) = 0 for every k ∈ N. Then every degree-1 MC-element
in LχI is gauge-equivalent to 0 in LχI .

Proof. Fix a MC-element σ ∈ LχI . Recall that jn(ζ.σ) is again a MC-element in LχIn
for any n ∈ N and ζ ∈ LχI

of degree 0. Notice also that j0σ = 0. As H1(p, P k(V )⊗χ k) = 0 for every k ∈ N, it follows using Lemma 7.17
and the exact sequences (17), by induction on n ∈ N, that we can find a sequence of degree-0 elements (ξk)k∈N
in LχI with ξk ∈ P k(V ) ⊗ k such that jn(ξn.ξn−1 · · · ξ1.σ) = 0 for every n ∈ N. It follows from Lemma 7.18
that there is some η ∈ I ⊗χ k such that jn(η.σ) = ξn.ξn−1. · · · .ξ1.σ = 0 in LχI for all n ∈ N. Thus σ ∼ 0.

Lemma 7.20. Let p be a semisimple Lie algebra with no nontrivial compact ideals. If k is a compact semisim-
ple Lie algebra, then there are no non-trivial homomorphisms p→ k.

Proof. Let χ : p → k be a homomorphism. Then p/ kerχ is isomorphic to a subalgebra of k and is therefore
compact. As p is semisimple and has no nontrivial compact ideals, it also has no non-trivial compact quotients.
Thus p/ kerχ = {0} or equivalently p = kerχ, so χ is trivial.

Proposition 7.21. Assume that p is semisimple. Let χ : p→ k be a homomorphism and let σ′ ∈ LχI . Suppose
that σ := χ+ σ′ is a degree-1 MC-element in LR. Then σ is gauge-equivalent to χ in LR.

Proof. Since H1(p, P k(V ) ⊗χ k) = 0 for all k ∈ N≥0 by Whitehead’s Lemma [Jac79, III.7. Lem. 3], Proposi-
tion 7.19 implies that σ is equivalent to 0 in LχI . Equivalently χ+ σ is equivalent to χ in LR.

Theorem 7.12. Assume that p is semisimple. Let the linear map σ : p → g satisfy the Maurer-Cartan
equation (11). Then σ is gauge-equivalent to σ0 := ev0 ◦σ : p → k. If p has no non-trivial compact ideals,
then σ is gauge-equivalent to 0.

Proof. Since σ ∈ p∗ ⊗ g is a MC-element in LR, there is some degree-1 MC-element σ′ ∈ Lσ0
I such that

σ = σ0 +σ′, by Lemma 7.15. Then Proposition 7.21 implies that σ is gauge-equivalent to σ0. By Lemma 7.16
we further know that σ0 : p → k is a homomorphism of Lie algebras. Thus, if p has no non-compact ideals
then σ0 is trivial by Lemma 7.20.

Remark 7.22. Alternatively, Theorem 7.12 also follows from the structure theory of pro-Lie algebras, developed
in [HM07]. To see this, assume that p is semisimple. Consider the pro-Lie algebra h⋊D0 p, were h := I⊗ k ⊆ g
and where D0 : p→ der(h) is given by D0(p) = −Lv(p) + adσ0(p) for p ∈ p. Since p is semisimple, the radical
and Levi-factor of h⋊D0 p are h and p, respectively. A Levi subalgebra of (g⋊D0 p) is equivalently given by
a splitting of the exact sequence

0→ h→ h⋊D0 p→ p→ 0, (18)

which in turn is equivalently given by a linear map σ′ : p→ h satisfying the Maurer-Cartan equation

σ′([p1, p2]) = [σ′(p1), σ′(p2)] +D0(p1)σ′(p2)−D0(p2)σ′(p1), ∀p1, p2 ∈ p.

That is, by a degree-1 MC-element σ′ in the DGLA Lσ0
I . The splitting sσ′ and Levi subalgebra lσ′ corre-

sponding to σ′ are given by sσ′ : p→ h⋊D0 p, sσ′(p) := (σ′(p), p), and lσ′ := { (σ′(p), p) : p ∈ p } ⊆ h⋊D0 p,
respectively. Any two Levi subalgebras in h ⋊D0 p are conjugate by an automorphism of the form eadξ for
some ξ ∈ h, by [HM07, Thm. 7.77(i)]. So if σ′ ∈ Lσ0

I is a degree-1 MC-element, there exists ξ ∈ h such that
eadξ (σ′(p), p) = (0, p) for all p ∈ p. Notice for p ∈ p that eadξ (σ′(p), p) = ((ξ.σ′)(p), p), where

(ξ.σ′)(p) = eadξσ′(p) + F (adξ)(D0(p)ξ) = eadξσ′(p) + F (adξ)(δσ0(ξ)(p))

is precisely the gauge action of the degree-zero elements (Lσ0
I )0 = h on Lσ0

I . We thus find that ξ.σ′ = 0, so
σ′ ∼ 0 in Lσ0

I . By Lemma 7.16, this is equivalent with σ ∼ σ0 in LR.

We now prove Theorem 7.13:
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Theorem 7.13. Assume that p = R. Let σ ∈ g and v ∈ XI . Let vl := j1v ∈ gl(V ) be the linearization of v
at 0 ∈ V . Assume w.l.o.g. that σ0 := ev0(σ) ∈ t for some maximal torus t ⊆ k. The following assertions hold:

1. Assume that ⟨n,µ⟩ ≠ α(σ0) for any root α ∈ it∗ of k and n ∈ Nd≥0 with |n| ≥ 1.
Then σ is gauge-equivalent to some σ′ ∈ R⊗ t.

2. If vl is semisimple, then σ is gauge-equivalent to some ν ∈ R⊗ k satisfying −Lvlν + [σ0, ν] = 0.

3. Suppose that v = vl is linear. Assume that D = −Lv+adσ integrates to a continuous T = R/2πZ-action
on g. Then σ is gauge-equivalent to σ0 ∈ t. Moreover Spec(vl) ∪ Spec(adσ) ⊆ 2πiZ.

Proof.

1. Using Lemma 7.15, write σ = σ0 + σ′, where σ′ ∈ Lσ0
I is a degree-1 MC-element in the shifted DGLA

Lσ0
I . Passing to the complexification, observe for n ∈ N that

Pn(VC)⊗σ0 (k/t)C ∼=
⊕
α

Pn(VC)⊗σ0 (kC)α

as p-modules. The eigenvalues of −Lvl + adσ0 acting on Pn(V )⊗σ0 (kC)α are given by α(σ0)− ⟨n,µ⟩,
as n ranges over the multi-indices n ∈ Nd≥0 with |n| = n, and α over the roots of k. Thus −Lvl + adσ0

is invertible on Pn(V )⊗σ0 (kC)α. Consequently

H0(p, Pn(VC)⊗σ0 (kC)α) = H1(p, Pn(VC)⊗σ0 (kC)α) = 0

for any n ∈ N and root α, which in turn implies that H0(p, Pn(V )⊗σ0 k/t) = H1(p, Pn(V )⊗σ0 k/t) = 0.
By the long exact sequence of cohomology groups associated to the short exact sequence

0→
(∧•

p∗
)
⊗ Pn(V )⊗ t→

(∧•
p∗

)
⊗ Pn(V )⊗σ0 k→

(∧•
p∗

)
⊗ Pn(V )⊗σ0 k/t→ 0,

it follows that for every n ∈ N, the inclusion p∗⊗Pn(V )⊗ t ↪→ p∗⊗Pn(V )⊗σ0 k induces an isomorphism
H1(p, Pn(V )⊗ t) ∼= H1(p, Pn(V )⊗σ0 k). It then follows using Lemma 7.17 by induction on n ∈ N that
we can find elements ξk ∈ P k(V )⊗σ0 k s.t. jn(ξn.ξn−1 · · · ξ1.σ

′) ∈ In⊗t for every n ∈ N, the gauge action
taking place in Lσ0

I . By Lemma 7.18 there exists η ∈ I⊗σ0 k s.t. jn(η.σ′) = jn(ξn.ξn−1. · · · .ξ1.σ
′) ∈ In⊗t

for every n ∈ N. Hence ζ := η.σ′ ∈ I ⊗ t and σ′ is gauge-equivalent to ζ in Lσ0
I . By Lemma 7.15 it

follows that σ = σ0 + σ′ is gauge-equivalent to σ0 + ζ ∈ R⊗ t.

2. As before, decompose σ = σ0 + σ′ using Lemma 7.15, where σ′ ∈ Lσ0
I is a degree-1 MC-element in the

shifted DGLA Lσ0
I . Let n ∈ N. Identify p∗ ⊗ Pn(V )⊗σ0 k with Pn(V )⊗σ0 k by evaluating elements of

p∗ at 1 ∈ p = R. This induces an isomorphism

H1(p, Pn(V )⊗σ0 k) ∼= (Pn(V )⊗σ0 k)/Im(−Lvl + adσ0)

Since vl is semisimple, so is −Lvl + adσ0 as operator on Pn(V ) ⊗σ0 k. Consequently, the inclusion
(Pn(V )⊗σ0 k)p ↪→ Pn(V )⊗σ0 k induces an isomorphism

(Pn(V )⊗σ0 k)p ∼= (Pn(V )⊗σ0 k)/Im(−Lvl + adσ0).

So every element of H1(p, Pn(V )⊗σ0 k) admits a representative in p∗ ⊗ (Pn(V )⊗σ0 k)p, for any n ∈ N.
By a similar argument as in the previous item, it follows that σ′ is gauge-equivalent to some ζ ∈ I ⊗σ0 k
in Lσ0

I that satisfies −Lvl(ζ)+ [σ0, ζ] = 0. By Lemma 7.15 it follows that σ0 +σ′ ∼ σ0 + ζ in LR. Notice
that ν := σ0 + ζ satisfies −Lvlν + [σ0, ν] = 0.

3. Observe first that any derivation D′ ∈ der(g) satisfying D′(I ⊗ k) ⊆ (I ⊗ k) integrates to a unique
1-parameter group t 7→ etD

′ of automorphisms on g that leave the ideal I⊗ k ⊆ g invariant. Indeed, this
follows from fact that the corresponding statement is true for the finite-dimensional Lie algebra der(gn)
for every n ∈ N, where we use that g is the projective limit g = lim←−n gn. In particular this applies to
the T-action etD on g, which therefore leaves I ⊗ k invariant. It thus induces a continuous T-action on
V ∗⊗k ∼= (I⊗k)/(I2⊗k), which integrates the linear operator −Lvl⊗1+1⊗adσ0 on V ∗⊗k. This implies
that vl ∈ gl(V ) and adσ0 ∈ der(k) integrate to continuous T = R/2πZ-actions on V and k, respectively.
As T is compact it follows in particular that vl is semisimple and that Spec(vl) ∪ Spec(adσ0) ⊆ 2πiZ.
By Lemma 7.15 we know that there is some degree-1 MC-element σ′ ∈ Lσ0

I such that σ = σ0 + σ′. By
the previous item, it follows that we may assume that σ′ satisfies −Lvlσ

′ + [σ0, σ
′] = 0, by acting with

gauge transformations in Lσ0
I if necessary. Let n ∈ N. The T-action on gn = Rn⊗k must be unitarizable

23



because T is compact, so that its generator Dn := −Lvl +[jnσ,−] ∈ der(gn) must be semisimple. Notice
further that −Lvl +[σ0,−] is semisimple on gn whereas [jnσ′,−] is nilpotent. Since −Lvlσ

′ +[σ0, σ
′] = 0,

the operators −Lvl +[σ0,−] and [jnσ′,−] on gn commute. Thus Dn =
(
−Lvl +[σ0,−]

)
+[jnσ′,−] is the

Jordan decomposition of Dn. As Dn is semisimple, this implies that [jnσ′,−] = 0. Thus jnσ′ ∈ Z(gn),
where Z(gn) denotes the center of gn. As k is simple, we know that Z(gn) = Pn(V ) ⊗ k ⊆ gn. Thus
σ′ ∈ In−1 ⊗ k for every n ∈ N, where I0 := R. As

⋂
n∈N(In−1 ⊗ k) = {0}, it follows that σ′ = 0. Hence

σ = σ0 ∈ t.

8 Projective Unitary G.P.E. Representations of (R⊗ k) ⋊D p

Having obtained the normal form results Theorem 7.12 and Theorem 7.13, we now proceed with the study
of continuous projective unitary representation of jet Lie groups and algebras that are of generalized positive
energy.

Let us begin by briefly recalling the setting and our notation. We have that V is a finite-dimensional real
vector space, R = RJV ∗K :=

∏∞
n=0 P

k(V ) is the ring of formal power series on V with coefficients in R and
equipped with the product topology. Moreover, g denotes the topological Lie algebra g = R⊗ k, where k is a
compact simple Lie algebra and p is a finite-dimensional real Lie algebra acting on g by the homomorphism
D : p → der(g), which splits into a horizontal and a vertical part according to D(p) = −Lv(p) + adσ(p),
where v : p → X op

I is a homomorphism and where the linear map σ : p → g satisfies the Maurer Cartan
equation (11). Let P and K be the 1-connected Lie groups integrating p and K, respectively. For n ∈ N
write Gn := Jn0 (V ;K), G♯n := Jn0 (V ;K) ⋊ P and g♯n := gn ⋊D p. Define further G := J∞

0 (V ;K) := lim←−nGn,
G♯ := G⋊α P and g♯ := g⋊D p ∼= lim←−n g

♯
n.

In the following, we are interested in understanding the extent to which the linearization vl of v and the
values of σ(p) at the origin already determine properties of the class of representations which are of g.p.e. at
a given cone C ⊆ p. To describe the main results, we first have to introduce some more notation.

Define σ0 := ev0 ◦σ : p → k and let vl = j1v : p → gl(V ) be the linearization of v at the origin. For p ∈ p,
the vector fields v(p) splits as v(p) = vl(p) + vho(p) for some formal vector field vho(p) ∈ XI2 vanishing up to
first order at the origin. Let vl(p) = vl(p)s + vl(p)n be the Jordan decomposition of vl(p) over C. Let V C

c (p)
denote the span in VC of all generalized eigenspaces of vl(p) corresponding to eigenvalues with zero real part.
Set Vc(p) := V C

c (p) ∩ V . If C ⊆ p is a subset, define Vc(C) :=
⋂
p∈C Vc(p). We call Vc(C) the ‘center subspace

associated to C’, in analogy with the center manifold of a fixed point of a dynamical system. Let Vc(C)⊥ ⊆ V ∗

denote the annihilator of Vc(C) in V ∗. For any p ∈ p, let Σp ⊆ C denote the additive subsemigroup of C
generated by Spec(vl(p)). Recall from Definition 4.1 that for any continuous projective unitary representation
π of g⋊D p, the set C(π) consists of all points p ∈ p for which π is of generalized positive energy at p.

Let us describe the main results of this section. In the context of positive energy representations, we have:

Theorem 8.1. Let ρ be a smooth projective unitary representation of G⋊α P which is of positive energy at
p ∈ p. Assume that Spec(adσ0(p)) ∩ Spec(vl(p)) = ∅. Then ρ factors through J2

0 (V ;K) ⋊α P . Moreover the
image of −Lvl(p) + adσ0(p) in P 2(V )⊗ k ⊆ J2

0 (V ;K) is contained in ker ρ.

Remark 8.2. Notice that Spec(adσ0(p)) = {α(σ0(p)) : α ∈ ∆ }∪ {0} is a finite subset of iR. In particular, the
condition Spec(vl(p)) ∩ Spec(adσ0(p)) = ∅ is satisfied if vl has no purely imaginary eigenvalues.
This is complemented by the following results, which in particular give sufficient conditions for π|g to factor
through k, because RJVc(C)∗K⊗ k ∼= k whenever Vc(C) = {0}.

Theorem 8.3. Let π be a continuous projective unitary representation of g⋊D p. Let C ⊆ C(π). Assume that
Spec(adσ0(p))∩Σp = ∅ for all p ∈ C. Then RVc(C)⊥⊗ k ⊆ kerπ, and hence π|g factors through RJVc(C)∗K⊗ k.

Theorem 8.4. Let t ⊆ k be a maximal Abelian subalgebra. Let π be a continuous projective unitary repre-
sentation of g♯. Let C ⊆ C(π). Assume for every p ∈ C that σ(p) ∈ R ⊗ t and [vl(p)s, vho(p)] = 0. Then
RVc(C)⊥ ⊗ k ⊆ kerπ and hence π|g factors through RJVc(C)∗K⊗ k.

To prove these results, we consider in Section 8.1 the second continuous Lie algebra cohomology H2
ct(g⋊Dp;R)

so as to obtain particular representatives ω of cohomology classes therein. We proceed in Section 8.2 to show
that any irreducible smooth projective unitary representation G⋊α P factors through the finite-dimensional
Gn⋊P for some n ∈ N. This gives us access to techniques that are available for finite-dimensional Lie groups,
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and in particular to Corollary 3.6, which leads to Theorem 8.1. In Section 8.3 and Section 8.4 we study the
kernel of the quadratic form ξ 7→ ω(D(p)ξ, ξ). Recalling from Corollary 4.6 that

[D(p)η, η] = 0 =⇒
(
ω(D(p)η, η) = 0 ⇐⇒ π(D(p)η) = 0

)
, ∀η ∈ g,

this leads to an ideal in g contained in kerπ, and to the proof of Theorem 8.3 and Theorem 8.4. These results
are supplemented in Section 8.5 by a consideration of the special case where p is a simple non-compact Lie
algebra, in which case Theorem 7.12 is available. This leads to the following:

Theorem 8.5. Assume that p is non-compact and simple. Let π be a continuous projective unitary represen-
tation of g⋊D p. Write C := C(π) ⊆ p. Then π|g factors through RJVc(C)∗K⊗ k.

Theorem 8.6. Assume that p is non-compact and simple. Suppose that vl defines a non-trivial irreducible
p-representation on V . Let π be a continuous projective unitary representation of g⋊D p. Let C ⊆ C(π) be a
P -invariant convex cone. Either C is pointed or π|g factors through k.

8.1 The Second Lie Algebra Cohomology H2
ct(g⋊D p,R).

We next determine suitable representatives of classes in the second Lie algebra cohomology H2
ct(g ⋊D p,R),

which classifies the continuous R-central extensions of g⋊ p =: g♯ up to equivalence. As an intermediate step
we first consider H2

ct(g,R), which is completely understood.

Define ΩkR := R ⊗
∧k

V ∗, equipped with projective limit topology obtained from ΩkR = lim←−n ΩkRn
, where

ΩkRn
:= Rn ⊗

∧k
V ∗. This makes ΩkR into a Fréchet space. In particular Ω0

R = R. Since J∞
0 (Ωk(V )) ∼= ΩkR,

we can define a continuous differential d : ΩkR → Ωk+1
R by dj∞

0 α := j∞
0 dα ∈ J∞

0 (Ωn+1(V )) ∼= Ωk+1
R , which is

indeed well-defined. Choosing a basis (eµ)dµ=1 of V with dual basis (dxµ)dµ=1 of V ∗, the above differential d
is on R given by df =

∑
µ(∂µf)⊗ dxµ for f ∈ R.

Lemma 8.7. Let E be a topological R-module and let D : R → E be a continuous derivation. Then there
exists a unique continuous R-linear map D : Ω1

R → E such that D = D ◦ d.

Proof. Let R[V ∗] denote the ring of polynomial functions on V . As R[V ∗] ⊆ R, E is also a R[V ∗]-module
and D|R[V ∗] : R[V ∗] → E is a derivation. Using the universal property of the Kähler differential forms
Ω1

R[V ∗]
∼= R[V ∗] ⊗ V ∗, there is a unique R[V ∗]-linear map D : Ω1

R[V ∗] → E such that D ◦ d
∣∣
R[V ∗] = D|R[V ∗].

As Ω1
R[V ∗] is dense in Ω1

R, it remains to extend D continuously to the Fréchet space Ω1
R. Let α ∈ Ω1

R and
let (αn)n∈N be a sequence in Ω1

R[V ∗] s.t. αn → α in Ω1
R. We show that Dα := limn→∞ Dαn exists and is

independent of the approximating sequence (αn). Choose a basis (dxµ)dµ=1 of V ∗. Write αn =
∑d
µ=1 f

(n)
µ dxµ

and α =
∑d
µ=1 fµdxµ for some unique f (n)

µ ∈ R[V ∗] and fµ ∈ R. Then f (n)
µ → fµ in R for every µ and hence

limn→∞ Dαn =
∑d
µ=1 limn→∞ f

(n)
µ Dxµ =

∑d
µ=1 fµDxµ, which is independent of the approximating sequence

(αn). It follows that D extends to a continuous R-linear map D : Ω1
R → E, which satisfies D ◦ d = D by

construction. It is unique with these properties because its restriction to the dense subspace R[V ∗] ⊆ R is
so.

Remark 8.8. Lemma 8.7 entails that d : R → Ω1
R is the universal differential module R in the category of

complete locally convex R-modules, in the sense of [Mai02, Thm. 6]

Proposition 8.9. Any class [ω] ∈ H2
ct(g,R) has a unique representative of the form ω(ξ, η) = λ(κ(ξ, dη)),

where λ ∈ Ω1
R

∗ is closed and continuous functional on Ω1
R and κ is the Killing form on k. (Closed meaning

that λ(dR) = 0.) Conversely, any such λ defines a 2-cocycle representing some non-zero class in H2
ct(g,R).

Consequently, the center of the universal central extension of g is (Ω1
R/dR).

Proof. This is a special case of [Mai02, Theorem 16], seeing as g = R⊗ k, where R is a unital, associative and
commutative Fréchet algebra and k is a simple Lie algebra.

Lemma 8.10. Let ω be an extension of the 2-cocycle λ(κ(ξ, dη)) on g to a 2-cocycle on g♯ = g⋊ p. Then λ
is p-invariant in the sense that λ(Lv(p)Ω1

R) = 0 for every p ∈ p.
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Proof. Take ξ = f ⊗X and η = g ⊗X for f, g ∈ R and 0 ̸= X ∈ k. Notice that [ξ, η] = 0 in R⊗ k. Using the
cocycle identity, this implies

ω(D(p)ξ, η) + ω(ξ,D(p)η) = ω(D(p), [ξ, η]) = 0
ω([σ(p), ξ], η) + ω(ξ, [σ(p), η]) = ω(σ(p), [ξ, η]) = 0.

Using D(p)ξ = −Lv(p)ξ + [σ(p), ξ] it follows that 0 = ω(Lv(p)ξ, η) + ω(ξ,Lv(p)η) = λ(Lv(p)fdg)κ(X,X). As
κ(X,X) ̸= 0 and RdR = Ω1

R, this shows the claim.

Lemma 8.11. Let ω : g♯ × g♯ → R be a continuous 2-cocycle on g♯ = g⋊D p. Then there exists n ∈ N and a
2-cocycle ωn on g♯n such that ω(ξ, η) = ωn(jnξ, jnη) for all ξ, η ∈ g♯.

Proof. Let ω : g♯ × g♯ → R be a continuous 2-cocycle on g♯. Choose norms ∥−∥n on the finite-dimensional
Lie algebras g♯n s.t. the quotient maps jn : g♯m → g♯n are contractive for any n,m ∈ N with n ≤ m. The
topology on g♯ = lim←− g♯n is specified by the seminorms ξ 7→ ∥jnξ∥n for n ∈ N and ξ ∈ g♯. As ω is continuous
and the maps g♯m → g♯n are contractive for n ≤ m, there exist n ∈ N such that |ω(ξ, η)| ≤ ∥jnξ∥n∥jnη∥n for
all ξ, η ∈ g♯ (e.g. using [Tre67, Prop. 43.1 and Prop. 43.4]). As jn : g♯ → g♯n is surjective, it follows that
ω(ξ, η) = ωn(jnξ, jnη) for a unique 2-cocycle ωn on g♯n.

8.2 Factorization Through Finite Jets
In the context of smooth projective unitary representations ρ of the Lie group G♯, it is no loss of generality
to consider the case where ρ factors through the finite-dimensional Lie group G♯n for some n ∈ N:

Theorem 8.12. Let ρ be a smooth projective unitary representation of G♯ with lift ρ :
◦
G→ U(Hρ) for some

central T-extension
◦
G of G♯. Then ρ decomposes as a (possibly uncountable) direct sum ρ =

⊕
i∈I ρi s.t. for

every i ∈ I there exists n ∈ N s.t. the projective unitary representations ρi associated to ρi factors through
G♯n. In particular, if ρ is irreducible then it factors through G♯n for some n ∈ N.

Proof. Write N ♯
m := ker

(
jm : G♯ → G♯m

)
and n♯m := ker

(
jm : g♯ → g♯m

)
for any m ∈ N≥0, so that

G♯m
∼= G♯/N ♯

m for any m ∈ N≥0. Notice that N ♯
m ⊆ N ♯

n whenever n ≤ m. Since ρ is a smooth projective
representation, it follows from [JN19, Thm. 4.3] that

◦
G is a Lie group. It is moreover regular by [Nee06, Thm.

V.I.8], because both G♯ and T are so. Let ◦
g := Lie(

◦
G). Then ◦

g is a central R-extension of g♯ in the category
of locally convex Lie algebras. Let the continuous 2-cocycle ω : g♯× g♯ → R represent the corresponding class
in H2

ct(g♯,R). By Lemma 8.11, there is some n ∈ N such that for all ξ ∈ g♯ we have jnξ = 0 =⇒ ω(ξ, η) = 0
for all η ∈ g♯. Let

◦
Nn be the closed normal subgroup of

◦
G covering N ♯

n and let ◦
nn be its Lie algebra. Then

◦
Nn is a central T-extension of N ♯

n integrating ◦
nn. Since ω|n♯

n×n♯
n

= 0, the central R-extension ◦
nn is trivial.

Hence ◦
nn ∼= R⊕ n♯n as central R-extensions of n♯n. As N ♯

n is regular and 1-connected, it follows from [Nee06,
Thm. III.1.5] that there is a commutative diagram

R R×N ♯
n N ♯

n

T
◦
Nn N ♯

n

e2πi • ϕ̃ id

of locally convex regular Lie groups. Observe that ϕ̃ is surjective and that ker ϕ̃ = Z. Thus
◦
Nn ∼= T × N ♯

n

as central T-extension of N ♯
n. Let ϕ : T × N ♯

n →
◦
N realize the isomorphism. For any integer m ≥ n, let

Nm := ϕ({1} × N ♯
m) ⊆

◦
Nn ⊆

◦
G, which is a closed normal subgroup of

◦
G isomorphic to and covering N ♯

m.
Then N := {Nm}m≥n is a filter basis of (decreasing) closed normal subgroups of

◦
G satisfying lim−→N = {1},

in the sense that for any 1-neighborhood U of
◦
G there exists m ≥ n such that Nm ⊆ U . Indeed, since

G♯ = lim←−mG
♯
m carries the projective limit topology and

◦
G is a locally trivial principal T-bundle over G♯

[JN19, Thm. 4.3], it follows that any 1-neighborhood U ⊆
◦
G contains ϕ(I × N ♯

m) for large enough m and
some open 1-neighborhood I ⊆ T. It now follows from [Nee10a, Thm.12.2] that ρ decomposes as a possibly
uncountable direct sum ρ ∼=

⊕
i∈I ρi such that for every i ∈ I there exists some m ≥ n with ρi(Nm) = {1},

which implies that ρi(N ♯
m) = {1}.

Theorem 8.12 gives us access to techniques that are available for finite-dimensional Lie groups, and in partic-
ular to Corollary 3.6. This can be used to prove Theorem 8.1.
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Theorem 8.1. Let ρ be a smooth projective unitary representation of G⋊α P which is of positive energy at
p ∈ p. Assume that Spec(adσ0(p)) ∩ Spec(vl(p)) = ∅. Then ρ factors through J2

0 (V ;K) ⋊α P . Moreover the
image of −Lvl(p) + adσ0(p) in P 2(V )⊗ k ⊆ J2

0 (V ;K) is contained in ker ρ.

To prove Theorem 8.1, it suffices by Theorem 8.12 to consider the case where ρ factors through the finite-
dimensional Lie group G♯k for some k ∈ N, which we thus assume. Write a for the ideal in g♯k generated by p ∈ p.
Let an ⊆ a denote the maximal nilpotent ideal in a. According to Corollary 3.6 we have [a, [an, an]] ⊆ ker dρ.
Recall that Ik := I/Ik+1.

Lemma 8.13. Suppose that V ∗ ⊗ k ⊆ j1an. Then Ik ⊗ k ⊆ an.

Proof. By assumption V ∗ ⊗ k ⊆ an + I2
k ⊗ k. As k is perfect it follows that

I l+1
k ⊗ k = [V ∗ ⊗ k, I lk ⊗ k] ⊆ an + [I2

k ⊗ k, I lk ⊗ k] = an + I l+2
k ⊗ k, ∀l ∈ N.

Thus it follows by induction that V ∗ ⊗ k ⊆ an + I l+1
k ⊗ k for all l ∈ N. As

⋂
l(an + I l+1

k ⊗ k) = an, it follows
that V ∗ ⊗ k ⊆ an and hence Ik ⊗ k ⊆ an.

Proof of Theorem 8.1. We may assume that ρ factors through G♯k for some k ∈ N. It suffices to show that
dρ factors through g♯2 and that the image of −Lvl(p) + adσ0(p) in P 2(V ) ⊗ k ⊆ g2 is contained in ker dρ.
By Corollary 3.6 we know that

[
a, [an, an]

]
⊆ ker dρ. Moreover I3

k ⊗ k = [Ik ⊗ k, [Ik ⊗ k, Ik ⊗ k]], because
k is perfect. To see that dρ factors through g♯2 it thus suffices to show that Ik ⊗ k ⊆ an. By Lemma 8.13
it is further sufficient to show that V ∗ ⊗ k ⊆ j1(an). Write D1(p) := −Lvl(p) + [σ0(p),−]. Notice that
j1(D(p)ξ) = D1(p)ξ for ξ ∈ V ∗ ⊗ k. The assumption Spec(vl(p)) ∩ Spec(adσ0(p)) = ∅ implies that D1(p) is
invertible on V ∗ ⊗ k. Thus if η ∈ V ∗ ⊗ k is arbitrary, there exists ξ ∈ V ∗ ⊗ k such that η = D1(p)ξ. Then
η = D1(p)ξ = j1(D(p)ξ) = j1([p, ξ]) ∈ j1(an). Thus V ∗ ⊗ k ⊆ j1(an). We obtain that Ik ⊗ k ⊆ an and
I3
k ⊗ k ⊆ ker dρ, so dρ factors through g♯2. We may thus assume that k = 2. We then obtain

D1(p)(P 2(V )⊗ k) = D(p)(I2
k ⊗ k) = [p, [Ik ⊗ k, Ik ⊗ k]] ⊆ [a, [an, an] ⊆ ker dρ.

8.3 The Case Where p = R

We proceed with the study of projective unitary representations π of g♯ = g ⋊D p which are of generalized
positive energy. We first specialize to the case where p = R, aiming to consider its consequences for the
general case afterwards.

As p = R, we may as well identify v with v(1) ∈ XI , D with D(1) and σ with σ(1) ∈ g. Recall that the
derivation D is given by D = −Lv + [σ,−]. Write v = vl + vho, where vl := j1v ∈ gl(V ) is the linearization
of v at 0 ∈ V and where vho ∈ XI2 . Let vl = vl,s + vl,n denote the Jordan decomposition of vl over C. Write
V C

c for the span of the eigenspaces of vl whose corresponding eigenvalue has zero real part. Set Vc := V C
c ∩V .

Write d := (0, 1) ∈ g♯ = g⋊D R. Let V ⊥
c ⊆ V ∗ denote the annihilator of Vc in V ∗, so V ⊥

c
∼= (V/Vc)∗.

Theorem 8.14. Let t ⊆ k be a maximal Abelian subalgebra. Assume that σ ∈ R⊗ t ⊆ g and [vl,s,vho] = 0 in
XI . Let π be a continuous projective unitary representation of g♯ on the pre-Hilbert space D. Assume that π
is of g.p.e. at d ∈ g⋊D Rd. Then RV ⊥

c ⊆ kerπ. Consequently, π|g factors through RJV ∗
c K⊗ k. In particular,

if Vc = {0} then π|g factors through k.

Remark 8.15. By acting with formal diffeomorphisms if necessary, one may by Theorem 7.7 always bring
v into a normal form, in the sense that [vl,s,vho] = 0 in XI . Moreover, Theorem 7.13 provides sufficient
conditions guaranteeing that σ is gauge equivalent to some element in R⊗ t.

Proof of Theorem 8.14

Let ω be a continuous 2-cocycle on g♯ that represents the class in H2
ct(g♯,R) corresponding to the central

R-extension of g♯ obtained from π by pulling back u(D) → pu(D) along π. In view of Proposition 8.9 and
Lemma 8.10, we may and do assume that ω satisfies ω(ξ, η) = λ(κ(ξ, dη)) for any ξ, η ∈ g, where λ : ΩR → R
is continuous, p-invariant and closed. We write fX instead of f ⊗ X for f ∈ RC and X ∈ kC. Let ∆ ⊆ it∗

denote the set of roots of k. Finally, write h := tC ⊆ kC. Recall from Corollary 4.6 that

[Dη, η] = 0 =⇒
(
ω(Dη, η) = 0 ⇐⇒ π(Dη) = 0

)
, ∀η ∈ g. (19)

Moreover, ω(Dη, η) ≥ 0 whenever [Dη, η] = 0. In the present setting, this yields:

27



Proposition 8.16. Fix f ∈ R. Then π(RLvf ⊗ k) = {0} ⇐⇒ λ(fdLvf) = 0.

Proof. For any H ∈ t, observe that DfH = −LvfH because σ ∈ R ⊗ t, so [DfH, fH] = −[LvfH, fH] = 0.
Using (19) we obtain that

κ(H,H)λ(Lv(f)df) = 0 ⇐⇒ π(LvfH) = 0, ∀H ∈ t. (20)

Assume that π(RLvf ⊗ k) = {0}. Then π(LvfH) = 0 for any H ∈ t, so λ(Lv(f)df) = 0 by (20). Conversely,
suppose that λ(Lv(f)df) = 0. Then π(LvfH) = 0 for all H ∈ t, by (20). Taking the commutator with
π(gXα), where g ∈ R, α ∈ ∆ is a root and Xα ∈ (kC)α is a corresponding root vector, it follows that

π(gLvfXα) = 0 ∀Xα ∈ (kC)α, g ∈ R. (21)

Take Xα ∈ (kC)α and Y−α ∈ (kC)−α. Write Hα = [Xα, Y−α]. By taking commutators with π(1 ⊗ Y−α) in
equation (21) we find that π(gLvfHα) = 0. As h =

∑
α[(kC)α, (kC)−α], this shows by linearity together with

equation (21) and the root space decomposition that π(RLvf ⊗ k) = {0}.

Define the quadratic form q(f) := λ(Lv(f)df) = −λ(fdLvf) on R. Let N := ker q denote its kernel. By
Proposition 8.16, N generates an ideal J ⊗ k on which π vanishes, where J := RLvN .

Corollary 8.17. Set J := RLvN . Then J ⊗ k ⊆ ker(π).

Together with the fact that λ vanishes on exact forms and is Lv-invariant, this puts severe restrictions on the
representation π and leads to Theorem 8.14. Let us also remark the following:

Lemma 8.18. The bilinear form βq(f, g) := λ(Lv(f)dg) on R associated to q is symmetric, the quadratic
form q is positive semi-definite and N = { f ∈ R : βq(f, g) = 0 ∀g ∈ R }.

Proof. As λ is closed and Lv-invariant, it follows that β is symmetric. To see that q is positive semi-definite,
let f ∈ R and 0 ̸= H ∈ t. Write η := fH and notice that [Dη, η] = 0. By Corollary 4.6 we know that
−κ(H,H)λ(Lv(f)df) = ω(Dη, η) ≥ 0. As κ is negative definite on k we obtain that q is positive semi-definite.
It follows that |βq(f, g)|2 ≤ q(f)q(g), which implies N = { f ∈ R : βq(f, g) = 0 ∀g ∈ R }.

The following observation is also noteworthy, although it will not be used:

Lemma 8.19. N ⊆ R is a subalgebra.

Proof. Let f, g ∈ N . Then using the Leibniz rule and Proposition 8.16 we obtain

π(RLv(fg)⊗ k) ⊆ π(fRLvg ⊗ k) + π(gRLvf ⊗ k) ⊆ {0},

Applying Proposition 8.16 once more, we conclude that fg ∈ N .

Lemma 8.20. λ ◦ Lvl,s = 0.

Proof. As λ : Ω1
R → R is continuous, it factors through the finite-dimensional space Ω1

Rk
= Rk ⊗ V ∗ for some

k ∈ N. Notice that both Lvl,n and Lvho are nilpotent on Ω1
Rk
⊗R C, whereas Lvl,s is semisimple on it. Also

[Lvl,s ,Lvl,n + Lvho ] = 0 because [vl,s,vho] = [vl,s,vl,n] = 0. Thus Lv = Lvl,s +
(
Lvl,n + Lvho

)
is the Jordan

decomposition of Lv acting on Ω1
Rk
⊗R C. Thus Im(Lvl,s) ⊆ Im(Lv) when Lvl,s and Lv are considered as

operators on Ω1
Rk
⊗R C. As λ is Lv-invariant, we know λ ◦ Lv = 0. Thus λ ◦ Lvl,s = 0.

In particular, λ vanishes on the eigenspaces in Ω1
RC

of Lvl,s corresponding to non-zero eigenvalues. We
introduce some more notation. Let EC denote the span of all eigenspaces in RC of Lvl,s corresponding to
eigenvalues with non-zero real part. Define E := EC ∩R and En := E ∩ In.

Lemma 8.21. E ⊆ N .

Proof. Let µ ∈ Spec(Lvl,s) with Re(µ) ̸= 0. Set Eµ := ker(Lvl,s − µI) ⊆ RC. Suppose first that µ ∈ R. If
ψ ∈ Eµ ∩R then because Lv leaves the eigenspaces of Lvl,s invariant, the 1-form ψdLvψ is an eigenvector of
Lvl,s with non-zero eigenvalue 2µ. By Lemma 8.20 it follows that q(ψ) = 0 and hence ψ ∈ N . Thus Eµ ⊆ N .
Next, suppose that µ is not real. Then also µ is an eigenvalue of Lvl,s . Write WC := Eµ⊕Eµ and W := WC∩R.
Take ψ ∈ W arbitrary. Then ψ = η + η for some η ∈ Eµ (and hence η ∈ Eµ). As µ + µ = 2Re(µ) ̸= 0
and Lv leaves the eigenspaces of Lvl,s invariant, each of the 1-forms ηdLvη, ηdLvη, ηdLvη and ηdLvη are
eigenvectors of Lvl,s with non-zero eigenvalue. Using Lemma 8.20 it follows that q(ψ) = 0 and hence ψ ∈ N .
Thus W ⊆ N . As N is a linear subspace, we have shown E ⊆ N .

Lemma 8.22. RE ⊆ RLvE.

28



Proof. Write J := RLvE. As J is an ideal in R it suffices to show E ⊆ J . We claim that En ⊆ J + En+1

for every n ∈ N≥0. Indeed, take ψ ∈ En. As Lvl is invertible on En (which is true because Lvl is invertible
on every finite-dimensional and Lvl-invariant subspace E ∩ P k(V ) ⊆ E), there exists some η ∈ En s.t.
Lvlη = ψ. Observe that LvhoE ⊆ E because [Lvl,s ,Lvho ] = 0. Also LvhoI

n ⊆ In+1, since vho ∈ XI2 . Thus
LvhoE

n ⊆ En+1. In particular Lvhoη ∈ En+1. Then ψ = Lvlη = Lvη − Lvhoη ∈ J + En+1, as required. By
induction it follows that E = E0 ⊆ J + En for every n ∈ N. As

⋂
n∈N(J + En) = J , this implies E ⊆ J .

Proof of Theorem 8.14:
Using Lemma 8.21 we obtain E ⊆ N . By Corollary 8.17, this implies J ⊗ k ⊆ kerπ, where J = RLvE. By
Lemma 8.22, we know RE ⊆ J . Notice that E∩V ∗ = V ⊥

c , so in particular RV ⊥
c ⊆ J . Thus RV ⊥

c ⊗ k ⊆ kerπ.
Notice that R/(RV ⊥

c ) ∼= RJV ∗
c K, because V ∗

c = V ∗/V ⊥
c . We conclude that π factors through the quotient

(R⊗ k)/(RV ⊥
c ⊗ k) ∼= (RJV ∗

c K⊗ k).

8.4 The Case of General p
Let us return to the case where P is a 1-connected finite-dimensional Lie group with Lie algebra p. Let us
recall some of the notation introduced earlier in Section 8.

Define σ0 := ev0 ◦σ : p → k and let vl = j1v : p → gl(V ) be the linearization of v at 0 ∈ V . For p ∈ p,
the vector fields v(p) splits as v(p) = vl(p) + vho(p) for some formal vector field vho(p) ∈ XI2 vanishing up
to first order at the origin. Let vl(p) = vl(p)s + vl(p)n be the Jordan decomposition of vl(p) over C. Let
V C

c (p) denote the span in VC of all generalized eigenspaces of vl(p) corresponding to eigenvalues with zero
real part. Set Vc(p) := V C

c (p) ∩ V . If C ⊆ p is a subset, define Vc(C) :=
⋂
p∈C Vc(p). Let Vc(C)⊥ ⊆ V ∗ denote

the annihilator of Vc(C) in V ∗. Let Σp ⊆ C denote the additive subsemigroup of C generated by Spec(vl(p)).
For any continuous projective unitary representation π of g⋊D p, the set C(π) consists of all points p ∈ p for
which π is of generalized positive energy at p.

We use Theorem 8.14 combined with suitable normal form results to prove Theorem 8.3 and Theorem 8.4.

Lemma 8.23. Let W be a finite-dimensional real vector space and let Wi ⊆ W be a collection of linear
subspaces, where i ∈ I for some indexing set I. Then

( ⋂
i∈I Wi

)⊥ = Spani∈IW
⊥
i .

Proof. Notice first that
⋂
i∈I W

⊥
i =

[
Spani∈IWi

]⊥. Applying this observation to the subspaces W⊥
i ⊆ W ∗,

we obtain that
⋂
i∈I Wi =

⋂
i∈I(W⊥

i )⊥ =
[
Spani∈IW

⊥
i

]⊥, where we also used that (W⊥
i )⊥ ∼= Wi for any

i ∈ I. Taking annihilators, this implies
( ⋂

i∈I Wi

)⊥ = Spani∈IW
⊥
i .

Theorem 8.3. Let π be a continuous projective unitary representation of g⋊D p. Let C ⊆ C(π). Assume that
Spec(adσ0(p))∩Σp = ∅ for all p ∈ C. Then RVc(C)⊥⊗ k ⊆ kerπ, and hence π|g factors through RJVc(C)∗K⊗ k.

Proof. Let p ∈ C. By Theorem 7.7, there is a formal vector field who(p) ∈ XI2 satisfying [vl(p)s,who(p)] = 0
s.t. v(p) is formally equivalent to w(p) := vl(p) +who(p). If h ∈ Aut(R) ⊆ Aut(g) is a formal diffeomorphism
s.t. w(p) = h.v(p), then h leaves the constant part σ0(p) of σ(p) fixed, so ev0(h.σ(p)) = ev0 σ(p) = σ0(p).
Thus, we may assume that [vl(p)s,vho(p)] = 0 and Spec(adσ0(p))∩Σp = ∅. By acting with gauge transforma-
tions, we may by Theorem 7.13 further assume that σ ∈ R ⊗ t, where t is a maximal torus containing σ0(p).
By Theorem 8.14, it follows that RVc(p)⊥ ⊆ kerπ. The above holds for all p ∈ C, so Spanp∈CRVc(p)⊥ ⊆ kerπ.
By Lemma 8.23 we know Spanp∈C

(
Vc(p)⊥)

= Vc(C)⊥, so that R/(Spanp∈CRVc(p)⊥) ∼= RJVc(C)∗K.

Theorem 8.4. Let t ⊆ k be a maximal Abelian subalgebra. Let π be a continuous projective unitary repre-
sentation of g♯. Let C ⊆ C(π). Assume for every p ∈ C that σ(p) ∈ R ⊗ t and [vl(p)s, vho(p)] = 0. Then
RVc(C)⊥ ⊗ k ⊆ kerπ and hence π|g factors through RJVc(C)∗K⊗ k.

Proof. By Theorem 8.14 it follows that Spanp∈CRVc(p)⊥ = RVc(C)⊥ ⊆ kerπ.

8.5 The Case Where p is Simple.
Let us consider the special case where p is simple. Let P be a 1-connected Lie group with Lie(P ) = p. In
this case, suitable normal form theorems for v and σ are available (see Theorem 7.10 and Theorem 7.12).
In particular, v : p → X op

I is always formally equivalent to its linearization vl at 0 ∈ V . Similarly, by
Theorem 7.12, the vertical twist σ : p→ g is gauge-equivalent to some Lie algebra homomorphism σ0 : p→ k.
In particular, if p is not compact then we may and do assume that σ = 0 by acting with gauge transformations
if necessary, for in that case there are no homomorphisms p → k (because k is compact, see Lemma 7.20).
Combined with Theorem 8.4 we immediately obtain Theorem 8.5 below, where Vc(C) :=

⋂
p∈C Vc(p).
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Theorem 8.5. Assume that p is non-compact and simple. Let π be a continuous projective unitary represen-
tation of g⋊D p. Write C := C(π) ⊆ p. Then π|g factors through RJVc(C)∗K⊗ k.

Let p = k0⊕p0 be a Cartan decomposition of p, so that k0 and p0 are the +1 and −1 eigenspaces of a Cartan-
involution θ, respectively [Kna96, Cor. 6.18]. Let a0 ⊆ p0 be a maximal Abelian subalgebra of p0. According
to the Iwasawa decomposition [Kna96, Prop. 6.43], p decomposes as p ∼= k0⊕a0⊕n0, where n0 ⊆ p is nilpotent.
For p ∈ p we write p = pe + ph + pn for the corresponding decomposition of p, where pe ∈ k0, ph ∈ a0 and
pn ∈ n0. Then Spec(adpe

) ⊆ iR, Spec(adph
) ⊆ R and adpn

is nilpotent [Kna96, Lem. 6.45]. Moreover, a0 is
contained in a Cartan subalgebra of p0 [Kna96, Cor. 6.47].

Proposition 8.24. Suppose that p is simple and that the p-representation vl on V is non-trivial and irre-
ducible. Let C ⊆ p be an AdP -invariant convex cone and let Vc(C) :=

⋂
p∈C Vc(p). Assume that C contains

some non-zero ph ∈ a0. Then Vc(C) = {0}.

Proof. Notice first that as P is 1-connected, the p-action vl : p → gl(V ) integrates to a continuous repre-
sentation of P on V . As C is AdP -invariant, the subspace Vc(C) is P -invariant. Thus either Vc(C) = {0} or
Vc(C) = V , so it suffices to show Vc(C) ̸= V . By assumption ph ̸= 0. In view of Cartan’s unitary trick, see
e.g. [Kna01, V. Prop. 5.3], the image of elements in a0 in any finite-dimensional representation are semisimple
and have real spectrum. Thus Spec(vl(ph)) ⊆ R. As p is simple and vl is a non-trivial p-representation
by assumption, it follows that vl is injective. As vl(ph) ∈ gl(V ) is semisimple, there exists 0 ̸= v ∈ V s.t.
vl(ph)v = µv for some 0 ̸= µ ∈ R. Thus 0 ̸= v /∈ Vc(C). Hence Vc(C) ̸= V and so Vc(C) = {0}.

Theorem 8.6. Assume that p is non-compact and simple. Suppose that vl defines a non-trivial irreducible
p-representation on V . Let π be a continuous projective unitary representation of g⋊D p. Let C ⊆ C(π) be a
P -invariant convex cone. Either C is pointed or π|g factors through k.

Remark 8.25. Notice that if p is simple and C is a closed AdP -invariant convex cone which is not pointed,
then C ∩ −C = p and hence C = p.

Proof of Theorem 8.6: The edge e := C ∩ −C of the closure C of C is an ideal in p. Assume that C is not
pointed. Then neither is C. As p is simple, it follows that e = p and hence C = p. Thus C is a dense
convex cone in the finite-dimensional real vector space p, which implies that C = p. As p is non-compact,
it contains some hyperbolic element. Thus, so does C. By Proposition 8.24 it follows that Vc(C) = {0} and
hence Theorem 8.5 implies that π factors through k.

Thus if C is an AdP -invariant convex cone which is not pointed, then g admits no continuous projective unitary
representations which are of g.p.e. at C ⊆ p other than those which factor through k. On the other hand, we
know by [Pan81, Cor. 2.3] that if p is simple, then a non-trivial pointed closed and P -invariant convex cone
exists in p if and only if p is of hermitian type, meaning that dim(z(k0)) = 1, where p = k0 ⊕ p0 is a Cartan
decomposition of p and where k0 is the Lie algebra of a compact Lie group.

Let us shift our attention to positive energy representations, in which case a different argument is available.

Lemma 8.26. Suppose that P is a non-compact simple connected Lie group. If (σ,Hσ) is a unitary P -
representation that is norm-continuous, then σ is trivial.

Proof. As p is simple, dσ is either injective or trivial. Assume that dσ is not trivial. Let p = k0⊕a0⊕n0 be the
Iwasawa decomposition of p. Take x ∈ a0. Then adx is semisimple and Spec(adx) ⊆ R. As σ is unitary and dσ
is injective, z 7→ ∥dσ(z)∥B(H) defines a P -invariant norm on p. With respect to this norm, etadx is an isometry
on p for every t ∈ R. As adx is semisimple, it follows that Spec(adx) ⊆ iR. So Spec(adx) ⊆ R∩ iR = {0} and
hence adx = 0. Since p has trivial center it follows that x = 0. So a0 = {0} and hence p is compact. But P
is non-compact by assumption. So dσ must be trivial. As P is connected, it follows that σ is trivial.

Proposition 8.27. Suppose that P is a non-compact 1-connected simple Lie group. Assume that the P -action
on V is irreducible and non-trivial. Let ρ be a continuous projective unitary representation of G which is of
positive energy at C := p. Then ρ|G factors through K.

Proof. By Theorem 8.12 it suffices to consider the case where ρ factors through Gk for some k ∈ N. From
Whitehead’s Second Lemma, [Jac79, III.9. Lem. 6], we know that H2(p,R) = {0}. Using in addition that P
is simply connected, it follows that ρ|P lifts to a continuous unitary representation σ : P → U(Hρ) of P , so
that ρ(p) = [σ(p)] in PU(Hρ) for all p ∈ P . By Lemma 3.7, the fact that ρ|P is of p.e. at C = p implies that
σ is norm-continuous. It follows from Lemma 8.26 that σ is trivial. Thus ρ(αp(g)) = ρ(g) for all g ∈ G and
p ∈ P . It follows that dρ vanishes on D(p)g. As p acts irreducibly and non-trivially on V , it follows that the
ideal in g generated by D(p)g is I ⊗ k. Thus I ⊗ k ⊆ ker dρ. This implies that ρ|Gk

factors through K.
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The following provides a simple example of a projective p.e. representation ρ of G1 ⋊ P s.t. ρ|G1
does not

factor through K.

Example 8.28. Let P = Mp(2,R) be the double-cover of SL(2,R). Let P act on V := R2 via the defin-
ing action of SL(2,R). We consider a trivial vertical twist, so that the p-action on g = R ⊗ k is given by
D(p) = −Lv(p). In this case the generator p0 of rotations generates the unique (up to a sign) non-trivial
closed, pointed, P -invariant convex cone C in p. Explicitly, v(p0) = y∂x − x∂y. Let us construct a non-trivial
continuous projective unitary representation of G1 ⋊P ∼= (V ∗⊗ k)⋊ (K×P ) that is of p.e. at the cone C ⊆ p.
Write W := V ∗ ⊗ k.

We begin by specifying a suitable 2-cocycle on V ∗ ⊗ k ⊆ g1. Notice that
( ∧2

V
)p ∼= R is one-dimensional.

Let 0 ̸= λ ∈
( ∧2

V
)p and consider it as a p-invariant bilinear map V ∗ × V ∗ → R. To be consistent with

Proposition 8.9, let us write λ(fdg) instead of λ(f, g) for f, g ∈ V ∗. Let x, y ∈ V ∗ be the usual basis of V ∗.
Then λ is fully specified by the number λ(ydx). If λ(ydx) > 0, then the quadratic form q(v) := λ(Lv(p0)vdv)
is positive-definite, because q(ax + by) = (a2 + b2)λ(ydx) for a, b ∈ R. Let ω be the unique symplectic form
on W satisfying ω(vX,wY ) := λ(vdw)κ(X,Y ) for X,Y ∈ k and v, w ∈ V ∗. Then ω(D(p0)ξ, ξ) ≥ 0 for every
ξ ∈ W (recalling that κ is negative definite). Let H(W,ω) be the corresponding Heisenberg group. Let L±
be the ±i-eigenspaces in WC of the complex structure J := D(p0) on WC, so that WC = L− ⊕ L+. The
p-invariance of λ ensures that J ∗ω = ω. Indeed, extend ω C-bilinearly to WC. As λ is p-invariant, it follows
that ω(J ξ, η) + ω(ξ,J η) = 0 for all ξ, η ∈ WC, which implies that L± ⊆ WC are J -invariant Lagrangian
subspaces for ω. Then J ∗ω = ω follows from J ∗ω(w+, w−) = ω(iw+,−iw−) = ω(w+, w−) for w± ∈ L±.
Notice further that ω(J ξ, ξ) ≥ 0 holds for all ξ ∈ W , by construction. Equip L+ with the positive definite
hermitian form defined by ⟨v, w⟩L+ := −2iω(v, w) for v, w ∈ L+. For each n ∈ N, equip the symmetric algebra
Sn(L+) with the inner product satisfying

⟨v1 · · · vn, w1 · · ·wn⟩ :=
∑
σ∈Sn

n∏
k=1
⟨vσk

, wk⟩L+ , vk, wk ∈ L+.

Let F := S•(L+) be the Hilbert space completion, where S•(L+) =
⊕∞

n=0 S
n(L+). The metaplectic represen-

tation ρ of H(W,ω)⋊Mp(W,ω), with ρ(z) = zI on the central T component, can be realized on the Fock space
F , where Mp(W,ω) denotes the metaplectic group [Nee00, Thm X.3.3]. Notice that SL(2,R) ↪→ Sp(W,ω)
because λ is p-invariant. By pulling back the metaplectic representation we obtain a continuous unitary
representation of H(W,ω) ⋊ P which is of p.e. at C and does not factor through K.

Appendix
A From Germs to Jets
Let K → M be locally trivial bundle of Lie groups with typical fiber a finite-dimensional Lie group G with
Lie algebra g. Write K → M for the corresponding Lie algebra bundle. The following justifies the claim
made in Section 1 that any continuous projective unitary representation of Γc(K) which factors through the
germs at a point a ∈ M actually factors through the ∞-jets J∞

a (K) at a ∈ M . The group Γc(K) is a locally
exponential Lie group modeled on the LF-Lie algebra Γc(K) [JN17, Prop. 2.3].

Let U ⊆ Rd be an open neighborhood of the origin. Let C∞
flat(U) denote the kernel of the ∞-jet projection

j∞
0 : C∞

c (U)→ J∞
0 (C∞

c (U)) ∼= RJx1, · · · , xdK

at 0 ∈ U . In the following we show the known fact that the closure C∞
c (U \ {0}) in C∞(U) is C∞

flat(U). As a
consequence, we deduce that if a continuous projective unitary representation of the Lie algebra Γc(K) factors
through the germs at a point a ∈ M , then it factors through the ∞-jets J∞

a (K) at a ∈ M . In turn, this
implies a group level-analogue.

If K ⊂ U is a compact set, we write C∞
K (U) for the subspace of C∞(U) consisting of functions on U with

support in K. Then C∞
K (U) is the projective limit C∞

K (U) = lim←−n C
n
K(U) of the Banach spaces CnK(U), which

we equip with the norm ∥f∥Cn
K

(U) := sup|k|≤n∥Dkf∥CK(U), where the supremum runs over all multi-indices
k ∈ Nd≥0 with |k| ≤ n. Then C∞

c (U) := lim−→C∞
K (U) is the corresponding locally convex inductive limit. See

e.g. [Rud91, Thm. 6.5] for a description of this topology. For r > 0, write Br := {x ∈ Rd : ∥x∥ ≤ r } for the
closed ball centered at 0 ∈ Rd with radius r.
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Lemma A.1. The closure of C∞
c (U \ {0}) in C∞

c (U) is C∞
flat(U).

Proof. As C∞
flat(U) ⊆ C∞

c (U) is closed and C∞
c (U \ {0}) ⊆ C∞

flat(U), it follows that C∞
c (U \ {0}) ⊆ C∞

flat(U).
It remains to show the reverse inclusion. Let f ∈ C∞

flat(U) ⊆ C∞
c (U). We show f ∈ C∞

c (U \ {0}). Let
K0 ⊆ M be a relatively compact open subset such that supp f ⊆ K0. Set K := K0. We may assume that
0 ∈ K0, for otherwise f ∈ C∞

c (U \ {0}) and we are done. By [Mal67, Lem. I.4.2], we can find constants
Ck > 0 for k ∈ Nd≥0, depending only on k, such that for any 0 < r < 1 with B2r ⊆ K0, there exists a smooth
function ψr ∈ C∞(Rd) s.t. ψr ≥ 0, ψr|Br

= 0, ψr|(Rd\B2r) = 1 and supx∈Rd |Dkψr(x)| ≤ Ckr
−|k| for every

k ∈ Nd≥0. In particular fψr ∈ C∞
c (U \ {0}) and supp fψr ⊆ K. Moreover, observe that supp(1 − ψr) ⊆ B2r

and ∥(1 − ψr)∥Cn
B2r

(Rd) ≲ r−n for some constant depending on n ∈ N≥0, where we used that 0 < r < 1.
On the other hand, suppose that α ∈ Nd≥0 is a multi-index. Since j∞

0 (Dαf) = 0, it follows from Taylor’s
Theorem that ∥Dαf∥C(B2r) ≲ rl for arbitrary l ∈ N≥0, with a constant depending on f , α and l but not on
r. Thus ∥f∥Cn(B2r) ≲ rl for arbitrary n, l ∈ N≥0. In particular ∥f∥Cn(B2r) ≲ rn+1. Combining the previous
observations, we obtain that

∥f − fψr∥Cn(K) = ∥f(1− ψr)∥Cn(K) = ∥f(1− ψr)∥Cn(B2r) ≲ ∥f∥Cn(B2r)∥(1− ψr)∥Cn(B2r) ≲ r,

the constants depending only on f and n but not on r. This shows that fψr → f in C∞
K (U) as r → 0. Thus

fψr → f in C∞
c (U). Since ψrf ∈ C∞

c (U \ {0}) for every r, we conclude that f ∈ C∞
c (U \ {0}).

If a ∈M , define the spaces of smooth section of K and K which are flat at a ∈M :

Γflat(a)(K) := ker
(
j∞
a : Γc(K)→ J∞

a (K)
)
, Γflat(a)(K) := ker

(
j∞
a : Γc(K)→ J∞

a (K)
)
.

Proposition A.2 below clarifies the apparent ambiguity in the topology on J∞
a (K), for which two candidates

are available.

Proposition A.2. Let a ∈ M . The projective limit topology on J∞
a (K) := lim←−k J

k(K) coincides with the
quotient topology obtained from J∞

a (K) ∼= Γc(K)/Γflat(a)(K).

Proof. The continuous k-jet projections jka : Γc(K) → Jka (K) at a ∈ M all descend to continuous maps
Γc(K)/Γflat(a)(K) → Jka (K). By the universal property of the projective limit, they induce a continuous map
Φ : Γc(K)/Γflat(a)(K) → J∞

a (K). Using Borel’s Lemma [Hör03, Thm. 1.2.6], it is not hard to check that this
map is bijective. It remains to show it is an open map, which follows immediately from the Open Mapping
Theorem [Rud91, Cor. 2.12] because Γc(K)/Γflat(a)(K) and J∞

a (K) are both Fréchet spaces and Φ is bijective
and continuous.

Proposition A.3. Let a ∈M .

— The closure of Γc(M \ {a};K) in Γc(M ;K) is Γflat(a)(K).

— The closure of Γc(M \ {a};K) in Γc(M ;K) is Γflat(a)(K).

Proof. By a partition of unity argument, we may assume that the bundle K → M is trivial, that M ⊆ Rd
is open neighborhood of 0 ∈ Rd and that a = 0. Then Γc(M ;K) ∼= C∞

c (M ; k). The claim now follows from
Lemma A.1. Notice for the second assertion that Γflat(a)(M ;K) is a locally exponential, being an embedded
closed Lie subgroup of the locally exponential Lie group Γc(M ;K). The result is then immediate from the
previous point.

Proposition A.4. Let a ∈M .

1. Let π : Γc(M ;K)→ L†(D) be a continuous projective unitary representation on the pre-Hilbert space D.
Assume that π vanishes on Γc(M \ {a};K). Then π factors continuously through J∞

a (K).

2. Let ρ : Γc(M ;K)→ PU(H) be a continuous projective unitary representation of Γc(M ;K). Assume that
ρ vanishes on Γc(M \ {a};K). Then ρ factors through Γflat(a)(M ;K).

Proof. For the first point, notice by continuity that π must also vanish on the closure of Γc(M \ {a};K)
in Γc(M ;K), which by Proposition A.3 equals Γflat(a)(M ;K). Thus Γc(M ;K) factors continuously through
the quotient space J∞

a (K) ∼= Γc(M ;K)/Γflat(a)(M ;K), where Proposition A.2 was used. The second point is
proven similarly using Proposition A.3.
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